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Abstract

We present a new method allowing to generate 3D terrain and texture significantly faster than prevailing fractal brownian motion
approaches, while producing results of equivalent quality. The method is derived through a novel, systematic approach that gener-
alizes to an arbitrary number of spatial dimensions and gradient smoothness. The results are compared, in terms of performance
and quality, to efficient gradient noise methods widely used in the domain of fast terrain generation: Perlin noise and OpenSimplex
noise. Finally, we propose to objectively quantify the degree of realism of the results by performing a fractal analysis of generated
terrains, and to compare it to real terrain data.
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1. Introduction

Procedural terrain generation (PTG) methods have grown in
number in the last decades due to the increasing performances
of computers ; video games, movies and animation find obvious
use of PTG, for terrain generation as well as for texture genera-5

tion. However, a less evident use of PTG can be found in more
practical domains, as for instance vehicle dynamics [7] or mil-
itary training [37, 36], where accurate methods for emulating
real terrain are of interest. More generally, one can also mention
the use made of procedural coherent noise in the field of fluid10

animation [3, 24], which helps to improve performances of tur-
bulence modeling. The main advantages of procedural noise
compared to non-procedural noise generation is both an im-
mensely decreased memory demand and an increased amount
of content produced. The drawback usually occurs at two lev-15

els : accuracy, which reflects terrain realism, and performance,
since the generation step may induce an additional processing
effort compared to meshes which are simply loaded from files.
What makes a PTG method more appropriate than another one
is therefore dependent of the needed levels of performance and20

realism. For instance, PTG for video game usually targets per-
formance rather than accuracy [26, 15] in order to run on home
computers, as long as the produced terrain resemble at least su-
perficially real ones. In the other hand, PTG used for vehicle
simulation is highly demanding in terms of accuracy and less25

in terms of performance. Whatever the application, the capabil-
ity of the method to describe a self-similar pattern is a crucial
point ; a central issue in PTG is the apparent fractal behaviour
of many natural patterns that numerical models should mimic
in order to produce realistic shapes [21, 8, 30]. It has to be30

noticed that, although we do not investigate them, some other
approaches like stochastic subdivision [19] allow to produce re-
alistic, non-fractal results.

Although we shall focus on terrain generation, it is worth
mentioning that the methods described in this paper straight-35

fully apply to texture generation, as shown in Section 5.

1.1. Related works
Most popular approaches for low-dimensional PTG include

methods from the family of random midpoint displacement such
as diamond-square algorithm [9, 22] and methods from the fam-40

ily of gradient noise, such as Perlin noise [31] and simplex
noise [32]. As a result of the number of parameters influenc-
ing the generated terrain, noises from this family can be easily
improved in terms of quality, as done for instance in [28]. While
simplex noise is found to be clearly more efficient than Perlin45

noise for dimensions higher than 3, the difference in terms of
performances is slighter for low dimensions (see Section 5.2).
Many recent efforts have been done to develop alternative meth-
ods that we shall review here. The use of cellular automata
[15] and tile-based procedural generation [13] has shown to al-50

low either fast, non-realistic terrain generation, either to be too
slow for realistic-shaped height map generation. Evolutionary
algorithms have been investigated to assist fractal terrain gener-
ation for video games, although not giving satisfactory results
[34]. While tectonic-uplift [35], hydrology-based [5, 11] and55

example-based [41] approaches can reach a high level of re-
alism, they are significantly slower than Perlin-like methods.
In particular, the latter has serious limitations in terms of au-
tonomous procedural generation, since it involves the synthesis
of a template heightmap given by the user, whose features are60

transcribed in the generated map. Another promising approach
based on terrain features examples can be found in [14], al-
though no direct performance comparison with other methods
can be found so far in the literature. Many other recent ap-
proaches, aiming at improving controllability and expressive-65

ness of the noise, can be mentioned, as Gabor noise methods
[18, 10], random-phase noise [12] and wavelet noise [4], al-
though not providing quantitative performance nor quality com-
parison between different existing models.

Midpoint displacement methods are usually more interest-70

ing than gradient noise methods in terms of pure performance,
thanks to the fact that they do not need multiple passes corre-
sponding to the different octaves. However, they suffer two seri-
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ous drawbacks, namely their non-locality (the h value at a given
coordinate depend on its neighboring points) and the quality of75

the generated terrain, as pointed out by [22]. Although most
of the visual artifacts can be corrected by the more complex
scheme presented in [19], wich largely differs from the initial
and simple idea of midpoint displacement, the fully local nature
of algorithms such as Perlin noise allows to save a large amount80

of memory compared to non-local schemes and, moreover, is
embarrassingly parallel. In addition, the nature of the midpoint
displacement algorithms is such as it provides less control pa-
rameters than Perlin or simplex method. Finally, as for cellular
automata, the non-locality of midpoint displacement causes ad-85

ditional difficulties for assembling different chunks of terrain,
as commonly done in video games.

As a result of the specificities of the models discussed above,
Perlin-like and simplex-like approaches clearly appear to be the
most appropriate choice for fast generation of realistic terrains,90

thanks to the good compromise they provides between perfor-
mance and quality. As pointed out by [12] and [4], Perlin noise
method is still by far the most popular method due to combined
effects of simplicity, performance, quality and historical iner-
tia. To illustrate this fact, one can observe that most of the re-95

cent video games using massive procedural content generation
make use of Perlin noise or variant ; Minecraft (24 millions
units sold between october 2011 and october 2016 [23]) or No
Man’s Sky (1.5 million units sold in the first three months [25])
to name but two (as a way of comparison, Tetris has been sold100

30 million times since 1989 [39]).
For all the reasons mentioned, we shall focus in this article

on comparisons of the presented model with Perlin and sim-
plex noise in two dimensions, mapping two spatial quantities
(x, y) to a scalar value h. Note that OpenSimplex algorithm is105

used in this study to compare to the presented method, as it pro-
vides noise that is very similar to simplex noise and that it is not
patented, unlike original simplex noise.

To conclude this review of existing methods, note that many
algorithms as for instance cell noise [40] or erosion modeling110

[2, 26, 38] are normally not used on their own but rather ap-
plied to results obtained by previously cited methods in order
to increase accuracy. In addition, one can mention procedural
generation of human structures like cities [29, 6], which can
be associated with terrain generation for human-impacted land-115

scapes. Although these additional methods are not discussed
here, it should be noted that the models described in this article
are suitable for their use.

The aim of this study is to build a novel, general method
based on boundary-constrained polynomials, which enclose Per-120

lin noise, and to derive an optimized model for producing 2D
heightmap using a minimum number of operations per pixel.

2. Polynomial terrain generation model

2.1. Generalized boundary condition

Consider a D-dimensional domain called cell, and restricted125

from 0 to 1 in each axis of the space : xa ∈ [0, 1],∀a ∈ [1,D].
The position of a point in this cell is then characterized by a

set of D values X ≡ (x1, x2, .., xD)T . The set of points S for
which all coordinates values are either 0 or 1 constitute the cor-
ner points of the cell. The cardinal number of S in D dimen-130

sions is equal to 2D.
Let h be a function allowing to associate a height value h(X)

to each point of the domain. Here we want to impose a height
value h(si) to each corner point si ∈ S . Similarly, values for
spatial derivatives of h can be imposed. Defining the partial135

mixed derivatives hd as:

hd ≡
∂d1+d2+..+dD

∂d1 x1 ∂d2 x2 .. ∂dD xD
h, (1)

one writes hd(X) = hd(si) if X = si. Note that if the mixed
derivative of order n is continuous, then the mixed partial deriva-
tive is unaffected by the ordering of the derivatives. By defining
as Equation (1) the mixed partial derivative for a given d to be140

unique, we make the assumption of continuous mixed partial
derivatives.

As a last requirement, we want h(X) to depend only on h(si)
h(s j) if X is located on the edge connecting the two corners
si and s j, so that if this edge is shared with another cell, the145

interface between cells is smooth. In the sequels we will refer
to this condition as the edge boundary condition. Defining ∆i j ≡

sj − si, it reads:

h
(
si + k · ∆i j

)
= f (si, sj) ∀k ∈ [0, 1]⇔

∥∥∥∆i j

∥∥∥ = 1, (2)

where f (si, sj) must be a differentiable function of si, sj only.

2.2. Polynomial definition150

Many choices are possible at this point for the form of h ;
we propose here to describe it as a multivariate polynomial of
degree n:

h(X) =
∑
a∈I

ca

D∏
k=1

xak
k

 , (3)

where I is the set of all vectors on the form (a1, a2.., aD) such
that 0 ≤ ak ≤ n ∀k.

A specific nomenclature may be defined for sake of clarity.
Noting m the order of the highest constrained derivative, one
can refer to a given cell configuration by DdMmNn. For in-155

stance, D2M1N4 stands for a cell of dimension 2, constrained
on value and on first derivative, and whose h value is given by
a polynomial of degree 4. Note that not all configurations make
sense, as for instance D1M8N1, a polynomial for which the
number of constraints is obviously higher than the number of160

coefficients.
Together with the value constraints and derivative constraints

defined above, as well as the edge boundary condition Equation
(2), Equation (3) leads to a system of linear equations which can
be solved in order to determine polynomial coefficients, as long
as the number of constraints does not exceed the number of co-
efficients, whose value is (n + 1)D. The number of constraints
can be viewed as the number of corners times the number of
constraints per corner. Since the number of different deriva-
tives of degree m is the combinations with replacements of D
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elements on m length sequence, one can express the total num-
ber of constraints as:

2D ·

m∑
i=0

(D + i − 1)!
i!(D − 1)!

≤ (n + 1)D. (4)

A cell whose polynomial and constraints configuration obey
this inequality is then guaranteed to obey the specified con-
straints on corners points.

3. Special cases in two dimensions165

We present in this section three special cases of 2D polyno-
mials. First, we give the minimum polynomial that can generate
2D terrain with both height and gradient imposed, the D2M1N3
polynomial. We then briefly describe how usual Perlin noise
correspond to an order 5 polynomial, and we finally show how170

to simplify D2M1N3 by assuming zero gradient on corners.

3.1. D2M1N3 polynomial
Let us now restrict to the case where D = 2 and where the

derivative are constrained up to order 1. In this case, the number
of constraints provided by Equation (4) is equal to 12, and the
smallest degree n which allows the polynomial to respect the
constraints is 3. In this configuration, Equation (3) simplifies
to:

h(x, y) =
∑
i, j

ci jxiy j, (5)

where i and j are integers comprised between 0 and 3, usual
axes names x and y now stands for x1 and x2, and ci j denotes
polynomial coefficients ci1,i2 . Defining f (x, y) and g(x, y) as the
x-component, respectively y-component of the gradient at posi-
tion (x, y), one obtains:

f (x, y) =
∑
i>0

i · ci jxi−1y j, (6)

and
g(x, y) =

∑
j>0

j · ci jxiy j−1. (7)

We now define hi j to be the requested height on corner at
coordinates (i, j), so the height constraint reads h(0, 0) = h00,
h(1, 0) = h10, and so on. Similarly, four conditions arise from175

the x-gradient conditions fi j and four from the y-gradient con-
ditions gi j, defining a system of twelve linear equations.

A possible solution for this system of equations is:

c00 = h00, (8)

c10 = f00, (9)

c22 = c33 = c32 = c23 = 0, (10)

c20 = 3(h10 − h00) − 2 f00 − f10, (11)

c30 = f10 + f00 − 2(h10 − h00), (12)

c21 = 3(h11 − h01) − 2 f01 − f11 − c20, (13)

c31 = f11 + f01 − 2(h11 − h01) − c30, (14)

c11 = h01 + h10 − h00 − h11 + f01 + g10 − g00 − f00. (15)

Note that for symmetry reasons, non-diagonal terms c ji can
all be deduced from ci j by inverting all indices and replacing f
by g. For instance, c02 = 3(h01 − h00) − 2g00 − g01. With these180

coefficients, it is easy to check that edge boundary condition is
verified.

3.2. Perlin’s polynomial

In Perlin’s method, a grid of gradient values is generated
and the height value of a subdomain is obtained by interpo-185

lating the height contribution of each corner’s gradient. The
smooth interpolation function S can be of any form as long as
S (0) = 0 and S (1) = 1. It is most common to use polynomial
of order 3 (smoothstep) or 5 (smootherstep) [33]. Smoothstep
reads S 3(x) = 3x2 − 2x3 and is the lowest order polynomial to190

provide zero-derivative at x = 0 and x = 1 along with the con-
dition aforesaid. The height value of a point in the domain then
reads:

h(x, y) = h0(x, y) + S (y) · (h1(x, y) − h0(x, y)) , (16)

with

h0(x, y) = v00(x, y) + S (x) · (v10(x, y) − v00(x, y)) (17)

and

h1(x, y) = v01(x, y) + S (x) · (v11(x, y) − v01(x, y)) , (18)

where vi j(x, y) = fi j · (x − i) + gi j · (y − j).
With our definition of multivariate polynomial degree, it ap-195

pears that this scheme makes use of a polynomial of degree
2 + s, where s is the degree of the chosen smoothstep polyno-
mial. The consequent total order is at least 5, a value higher
than for D2M1N3 polynomial presented above, which is of de-
gree 3. However, due to the factorized form it offers, Perlin200

noise allows to gain computation steps compared to D2M1N3,
resulting in better performances ; Zero-gradient D2M1N3 pre-
sented below, in the other hand, will need less operations than
Perlin’s polynomial.

3.3. Zero-gradient D2M1N3 polynomial205

Forsaking the generality of D2M1N3 polynomial derived
above, one can impose special gradient conditions in order to
increase performances of the implementation of the polyno-
mial. The condition reads fi j = gi j = 0 ∀i, j and Equations
(8-15) simplify, yielding the following expression for h(x, y):210

h(x, y) = h00 + S 3(x)∆x + S 3(y)∆y+

A
[
S 3(x) · y + S 3(y) · x + xy

]
, (19)

with ∆x = h10 − h00, ∆y = h01 − h00 and A = h11 + h00 −

h10 − h01, and as before S 3 is the third order smoothstep func-
tion. It is worth noting that the only cell-dependent terms in
this expression are h00, ∆x, ∆y and A ; this allows for impor-
tant performance gain when using lookup tables for evaluating215

3



space-dependant terms (i.e terms involving x or y), since only
cell-dependant terms have to be evaluated, as a result of their
dependancy to boundary constraints, that are not known before
terrain generation. The quality of the generated terrain is not
affected in comparison with the generic version of the polyno-220

mial (see Section 5.1). Note that S 3 could be replaced by any
higher order smoothstep function S i, in a very similar way as in
Perlin noise.

Zero-gradient D2M1N3 polynomial is the minimum con-
figuration (i.e the configuration that has the lowest number of225

coefficients) for smooth two-dimensional heightmaps. Indeed,
N = 3 cannot be reduced since no polynomial of degree lower
than 3 can take arbitrary height and derivative values at bound-
aries. In addition, M = 1 cannot be reduced by definition as we
are seeking for smooth heightmaps, that are necessarily con-230

strained on first derivative. Thus, the only way to reduce the
number of coefficients is to impose special values at the con-
strained locations. Examining Eqs (8-15), it appears that setting
fi j = gi j = 0 allows to cancel two coefficients and reduce the
expression of the other ones.235

3.4. Other polynomials of interest

The systematic approach described in Section 2 is general
and can be applied for dimension 2 as well as any dimension
D, although simplex-like algorithms have shown to be more
efficient for high dimensions (see Section 1). Unidimensional240

equivalent to D2M1N3 is D1M1N3, which leads to smoothstep
function S 3(x) = 3x2 − 2x3 if specific conditions h(0) = 0,
h(1) = 1 and zero gradients at boundaries are required. A 3D
equivalent to D2M1N3 configuration would be D3M1N3. In
addition to the generality of dimension, constraints determine245

the quality of the generated terrain. If the accuracy of the ter-
rain is a priority, one may consider to impose gradients con-
straints for higher orders. In particular, with a view to improve
isotropy, one may consider to use M = 2 and impose second or-
der, mixed derivative gradients ∂2h/∂2

x, ∂
2h/∂2

y , ∂
2h/(∂x∂y) in250

addition to first order gradients. This would lead to D2M2N4
and D3M2N4 models.

4. Fractal noise

In order to produce convincing results, it is of crucial im-
portance to observe and reproduce the apparent fractal nature255

of real terrains. This is achieved by adding together multiple
layers of height maps commonly called octaves, generated by
the same method but which lower in amplitude ai as they grow
in frequency fi, with i the number of the octave. More specifi-
cally, ai ∝ a−i and fi ∝ f i. When a ≈ f ≈ 2, the amplitude of260

the deformation is always proportional to the scale at which it
is applied ; this is how self-similarity arise from the generated
terrain. It is worth noticing that most authors refer to 1/ f as
the lacunarity and is then seen as the multipler of frequency be-
tween two successive octaves. Finally, a is often called persis-265

tence. Note that in this study these parameters are chosen once
and for all before data is produced and do not influe the per-
formance of an implementation. For all the results presented in

this article, base frequency is equal to 2 and lacunarity is equal
to 0.5, unless otherwise specified.270

A property of D2M1N3 makes it a particular model com-
pared to Perlin polynomial and zero-gradient D2M1N3 pre-
sented below ; while both of these have, by construction, ei-
ther zero gradient or zero height on the corners of the domain,
generic D2M1N3 can take any arbitrary value on these loca-275

tions. For this reason, one may define an additional parameter w
which weights the value of gradient in order to tune the predom-
inance of either height or gradient at the corners. For terrain
generation, w is typically a constant, since the scale (i.e the oc-
tave) seems to have no influence on the slope of the added val-280

ues, in first approximation. In the sequels we set w = h0/100,
where h0 is the amplitude of polynomial at octave zero.

4.1. Time cost

We study in this paragraph the computational time T for
generating a height map using the method presented in this285

study. Let us consider first the case of a single octave. For a
domain of size R, the computational time of the evaluation of a
polynomial over the domain is equal to the number of evalua-
tion points times the cost of the evaluation of a single point. In d
dimensions it reads Teval = Ceval ·Rd, with Ceval the cost of a sin-290

gle point evaluation, whose value depends on the specific type
of polynomial used. In addition, each polynomial coefficient
needs to be computed once and for all before spatial evaluation.
At a given octave level i, there are 2i·d different polynomials
to initialize, leading to a creation cost equal to Tinit = Cinit2i·d,295

where Cinit is the time needed for deducing polynomial coeffi-
cients from boundary conditions, which again depends on the
specific type of polynomial used. Note that Ceval and Cinit are
typically of the same order of magnitude.

The total cost T = Teval + Tinit, including the N octaves, is300

simply the sum of the cost for each octave from 0 to N. One
obtains T ≈ CevalNRd + Cinit2Nd. Let us now consider the two-
dimensional case. The previous expression may be misleading,
as the second term usually becomes negligible compared to the
first one, despite the exponential behaviour of the latter, since305

dimension d = 2, resolution R ≈ 103 and N ≈ 7 or smaller
in most cases ; in this configuration, non-exponential term is
of the order of 107 while the exponential one is of the order of
28 ≈ 103. Thus for usual, low number of octaves, the evaluation
dominates the total cost of terrain generation, while polynomial310

initialization dominates the cost for high number of octaves.
Performance test depicts this effect in Section 5.2. This be-
haviour is related to the fact that the contribution of each octave
exponentially decays. As a result, the global change of shape of
the generated terrain, from the point of view of a given scale, is315

exponentially smaller. This can be observed in Figure 1 and is
the reason why the exponential component of the time complex-
ity can be neglected in most cases, since the typical resolution
used is large enough to make it much smaller than the linear
component up to approximately 7 octaves.320
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Figure 1: Example of map generated with 1 to 8 octaves, from left to right.
Zero-gradient D2M1N3 model was used. As a result of the exponentially de-
caying height contribution, the global change of shape of the generated terrain,
from the point of view of a given scale, is exponentially smaller.

5. Results

5.1. Visual comparison with other methods

An example of terrain produced with different methods is
shown in Figure 2, along with its first and second order gradi-
ents. In addition to the three methods previously described, we325

also used Perlin’s model with a fifth order interpolation poly-
nomial S 5(x) = 6x5 − 15x4 + 10x3, as well as OpenSimplex
method as a way of comparison. No quality difference can be
visually noted between models ; acceptable isotropy (i.e not
visible for human eye) at all orders can be observed, although it330

can be pointed out that simplex model provides values that are
distributed slightly more evenly, as it can be seen from the first
order gradient norm.

Figure 2: Example of terrain generated with generic D2M1N3, zero-gradient
D2M1N3, third order smoothstep, fifth order smoothstep Perlin’s model and
OpenSimplex scheme on each column respectively. Height, height gradient
norm and height second order gradient norm are represented on each line, for
each corresponding column model. Specific color map was used to visualize
terrain. Gray scale was used to visualize gradients, where white means zero
and black means maximum value.

Figure 3 depicts different ways to visualize coherent noise
produced by zero-gradient D2M1N3 model, and in particular335

how 2D height map data is used to generate a 3D rendered
mesh. Figure 3 provides different types of landscapes that can
be obtained with coherent noise, for each method. Again, no
quality difference can visually be noted between models. Fi-
nally, Figure 7 shows typical examples of coherent noise used340

to add turbulence to sine signal, in order to procedurally gener-
ate textures of marble, wood or stone, as first indicated in [31],
as well as a cloud-like texture directly obtained from the raw
noise. Finally, Figure 4 and Figure 5 display two rendering of
the terrain generated with zero-gradient D2M1N3 method, for345

raw noise and ridged noise [20] respectively.

Figure 3: Process leading to 3D mesh, from raw noise to rendered mesh.

Figure 4: Raw data from zero-gradient D2M1N3 interpreted as islands.

Figure 5: Ridged noise from zero-gradient D2M1N3 interpreted as mountains.
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Figure 6: Comparison of the frequency distribution of the height and first gra-
dient norm between Perlin noise and zero-gradient D2M1N3 model, for 1000
random terrains with S = 512 pixels.

Figure 7: Examples of Wood, marble and cloud textures obtained with zero-
gradient D2M1N3 model.

The visual similarity between Perlin and D2M1N3 models
is consistent with a zeroth and first-order gradient frequency
analysis. Figure 6 shows a comparison between the two models,
where the mean frequency of both height and slope norm has350

been obtained from 1000 random terrains with S = 512. The
height frequency distributions are very similar in both cases,
while the gradient frequency distribution only slightly differ.

5.2. Performance comparison with other methods

As seen in Section 4, D2M1N3 methods and Perlin noise355

have the same complexity in time, which is O(NR2 + 22N) ≈
O(NR2) up to N ≈ 8 in two dimensions. However, their per-
formances may substantially differ, since constants Ceval and
Cinit are different for each method. We shall estimate these
values here. Let us examine Eqs. (8-15) first. For conve-360

nience, we consider purely space-dependant terms as having
null cost, since they can be pre-computed and then accessed
in constant time (this is equivalent to assume that the zoom
cannot be adjusted once the execution starts). If this is not
the case, they globally represent the same amount of effort in365

all polynomials whose order are similar, thus they can be ig-
nored with reasonable accuracy. With these assumptions, one
counts ag = 11 additions and mg = 12 multiplications for
D2M1N3 polynomial. Equation (19) yields az = 3 additions
and mz = 3 multiplications for zero-gradient D2M1N3 poly-370

nomial. Finally, Perlin’s scheme is found to include ap = 6

additions and mp = 7 multiplications. By way of comparison,
examination of an efficient implementation of 2D simplex noise
yields 6 additions and 10 multiplications [32]. Observing that
ag ≈ 4az, mg ≈ 4mz, ap ≈ 2az, mp ≈ 2mz, one obtains that the375

ratios Ceval,z/Ceval,g ≈ 4 and Ceval,z/Ceval,p ≈ 2 are independant
of the specific cost of addition and multiplication on the ma-
chine used. For this reason, zero-gradient D2M1N3 model is
expected to run approximately twice faster than Perlin’s model
and four time faster than generic D2M1N3 model. This esti-380

mation tends to be weaker as the number of octaves becomes
larger, as contribution of Cinit tends to be significant.

Performances measurements have been done on four dif-
ferent home computers: Intel Core 2 Duo E6550 @ 2.33GHz
(denoted Core2 Duo in the figures), Intel Core i5-5200U @385

2.20GHz, Intel Core i7-4500U @1.8GHZ, and Intel Core i7-
4770 @ 3.40GHz. For each method, a C code and a Python
code have been used (these codes are available as supplemen-
tary material). Execution time Tm(N,R) for a given number of
octaves N and resolution R have been obtained, for each method390

m and with each machine, by averaging the total execution time
for 1000 terrain generations. Figure 8 shows the normalized
execution time for zero-gradient D2M1N3, Perlin and Open-
Simplex models as a function of the number of octaves N. The
normalized execution time is obtained by dividing the execution395

time T by the execution time TZ0 for N = 1 with zero-gradient
D2M1N3 method. The linear behavior of the execution time
clearly indicates that the computational effort is dominated by
Ceval up to N = 9. Figure 9 displays an example of the square
root of the normalized execution time, this time as a function400

of the resolution R, with a fixed number of octaves N = 3.
Again, it is evident that the cost is dominated by pixel evalu-
ation at all tested resolutions. Finally, the time advantage of
zero-gradient D2M1N3 method can be quantified by defining
the speedup S m = Tm/TZ , where subscript Tm is the execution405

time for any method m and Z denotes D2M1N3 method. Figure
10 shows the different speedups obtained, taking into account
all the acquired data for all machines and methods. It appears
that C version of zero-gradient D2M1N3 method is on average
33 % faster than Perlin method, while Python version is more410

than twice faster. OpenSimplex implementations are approxi-
mately four times slower.

5.3. Fractal analysis as a measure of realism

The evaluation of how much a generated terrain is realistic
undoubtedly depends on arbitrary choices ; a man who never415

saw an island in his life would judge a real island as ’unreal-
istic’ compared to all landscapes he saw before. In the other
hand, it seems reasonable and intuitive to base our evaluation
on quantities that can be measured both in real and numerical
terrains, and which can reflect in a simple manner the complex-420

ity of a given topological configuration. For this reason, fractal
dimension is a classical choice to characterize landscapes, and
coastlines in particular [21, 16]. We propose here to study the
fractal dimension corresponding to the coastlines of the terrains
generated with our model, and to compare it with real, natural425

terrains’ fractal dimension.
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Figure 8: Measured normalized execution time as a function of the number of
octaves N, for resolution R = 1024 pixels. Data is presented for all methods
and for all machines tested. T is the measured execution time and TZ0 is the
measured execution time for zero-gradient D2M1N3 method with N = 1 oc-
taves. The linear behaviour show that the computational cost is dominated by
pixel evaluation and that coefficients calculation is negligible for N < 9.

Figure 9: Example on two different machines of the square root of the mea-
sured execution time as a function of the resolution R, for N = 3 octaves. The
expected quadratic behaviour in R shows that the computational cost is domi-
nated by pixel evaluation Ceval and that coefficients calculation is negligible for
common resolutions.

Figure 10: Speedup values of zero-gradient D2M1N3 over Perlin and Open-
Simplex methods.

Let L be the total length of a given coastline ; it is clear
that its value depends on the length ε of the measuring tape
: as it becomes smaller, more details can be measured and L
therefore increases. This effect is known as Richardson effect430

and is reported in [21]. Fractal dimension D is defined as the
quantity allowing to link ε to L by a power law : L(ε) = k · ε1−D,
with k a constant. It follows that log(L) = (1 − D) log(ε) + C
with C a constant, thus the fractal dimension can be deduced
from the slope of the function log(L), whose value is 1 − D. A435

formal study of fractal dimension can be found in [1].
Before proceeding to a numerical measurement of D for a

given data set, we shall convince ourselves that a superimposi-
tion of an infinity of 1D sinusoids with exponentially decreas-
ing amplitudes and exponentially increasing frequency leads to
a theoretical value 1 ≤ D ≤ 2. Sin functions are considered in
order to easily handle periodicity. We define the height function
at octave i as hi(x) = a−i sin( f ix), with real constants a and f .
The crest resulting from the superimposition of all N octaves is:

H(x) =

N∑
i=0

hi(x), (20)

for x ∈ [0, 2π]. An example of the obtained crest is shown in
Figure 11, for different number of octaves. Using that ∂hi(x)/∂x =

( f /a)i cos( f ix) The total length of the crest can be expressed as:

L(N) =

∫ 2π

0

√√√
1 +

 N∑
i=0

( f /a)i cos( f ix)

2

dx, (21)

From the mathematical point of view, the actual length L of the
crest is the length obtained with an infinite number of octaves.
In the other hand, as previously said, we are looking for a rela-
tionship on the form L(N) = kε1−D. Consequently, we are left
with:

D = lim
(N,ε)→(∞,0)

− log L(N)
log ε

+ 1. (22)
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Figure 11: Superimposition H(x) of sinusoids with increasing frequencies and
decreasing amplitudes. Here a = f = 2.

Because of the difficulty to solve the integral in Equation (21),
we provide in Figure 12 numerical evidences of the conver-
gence value of D for different choices of parameters a and f .

In order to measure D for a given numerical terrain, we gen-440

erate it once and for all with a given number of octaves N and
a resolution R = 1024. We then choose several, exponentially
decreasing values for ε, to which are associated squares of side
length ε. By counting, for each given ε, how many squares are
needed to cover all the coastline of the height map, one is able to445

deduce D from a linear regression of log(L) plot, as explained
above. Figure 13 depicts the process, for an example map of
512 × 512 pixels. In Figure 14 are displayed fractal dimension
reported in [21] from Lewis Richardson’s empirical work for
South Africa, Germany land frontier and West coast of Britain ;450

these experimentally found quantities are compared to data gen-
erated with zero-gradient D2M1N3 method for different values
of persistence. Figure 15 shows how D evolves as the number
of octaves used for generating the height map grows, again for
different values of persistence, as expected after studying the455

behaviour of fractal sinusoids. One can note that the results are
essentially similar between zero-gradient D2M1N3, Perlin and
OpenSimplex algorithms. It should be noted that even though
D may continue to grow significantly, the human, visual appre-
ciation of the result is limited at approximately 8 octaves for460

common model parameters, as argued below.
It is worth noting that fractal dimension of coastlines is not

by itself a complete measure of terrain realism ; Koch snowflake
has very little resemblance with real terrain, while its fractal di-
mension is 1.26 [16]. Therefore, it seems judicious to associate465

D with another criterium whose role is to quantify how much
terrain is uneven. Although we do not investigate this point, we
indicate here that Kullback-Leibler [17] divergence could be
a suitable choice for measuring the similarity between height
maps as a complement to fractal analysis.470

Figure 12: Fractal dimension D as a function of frequency f and amplitude a.
As expected D is close to 2 when a is small, in other words when low octaves
do not predominate much over high octaves. Reversely, D is close to 1 when
low octaves almost entirely determines the shape of the crest.

Figure 13: Example of box counting process used for computing fractal dimen-
sion of a generated map. Box size varies from 2 to 64 pixel and is indicated on
each image. In this example, the terrain size is 512 × 512 pixels large.

Figure 14: Example of computed fractal dimension for different values of per-
sistence p and comparison with values for South Africa, Germany and Great-
Britain coastline obtained by Richardson and reported in [21]. The plot display
the logarithmic value of coastline length L as a function of the logarithmic value
of the box size ε, and the fractal dimension is the corresponding gradient. Note
that ordinate of the curves has been arbitrary chosen for convenience, as we are
only interested in their slopes.

8



Figure 15: Computed fractal dimension D as a function of the number of oc-
taves N used to generate the height map, for different values of persistence
p. The results of zero-gradient D2M1N3 method are compared to Perlin and
OpenSimplex models.

6. Conclusion

Two main uses can be made of the model, either by using
zero-gradient D2M1N3 model to increase performance com-
pared to standard Perlin noise, or by using a higher-order scheme
(and in particular constrained mixed derivatives) with the aim475

to arbitrarily constrain gradient. While the former correspond
to typical video-games demand, the latter may find use in sci-
entific and industrial research, as discussed in the introduction.

Strengths

The new method described allows to significantly improve480

performances of realistic terrain generation based of fractal brow-
nian motion. In addition, the general model proposed allows to
reach an arbitrary level of gradient smoothness. The scheme for
noise generation consists in solving, once and for all at the the-
oretical level, a linear set of equations whose order depends on485

the number of desired constraints on gradients. We have shown
that zero-gradient D2M1N3 model is the minimal configuration
for smooth 3D polynomial terrain generation. Another bene-
fit of the presented method is that, unlike simplex models, it
is very similar to Perlin noise, which means that quality and490

performance improvements developed for Perlin noise such as
[28, 27] can be straightforwardly applied to it.

Limitations

The performance gain of the model is paid by the loss of
intuition compared to Perlin polynomial, who can be seen as a495

simple interpolation of height values generated from corner gra-
dients on a grid. Moreover, for dimensions higher than 4, sim-
plex noise has proven to give better performances than Perlin
model [32]. Finally, for generation of terrain including caves,
a common approach is to use a 3D height map for which some500

values are interpreted as void or air ; in that case, a performance

study comparing zero-gradient D3M1N3 model to Perlin and
simplex methods should be performed in order to determinate
how the performance advantage of zero-gradient method is di-
minished.505
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