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Abstract

We present a scheme for coupling a 2D lattice Boltzmann free-surface solver
with a 1D lattice Boltzmann shallow water solver, allowing to save compu-
tational effort and efficiently realize multiscale systems. The accuracy of the
coupling is validated with two tests. First, we compare the numerical and
analytical solutions in a setup with fixed inflow current and outflow water
level in a canal. Secondly, the physics of wave propagation and reflection
in a domain is investigated in a coupled simulation, and compared to the
solutions obtained in both a pure free-surface and a pure shallow-water sim-
ulation. Finally, a performance test is carried out to demonstrate that the
overhead of the coupling is negligible. A quantitative validation of this type
of coupling for the lattice Boltzmann method is novel, and opens the door to
a range of large-scale simulations of canals and other hydrodynamic systems.

Keywords: lattice Boltzmann, free-surface, shallow water, two-phase flows,
validation

1. Introduction

The lattice Boltzmann (LB) method is now recognized as a successful
numerical solver for the incompressible Navier-Stokes equations (NSE). The
method is based on the Boltzmann equation (see [1, 2] for more details on
the method), and it is therefore sufficiently general to simulate a wide set of
physical systems, including multi-phase and free-surface flows. Free-surface
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and shallow water models are commonly used to simulate, among others,
rivers and coastal flows. The work of [3] demonstrates the ability of shallow
water models to simulate erosion with high performance, while [4] uses them
to study sediment transport. An application of a shallow water model to
marine flow in coastal areas can also be found in [5]. Free-surface flows
can be computed with good efficiency in the LB method using a Volume-
of-Fluid (VOF) approach [6]. Such an approach is for instance used in [7]
for the simulation of sediment transport in rivers. This paper highlights the
limits of the VOF approach from a computational perspective, as it shows
the inability to simulate a river segment significantly longer than 10 km even
using a parallel computer with several hundred CPU cores.

A VOF free-surface model was used in [8] for simulating an Oscillating
Water Column wave energy conversion device, and a similar approach using
the LB method was studied in our previous work [9]. While a free-surface
model allows us to fully simulate a 3D flow, an approach based on the shallow
water equation saves computational cost, allowing to simulate much larger
domains. Shallow water models may also be considered as a solution to
overcome spurious energy dissipation (see [9]) occurring over long distances
in underresolved LB VOF simulations. As a downside, the shallow water
equation is based on more limiting physical assumptions (see Section 2.1
below) than the free-surface approach. A coupling between a LB shallow
water model and a LB free-surface model therefore offers a way to obtain
the best of both worlds, using a free-surface model to simulate the fluid on
small portions of the domain requiring high accuracy and with complex flow
patterns, while pure wave or flow propagation and reflection phenomena are
simulated on larger portions with a shallow water model.

The purpose of this article is to present a scheme for coupling a LB free-
surface model with a LB shallow water model. To illustrate this coupling
and assess its quality, we consider here the 2D-1D case. The coupling ac-
curacy is studied here through two different tests, the former focusing on
flow rate transmission between coupled lattices, while the latter focuses on
wave propagation. The aim of such a coupling is to save computational time
thanks to the shallow water model while preserving accuracy allowed by the
free-surface model. As a result of the lower dimensionality of the shallow
water model, its computational cost (see section 5) is one order of magnitude
lower than the one of the free-surface model; this particular point is crucial
since one can expect this computational scale difference to be reflected in
the time and space scale of the corresponding simulated domains, giving the
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opportunity to simulate multiscale systems.
We present the LB, free-surface LB VOF and LB shallow water methods

in the second section. In the third section, we describe the scheme used to
couple shallow water and free-surface systems. The coupling model is tested
in the fourth section, where different benchmarks are used. Performance
considerations are given in the last section.

2. Lattice Boltzmann method

The fundamental principles of the LB method (see [2, 10, 11] for more
details) originate from statistical mechanics. The Boltzmann equation de-
scribes the statistical kinetics of gas molecules [12]. As a consequence, the
quantity solved for in this method is the particle distribution function, and
the macroscopic variables such as velocity or pressure are derived quanti-
ties, defined as velocity moments of the distribution function. The method
is Cartesian mesh based, allowing fast mesh generation, and the method is
inherently parallelizable and scalable [13] thanks to spatial locality of its
interaction pattern.

The lattice Boltzmann equation is obtained by truncating the continuum
Boltzmann equation in velocity space [14, 15]. A number of q particle dis-
tributions, also named populations, is attached to each lattice site. These
populations can be seen as the discrete counterpart of the particle distribu-
tion function in the continuous Boltzmann equation. The q velocities ci of
the lattice correspond to the Gaussian quadrature points used to resolve inte-
grals in the discrete velocity space. The population representing the statistics
of particles entering the lattice site r at time t with velocity ci is denoted
by fi(r, t). The number of discrete velocities used in the numerical scheme
determines the connectivity of lattice nodes with their neighbors. One uses
the notation “DdQq”, where d is the number of dimensions and q the number
of velocities, to denominate the chosen scheme. For instance, a D1Q3 lattice
has been used in the present study to run the shallow water simulations.

The collision term of the Boltzmann equation is often approximated by
the Bhatnagar-Gross-Krook (BGK) collision model [16], which uses a single
relaxation time. In this model, the time evolution is expressed through the
relation

fi(r + ∆tci, t+ ∆t)− fi(r, t) = −1

τ
(fi(r, t)− f eqi (r, t)) , (1)
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where f eqi are the equilibrium populations, ∆x and ∆t are the discrete
space and time steps respectively, and τ is the relaxation parameter. The
equilibrium populations f eqi are obtained as a finite expansion of the Maxwell-
Boltzmann equilibrium distribution, up to second order with respect to the
Mach number.

The macroscopic density and velocity can be computed from the popula-
tions as:

ρ =
∑

fi, ρu =
∑

cifi. (2)

A Chapman-Enskog analysis (see [15] for instance) demonstrates that the
above scheme is asymptotically equivalent to solutions of the incompressible
Navier-Stokes equations, in the limit of small Mach number.

In the present study, 2D VOF simulations are run using an approach of
large-eddy simulation (LES), based on a Smagorinsky subgrid-scale model( [17,
11, 10]). Although the flow is expected to be laminar in coupling interface
regions, it can become turbulent in any other part of the domain.

2.1. LB Shallow Water model
An early attempt to solve the shallow water equations using the LB

method can be found in [18]. The LB shallow water model used in this
study follows the line of [19]. As in [20], we consider a 1D flow in a rectan-
gular channel with slope I and width B. The shallow water equations, also
named Saint-Venant equations in 1D, are derived from mass and momen-
tum Navier-Stokes equations, assuming that the water depth is very small
as compared to the characteristic length of flow structures. Further assump-
tions include fluid incompressibility, a hydrostatic pressure profile, negligible
viscosity effects, and a small value of the slope I. Under these assumptions,
the Navier-Stokes equations are reduced to the following relations:

∂h

∂t
+
∂(hu)

∂x
= 0, (3)

∂(hu)

∂t
+
∂(gh2/2 + hu2)

∂x
= gh(I − J), (4)

where h denotes the water height from the bottom to the surface, u is the
depth-averaged horizontal velocity, g is the gravitational acceleration, and J
a term accounting for the friction force due to channel bottom. The latter
term is modeled as [21]:
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J = n2u2
(

2h+B

hB

)4/3

, (5)

where n is the Manning coefficient of the canal.
In the LB model for simulating shallow water equations, the water height

h is assimilated to the first-order velocity moment ρ (“the density”), and
is computed as the sum of the populations. In this study we use the D1Q3
model presented in [20]. One can show that, for Froude number Fr = u/

√
gH

close to 1, spurious viscous contribution appears in this model [20], thus
constraining the type of regime simulated.

2.2. LB free-surface VOF model
The free-surface model considers two-phase fluid compounds with a large

density ratio, akin to water-air systems in normal atmospheric conditions.
It simulates the physics of the heavy fluid only, and replaces the effect of
the light fluid onto the heavy one through a condition of zero parallel shear
stress along two-phase interface. In the LB VOF approach, additionally to
the usual fluid variables, every cell keeps trace of the local massm and volume
fraction V F . While V F = 1 on bulk cells of the heavy fluid, it is related to
the fluid density on interface cells: V F = m/ρ. Thus, the cells of the fluid
mesh are split into three categories: “fluid cells” (cells completely occupied by
the heavy fluid) in which V F = 1, “empty cells” (cells completely occupied
by the light fluid) with V F = 0, and “interface cells” on which the volume
fraction is comprised between 0 and 1. The interface layer between fluid and
empty cells is always closed, so that an empty cell is never in the neighboring
of a fluid cell.

At each iteration, the progression of the two-phase interface is simulated
through a mass advection process, and the cell types are updated accordingly.
For an interface cell, the population f outI that is streamed from an empty
cell in the direction i is given by f outI = f eqi + f eqI − fi, where I denotes the
direction opposite to i. The equilibrium populations here are computed using
a constant reference air density, set to 1 in our model.

Classical bounce-back conditions [22] are applied to wall cells, in the same
way as in standard single-phase simulations. A more detailed presentation
of VOF free-surface models and their LB implementation can be found in
[23, 24]. Note that even if the solution of the flow field is obtained via a
LB approach, the advection equation for the VOF fill level can be solved in
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different ways, as for instance in [25], where it is discretized with a finite
volume method.

2.3. Other works on SW-FS coupling
To the best of the authors’ knowledge, there exist only few studies re-

garding the coupling of shallow water and free-surface (SW-FS) models. A
coupling between a 3D free-surface solver and a 1D shallow water solver,
both based on finite differences method, is studied in [26]. The numerical
scheme is validated through the study of the flow in a curved channel, with
an oscillatory inflow velocity condition and imposed outflow. The study is
however limited, as it does not represent effects of friction along the channel
bed, and the water depth is constant along the channel. At the coupling
interface, the water level in the 1D simulation is imposed as the average of
the water level of the 3D simulation, while the velocity in the 1D simulation
is used as the value to impose in all the corresponding 3D sites. Within
this setup, a good match for the time evolution of the free-surface height is
found between the coupled system and a single 3D free-surface simulation.
A coupling between a 3D LB VOF free-surface solver and a 2D LB shallow
water solver is also presented in [27]. Since this publication is targeted at
a computer visualization community, it does not include any quantitative
validation of the coupling.

In [28, 29], a distinction is made between coupling strategies involving sys-
tems that are dimensionally homogeneous and physically heterogeneous, and
systems that are dimensionally heterogeneous and physically homogenous.
Applications with different coupled shallow water models are depicted. The
present work, however, involves both dimensionally heterogeneous and phys-
ically heterogeneous systems. A study of different coupling types such as via
source terms, boundary conditions or state variables, is also found in [30] and
is applied to shallow water systems.

3. Coupling scheme

In a coupled simulation, we use free-surface and shallow water lattices to
represent different parts of the physical domain. At the connection between
the two domains, an overlap region is used, in which the two lattices are
superimposed. At both ends of this overlap region, a coupling between the
lattices is performed. In this way, the coupling is not performed at the same
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location on both lattices, in order to avoid amplification of errors and result-
ing numerical instabilities. Figure 1 depicts the configuration. Note that, in
a similar way as done in [27] for the 3D-2D case, the coupling interfaces at
coordinates x = B and x = C are vertical columns with a thickness of 1 cell
in the x direction. The overlap zone has a length of C −B cells.

Figure 1: Configuration of the lattices and their coupling. The area below the curved
line in the free-surface lattice represents the VF value of interface cells, while the height
simulated in the shallow water lattice is represented by a discrete water column.

In the coupling scheme presented below, lattices are synchronously up-
dated. This implies that, at the coupling interface only, data from one of the
lattices has to be saved in temporary variables before the coupling scheme is
applied.

3.1. Coupling from shallow water to free-surface
At the coordinate x = C, the coupling acts as a boundary condition for

the free-surface lattice, which imposes a water height and velocity determined
by the shallow water flow, incoming from the right. The following steps are
performed each iteration:

First step.. Update the free-surface cell types according to the shallow water
height. In order to perform this step, the volume fraction V F of the free-
surface lattice is computed according to the water height h of the shallow
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water lattice on the same interface cell. The volume fraction of a correspond-
ing, superimposed interface free-surface cell is h− bhc. The y coordinate of
this cell is bh ·∆xc.

Second step.. The horizontal velocity is obtained from the shallow water
lattice at the same interface location x = C. This value is used as a basis
for the velocity to impose at each cell of the fluid column of the free-surface
lattice. Here, missing information for the horizontal velocity along depth u(y)
has to be completed. Three types of distribution have been tested: a constant
velocity profile, a quadratic velocity profile and a logarithmic velocity profile.
In the first case, one imposes the same velocity to each cell along the depth.
For the quadratic case, the imposed velocity profile corresponds to a steady-
state solution of a laminar free-surface flow, with a constant current Q and a
constant fluid height H. Figure 2 displays an example of a quadratic profile.
As indicated in [31] for instance, the expected velocity profile is parabolic in
a theoretical laminar free-surface flow. The parabolic profile is characterized
by the following three parameters: the mean velocity ū ≡ Q/S, where S is
the cross section of the domain, and the velocity at the bottom and at the
level of the free surface, u(0) and u(H) respectively. These values depend on
the properties of the walls. The latter two conditions, combined with the flow
condition 1/H

∫ H
0
u(y)dy = ū, yield a unique velocity profile. In our case,

we apply a no slip condition at the bottom, u(0) = 0. Since the free-surface
model assumes zero parallel shear stresses at the interface, the maximum
theoretical velocity is reached at the surface y = H, and the theoretical
velocity profile reads:

u(y) =
3ūy

H

(
1− y

2H

)
. (6)

The maximum velocity value 3ū/2 is in theory obtained at y = H. However,
real laminar flows in a canal show a slight velocity decrease near the water
surface, due to the so-called dip effect [32] that arises in canals with finite
width due to friction forces, as well as non-zero parallel shear stress at the
interface. These phenomena are not implemented in our study. Also, our
free-surface model is two-dimensional and we assume there are no lateral
walls. An example of the velocity profile for laminar flow in the free-surface
model is shown in Figure 2.

In summary, as we couple the velocity from the shallow water to the
free-surface lattice at x = C, we apply the theoretical velocity profile to the
water column, as provided by Equation 6, with mean velocity ū = uSW and
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a water height H = hSW . These values are imposed to free-surface cells as
Zou-He velocity boundary conditions [33], even for the last, interface cell of
the column (both the free-surface completion scheme and Zou-He completion
scheme are involved at the top cell, the latter using the value from the former
if needed). When the water height changes, the populations of the new
interface cell are initialized at equilibrium.

0.0 0.1 0.2 0.3 0.4 0.5
y(m)

−0.002
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0.008

0.010

u
x
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/s
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Figure 2: Velocity profile along the water height y from the bottom y = 0 to the free
surface y = 0.4 m, obtained from a free-surface simulation with constant inlet and outlet
flows. In this example, ∆x = 8 · 10−3 m and ∆t = 8 · 10−5 s.

In turbulent flows, the velocity profile is known to take a logarithmic form
[34]. This profile has been tested and we show in Section 4.2.1 that, for the
benchmarks used, the difference in the results is not significantly impacted
by the choice of the velocity profile. In the canal test cases (see Section 4.1),
the use of either quadratic or logarithmic velocity profile improved the overall
accuracy of the result by approximately 5%, while in the wave propagation
tests (see Section 4.2), the improvement of accuracy amounted to approxi-
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mately 2.5%. In this article, the quadratic profile was used unless otherwise
specified.

We would like to point out that, if the main phenomenon of interest is the
propagation of surface gravity waves, an alternative velocity profile could be
considered. In this case, if the properties (e.g. period and amplitude) of the
waves created during the simulation are known, one can deduce the pressure
and velocity distributions under the water surface. The profile for these
quantities is expressed in terms of the amplitude, the period, and the water
depth [34], and could be directly imposed at the coupling interface. However,
the determination of wave properties, and in particular their period, is non
trivial, and an additional numerical effort would be required to compute their
time-varying properties.

As a final comment, the y-component of the velocity cannot be directly
obtained from the shallow water lattice. However, we deduce it, at a first-
order approximation, by keeping track of the h values on interface cells from
the previous iterations. The value (ht−ht−1)/∆t is then taken as an approxi-
mation of the vertical component of the velocity, and is uniformly distributed
over the depth. Higher order schemes may be considered, but we have not
investigated them presently, and this study includes only the above one.

3.2. Coupling from free-surface to shallow water
At the position x = B, the coupling acts as a boundary condition for

the cell of the shallow water lattice, using flow properties of the free-surface
lattice arriving from the left.

The water height of a free-surface column at coordinate x can be com-
puted as:

hFS = ∆x
H∑
y=0

VF(x, y). (7)

The mean horizontal velocity uFS of the free-surface lattice is similarly com-
puted as an average over a water column. These values are imposed to
the shallow water lattice on interface cell, by setting the populations to
fi = f eqi (hFS, uFS) + fneqi (hSW , uSW ). The non-equilibrium part is preserved
as it does not change the evaluation of macroscopic height and velocity. The
value of the non-equilibrium part can be computed as indicated in [20]:

fneq0 = τ∆t

[(
1− gh

v2
− 3

u2

v2

)
∂x(hu) + 2

(
u2

v2
− gh

v2

)
u∂xh

]
, (8)
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and fneq1 = fneq2 = −fneq0 /2. The spatial derivatives of h and u are
evaluated through a second order centered scheme.

3.3. Coupling parameters
The numerical parameters that can be freely chosen in our model are the

length of the overlap zone and the time and space steps ∆t and ∆x. In this
paper, the latter two parameters are equal in the free-surface and the shallow
water simulation. Although it is in principle wasteful to apply the same
time step in both simulations whereas the free-surface model often requires
a finer time step, this choice remains appropriate in our case, in which the
computational effort is largely dominated by the free-surface simulations (see
Section 5), while the computations of the shallow water lattice are negligible.

The stability of the simulations is affected by the size of the overlaping
zone. For the benchmarks studied, an overlap zone of 0.2 m was found to be a
good value in terms of stability. One can see the overlap zone as a buffer area
allowing to make a relaxation of the coupling variables going from one lattice
to the other one. When the size is too small, the spurious quantities are
increased by the feedback between lattices. This behaviour was expected,
since the physics of each lattice are of different nature, in addition to the
inhomogeneity of lattice topology. Hence, the coupling here is substantially
different from that involved in a grid refinement scheme for instance, which
allows for smaller interaction stencils.

Another parameter of the simulation is the relaxation time τ , which re-
lates to the fluid viscosity. We have kept this parameter free, and its influence
on the accuracy is presented in the results below.

It should be pointed out that, for our coupled system to produce mean-
ingful results, one should make sure that physical phenomena occurring near
the coupling interface are properly captured by both the free-surface and the
shallow water model. It is reminded that the assumptions of the shallow
water model are valid only if the horizontal characteristic scale (e.g. the
wavelength of a wave) is much larger than the vertical scale (e.g. water
depth). In the case of surface wave propagation in a canal of depth H, waves
in the shallow water system propagate with velocity v =

√
gH, while in the

free-surface system waves travel with velocity v =
√
gλ tanh(2πH/λ)/(2π),

assuming their behavior obey linear wave theory (see [34] for instance), with
λ the wavelength. Since tanh(x) ≈ x for small values of x, these expressions
tend to be equivalent for small values of H/λ.
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We conclude this section by remarking that height, velocity, or any phys-
ical quantity, are defined twice in overlapping areas, by both the free-surface
and the shallow water lattices. Since there is no a priori reason to choose
the value from one lattice rather than from the other one, we choose here to
define any quantity q of the fluid in the overlap area through linear interpo-
lation as q(x) = α · qSW (x) + (1− α) · qFS(x), where α = (x− B)/(C − B).
While this choice has an impact on the visualization of the flow quantities,
it does not affect the results of either the free-surface or the shallow water
simulation, as the physical variables of the overlap zone are not explicitly
used in the coupling scheme.

4. Results

4.1. Benchmark
Our benchmark case is similar to the one of [20]. It imposes an inflow

current Q0 and an outflow water height hL on a canal of given length L, as
depicted in Figure 3, and in this way allows us to test the coupling in both
ways (from free-surface to shallow water and vice versa). This benchmark

Figure 3: Configuration of the benchmark test with a canal of length L. The inflow current
Q0 and the outflow water height hL are imposed. The free-surface lattice is in the center
of the domain and is surrounded by longer, shallow water lattices.

tests the response of both height and velocity to perturbations, and is moti-
vated by its similarity with potential real-life applications to irrigation canals
[20, 35]. The simulation domain is decomposed into three parts: two shallow
water parts and one free-surface part in the center. A bounce-back condition
is applied at the bottom of the free-surface part. The inflow current and
outflow height are imposed to the shallow water lattices in the same way
as in [20], by completing the unique missing population. The shallow water
differential equation corresponding to the discussed condition reads:
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∂h

∂x
=
gh(I − J)

gh− u2
, (9)

where u = Q0/(Bh), with the condition h(L) = hL, and

J =
n2Q2

0

B2h2
(

Bh
B+2h

)4/3 . (10)

An approximated solution for this equation is obtained numerically using a
solver for ordinary differential equations based on Runge-Kutta method.

The results are validated by computing the mean relative error of the
data from the coupling model to the reference solution href of Equation (9).
We define the mean relative error ε as:

ε =
1

N

N∑
i=0

| h(i∆x)− href (i∆x) |
href (i∆x)

, (11)

where N ≡ L/∆x is the total number of cells along x-axis. All three
domains are included in the calculation of the error. The parameters used for
the simulations are ∆x = 8 ·10−3 m, ∆t = 8 ·10−5 s, H0 = 0.4 m, τSW = 0.51,
L = 4 m, I = 2.6 · 10−3, B = 0.1 m, n = 0.0103 and g = 9.81 m/s2. The
length of the full free-surface domain is 0.8 m and the length of each overlap
zone is 0.2 m.

For a given set of values for the quantities described above, the resulting
flow reads:

Qi =
√
I
BH

n

(
BH

B + 2H

)2/3

. (12)

The above value of Qi is used for the initial condition of the flow velocity ui =
Qi/(BH) everywhere in the domain. In an initial stage of the simulation,
the flow is linearly increased up to Q0 = 1.5 ·Qi, as done in [20]. The Froude
and Reynolds number corresponding to the described setup are Fr ≈ 0.5,
Re ≈ 106 respectively. The water level is initialized at a value h(x) = H0

everywhere in the domain.
The proposed benchmark is highly demanding for our coupling model.

Indeed, the LB, VOF-based free-surface model suffers from energy dissipation
over long distances, and is therefore poorly adapted to a simulation of a
long canal. As pointed out in the introduction, this is precisely one of the
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reasons why a SW-FS coupling model is needed in situations where both long-
range wave propagation and a precise representation of the flow structure are
required in different parts of the simulation domain.

Figure 4 shows the evolution of ε as a function of time for τFS = 0.55,
τFS = 0.53 and τFS = 0.501, and the solution from the shallow water model
alone. An installation wave and its reflections perturb the simulation at the
beginning, due to the initial flow increase from Qi to Q0. At time t ≈ 10 s, a
steady state is reached. Figure 6 shows that the mean relative error linearly
decreases with the lattice spacing ∆x, for a given set of relaxation times for
the free-surface and shallow water lattices. The simulations show that the
accuracy of the results linearly decreases as the value of τFS departs from
0.5, as shown in Figure 5. To explain this, we point out that the considered
benchmark case assumes an inviscid flow, and that the shallow water equation
similarly solves the non-viscous shallow water equations. Note that it has
been shown in [20] that even the LB shallow water model exhibits a non-
null viscosity, that does not correspond to the one of the free-surface model.
Therefore, a residual error is found, although the free-surface domain yields
best results at low viscosity, when τ is close to 0.5. Figure 7 compares the
elevation profile at time T = 29.7 s in the theoretical case and in the coupled
simulation: discrepancies of less than 5% appear on the form of an offset
in the inlet side of the domain. As a result, the total mass of fluid slightly
differs from the initial one; this effect is quantified in Section 4.3.

4.2. Wave transmission
In the next numerical test, we focus on the transmission of waves from the

shallow water to the free-surface simulation and vice versa, by tracking the
evolution of surface elevation along time. For this reason, we use a symmetric
test case in which the water elevation is initialized with the following profile:

h(x) = H0 +Hdrop · e−(x−X0)2/(2σ2). (13)

For the results presented below, the parameters are H0 = 0.195 m, Hdrop =
0.1 m, X0 = 2 m and σ = 0.15 m. The total length of the domain is 4 m
while the length of the central, free-surface domain is 1 m and overlap areas
of 0.2 m. The corresponding Froude and Reynolds numbers are Fr ≈ 0.2,
Re ≈ 105 respectively. We refer to this test under the term of “Gaussian
drop”, due to the similarity of its behaviour with the waves generated by a
droplet falling into water. The symmetry of the system, the reflections of
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Figure 4: Evolution of mean relative error ε as a function of time, for three different values
of τFS with SW-FS model and shallow water model.
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Figure 5: Mean relative error in the steady state as a function of lattice spacing ∆x for
constant τSW = 0.51 and τFS = 0.501. The dotted line corresponds to a linear fit.
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Figure 7: Water elevation along the channel for the simulation using the coupling scheme
(red dotted line) and in the theoretical case (green line), at time T = 29.7 s. Overlap
areas are delimited by vertical dotted lines.
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waves on boundary walls and the resulting superimposition of waves makes
it relevant for the study of wave propagation. It allows us to verify wave
properties over a long time while keeping the simulation domain small.

4.2.1. Velocity profile in free-surface model
As discussed in Section 3.1, the shape of the velocity profile requires

an ad-hoc choice to be made, given that the data from the shallow water
lattice is one-dimensional. Figure 8 shows the difference of water elevation at
different time steps for the Gaussian drop, for results obtained from constant,
quadratic and logarithmic velocity profiles. In the Gaussian drop test case
as well as in the canal test, the mean relative difference between the results
for different profiles is less than 2.5%. Apart from the observation that, in
our benchmark, the actual velocity profile appears to be much less important
than the total flow, another possible reason for this small difference is that,
even starting from a constant velocity profile along depth, the profile adapts
after on the x-axis, as shown in Figure 9. Thus, a constant profile has a
small impact on the mean relative error for a steady flow; however, it has
an influence on the capacity of the coupling scheme to react to quick flow
changes, as in the canal benchmark test. For this reason, the quadratic profile
was preferred.

4.2.2. Comparison between models
Figure 10 compares the solutions obtained with the shallow water model,

the free-surface model, and the coupled system respectively for the Gaussian
drop.

Figure 11 shows the mean relative deviation of the shallow water solu-
tion, as compared to the coupled and the pure free-surface solutions. It can
be observed that the difference between coupled system and pure shallow
water method is essentially equal to the difference between coupled system
and pure free-surface. Regardless if one chooses free-surface or shallow water
as reference solutions, the mean relative error remains smaller than approx-
imately 3% throughout the simulation, which is consistent with the mean
relative error found in the previous benchmark.

4.3. Mass conservation
As discussed above, information has to be reduced/augmented when pass-

ing from one lattice to the other, because the two involved models are 1D
or 2D respectively. This transformed information impacts the macroscopic
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Figure 8: Comparison of the solution obtained for the Gaussian drop test with constant,
quadratic and logarithmic velocity profiles at different time steps.
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0.5 s of simulation (5 · 103 iterations). In this test a constant velocity (continuous line)
is imposed at x = 0 in the free-surface lattice, and there is no shallow water lattice. A
parabolic distribution is recovered for the velocity after a short distance.
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Figure 10: Solutions obtained from shallow water model only, free-surface model only,
and coupled model for the Gaussian drop. The physical time T is indicated in each case.
Vertical dashed lines delimit overlap areas between lattices.
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zone for three distinct simulations: pure SW, pure FS and SW-FS systems.

variables on the two lattices through the boundary conditions on the cou-
pling interfaces (see Sections 3.1 and 3.2 above). For this reason, one can
expect mass conservation to be affected by the coupling scheme.

The left plot of figure 12 shows the fluid mass in the Gaussian drop
simulation. Small variations of mass can be seen locally (less than 1% of the
total fluid mass), but no systematic loss of mass occurs. We conclude that
spurious mass gain or loss introduced by the coupling scheme is negligible.
Simulations of pure shallow water, pure free-surface and coupled SW-FS
systems have been performed in order to compare the evolution of the mass
of fluid contained inside the overlap area (even though for pure systems no
special treatment is applied in this area). This way, mass evolution at the
SW-FS transition zone can be compared to pure systems. The right plot
figure 12 shows that this difference is comparable to the error previously
found for the water level in the same problem.

5. Performance

The free-surface model is computationally much more expensive than the
shallow water model, mainly because of the representation of a 2D domain,
as opposed to 1D in the shallow water case. Figure 13 illustrates the depen-
dence of the total execution time on the relative length of the free-surface
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domain, as a fraction of the total domain. Note that our code has not been
optimized and simply follows the description of the coupling model given
here. Thus, the performance results depicted below constitute an initial
investigation, as the coupling overhead may reveal sensitive to the specific
implementation used. Consistently with our expectations for the coupled
model, the execution time is substantially reduced when a larger part of the
domain is represented by the shallow water system. It is important to stress
here that for sake of implementation simplicity, the shallow water lattice is
in fact used over the whole domain, although its values outside the domain
defined for shallow water simulations are ignored and never involved in com-
putations of physical quantities. As one can deduce from this figure, it is not
worthwhile using the coupled system if the domain fraction represented by
the free-surface model is larger than about 75 %, as in this case the overhead
due to the coupling algorithm weighs out the reduction of computational
cost obtained by the shallow water scheme. This condition is not expected
to cause any problems in practice, since the free-surface simulation is in-
tended to be concentrated on areas of restricted size, with highly resolved
local flow structures, while the shallow water model should be applied to
areas of extended lengths (LSW >> λ), where wave or current propagation
is the central investigated phenomenon.

6. Conclusion

The proposed coupling scheme allows us to significantly reduce the com-
putational time compared to a pure free-surface approach. Its accuracy is
found to be satisfying both in the case of flows dominated by current trans-
mission, as well as for flows dominated by wave transmission, as long as
the flow conditions at the coupling interface satisfy the assumptions of the
shallow water model.

Time interpolation should be considered in the future as a possible im-
provement of the current model, as well as an implicit scheme to solve the
coupling interface and reduce the length of the overlap zone. Also, for the use
in large scale simulations, a parallel implementation of our coupling scheme
and its software implementation should be investigated. While both shallow
water and free-surface models are proven to be efficiently parallelizable, the
overhead of the coupling scheme could have a negative impact on the overall
performance, or ability to achieve efficient load balancing.
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its values are ignored at locations where free-surface domain is defined.

26



A limitation of the model is that one should carefully ensure that the
shallow water lattice always simulates flows with Froude number less than
unity, since it yields spurious viscous terms in regimes with Fr close to 1 (see
Section 2.1). Thus, regions with large Froude number, including transitions
to these regions, must be simulated within the free-surface part of the domain.

Finally, a natural generalization of our numerical scheme will include its
adaptation to a coupling between 1D or 2D shallow water and 3D free-surface.
In this case, a proper velocity profile will need to be formulated, not only
along the fluid height, but also in the transversal axis. The main ideas as
developed here will apply.
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