DESCRIPTION BASED PARSING
IN A CONNECTIONIST NETWORK

James Brinton Henderson

A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1994

Mitchell Marcus
Supervisor of Dissertation

Mark Steedman
Graduate Group Chairperson

© Copyright

James Brinton Henderson

1994

This dissertation is dedicated to my parents, Rolland and Janet Henderson, and to my grandmother,
Rebecca Hetzel, and the memories of Theodore Hetzel, Walter Henderson, and Emma Henderson.

iii

Acknowledgements

I’d like to gratefully acknowledge the help and support of my advisor, Mitch Marcus. I’d also like to
particularly thank my committee members, Don Hindle, Tony Kroch, Lokendra Shastri, and Mark
Steedman. Their input was crucial to making this dissertation both interesting from a variety of
perspectives, and completable. Special thanks goes to Lokendra Shastri for his encouragement and
advice.

Many people have had an impact on this work. Thanks to the members of the CLiFF group, who
heard and commented on countless versions of this work over the years. Thanks to the residents
of IRCS, for many spontaneous, thoughtful discussions. I also appreciate the many conversations
I’ve had with visitors to IRCS and at conferences, particularly at the CUNY Conference on Human
Sentence Processing.

None of this would be possible without the unwavering support and encouragement of my parents,
for which I am very grateful. I've also depended on my friends at Penn, who have tried their best
to keep me sane, and the purveyors of truck food, who have tried their best to keep me fed. Special
thanks to my friends Ivan, Hunter, Raphael, Mike, and Abigail.

v

Abstract
Description Based Parsing in a Connectionist Network

James Brinton Henderson

Mitchell Marcus

Recent developments in connectionist architectures for symbolic computation have made it pos-
sible to investigate parsing in a connectionist network while still taking advantage of the large
body of work on parsing in symbolic frameworks. This dissertation investigates syntactic pars-
ing in the temporal synchrony variable binding model of symbolic computation in a connectionist
network. This computational architecture solves the basic problem with previous connectionist ar-
chitectures, while keeping their advantages. However, the architecture does have some limitations,
which impose computational constraints on parsing in this architecture. This dissertation argues
that, despite these constraints, the architecture is computationally adequate for syntactic parsing,
and that these constraints make significant linguistic predictions. To make these arguments, the
nature of the architecture’s limitations are first characterized as a set of constraints on symbolic
computation. This allows the investigation of the feasibility and implications of parsing in the ar-
chitecture to be investigated at the same level of abstraction as virtually all other investigations of
syntactic parsing. Then a specific parsing model is developed and implemented in the architecture.
The extensive use of partial descriptions of phrase structure trees is crucial to the ability of this
model to recover the syntactic structure of sentences within the constraints. Finally, this parsing
model is tested on those phenomena which are of particular concern given the constraints, and
on an approximately unbiased sample of sentences to check for unforeseen difficulties. The results
show that this connectionist architecture is powerful enough for syntactic parsing. They also show
that some linguistic phenomena are predicted by the limitations of this architecture. In particular,
explanations are given for many cases of unacceptable center embedding, and for several significant
constraints on long distance dependencies. These results give evidence for the cognitive significance
of this computational architecture and parsing model. This work also shows how the advantages
of both connectionist and symbolic techniques can be unified in natural language processing appli-
cations. By analyzing how low level biological and computational considerations influence higher
level processing, this work has furthered our understanding of the nature of language and how it
can be efficiently and effectively processed.

Contents

Acknowledgements iv
Abstract v
1 Introduction 1
1.1 Motivations o e e e e e e e e e 3
1.1.1 Investigating Architecture-Level Constraints. 3

1.1.2 Combining Connectionism with Linguistic Theories 4

1.2 Overview of the Computational Constraints 5
1.2.1 Constraints on Previous Connectionist Parsers 6

1.2.2 The Connectionist Architecture o L. 7

1.2.3 Constraints on Syntactic Parsing 0oL, 8

1.2.4 The Relationship to Previously Proposed Constraints 11

1.3 Overview of the Parsing Model 12
1.3.1 Representing Phrase Structure Trees 12

1.3.2 Recovering Phrase Structure Trees 18

1.3.3 The Connectionist Implementation 24

1.4 Overview of the Evaluation 0 oo 26
1.4.1 Phenomena of Particular Concern, 27

1.4.2 Testing for Adequacy and Significance 28

1.4.3 Advantages of the Architecture o 0oL 30

1.5 SUmMmAary oot e e e e e e e e e 31

2 The Computational Constraints 33
2.1 Constraints on Previous Connectionist Parsers 34
2.2 Connectionist Symbolic Computation L. 38
2.2.1 Temporal Synchrony Variable Binding, 38

vi

2.3

The
3.1

3.2

3.3

3.4

The
4.1

4.2

4.3

4.4

2.2.2 Other Characteristics of the S&A Architecture 41

2.2.3 Other Models of Connectionist Symbolic Computation 42
2.2.4 Limitations of the S&A Architecture 43
Constraints on the Parsing Model L . 46
Grammatical Framework 49
Related Approaches to Grammatical Representation 50
3.1.1 Requirements for the Grammatical Framework 50
3.1.2 Specifying Independent Information Independently 52
3.1.3 Computational Locality 54
Structure Unification Grammar o L oL 55
3.2.1 Describing Phrase Structure o oo oL 56
3.2.2 Accumulating Phrase Structure oo oo 60
3.2.3 A Formal Specification of SUG 0o oo 65
Expressing Grammatical Information in SUG 0. 66
3.3.1 Using SUG’s Large Domain of Locality, 68
3.3.2 Trading Ambiguity for Partial Specification 71
3.3.3 Partial Descriptions of Phrase Structure in Other Formalisms 73
Forgetting Grammatical Information in SUG 75
Parsing Model 79
Related Approaches to Syntactic Parsing o oo 80
4.1.1 Requirements for the Parsing Model 80
4.1.2 Inferring New Information L. 83
4.1.3 Modeling Memory Bounds L oL 84
NNEP’s Grammars o o v v v v et et e e e e e e e e e e e 85
4.2.1 Restrictions on the Grammars oo 86
4.2.2 Restrictions on the Derivations 0000, 87
NNEP’s Operations o . 0 0 st e e s e e e 88
4.3.1 Combination Operations L L e 89
4.3.2 State Internal Operations L o 92
4.3.3 The Forgetting Operation o 93
NNEP’s State Informationo oL 94
4.4.1 The Representation of State Information. 95
4.4.2 Maintaining State Information o L Lo 98

vii

4.5 NNEP’s Disambiguation Mechanism

4.5.1 Coordinating Disambiguation Decisions

4.5.2 Choosing an Action

4.5.3 Istimating Choice Probabilities

4.6 NNEP’s Output

5 The Connectionist Implementation

5.1 Network Structure
5.2 The Connectionist Architecture
5.2.1 Units and Links
5.2.2 Implementing Predicates

5.2.3 Implementing Pattern-Action Rules

5.3 Implementing NNEP’s Operations and Grammar

5.3.1 Combination Operation Rule Patterns

5.3.2 Combination Operation Rule Actions

5.3.3 State Internal Operation Rules

5.3.4 The Forgetting Rule
5.4 Maintaining the Parser State
5.5 The Time Course of Parsing

5.6 Characteristics of the Implementation

5.7 The Simulation of the Implementation

6 Testing the Parsing Model

6.1 Phrase Structure Analyses

6.2 Recovering Long Distance Dependencies

6.3 Representing Local Ambiguities

6.4 Handling the Parser’s Resource Bounds

6.5 The Diversity of Language

7 Conclusion

7.1 The Adequacy and Significance of the

7.2 Summary
7.3 Discussion

7.4 Future Work

A Disambiguation Interventions

Bibliography

Architecture oL

viii

111
112
114
114
115
116
117
118
121
123
124
125
126
127
128

130
133
136
148
161
168

170
171
173
177
178

181

183

Chapter 1

Introduction

Several properties of connectionist networks have made them popular for both cognitive modeling
and technological applications. They have effective learning algorithms, can combine multiple soft
constraints, perform massively parallel computation, are sometimes biologically motivated, and
often exhibit other desirable characteristics such as graceful degradation. However, traditional
connectionist architectures are unable to capture the generalizations that arise as a result of the
compositional nature of many phenomena (i.e. systematicity) (Fodor and Pylyshyn, 1988). The
paradigmatic example of such a phenomena is natural language syntax. Because of this limitation,
previous efforts to use connectionist networks for parsing natural language have not made much
progress. Fortunately, recent work on extending traditional connectionist architectures to support
symbolic computation (Shastri and Ajjanagadde, 1993) has produced a connectionist computa-
tional architecture that can directly express generalizations over constituents, thereby capturing
systematicity within the connectionist architecture. This dissertation investigates using this con-
nectionist computational architecture for recovering the syntactic structure of natural language
sentences. The extension (temporal synchrony variable binding) is shown to be sufficient to make
connectionist networks powerful enough for syntactic parsing. This demonstration makes it possible
to apply the advantages of connectionist networks to natural language processing. In addition, the
architecture is constrained in ways that make significant predictions about the nature of language.
Thus the investigation of natural language processing in this computational architecture is not a
mere question of implementation.

Like other purely connectionist architectures, Shastri and Ajjanagadde’s architecture (1993) uses
many simple computing units that communicate with each other using only an output activation
value. The pattern of activation over these units represents the predications that are being stored
(or their probabilities), and the interconnection pattern (i.e. the links) implements the rules of the
system. Since a given link connects a fixed pair of units, the rules of the system are specific to
the information represented by different units, but generalize across information represented by
different times. As in recurrent connectionist networks, this property can be used to implement
rules that are independent of absolute position in the input sequence by presenting the input
sequentially in time. For example, the same link can be used to test whether the next word is a
noun whether that word is the first or tenth word in the sentence. Unfortunately, other recurrent
networks only use time to represent input and computation sequence, so rules do not generalize
over any other type of information. This is a problem because rules must be able to generalize over
phrase structure constituents in order to capture the compositional aspects of natural language
syntax. For example, a rule which computes the effect of an adjective on its noun phrase shouldn’t

care if the noun phrase is the subject or the object of the sentence. To capture these generalizations,
a network needs to represent constituent identity using time, not space. Shastri and Ajjanagadde
(1993) provide exactly such a mechanism, called temporal synchrony variable binding. Course
grained temporal distinctions are still used to represent the sequence of inputs and computations,
but in this architecture, fine grained temporal distinctions are used to represent variables. Since
in the parser variables refer to phrase structure constituents, temporal synchrony variable binding
allows the compositional aspects of natural language syntax to be directly expressed.

Shastri and Ajjanagadde (1993) show how this connectionist architecture (henceforth the S&A
architecture) can be used to perform the very fast common sense reasoning they call reflexive rea-
soning. They argue that the S&A architecture is biologically motivated, supports the massively
parallel use of knowledge, supports evidential reasoning, has psychologically plausible limitations,
and supports symbolic computation. This dissertation investigates how this same architecture can
be applied to recovering the syntactic constituent structure of natural language sentences. There
are two basic questions to be asked about syntactic parsing in the S&A architecture: are the ar-
chitecture’s abilities adequate to account for what people are able to do, and and do its limitations
help explain what people are not able to do. In other words, is the S&A architecture computation-
ally adequate for syntactic parsing, and does it impose linguistically significant constraints? This
dissertation provides an affirmative answer to both these questions.

At the current stage of this investigation, the question of computational adequacy is the most
important one. For no other connectionist parser has a convincing argument been made that it
is powerful enough to handle the complexities of natural language. In addition, a demonstration
of computational adequacy is a prerequisite to a demonstration of linguistically significant con-
straints. If the constraints of the architecture prevent it from being able to parse good sentences,
then its inability to parse any bad sentences is not very significant. Thus the primary concern of
this document is to show that the S&A architecture is computationally adequate for syntactic pars-
ing. Because of the computational characteristics and biological motivations of this connectionist
architecture, such a demonstration is interesting in and of itself.

A demonstration of computational adequacy would ensure that a syntactic parser could be imple-
mented in the S&A architecture, but it would not by itself be informative for higher level theories
of language. To demonstrate that connectionist networks can be more than mere implementations,
the limitations of the architecture have to be shown to make significant predictions about the nature
of language. While the linguistic implications of the constraints imposed by the S&A architecture
have not been investigated to the same extent as the issue of the architecture’s computational ad-
equacy, some linguistic phenomena can be explained in terms of constraints on the parsing model
which are motivated by the limitations of the architecture. This dissertation lays the ground work
for more such investigations in the future.

The arguments for the computational adequacy and linguistic significance of the S&A architecture
are based on an analysis of the limitations of the architecture. Because temporal synchrony variable
binding allows computation in this architecture to be characterized in terms of traditional symbolic
computation,' the limitations of the architecture can be characterized as a set of computational
constraints on symbolic computation. This method prevents the irrelevant details of connectionist
networks from interfering with the discussion, and it allows previous work on computationally

!By symbolic computation I mean the use of abstract representations of entities, their properties, and the general-
izations about these properties, as in, for example, predicate calculus. I do not mean to exclude the use of continuous
valued parameters (such as probabilities), or the use of feature decompositions to describe entities (as in distributed
connectionist representations).

constrained parsing to be used. Given this set of computational constraints, a parsing model is
developed which is designed to comply with these constraints. This parsing model is then tested
on its ability to handle the phenomena which are of particular concern given these constraints.
Showing how a parser can handle each of these phenomena demonstrates that the limitations of the
architecture do not prevent syntactic parsing, and thus that the architecture is computationally
adequate for syntactic parsing. To ensure that the analysis of what phenomena to include in these
tests is not flawed, a test on an essentially unbiased data set is also analyzed. The results from
the phenomena-specific tests also indicate what kinds of sentences the computational constraints
prevent the parser from being able to handle. These results show that the limitations of the
architecture make significant linguistic predictions.

The remainder of this chapter starts with a discussion of the motivations for this work. This is
followed by an overview of the other chapters in this dissertation. Section 2 starts with a brief
discussion of the limitations of previous connectionist architectures. Then the S&A architecture is
described, and the constraints which it imposes on the parser are characterized. These constraints
are combined with constraints on the parser’s input and output to form the basic requirements
for the parsing model, which are then compared to previously proposed computational constraints
on natural language. In section 3 the parsing model is described. First the parser’s grammatical
framework is given, then the parser’s design, and then the connectionist implementation is briefly
described. Section 4 outlines the argument that this parser demonstrates the adequacy and lin-
guistic significance of the S&A architecture for syntactic parsing. This argument involves testing
the parser on data pertaining to expressing phrase structure analyses, recovering long distance
dependencies, representing local ambiguities, staying within the parser’s resource bounds, and the
diversity of phenomena in language. The last section summarizes this chapter and gives an outline
of the rest of this dissertation.

1.1 Motivations

There are two types of motivations for the work done in this dissertation. One is that this work
uses independently motivated architecture-level constraints to make predictions about the nature of
language. The difficulty in justifying one set of computational constraints over another has limited
the significance of investigations of computationally constrained parsing. The other is that this work
answers technological questions about combining connectionist architectures with symbolic theories
of sentence processing. Previous investigations of connectionist parsing have typically ignored, or
even denied the significance of, the substantial body of existing work on natural language.

1.1.1 Investigating Architecture-Level Constraints

While most investigations of natural language have concentrated on the nature of grammars, there
are undoubtedly some characteristics of language which are best described in terms of the compu-
tations which people perform to process language. Unfortunately, the nature of these computations
is relatively unknown. This is largely because we have known so little about the nature of the com-
putational device (namely the brain) on which these computations are performed. Without making
assumptions about the nature of this device, any investigation of the computational constraints on
language is limited to using asymptotic complexity arguments. Asymptotic complexity measures
are too course grained to be adequate for investigating these constraints. Church (1980) showed

that natural language? is finite state. This is the strongest claim one can make using asymptotic
complexity arguments, and it still does not make any predictions about specific natural language
sentences. Thus any further progress requires making assumptions about the nature of the com-
putational mechanisms our brains use to process language. While such assumptions have been
investigated, it is difficult to decide which of the large variety of possible constraints to investigate.
Also, when a linguistically significant computational constraint is found, it is difficult to argue that
the constraint is due to the limitations of the human language processor, and not due to other
factors.

This dissertation makes a very specific assumption about the computational device used in pro-
cessing language, namely that it functions in the manner described in the Shastri and Ajjanagadde
(1993) connectionist computational architecture. In addition to supporting symbolic computation,
this architecture is computationally constrained. It is these constraints which form the basis of
this investigation of the computational constraints on language. While the constraints themselves
could be assumed independent of this particular architecture, the architecture provides a basis for
selecting one set of constraints over another. Because there are a number of motivations for this
architecture which are independent of the linguistic consequences of its constraints, the linguistic
consequences can be said to be explained by these computational constraints. Without such in-
dependent motivations, computational constraints become just another mechanism for describing
linguistic data.

Investigating independently motivated architecture-level constraints is not only important for the
study of the nature of language, it is also important for natural language processing applications.
People are extremely fast and accurate in recovering the syntactic structure of sentences, even if
the sentence’s conceptual content is difficult to understand. Currently, the properties of natural
language which make this efficiency and accuracy possible are not well understood. While it is
theoretically possible to discover these properties using only considerations of current artificial
computation technology and asymptotic complexity measures, such efforts have not been fully
successful to date. Because natural languages have undoubtedly evolved (genetically or historically)
to allow them to be efficiently and accurately processed by our brains, a promising alternative
approach is to use biological considerations to investigate these properties. This is the approach
taken here. The use of biological considerations in this investigation does not limit the applicability
of its results to biologically motivated computational architectures. Once we have discovered the
properties of natural language which make efficient and accurate processing possible, these insights
can be applied to natural language processing applications implemented in any computational
architecture.?

1.1.2 Combining Connectionism with Linguistic Theories

The kinds of problems which connectionist models have been successful with are largely orthogonal
to the kinds of problems which symbolic theories of language have been successful with. Con-
nectionist architectures have been successful at modeling processes which involve learning, and
combining, multiple sources of soft constraints. Linguistic theories have been successful at model-
ing phenomena which involve manipulating complex, discrete representations. Processing natural
language involves both these types of problems. Recently the natural language processing (NLP)

2By “natural language” I mean pretheoretic observable communication via language. I do not mean the competence
abstraction of language which is prevalent in most linguistic work.

*The argument made in this paragraph is analogous to one made by Shastri to motivate the investigation of
reflexive reasoning in the S&A architecture (personal communication).

community has been very interested in statistical models, precisely because the hardest remaining
issues in language processing are those which have not been addressed with symbolic methods.
Most connectionist researchers have not come to the reciprocal realization. The lack of work com-
bining connectionist methods with traditional NLP methods has prevented research on NLP from
making use of the strengths of connectionism. The work presented in this dissertation lays the
groundwork for making connectionist methods available for NLP researchers.

The work in this dissertation concentrates on the those aspects of syntactic parsing which other
connectionist approaches have had trouble with. Because of this, this investigation does not take
full advantage of the abilities of connectionist networks. It does, however, make it possible to take
advantage of these abilities in future work. In particular, the ability of connectionist networks to
learn how to combine multiple sources of soft constraints would be very useful in both grammar
induction and disambiguation. Grammar induction can be done by starting with a broad class of
grammar entries, and removing or keeping them based on their usefulness in parsing a training
set. Connectionist learning algorithms do exactly this, except they decrease or increase weights
rather than removing or keeping grammar entries. Decreasing the weight of a grammar entry
to zero removes it from the grammar. Such training also subsumes the parameter estimation
needed to do disambiguation. Thus both grammar induction and disambiguation can be done by
applying connectionist learning techniques to train that portion of the network which implements
the grammar. More discussion of this future work is given in section 7.4.

1.2 Overview of the Computational Constraints

As discussed above, this dissertation argues for the computational adequacy and linguistic sig-
nificance of the Shastri and Ajjanagadde connectionist computational architecture. While these
arguments involve the development of a specific parsing model which is implemented in the prim-
itive computational devices of the architecture, that level of description is too detailed to provide
a useful basis for discussing the motivations for, and implications of, many aspects of the parser’s
design. Fortunately, computation in this architecture can be characterized in terms of symbolic
computation, which has been found to be an appropriate level of abstraction for this type of investi-
gation. This prevents the irrelevant details of the architecture from interfering with the investigation
of parsing issues.? However, in order to do the investigation at the level of symbolic computation,
the characteristics of the architecture which are relevant for parsing need to be characterized at
that level. These characteristics form a set of constraints on symbolic computation. These com-
putational constraints, plus the constraints from the nature of the parsing task, form the set of
computational constraints on syntactic parsing which will be investigated in this dissertation.

This section is an overview of the discussion in chapter 2. It outlines the computational constraints
on the syntactic constituent structure parsing model. The discussion starts with a brief character-
ization of the computational constraints imposed by the architectures used in other investigations
of connectionist parsing, and what empirical investigations would be needed to argue that these
constraints do not prevent such parsers from ever being adequate. Then a description of how the
S&A architecture supports symbolic computation is given. This mechanism has some limitations
which constitute the primary constraints on the parsing model developed in this dissertation. These
constraints are characterized and then combined with constraints on the parser’s input and output.

*This approach represents a departure from standard connectionist methodology. Even if the reader is not con-
vinced by the above argument, hopefully they will find the results of this investigation sufficient to justify this
divergence.

The resulting set of constraints require that the parser use bounded memory, not use disjunc-
tion, limit the storage and processing of relations, produce incrementally interpretable output, and
parse in quasi-real time. The feasibility and implications of parsing within this set of constraints
are the central concern of this dissertation. This section concludes with a discussion of how these
constraints relate to previously proposed computational constraints on natural language.

1.2.1 Constraints on Previous Connectionist Parsers

While it is unreasonable to expect an argument for the adequacy of a computational architecture
to include a complete natural language parser implemented in that architecture, it is reasonable to
expect such an argument to address those parsing issues which are of particular concern given the
constraints imposed by the architecture. Unfortunately, previous investigations of connectionist
parsing have not met this criteria. All these investigations use connectionist architectures with two
major limitations: they are finite state, and they can not factor the representation of constituent
identity from the representation of constituent features.

The first limitation requires that a parser be able to parse in bounded memory. While there are
several ways to do this, it is not clear how it could be done for the representations used in these
parsers. In particular, since the representations do not distinguish constituent identity information
from constituent feature information, they can not take advantage of the fact that the set of features
needed during a parse is fixed, while the set of constituents needs to be dynamically determined.
Since these parsers have not been tested with sentences which are too long for the whole analysis
to be represented in the network, we don’t have any evidence that such sentences could be parsed
effectively.

The constraint that the representation of constituent identity can not be factored from the repre-
sentation of constituent features is a more serious challenge than the previous one.®> There are two
implications of this constraint. First, conflating these two dimensions of information results in a
very large number of primitive features. While it is theoretically possible for a network to support
this many primitive features, none of the previous connectionist parsers have been tested on a
sufficiently diverse or complex set of sentences to determine whether it is tractable. The second
implication of not being able to factor features from constituents is that constraints or rules which
are learned for a pattern of features for one constituent do not generalize to the same pattern of fea-
tures for another constituent. Some researchers claim this as an advantage, because these networks
always take the “context” of each constituent into consideration. However, it is the difficulty these
networks have with abstracting away from irrelevant context information which prevents them from
taking advantage of the compositional aspects of natural language. This inability to generalize in
the optimal way also means that they must be trained using a very large and particularly well
balanced set of sentences. Perhaps there are solutions to this problem, but until connectionist
parsers implemented in architectures with this limitation have been tested on a large enough and
complex enough set of sentences, there is little reason to believe that they can be adequate for
parsing natural language. A discussion of specific parsing models is given in section 2.1.

®This constraint is due to the lack of a mechanism for doing dynamic variable binding. This process will be
discussed in the next section.

1.2.2 The Connectionist Architecture

The Shastri and Ajjanagadde connectionist computational architecture has several characteristics
which make it well suited for investigating natural language parsing. As argued in (Shastri and
Ajjanagadde, 1993), the architecture is biologically motivated, supports the massively parallel use
of knowledge, supports evidential reasoning, has psychologically plausible limitations, and supports
symbolic computation. For our purposes the last of these properties is the most important. It is
this ability which allows the representation of constituency to be factored from the representation
of features.

To support symbolic computation, it must be possible to represent, and compute with, multiple
properties of multiple things. Such a representation must have a mechanism for distinguishing
which properties are for which things. This is called the variable binding problem. For example, to
represent the situation on the top left of figure 1.1, we need to represent that the square is striped
and the triangle is spotted. This can be done with the following logical formula.

Ja, y, striped(z) A square () A spotted(y) A triangle (y)

In this formula, the variables are used to represent the bindings between predications. The name
“x” does not mean anything in and of itself, but the sharing of it represents that the thing which
is striped is the same as the thing which is square, and possibly different from the thing which is
spotted and a triangle. This information can be represented in the S&A architecture as shown in the
rest of figure 1.1. As in many connectionist architectures, different predicates are represented with
different units.® The pattern of activation over these units represents the predications which are
true (or the probability of their truth). The problem with this simple representation is that there is
no representation of which predicates are true of which thing. To represent the depicted situation,
all four units would have to be active, but then we would not know whether it is the square or the
triangle which is striped. The S&A architecture solves this problem by using units which, rather
than producing sustained output, produce a pulse train of activation.” If two units are pulsing
synchronously, then they are representing predications about the same thing, and if they are not
pulsing synchronously, then they are representing predications about possibly different things. Thus
the temporal synchrony of unit activation is used to represent the bindings between predications,
just as variables are used to do this in logical formulae. This mechanism is called temporal synchrony
variable binding, and it is the core feature of the S&A architecture. For the purposes of this
investigation I will be assuming that these units all fire at the same frequency, so temporal synchrony
reduces to having the same phase in the periodic pattern of activation. These phases, then, are
equivalent to variables, as shown in figure 1.1. In the parsing model discussed below, variables refer
to phrase structure constituents, so these phases represent constituent identities.

As in other connectionist architectures, computation in the S&A architecture is done using links
between units. Links multiply the output value of their input unit by their weight to get their
activation. Some links provide this activation as input to another unit, where it is summed with
the activation from other input links. The S&A architecture also allows links which use their
activation to inhibit the activation of another link. A primary link’s activation is multiplied by one
minus the activation of each inhibiting link.® Sets of interconnected links are used to implement

6To prevent confusion, I will refer to nodes in a connectionist network as “units”, and nodes in a phrase structure
tree as “nodes”.

"There are other kinds of units which do produce sustained output. These units represent predications about the
situation as a whole, rather than information about individual entities.

8The use of inhibitory links is necessary to implement signal gates that don’t introduce significant propagation
delays, and to allow dynamically calculated probabilities to be multiplied.

I stepl 1 step2 | step3 |
X | y X | y X | yl
striped m ‘ ! H ‘ ! H‘ !
I I I I I
Spottedl \HI \HI [I
| | | | | | |
square | I |ﬂ\ |H\ |
wange |1 L7171

O O O O damger' [7
striped spotted square triangle
p p ! & scared ! \ I \ H I \
|

time

Figure 1.1: An example of temporal synchrony variable binding, and the sequential application of
two rules.

pattern-action rules, which test and modify the predications stored in the temporal pattern of
activation of the units. Because the same links are present during each variable’s phase, these
pattern-action rules inherently generalize across variables. Thus the rules of the parser inherently
generalize across phrase structure constituents. It is this ability to capture generalizations which
distinguishes the S&A architecture from other solutions to the variable binding problem, such as
(Smolensky, 1990).

An example of computation in the S&A architecture is also given in figure 1.1. The bottom two
lines of the timing diagram show the effects of the application of the following two rules.

Va, striped(z) A square (z) = danger
Va, danger A triangle (x) = scared(x)

First the synchronous activation of striped and square trigger the activation of the unit representing
the predicate danger. Danger represents a property of the situation as a whole, and therefore it’s
unit is active during both z and y’s phase. Then in y’s phase the simultaneous activation of danger
and triangle cause the scared unit to change its state. This change shows up in the output activation
of the scared unit in the subsequent period, in the phase of y. Because the effects of a rule generally
show up in the pattern of activation one period after the rule applies, periods can be thought of
as steps in the computation, as shown in figure 1.1. By supporting predications over variables
and supporting sequential computation with pattern-action rules that generalize over variables, the
S&A architecture supports the kind of symbolic computation necessary for syntactic parsing. For
more discussion of how the S&A architecture supports symbolic computation, see section 2.2.

1.2.3 Constraints on Syntactic Parsing

While the S&A architecture provides a rather general purpose computing framework, it does have
significant limitations. One very significant limitation of this architecture is that it has a bounded
memory capacity.” The ability to detect whether or not units are pulsing synchronously has

°The architecture allows for multiple computing modules, each with its own memory. NNEP is implemented as
one of these modules. The memory bounds apply to each computing module independently, so the parser does not
have to share its memory resources with other cognitive activities.

bounded precision, and units can only maintain periodic firing for a bounded range of frequen-
cies, so only a bounded number of distinguishable phases can fit in one period. Thus predications
can only be stored for a bounded number of variables. From biological evidence this bound is at
most ten, probably a little less (Shastri and Ajjanagadde, 1993). For this investigation the bound

will be assumed to be ten.!0

Another significant limitation of the S&A architecture is that it has no explicit representation of
logical connectives. Thus only the default logical connective can be used. Conjunction is the most
useful connective for syntactic parsing, so it will be used as the default connective. This means the
architecture cannot explicitly represent a disjunction of predications. However, it can implicitly
represent disjunctive information, and disjunction can be manifested in parallel computations. The
rules of the network or an external observer can give a disjunctive interpretation to a predicate,
but in terms of the explicit representation, the predications will still simply be conjoined with
other predications. Also, the lack of a predication can be interpreted as a disjunction between that
predication and other incompatible predications, but again the predications which are specified are
treated as conjoined. The parallel computation of pattern-action rules can also manifest disjunction,
in that different patterns can be doing tests which pertain to different possible continuations of the
computation. Thus if a bounded amount of disjunction is needed for a bounded amount of time,
it can be eliminated by compiling all that computation into one pattern-action rule for each of the
disjuncts. These computations, however, must be atomic, in that they cannot store intermediate
state, and thus cannot be composed of multiple steps. This limits the feasibility of this method to
only short computations, although there can be a large number of disjuncts. As will be discussed
below, the inability to explicitly represent disjunction means a parser must be deterministic, as
Marcus (1980) proposed.

The remaining limitations of the S&A architecture are due to the fact that temporal synchrony
variable binding only adds one additional dimension for representing information. This dimension
(fine grained temporal synchrony, or phase) allows the efficient storing and processing of informa-
tion about individual variables, but relations between variables require additional representational
dimensions for each additional argument position in the relation. This is analogous to the situation
which traditional connectionist architectures are in when they try to represent unary predications.
The solution to the need for additional representational dimensions is to use the dimensions which
are available more than once. Traditional connectionist architectures (implicitly or explicitly) use
the space dimension (i.e. unit identities) more than once. This technique was formalized by Smolen-
sky in his tensor product variable binding mechanism (Smolensky, 1990). This is also the technique
used in the S&A architecture for representing relations between variables. This means that the
S&A architecture has the same problems with storing and processing relations between variables
as traditional architectures have with storing and processing all predications over variables. These
problems are characterized in two additional constraints imposed by the S&A architecture, one on
storing relations, and one on processing relations.

The problem with storing relationships between variables using multiple spatial dimensions is that
it requires more units and it adds complexity in modifying and accessing the stored relations. To
control these costs, Shastri and Ajjanagadde (1993) propose that at most three instantiations of
a relation can be stored at any one time. This adds one additional dimension with three distinct
values. This dimension represents bindings between sets of variables, where each variable in each

1For the data addressed and representations used in this dissertation, this bound could be reduced to nine. This
is interesting because nine is the maximum of the robust bound on human short term memory of seven plus or minus
two (Miller, 1956). However, some additional data needs to be found and used for testing before such a precise claim
is made.

set is related to each variable in the other sets. The constraint requires that no more than three
such bindings be stored at any one time. For example, r(a,b) A r(c,d) A r(e, f) A r(g,h) could
not be stored, but r(a,b) A r(a,d) A r(e, f) A r(g,h) could, because the first two relationships can
be represented with a single binding between the sets {a} and {b,d}. In the general case, binary
relations would require ten such bindings, since ten is the maximum number of variables in the
mermory.

It is possible to implement rules that manipulate relationships between variables using one copy of
the rule for each of the three bindings for the relation, but this would require an additional mech-
anism to be added to the architecture. Because rules (unlike storage) have adjustable parameters,
and connectionist learning algorithms are spatially local, implementing a rule in multiple copies
would require a mechanism for ensuring that the weights of the links in the different copies are the
same. While such weight sharing is easy to do from outside the the architecture, currently there
is no biologically motivated way to do it within the architecture. Thus a single rule needs to be
implemented with a single pattern of links. It is possible to time-multiplex these links across a
relationship’s bindings (as is done for variables), but such rules would then take up to three times
as long to apply, and this would require circuitry to sequence through the bindings. If we don’t
allow this method either, then rules cannot directly manipulate relationships between variables.
Information about variables is available one variable at a time, and rules are implemented with
links, which have no memory, so rules must apply to each variable independently. Thus relations
must be set and accessed via unary predicates. For example, calculating long distance dependen-
cies requires information about what phrase structure nodes are possible “gap” sites for “trace”
nodes. Because (as it turns out) only one trace node needs to be involved in this calculation at any
given time, this information can be accessed using one unary predicate identifying this unique trace
node, and one unary predicate specifying what nodes might be the gap for the unique trace node.
The calculation itself must be done using these unary predicates. Calculations, such as this one,
which involve multiple variables can be done despite the fact that individual rules must apply to
each variable independently. In addition to information about variables, the network’s activation
pattern represents information about the situation as a whole. Calculations which involve multiple
variables can be done using different rules to set and test predications about the situation as a
whole. This was illustrated in figure 1.1, where danger was set based on information about z, and
then tested to determine information about y. Because communicating information between vari-
ables using constant predicates does not allow the identity of a variable to be communicated, this
technique still does not permit computations which require the manipulation of pairs of variables.
This requirement that rules apply to each variable independently is a form of locality constraint on
computations. While this constraint has no precedent in work on syntactic parsing, it turns out to
have a number of significant linguistic implications.

A model of syntactic parsing in the S&A architecture needs to comply both with the constraints
from the architecture, and with requirements from the nature of the parsing task. The later
constraints are imposed by the environment which provides the input to the parser, and by the
modules which interpret the output of the parser. The words which are input to the parser become
available one at a time, in the order in which they appear in the sentence. Thus the parser must
accept incremental input. For spoken language, and to a large degree in reading, the time between
the input of each word is bounded. Thus the parser must only take a bounded amount of time per
word. In other words, the parser must parse in quasi-real time.!!

" Because of the relationship between the architecture and bioclogical mechanisms, biological evidence can be used
to determine whether the parser can parse in real time, not just quasi-real time. Such a claim requires estimates of
parsing time in terms of actual seconds, not just computation steps. The link between computation steps and seconds

10

The modules which receive the output of the parser need to compute the sentence’s interpreta-
tion incrementally. In order to provide for incremental interpretation, the parser’s output must be
incremental and monotonic. If the output isn’t monotonic, then the interpreter can’t make commit-
ments on the basis of the output without risking having to retract those commitments. While such
retractions do occur under some circumstances, I assume that there is always some evidence that
something has gone wrong. Typically the person will be consciously aware of a problem, although
other evidence (such as regressions in eye movements) can also be used to determine these cases.
Since we are concerned here with the normal case in which nothing goes wrong, the parser’s output
must be monotonic.

Combining the externally imposed constraints with the constraints from the architecture, we get the
following complete list of the constraints on a model of syntactic parsing in the S&A architecture.
The constraints from the architecture (1-4) are discussed in more detail in section 2.2.4, and the
externally imposed constraints (5-8) are discussed in more detail in section 2.3. As will be discussed
in the next section, constraints 2, 7, and 8 mean the parser must be deterministic (in the sense
of (Marcus, 1980)), and in subsequent discussion they will often be referred to as the determinism
constraint.

at most ten variables stored at a time

no explicit representation of disjunction
at most three instantiations of relations
rules apply to each variable independently
incremental input

quasi-real time

incremental output

0 =1 O Ot B~ W N =

monotonic output

1.2.4 The Relationship to Previously Proposed Constraints

In additional to being consequences of using a particular independently motivated computational
architecture, these computational constraints are interesting because of their relation to previously
proposed computational constraints on natural language. The first constraint is an example of a
bounded memory requirement. It has generally been assumed that at some level of abstraction the
syntactic parser has a bounded memory (Chomsky, 1959). Church (1980) showed that this con-
straint applies at a level which takes into consideration performance constraints, such as restrictions
on the depth of center embedding and on the availability of phrases for posthead modification. The
particular form of the bounded memory constraint given above has not previously been successfully
applied to syntactic parsing, but it has extensive precedence in other investigations of cognition.
Miller (1956) proposed a bound of seven plus or minus two on the number of things which can be
stored in short term memory, and this result has been replicated for a surprising number of tasks.
The bound given above is precisely the same form of constraint, and although here I'm assuming
ten things can be stored, Miller’s results are within the resolution of the biological arguments which

is provided by the theory of how the primitives of the architecture are realized in neurons. This kind of extremely
fine grained prediction makes the potential of working in this architecture great. The parser presented here complies
with this real time constraint, but since the estimates of real speed are rather rough, I will concentrate on the clearer
constraint of quasi-real time.

11

are used to derive that bound. See (Shastri and Ajjanagadde, 1993) for a more extensive discussion
of this relationship.

Another interesting correlation with previously proposed computational constraints on natural
language is due to the restriction on disjunction and the requirement for incremental monotonic
output. These constraints imply that the syntactic parser must parse deterministically. This
constraint was first proposed by Marcus (1980), and has been argued for by several researchers
since ((Church, 1980), (Marcus et al., 1983), (Berwick and Weinberg, 1984)). It requires that
the parser deterministically pursue a single analysis. This means that multiple analyses can’t be
pursued in parallel, and that once the parser commits to an aspect of the analysis it can’t retract
that commitment. Explicitly pursuing multiple analyses in parallel is equivalent to having explicit
disjunction in the representation of the analysis, which is ruled out by the second constraint above.
The retraction of commitments is ruled out because all commitments must be immediately output
in order for the output to be maximally incremental, and once information has been output it
can’t be retracted or the output would not be monotonic. Thus the determinism constraint can be
derived from the independently motivated constraints that there be no explicit representation of
disjunction and that the parser’s output be incremental and monotonic.

1.3 Overview of the Parsing Model

The previous section identified the characteristics of the Shastri and Ajjanagadde connectionist
architecture which are significant for syntactic parsing in terms of a set of constraints on symbolic
computation. Given this characterization, it is possible to make the argument for the adequacy
and significance of this architecture at the level of symbolic computation. This greatly simplifies
the discussion of the relevant parsing issues, and it allows results from work in linguistics, com-
putational linguistics, and psycholinguistics (which has almost all been done in terms of symbolic
representations) to be applied to this investigation. Because it is the computational constraints that
are relevant for determining adequacy and significance, the need to comply with these constraints
determines what parsing issues are the focus of this investigation.

The argument for the adequacy and linguistic significance of the S&A architecture is made using a
specific example of a parser implemented in this architecture. This section gives an overview of this
parsing model, called a Neural-network Node Equating Parser (NNEP). This material is discussed
in detail in chapters 3 through 5. The above constraints on the parser require that NNEP’s
representation of phrase structure trees have certain characteristics. A grammatical framework
which has these characteristics is described in the first subsection. Then the design of NNEP itself
is outlined. NNEP computes derivations from the grammar formalism, but the above constraints
limit what derivations can be computed. The connectionist implementation of this parsing model
is briefly characterized in the fourth subsection.

1.3.1 Representing Phrase Structure Trees

The constraints outlined in the previous section place several requirements on the parser’s rep-

resentation of grammatical information.!? First, because the parser must be deterministic, the

12Gince the constraints being investigated are computational in nature, the grammatical representation used here is
designed primarily to support the needs of the parser. While it would be nice to have a single level of representation
for investigating both grammar specifications and parser representations, finding a representation that merges the

12

representation should allow the parser to avoid saying what it doesn’t know. Following Description
Theory (Marcus et al., 1983), partial descriptions of phrase structure trees are used to satisfy this
requirement. Partial descriptions allow the parser to underspecify phrase structure information,
rather than either overcommitting or using a disjunction of more completely specified alternatives.
In addition, in order to produce incremental output and only allow syntactically well-formed anal-
yses, the parser must be able to say what it does know. Again the use of partial descriptions is
important for this requirement, because they allow different kinds of information to be specified
independently of each other. To satisfy both these requirements, the grammatical representation
must allow information which the parser does know at a given time to be specified independently of
the information which the parser does not know. The grammatical representation used here allows
different kinds of grammatical features (e.g. +nominative, +plural), expectations (e.g. obligatory
arguments), iteration restrictions (e.g. one determiner per NP), and structural constraints (e.g.
linear order) to all be specified independently of each other.

The locality constraint on rules (constraint number 4 above) and the parser’s bounded memory
both place another requirement on the parser’s representation of grammatical information. Be-
cause of the locality constraint on rules, the representation should allow as much information as
possible to be local to individual phrase structure nodes. This helps avoid the need to implement
computations with multiple rules that set and test predications about the situation as a whole.
Thus we want a relatively flat phrase structure representation, provided it still expresses the com-
positional nature of syntax. This compact representation also makes it easier to stay within the
parser’s bounded memory, because it reduces the number of nodes in a tree’s representation. The
grammatical representation used here allows flexibility in the grouping of information into nodes
because multiple kinds of expectations and iteration restrictions can be specified for a single node.
In many formalisms this is not true. For example, in Context Free Grammars, the node on the left
side of a rule cannot have any more nodes attached to it (thereby restricting iteration), and the
nodes on the right side of the rule must have other nodes attached to them (thereby expressing
expectations). For constituents which can iterate, like optional modifiers, Chomsky adjunction
needs to be used. This results in multiple copies of the modified node. Also, in order to control
the iteration of words such as determiners separately from controlling the iteration of, for example,
head nouns, Context Free Grammars have to have separate nodes for these two purposes (i.e. NP
and N, or DP and NP). These problems also apply to the expression of expectations. Optional
arguments require two grammar rules, one with the argument and one without, and expressing the
expectation for a determiner separately from expressing the expectation for a head noun requires
two separate nodes for these purposes.

The locality constraint on rules and the parser’s bounded memory interact in another interesting
way to constrain the parser’s representations. Not only should as much information as possible
be local to individual nodes, as little information as possible should be expressed as relationships
between nodes. This minimization also helps compliance with the constraint on the number of
instantiations of a relation that can be stored. Of the four kinds of information mentioned above,
only structural constraints involve multiple nodes. By allowing most ordering constraints to be
stated with respect to terminals (rather than other nonterminals), many structural constraints can
also be localized to individual nodes.!® By identifying the minimal set of relations that are needed
to parse, special mechanisms which avoid rules that must manipulate pairs of nodes can be devised

requirements of these two activities must be left for later work. Thus the representation discussed here is not being
proposed as a replacement for those used in investigations of the nature of grammar.

130Only nonterminal nodes are represented as entities in the parser’s memory. Information about terminals is
represented with features and constraints on the use of grammar entries.

13

for these few cases. This localization of computation in turn makes it possible to stay within
the parser’s bounded memory. Because computations which do not directly involve a node are
independent of the information about that node, a node which will not be directly involved in any
more parser operations can be safely removed from the parser’s memory. By removing nodes as they
are completed during a parse, the parser can parse arbitrarily long sentences using only a bounded
number of nodes at any given time. The grammatical representation used here allow relationships
between nodes to be minimized because structural constraints are specified independently of other
kinds of grammatical information. Grammar formalisms based on Context Free Grammars do not
have this property because expectations and iteration restrictions are specified in terms of a node’s
structural position in the grammar rule, as discussed above.

Structure Unification Grammar

In order to comply with the above requirements, NNEP uses Structure Unification Grammar (Hen-
derson, 1990) as its grammar formalism. Structure Unification Grammar (SUG) is a formalization of
accumulating partial information about the phrase structure of a sentence until a complete descrip-
tion of the sentence’s phrase structure tree is constructed. As such it is similar to other unification-
based or constraint-based grammar formalisms. These include Description Theory (Marcus et al.,
1983), Head-driven Phrase Structure Grammar (Pollard and Sag, 1987), Construction Grammar
(Fillmore et al., 1988), and Segment Grammar (de Smedt and Kempen, 1991), among others. Like
these other formalisms, SUG allows multiple kinds of grammatical features to be specified indepen-
dently of each other. Unlike these other formalisms, SUG allows multiple kinds of expectations,
iteration restrictions, and structural constraints to also be specified independently of each other. In
addition, SUG’s derivations are only constrained by the semantics of the declarative representation,
so any valid parsing strategy can be characterized in terms of valid SUG derivations.

The flexibility of SUG derivations is due to its simple mechanism for combining partial descriptions
of phrase structure trees. An SUG derivation takes partial descriptions from the grammar (which is
simply a set of partial descriptions), conjoins them, and equates some of their nonterminal nodes.
Any order of conjoining descriptions and equating nodes is possible, so the parser can use any
parsing strategy and still be following an SUG derivation. The only restrictions on derivations are
that the final description be consistent and completely describe some phrase structure tree. This
means that each equation done in the derivation needs to be between nodes which have consistent
descriptions. The grammar can limit the possible equations by specifying inconsistent information
about any two nodes which shouldn’t be equated. Unlike consistency, completeness is only necessary
for the final description. By not satisfying completeness requirements locally, a grammar entry can
express expectations about what kinds of information other grammar entries will contribute to
the final phrase structure. Because of the complete flexibility of SUG derivations, SUG grammar
entries have no procedural import, and the grammar is free to group information into grammar
entries in a way which expresses exactly the information interdependencies which the parser needs

to know. !4

The language which SUG provides for specifying partial descriptions of phrase structure trees is
illustrated in figure 1.2. As in many formalisms, the grammatical features of nodes are described

! The computational constraints on the parser restrict the set of derivations which can be computed. Thus grammar
entries do have procedural import when they are interpreted by the parser. At later stages of this investigation it
would be good to express this different interpretation in the semantics of the grammar formalism, but here the
primary concern is identifying the nature of this difference. Thus flexibility is the desired property for a formalism
for this investigation.

14

h
e by N

N h
1\|Thf noafh | N }\If A|h l\lTh
who ate my white pizza
key: node label features:
X imme diately N = [[:-,A:-] (noun phrase)
| dominates I =[L:+,A:-] (sentence)
y y A =[I:-,A:+] (adjective, adverb)
X P =[L+,A:+] (prepositional phrase)
i x dominates y . :
y superscript and subscript features:
h = constituent_head
X-->y X precedes y (noun, inflection, adjective,

preposition)
f = functional_head
(determiner, complementizer)
v = verb

x? x needsan a

X, X hasits a

a

Figure 1.2: Some example grammar entries. They can be combined to derive the sentence “Who
ate my white pizza” by equating the two I’s, the second and third N’s, and the last four N’s.

with feature structures. The use of feature structures allows multiple kinds of grammatical features
to be specified independently of each other. For example, “know” can either take a noun phrase or
a sentence as its object. Rather than giving “know” a different grammar entry for each case, the
entry for “know” can specify its object as —A (noun or sentence) but not specify the value of the
I feature (sentence or preposition, versus noun, adjective, or adverb). Expectations and iteration
restrictions are specified with a different kind of feature, shown in figures as letter superscripts and
subscripts, respectively. Expectations express what information will be specified before the parse
is finished. Superscripts specify these expectations in that before a parse can be finished, any node
with a superscript must equate with a node that has the same letter as a subscript. For example
in figure 1.2, the subject node for “ate” must be equated with a node which has its head noun,
thereby expressing the fact that “ate” obligatory subcategorizes for a subject. The object node has
no such feature, since the object of “ate” is optional. Iteration restrictions prevent grammar entries
from being repeatedly attached at a node, even if the grammatical features of the grammar entries
are compatible. Subscripts specify these restrictions in that any node with a subscript cannot be
equated with another node which has the same subscript. For example in figure 1.2, “my” has a
subscript to prevent other determiners from attaching to the same noun phrase, while “white” has
no such subscript, thereby allowing adjectives to iterate.

Like all the above features, structural constraints can be specified partially and independently of
other constraints. In addition to the immediate dominance relation for specifying parent-child
relationships'® and the linear precedence relation for specifying ordering constraints,'® SUG allows
chains of immediate dominance relationships to be partially specified using the dominance relation.

®In the grammar, the solid lines in figures represent immediate dominance, but when these descriptions are
interpreted by NNEP, solid lines do not specify the actual identity of the immediate parent for the dominated node.
The reason is that the forgetting operation to be discussed below does not allow such identity information to be kept.

1In order to simplify figures, linear precedence constraints will not in general be shown. Most such constraints are
between words and either nonterminals or their head terminals. These can be inferred from the lateral position of
the nodes relative to the words.

15

A dominance constraint between two nodes specifies that there must be a chain of zero or more
immediate dominance relationships between the two nodes, but it does not say anything about
the chain. This relation is necessary to express long distance dependencies in a single grammar
entry. For example in figure 1.2, the grammar entry for “who” expresses the fact that its gap is
somewhere within its sentence, but does not say where. Because the final description of a derivation
must specify a single tree, the N “trace” node in this grammar entry must find a “gap” node to
equate with, thereby expressing the fact that the existence of a gap is obligatory.

SUG’s ability to describe phrase structure using a minimal number of nodes is due to the above
mechanisms for expressing expectations and controlling iteration. Because more than one feature
can be used in these mechanisms, more than one type of expectation or iteration restriction can be
expressed for a single node. For example in figure 1.2, the N node for “my” can’t equate with other
determiner nodes but can equate with noun nodes, while the node for “pizza” allows the opposite
possibilities. This is not possible when iteration is controlled using structural configuration, as
is done in practically all other formalisms. As was discussed for Context Free Grammars above,
using structural configuration requires a different node for each type of expectation or iteration
restriction. This is why the different features used here correspond to the different projections in
grammatical frameworks such as Government Binding theory.

Node Closure

In addition to providing the necessary flexibility in the specification of the phrase structure of
the sentence, Structure Unification Grammar localizes information in a way that allows completed
nodes to be closed from further access by the syntactic parser. Closed nodes can be removed from
the phrase structure representation, thereby reducing the number of nodes which NNEP needs to
store information about, and allowing it to stay within its memory bounds. Because NNEP outputs
all the information about the phrase structure of the sentence as it computes it, forgetting nodes
does not interfere with the interpretation of the output. The mechanism for closing nodes, called
the forgetting operation, does not imply any particular node closure strategy; it simply provides a
sound mechanism for implementing such a strategy.

For the forgetting operation to be sound, its use cannot allow the forgotten information to be
contradicted later in the parse. Because forgetting a node prevents any future parser actions at
that node, soundness can be guaranteed as long as all the information about a forgotten node
would only be needed to test the consistency of parser actions at that node. The only information
in an SUG description which is a problem for this requirement is immediate dominance. Some
parser actions need to test whether a node has an immediate parent, but if that parent has been
forgotten, then this information would not be available. Since no parser actions need to know
the actual identity of the immediate parent, this problem can be easily solved by representing
immediate dominance in two parts, dominance (for ordering constraints), and having an immediate
parent. The later information is a property of an individual node, so forgetting the parent will
not interfere with accessing this information. With this change in representation, forgetting a node
will never allow the parser to compute an analysis which would otherwise be impossible. It may,
however, prevent the parser from finding an analysis which would otherwise have been possible.
Thus the parser wants to avoid forgetting nodes which have a significant chance of being involved
in a parser action. In particular, it never wants to forget nodes which must be equated with in
order for the parse to be completed.

16

The Parser’s Grammars

Because the constraints being investigated in this dissertation are computational in nature, the
primary concern is the nature of the parser, not the nature of the grammar. This was manifested
in the design of the notation used to specify grammars, given above. It is also manifested in
the grammars themselves. The grammars partition their information according to how the parser
wants to access that information. For example, most grammar entries are lexicalized. A lexicalized
grammar entry specifies all the information about the phrase structure of the sentence which can
be determined given the presence of a single word. This allows the parser to easily access all
relevant grammatical information about a word in the input. It does not, however, result in
the most compact or most easily learned representation of the grammatical information. Some
grammatical investigations have addressed this conflict between the needs of a parser and the
needs of simple grammatical specification. The first was Generalized Phrase Structure Grammar
(Gazdar et al., 1985), which uses meta-rules to specify the grammar, and then compiles these meta
rules into a set of Context Free Grammar rules, which can be easily parsed. Meta-rules have also
been used in the specification of Tree Adjoining Grammars (Becker, 1993). Head-driven Phrase
Structure Grammar (Pollard and Sag, 1987) addresses this issue using an inheritance hierarchy. The
inheritance hierarchy approach would probably be more effective for a unification based grammatical
framework such as the one used here, but this issue has not yet been addressed. It would be best
addressed in an investigation of grammar learning, since that is when capturing generalizations
across lexical grammar entries is most important.

As will be discussed in more detail in section 4.2, NNEP uses grammars specified in Structure
Unification Grammar, but not all SUG grammars are supported by NNEP. As just mentioned, the
grammars used in this document are for the most part lexicalized. Each lexicalized grammar entry
is a rooted tree fragment with exactly one phonetically realized terminal, which is the word of the
entry. Different uses of a word are specified using separate grammar entries. All the grammar entries
shown above in figure 1.2 are lexicalized. Nonlexical grammar entries are rooted tree fragments
with no words. They can be used to express constructions for which no specific lexical evidence is
necessary, such as relative clauses without overt wh- words. Other forms of grammar entries are
possible, but for the purposes of this investigation, these types are adequate.

Because NNEP imposes some constraints which are not imposed at the level of the SUG grammar,
the meaning of a given description in SUG is sometimes more general than the meaning of the same
description in NNEP. This difference is just the traditional split between competence and perfor-
mance. The SUG interpretation of the grammar is the competence grammar, and the possibilities
which are ruled out by NNEP are the performance constraints. In general, constraints should be
expressed in the competence grammar unless they receive a simpler treatment in terms of parsing
constraints. In NNEP the traditional division of data into competence or performance phenomena
is for the most part maintained. The only exception is that some constraints on long distance
dependencies are enforced through constraints on NNEP’s ability to recover these dependencies,
while they are traditionally treated at the level of the grammar.

It should also be noted that the information specified in the parser’s grammar is only for the in-
ternal use of the parser; it is not the output of the parser. These grammar entries and the phrase
structure nodes in them are assumed to be linked to structures at other levels of representation.
The output of this syntactic constituent structure parser identifies what grammar entries are used
in the parse, and how the nodes in these grammar entries overlap in the final phrase structure tree.
Given this information, the associated structures at other levels of representation can be combined
in the associated ways, producing (or helping to produce) the final structures for those levels. This

17

assumption about how the syntactic level of representation is related to other levels of represen-
tation subsumes the relationship between constituent structure and functional structure in Lexical
Functional Grammar (Kaplan and Bresnan, 1982), and the relationship between syntactic structure
and predicate-argument structure in Combinatory Categorial Grammar (Steedman, 1987).

1.3.2 Recovering Phrase Structure Trees

The purpose of proposing a parsing model in this dissertation is to use it in the argument that
the S&A architecture is computationally adequate and makes linguistically significant predictions
for syntactic parsing. This means that the parser must be able to comply with the computational
constraints outlined in section 1.2.3, and it must adequately address the linguistic issues which are
of particular concern given those constraints. It does not have to be a complete model of syntactic
parsing. However, future research on parsing in the S&A architecture will want to develop such
a complete model. The model presented here can be seen as a first step in this direction, and as
such it provides some indication of what such a complete model of syntactic parsing in the S&A
architecture would look like. However, the discussion here will concentrate on the narrower concerns
of this particular investigation. The design of this parsing model is discussed more thoroughly in
chapter 4.

The basic characteristics of this Neural-network Node Equating Parser (NNEP) were presented
above in the discussion of Structure Unification Grammar. NNEP uses SUG’s phrase structure
descriptions as its representation of phrase structure information, and computes SUG’s derivations
in recovering that phrase structure information from the words of a sentence. NNEP’s parser state
represents an SUG description which specifies the information that has been determined so far
about the phrase structure of the sentence. NNEP’s operations compute the SUG derivation steps
which combine this intermediate description with descriptions from the grammar and perform node
equations. NNEP outputs each of these derivation steps as they are computed, thereby outputting
all the information which NNEP adds to its parser state as soon as the information is inferred.
When the parse is done, NNEP checks to make sure it has produced a complete description, thereby
ensuring that NNEP will only accept sentences which the grammar specifies as grammatical.

The set of SUG derivations which NNEP can compute is limited by the computational constraints
discussed in section 1.2.3. Because NNEP must produce incremental output, the phrase structure
information which is implied by the presence of a word must be added to the parser state (and
therefore output) when the word is input. This information is precisely the grammar entry for the
word, provided there is no lexical ambiguity. If there is more than one grammar entry that could
be used for a word, then because no disjunction is allowed in the parser state, one of them must
be chosen.'” In some cases this forced choice can result in a mistake, thereby predicting a garden
path.!® The parse shown in figure 1.3 gives examples of three parser operations which add the
information in a grammar entry to the parser state (attaching, double attaching, and equationless
combining).

17Tt is possible that predicates could be defined which represent a bounded disjunction between grammar entries,
or portions of grammar entries, thus allowing lexical disambiguation to be delayed. However, this would greatly
complicate the parser, since such predicates would require a very complex interpretation which is rather different
from the node-local features represented by most other predicates. Thus this alternative has not been pursued,
although perhaps the constrained use of such predicates would be feasible.

'8 This discussion is a slight simplification. In the complete model (discussed in chapter 4), the parser can wait for
information about the immediately following word in cases where it isn’t sure which grammar entry to pick. Also,
not all grammar entries are associated with words, so some ambiguities can be handled by delaying the addition of
one of these nonlexical grammar entries.

18

-y equatable

parser state :
x could
potentially Ih
dominate y
x is

with y

x is the
public node |

~
-
oy
)

Nt

EAN

who ate the pizza

grammar entries :

/ ?
1\|Thf Nh¢
attaching who
Ihy
Nh | N
double ate
attaching
forgetting 2
N
/
equationless the
combining
1\|Ih
. pizza
attaching
internal
attaching

Figure 1.3: An example parse of “Who ate the pizza”.

In contrast to the information in grammar entries, the equations between nodes in the grammar
entry and nodes already in the parser state do not necessarily have to be specified. For example in
figure 1.3, when the grammar entry for “who” is added, its root is equated with the sentence node
which initialized the parser state, but when “the” is processed, it’s grammar entry is not attached
to the tree fragment from the previous portion of the sentence. Such delays in attachment decisions
are necessary when there is not enough information available at that time to make a commitment
to one equation, since the determinism requirement prevents the retraction of commitments. In
this case, NNEP can’t be sure that “the” is the start of the object of “ate”, since it might also be
the start of the possessor of the object of “ate”, as in “Who ate the pizza’s crust”. If an equation
decision is delayed, one of the possible equations can be performed later in the parse when there is
enough information available. In this example, the equation is done when the end of the sentence
is reached, at which point there can be no forthcoming possessive marker. After this equation,
NNEP has specified a single immediate dominance tree, and there are no remaining superscripts,
so the parse has been completed successfully.

The SUG derivations which can be computed by NNEP are also constrained by the S&A architec-
ture’s bounded memory capacity. In NNEP’s implementation, variables refer to nonterminal nodes
in the current phrase structure description. Thus this description can have at most ten nontermi-
nals in it at any one time. The forgetting operation discussed in the previous section is used to
stay within this bound. For example in figure 1.3, after “ate” is processed, the two NP’s on the left
are no longer on the right frontier of the sentence. Thus no other nodes will be equated with them,
and NNEP can safely close them off from further consideration. Since this level of representation is
only being used for syntactic parsing, forgetting these nodes does not interfere with processes which
might involve their associated nodes at other levels of processing. The resulting parser state only
requires two variables; the terminals are only shown for readability. In other cases, such as long
right branching sentences, it may be necessary to close nodes which could conceivably be involved
in further equations. For the purposes of this investigation, any closure strategy can be used in
these cases, as long as the only eliminated parses are for readings which people do not get. The
memory capacity of the parser is also bounded by the fact that at most three instantiations of each
relation can be stored, and that the set of predicates used in the implementation is fixed. This
means that any data structures used by the parser must be of bounded size. As will be discussed
in section 6.4, these turn out to be the significant bounds for constraints on center embedding, not
the bound on the number of nonterminal nodes.

The constraint that rules must apply to each variable independently also limits the set of SUG
derivations that NNEP can compute. It limits the ways that grammar entries can be added to the
parser state, the equation of nodes within the parser state, and the calculation of binary relations.
In the parser’s implementation, grammar entries are represented in rules. For each grammar entry,
rule patterns look for ways that the grammar entry can be combined with the phrase structure
description in the parser state. Because these rules must apply to each variable independently,
the only combinations that can be computed are those whose consistency can be tested based on
information about one phrase structure node and the tree as a whole. Other nodes can be involved
in the combination, but only if they can be uniquely identified at the time, and therefore can have
their information represented as information about the tree as a whole. The simplest example of
a combination is given at the top of figure 1.3. The only node in the parser state that is involved
in this combination is the matrix root, where the grammar entry for “who” is attached. All the
information about the nodes in the grammar entry is compiled into the rule, so the rule does not
have to refer to them with variables. The equationless combining operation, shown in the middle of
figure 1.3, does not involve any nodes in the parser state. It does need to know about the existence

20

of certain nodes in the parser state, but since the actual identities of these nodes does not need
to be known to choose this operation, this information can be represented as information about
the tree as a whole. The only other simple combination that is possible is shown at the bottom of
figure 1.4, where a tree fragment in the parser state is attached to a grammar entry. However, the
mechanisms that are needed for calculating long distance dependencies makes a fourth combination
operation possible. As illustrated in the second line of figure 1.3, this operation (double attaching)
simultaneously attaches the grammar entry to a node in the parser state, and attaches a node in
the parser state to the grammar entry. This operation involves two nodes in the parser state, but
because the lower attached node must be “the public node”, all the information about this unique
node can be represented as information about the tree as a whole, and therefore this combination
can be calculated in terms of one variable referring to the node where the grammar entry is attached.
The role of the public node in calculating long distance dependencies will be discussed next.

parser state : grammar entries :
Nh
1 hfv \I h
/ f
I
N Ny
| hf N
who ate the pizza . which
attaching
Inte

1\|Thf

who ate the pizza which equationless Bill
combining

Ith
INRY;
h
If Ihv
Ny N 1\|Thf NER
who ate the pizza which y Bill leftward bought

s attaching

who ate the pizza which ~ , Bill bought

Figure 1.4: The beginning of a parse of the relative clause in “Who ate the pizza which Bill bought”.
As it turns out, very few relations need to be explicitly represented in NNEP’s parser state, but

21

parser state :

Ihey

who ate the pizza which ~ , Bill bought internal

I attaching
Vv
Nnf
Infv
Ny N U
| hf | hf NP
who ate the pizza which Bill bought movement
L rules
v
Nhf\
who ate the pizza which Bill bought internal
trace
I hfv\ equating
INIY;

Ihpy

Nyt 1\|Thf N

who ate the pizza which Bill bought

Figure 1.5: The end of a parse of “Who ate the pizza which Bill bought”.

22

the constraint that the rules which manipulate these binary relations must apply to each variable
independently still has significant implications. The only explicitly stored relations that are required
represent possible equations between nodes and possible dominance relationships between nodes.
These are shown in figures with scattered dotted lines and dotted lines, respectively. Both these
relations are needed for calculating long distance dependencies. As mentioned in section 1.3.1, long
distance dependencies are represented using a trace node, which must equate with the node for
the gap site. Finding the correct gap node for the trace node to equate with involves recursively
finding what nodes might dominate the trace node and what nodes might be equated with the trace
node. These relationships can be stored with NNEP’s two binary relations. Figure 1.5 illustrates
the application of the rules which calculate new instances of these relationships (the movement
rules). In this example, the object of “bought” could either dominate the trace node for “which”
or be equated with it. These calculations require information about both the trace node and the
candidate node. To do this calculation with rules that apply to each node independently, all the
relevant information about one of the two nodes must be represented as information about the tree
as a whole, and therefore one of the nodes must be uniquely identifiable. Since a given grammar
entry may have multiple possible gap sites, the candidate node is not uniquely identifiable. Thus
we must assume that at any given time there is only one trace node for which these relationships
need to be calculated. Since testing equatability requires virtually all the information about the
trace node to be represented as information about the tree as a whole, this unique node is called the
public node (its information is publicly available). In English, the most recently introduced trace
node is always the public node, so NNEP needs a stack data structure to keep track of which trace
node was introduced most recently. This stack is called the public node stack. The need to restrict
access to trace nodes using a stack predicts a number of int