Knowledge Graphs

G. Falquet

Source:

Aidan Hogan et al. () Knowledge Graphs

UNIGE - G. Falquet

Knowledge graphs

Contents

Hogan, A. et al. (2022). Knowledge Graphs. *ACM Computing Surveys*, *54*(4), 1–37. <u>https://doi.org/10.1145/3447772</u>

- Definitions
- Data models and query languages
- Representations of schema, identity, and context
- Quality dimensions by which a knowledge graph can be assessed
- Deduction in KG
- Induction in KG
 - Graph analytics
 - Graph embeddings
 - Graph neural networks
 - Symbolic learning: rule and axiom mining

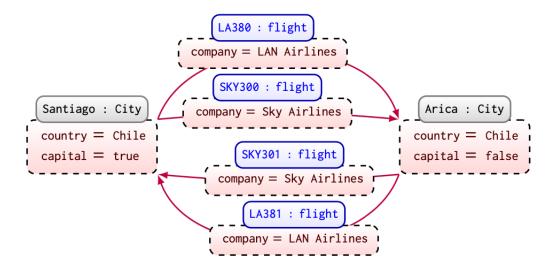
Definitions

A knowledge graph as a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent relations between these entities.

- Knowledge may be composed of simple statements,
 - "Santiago is the capital of Chile",
- or quantified statements
 - "all capitals are cities".
- Simple statements can be accumulated as edges in the data graph.
- Quantified statements require a more expressive way to represent knowledge – such as ontologies or rules

Data models and query languages

- Directed edge-labelled graphs
 - e.g. RDF
- Graph datasets
 - e..g RDF datasets
- Property graphs
 - property-value pairs
 - on nodes
 - on edges
 - typed nodes and edges
- Translation without loss of information DELG \leftrightarrow PG



Knowledge graphs

Semantic schema

e.g. RDF Schema

Table 1. Definitions for sub-class, sub-property, domain and range features in semantic schemata

Feature	Definition	Condition	Example
Subclass	\bigcirc -subc. of $\rightarrow d$	(x) -type \rightarrow (c) implies (x) -type \rightarrow (d)	$\underbrace{City}_{subc. of} \underbrace{Place}_{Place}$
Subproperty	p -subp. of $\rightarrow q$	$(x-p \rightarrow y)$ implies $(x-q \rightarrow y)$	venue-subp. of-location
Domain	p-domain- c	$(x - p \rightarrow y)$ implies $(x - type \rightarrow c)$	venue-domain-Event
Range	p—range— c	$(x - p \rightarrow y)$ implies $(y - type \rightarrow c)$	venue range Venue

Schema

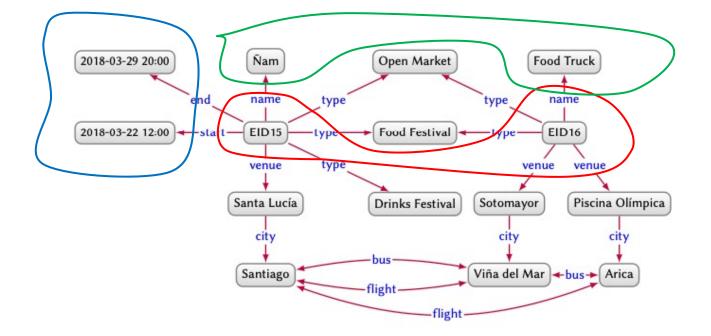
Validating schema

- to represent diverse, incomplete data at large-scale \rightarrow OWA
- in some scenarios → guarantee that (part of) the data graph is "complete".
- UML class diagram
- SHACL shapes

Emergent schema

Quotient graph

- partition node set into equivalence classes
 - based on their context
- replace node x by its class [x], keep the edges
 - simulation $(s p o) \Rightarrow [s] p [o]$
 - bisimulation $(s p o) \Rightarrow [s] p [o]$ iff $\forall x \in [s] \exists z \in [o]: (x p z)$



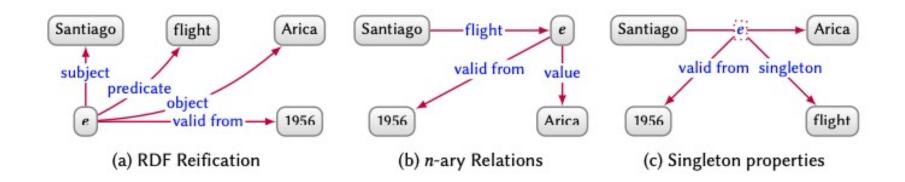
Context

- Facts considered true with respect to a context (scope of truth)
 - temporal
 - geographic
 - provenance

Often left implicit, e.g. temporal context = now

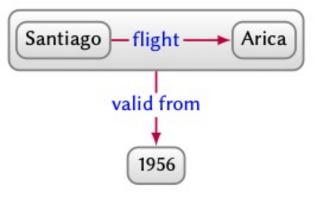
- Representation
 - direct (with TIME, PROV, ... ontologies)
 - reification
 - higher arity
 - annotation

Reification techniques



Higher-arity: RDF*

<<:Santiago :flight :Arica>> :valid_from 1956



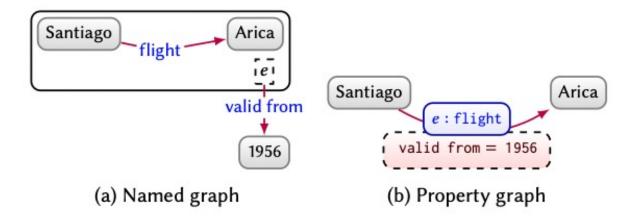
Remark

<<:Taylor :spouse :Burton>> :from 1968 ; to 1978 . <<:Taylor :spouse :Burton>> :from 1981 ; to 1983 .

 \rightarrow

<<:Taylor :spouse :Burton>> :from 1968 ; from 1981 ; to 1978 ; to 1983 .

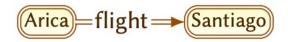
Higher-arity

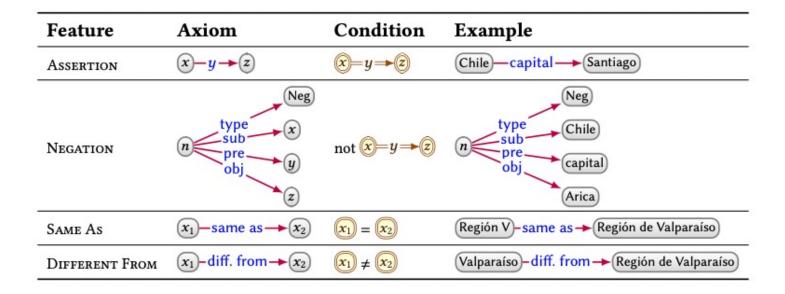


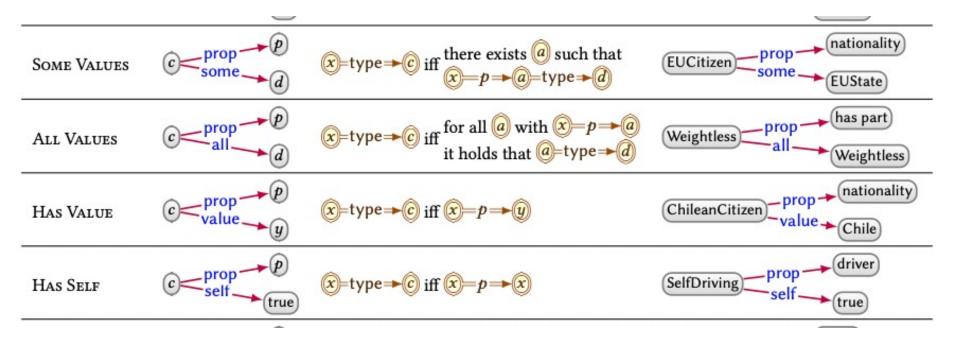
Knowledge graphs

DEDUCTIVE KNOWLEDGE

- Ontologies
 - Interpretation
 - Data graph (nodes, edges) \rightarrow Domain graph (entities, relations)







INDUCTIVE KNOWLEDGE

- Graph Analytics
- Knowledge Graph Embeddings
- Graph Neural Networks
- Symbolic Learning

Graph Analytics

- Discovering interesting patterns
- Techniques
 - Centrality computation
 - PageRank, ...
 - Community detection
 - Connectivity
 - Node similarity

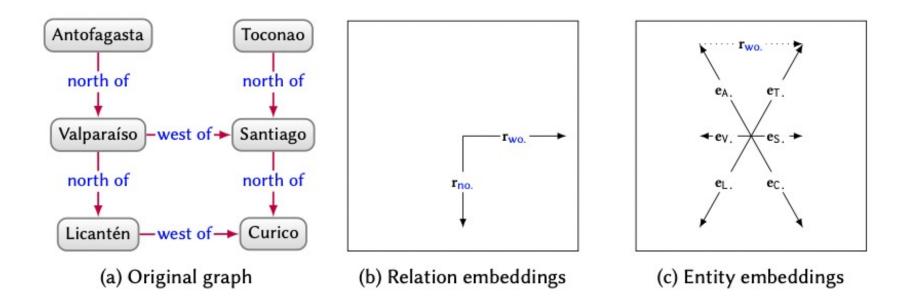
Knowledge Graph Emdeddings

- Predicting new edges
- Identifying erroneous edges
- Machine learning techniques → Numeric input as vectors
 - How to encode graphs as numeric vectors?
- Graph embedding
 - entity embedding: node \rightarrow d-dimensional vector
 - relation embedding: edge \rightarrow d-dimensional vector

- (s p o) \rightarrow (es rp eo)
 - define a plausibility function for the edge
 - goal: find embeddings that
 - maximize the plausibility of positive edges (in the graph)
 - minimize the plausibility of negative edges (not in the graph)
- Tasks
 - assign a confidence level to edges
 - complete edges with missing lables
 - a basis for similarity measures
 - duplicate detection
 - recommendation

Translational model

- TransE (edges as transformers)
 - from (s p o) learn es, rp, eo
 - goal:
 - on positive examples: es + rp close to eo
 - on negative example: es + rp far from eo



- Limitations
 - transforms everything
 - (s p o1) (s p o2) \rightarrow tend to define eo1 = eo2
 - cyclical relations \rightarrow 0

- Improvements
 - separate hyperplanes for different relations, ...

Language models for embeddings

Leverage proven approaches for language embeddings

word \rightarrow vector

- RDF2Vec
 - build "sentences" by performing random walks in the graph
 - input to word2vec

Graph Neural Networks

- Classical NN: homogeneous topology (layers)
- GNN: topology of the data graph
- node \rightarrow feature vector (fixed)
- node \rightarrow state vector
 - parametric transition function, input = neighbour nodes information
 - output function
- execution until a fixpoint is reached
- the function are implemented using neural networks
 - learn the parameters to best approximate the results for the supervised nodes

example

$$\begin{aligned} \mathbf{h}_{x}^{(t)} &\coloneqq \sum_{y \in \mathbf{N}(x)} f_{\mathbf{w}}(\mathbf{n}_{x}, \mathbf{n}_{y}, \mathbf{a}_{yx}, \mathbf{h}_{y}^{(t-1)}) \\ \mathbf{o}_{x}^{(t)} &\coloneqq g_{\mathbf{w}'}(\mathbf{h}_{x}^{(t)}, \mathbf{n}_{x}) \end{aligned}$$

$$\mathbf{h}_{1}^{(t)} \coloneqq f_{\mathbf{w}}(\mathbf{n}_{1}, \mathbf{n}_{3}, \mathbf{a}_{31}, \mathbf{h}_{3}^{(t-1)}) + f_{\mathbf{w}}(\mathbf{n}_{1}, \mathbf{n}_{4}, \mathbf{a}_{41}, \mathbf{h}_{4}^{(t-1)}) \mathbf{o}_{1}^{(t)} \coloneqq g_{\mathbf{w}'}(\mathbf{h}_{1}^{(t)}, \mathbf{n}_{1})$$

...

Knowledge graphs

Symbolic Learning

- Learn rules or axioms
- Based on standard data mining techniques
 - support
 - confidence

OTHER TOPICS

- 1. Creation and enrichment of knowledge graphs from external sources.
- 2. Quality dimensions by which a knowledge graph can be assessed.
- **3**. Techniques for knowledge graph refinement.
- 4. Principles and protocols for publishing knowledge graphs.