An Introduction to Description Logics

2. Reasoning Tasks

G. Falquet

Reasoning Tasks

- Consistency
- Subsumption
- Open world
- Unique name
- Instance checking

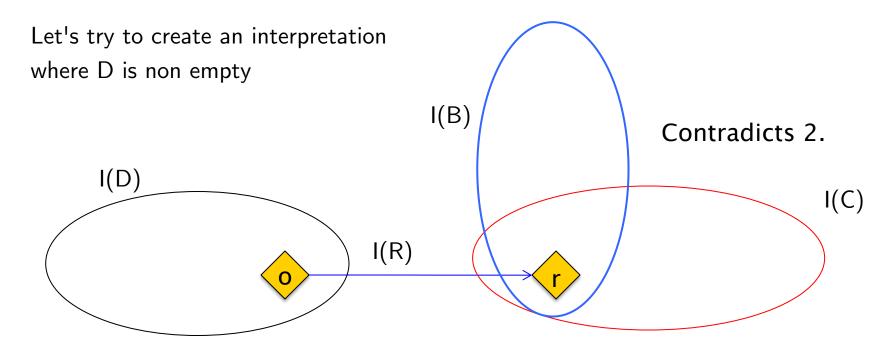
Consider the axioms

- 1. A <u></u> (∀ R . B)
- 2. C disjoint B
- 3. D <u></u> ((∃ R . C) ⊓ A)

Let's try to create an interpretation where D is non empty

Consider the axioms

- 1. A ⊑ (∀ R . B)
- 2. C disjoint B
- 3. D ⊑ ((∃ R . C) □ A)



Consistency

- a knowledge base is consistent if there is an interpretation such that all the axioms are satisfied
- a concept C is consistent if we can populate the ontology so as to
 - satisfy all the axioms
 - have at least one object in C
 - i.e. there is an interpretation I such that
 - 1. $I \models \mathsf{TBox}$
 - 2. $I \not\models C \sqsubseteq \bot$

Example: TBox vs. Concept Consistency

```
TBox T = W \subseteq \{w\}
W \subseteq \exists r. \top
W1 \subseteq W \sqcap (\forall r. X1)
W2 \subseteq W \sqcap (\forall r. X2)
X1 \ disjoint \ X2
```

T is consistent but in every model I of T, if I(W1) is non-empty then I(W2) is empty, and vice versa.

```
x \in I(W1) and x' \in I(W2) \Rightarrow x = I(w) = x'
x = x' cannot be in I(\forall r. X1) and in I(\forall r. X2)
```

Reasoning tasks: subsumption

Given a TBox T, C subsumes D if

for every model I of T, $I(D) \subseteq I(C)$

or equivalently

 $T \cup \{D \sqcap \neg C\}$ is inconsistent

Reasoning task:

input: a Tbox T, two classes C, D

 $\begin{array}{ll} \text{output:} & \text{true iff } C \, \text{subsumes} \, D \, \text{for} \, \, \mathbf{T} \end{array}$

Reasoning tasks: Instance checking

- check if C(o) is a consequence of the axioms and asserted facts amounts to check if C subsumes the concept $\{o\}$
- 2. find all the individuals that belong to C

similar to query answering in (deductive) databases

Example

Find facts about individuals belonging to classes.

- 1. Parent $\equiv 3$ has Child . Person
- hasChild(Bob, Alice)
- 3. Woman(Alice)
- 4. Woman

 □ Person

consequence

Parent(Bob)

Open World Semantics

What is not explicitly asserted is unknown (maybe true maybe false). Leads to counter intuitive results:

- 1. GoParent

 ∀ hasChild . Girl
- 2. hasChild(Bob, Alice)
- 3. Girl(Alice)

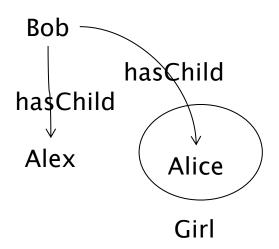
can we infer GoParent(Bob)?

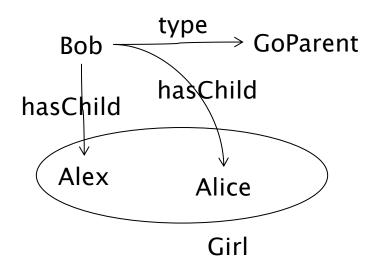
No, (Bob may have other children who are not girls)

Open World Semantics

Some models of

- 1. GoParent $\equiv \forall$ hasChild . Girl
- 2. hasChild(Bob, Alice)
- 3. Girl(Alice)





closing the world

- 1. GoParent

 ∀ hasChild . Girl
- 2. hasChild(Bob, Alice)
- 3. Girl(Alice)
- 4. ParentOf1 \sqsubseteq hasChild $=_1$ Thing
- 5. ParentOf1(Bob)

now we can infer Bob a GoParent

No Unique Name Assumption (UNA)

- 1. BusyParent \equiv hasChild \geq_2 Person
- 2. hasChild (Cindy, Bob)
- 3. hasChild (Cindy, John)

```
consequence: BusyParent (Cindy)?
```

no, because Bob and John may be the same person

```
yes if we add the axiom
Bob ≠ John
```

Sophisticated "open world" reasoning

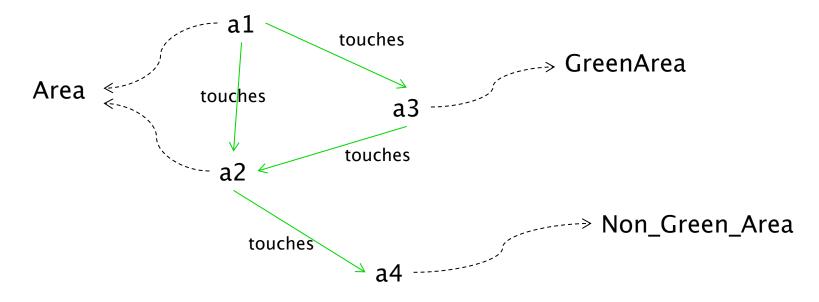
Terminological Axioms (TBox)

- Green_Area

 Area
- 2. Non Green Area \equiv Area \sqcap (\neg Green Area)

© U. de Genève - G. Falquet DL Reasoning

ABox



Q: Does a1 touch some Green Area that touches some non Green Area?

A: Yes

- a2 is either green or non green (axioms 1 and 2)
- if it is green a1 satisfies the condition (using a3, a2)
- if it is non green a1 satisfies the condition (using a2, a4)



© U. de Genève - G. Falquet DL Reasoning

Reasoning Services for DL Ontologies

- In most description logics consistency and subsumption can be computed (with sophisticated tableau algorithms), with different time and space complexities
- Consequences
 - the consistency of an ontology can be checked
 - it is possible to compute the class subsumption hierarchy
 - it is possible to find the closest concept corresponding to a query
- There are description logics for which consistency and subsumption can be computed in polynomical time or better
 - OWL-RL, OWL-QL

Everything about DL

- at http://dl.kr.org/
- and http://www.cs.man.ac.uk/~ezolin/dl/

© U. de Genève - G. Falquet DL Reasoning

Complexity of reasoning in Description Logics

Note: the information here is (always) incomplete and <u>updated</u> often

Base description logic: Attributive $\mathcal{L}\!\text{anguage}$ with $\mathcal{C}\!\text{omplements}$

Concept constructors:			Role constructors:	trans reg
			✓ I - role inverse: $R^ \bigcirc$ \cap - role intersection $\stackrel{3}{:}$ $R \cap S$ \bigcirc \cup - role union: $R \cup S$ \bigcirc - role complement: $\neg R$ full \bigcirc \circ - role chain (composition): $R \circ S$	
Forbid ♦ complex roles in number restrictions			- □ * - reflexive-transitive closure ⁴ : R* □ id - concept identity: id(C)	
TBox (concept axioms) is <i>internalizable</i> in extensions of <i>ALCIO</i> , see [82, Lemma 4.12], [61, p.3] • empty TBox • acyclic TBox ($A \equiv C$, A is a concept name; no cycles) • general TBox ($C \subseteq D$, for arbitrary concepts C and D) Reset You have selected a Description Logic:			RBox (role axioms): ② S - role transitivity: Tr(R) ② H - role hierarchy: R ⊆ S □ R - complex role inclusions: R o S ⊆ R, R o S ⊆ S □ s - some additional features (click to see them) c: SHOIQ	OWL-Lite OWL-DL OWL 1.1
		Complexity of r	easoning problems ⁸	
Concept satisfiability	NExpTime-complete	 Hardness of even ALCFIO is proved in [82, Corollary 4.13]. A different proof of the NExpTime-hardness for ALCFIO is given in [61] (even with 1 nominal, and inverse roles not used in number restrictions). Upper bound for SHOIQ is proved in [12, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between ALCNIO and SHOIQ. A tableaux algorithm for SHOIQ is presented in [51]. Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a transitive subroles) are allowed; otherwise we gain undecidability even in SHN, see [54]. Remark: recently [55] it was observed that, in many cases, one can use transitive roles in number restrictions - 		