Introduction à l'informatique

pour les mathématiques, la physique et les sciences computationnelles

Yann Thorimbert

Chapitre 4 *Algèbre de Boole et circuits logiques*

Yann Thorimbert

Chapitres du cours

- 1. Origines des ordinateurs et des réseaux informatiques
- 2. Codage des nombres
- 3. Codage des médias
- 4. Circuits logiques ←
- 5. Architecture des ordinateurs
- 6. Conception et exécution de programmes
- 7. Algorithmique, programmation et structures de données

Rappel

- On peut coder les informations qui nous intéressent sous forme d'états binaires (cf. chapitres précédents).
- On veut réaliser des raisonnements logiques qui portent sur ces données. On doit faire subir un traitement à ces états binaires.

Exemple de table de vérité

Considérons pour l'exemple un cas simplifié d'infraction routière en Suisse :

"Une personne est en excès de vitesse si elle roule à plus de 50 km/h à l'intérieur d'une localité."

- Nous voulons qu'un ordinateur puisse traiter ce type de proposition logique.
- Pour formaliser une telle phrase, on peut :
 - 1) Repérer les sous-parties : être en excès de vitesse, être hors localité, ...
 - 2) Résumer le tout sous la forme d'une table de vérité.

Exemple de table de vérité

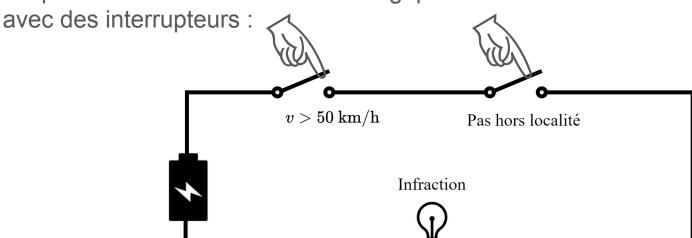
Limitation de vitesse dans les localités en Suisse (où 1 = "oui", 0 = "non").

Les éléments d'une expression logique

"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("Hors localité")

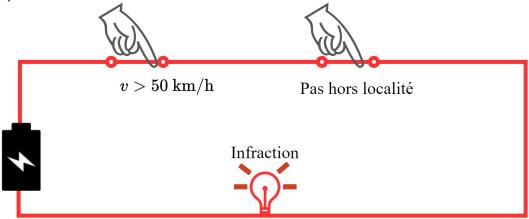
"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("hors localité")

On pourrait réaliser cette fonction logique sous la forme d'un circuit électrique



"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("hors localité")

On pourrait **réaliser** cette fonction logique sous la forme d'un circuit électrique avec des interrupteurs :



"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("hors localité")

On pourrait réaliser cette fonction logique sous la forme d'un circuit électrique avec des interrupteurs.

Cependant, on veut automatiser le processus.

De plus, on veut **abstraire** le processus.

"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("hors localité")

- Une table de vérité peut tout aussi bien être résumée par un schéma.
- Le schéma doit incorporer les fonctions logiques que sont ET et PAS.

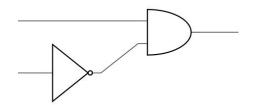
"Est en infraction" = "Roule à plus de 50 km/h" ET PAS("hors localité")

- Une table de vérité peut tout aussi bien être résumée par un schéma.
- Utilisons les symboles arbitraires suivants, nommés portes logiques :
 - ET est arbitrairement symbolisé par le symbole
 - PAS est arbitrairement symbolisé par le symbole

Roule à plus de 50 km/h	Est hors localité	Est en infraction
0	0	0
0	1	0
1	0	1
1	1	0

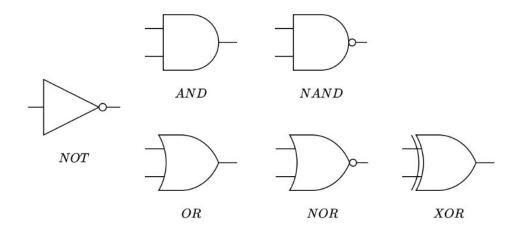
- Table de vérité faite de propositions logiques binaires.
- Circuit logique fait de portes
 logiques prenant des valeurs
 binaires en entrée et retournant des valeurs binaires en sortie.
- Le circuit réalise la table de vérité.

Roule à plus de 50 km/h	Est hors localité	Est en infraction
0	0	0
0	1	0
1	0	1
1	1	0



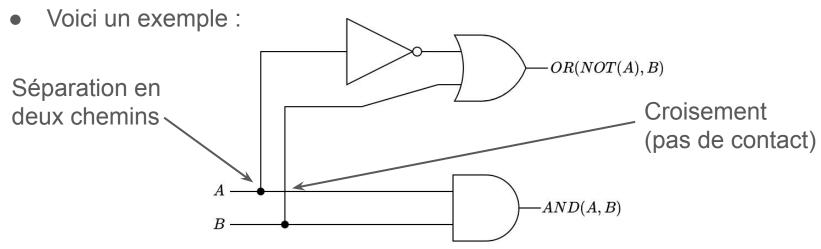
Différents types de portes

Chaque porte correspond à une table de vérité.



Note sur les schémas de circuits logiques

- On représente les noeuds ("séparations" du fil) avec un point.
- On représente les fils qui se croisent sans point.
- Parfois, nous écrirons des expressions sur le schéma.



Rappel: transistors

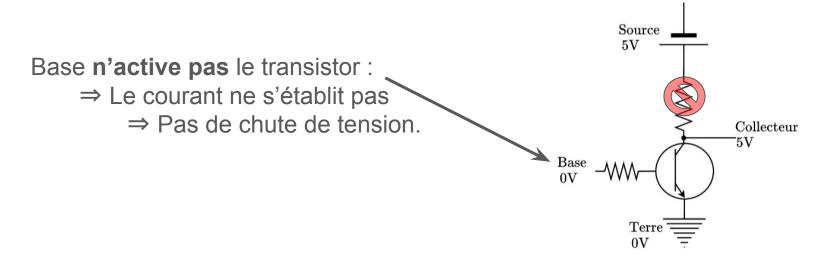
- Les transistors sont les éléments électroniques de base des ordinateurs actuels.
- Méthode efficace, mais pas unique (cf. diapos ordinateur à eau) pour émuler des portes logiques avec un système physique.
- Robinets à électrons : laissent (ou pas) passer le courant électrique entre deux bornes en fonction de la tension à une troisième borne.
- Si l'on peut réaliser les schémas dans la vie réelle, alors on peut simuler un raisonnement logique grâce à une machine!

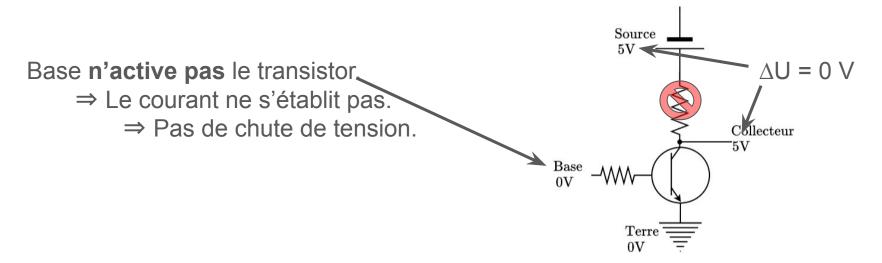
Aparté physique

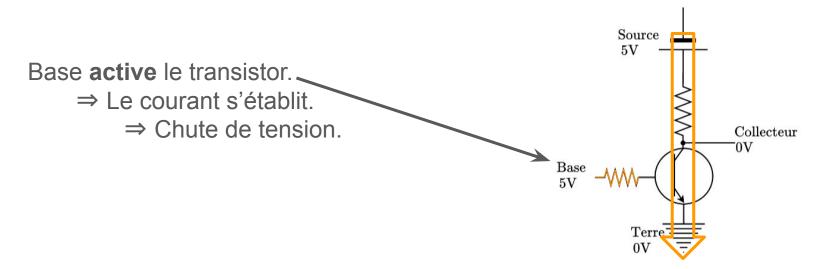
 Quand un courant électrique traverse une résistance, on mesure une différence de tension aux bornes de la résistance.

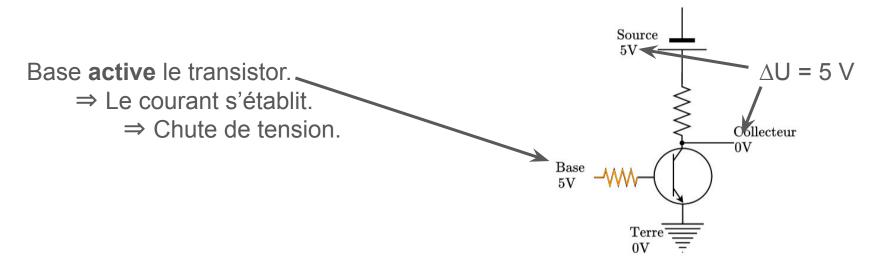
• Loi d'Ohm :
$$\Delta U = U_2 - U_1 = R \cdot I$$

On dit que la résistance fait "chuter" la tension.









De transistors à portes logiques | Abstraction

Fonction logique NOT: Collecteur

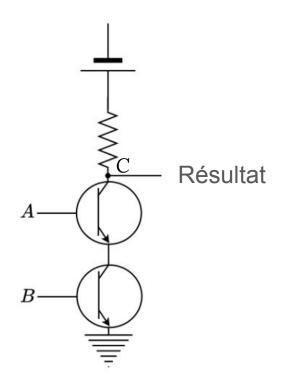
De transistors à portes logiques | Abstraction

Fonction logique NOT: NOT(A)

Une première porte : transistors en série

- Il y a chute de tension au collecteur si le courant s' établit à travers l'un ET l'autre des transistors.
- Autrement dit : U_c > 0 seulement si au moins un des deux transistors n'est pas activé.

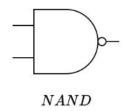
A	В	Résultat
	10.00	

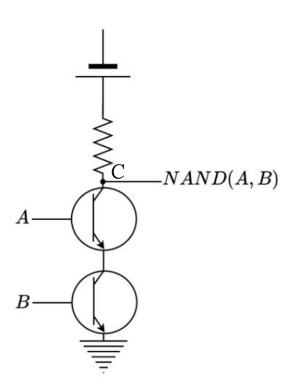


Porte NAND

- Il y a chute de tension au collecteur si le courant s' établit à travers l'un ET l'autre des transistors.
- Autrement dit : U_c > 0 seulement si au moins un des deux transistors n'est pas activé.

632	A	В	NAND(A, B)
	0	0	1
	0	1	1
	1	0	1
	1	1	0



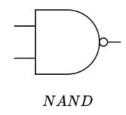


Porte NAND

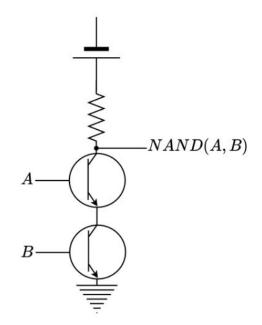
Fonction logique

\boldsymbol{A}	В	NAND(A, B)
0	0	1
0	1	1
1	0	1
1	1	0

Porte logique



Circuit électronique

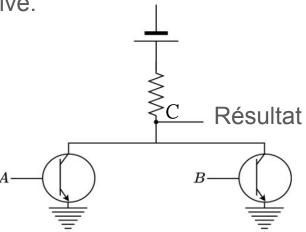


Une seconde porte : transistors en parallèle

Il y a chute de tension dès que A OU B est activé.

• U_c > 0 seulement si aucun transistor n'est activé.

A	В	Résultat
65.00 65.00 6	B1.900	

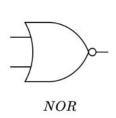


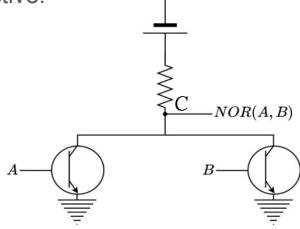
Porte NOR

Il y a chute de tension dès que A OU B est activé.

• U_c > 0 seulement si aucun transistor n'est activé.

A	В	NOR(A, B)
0	0	1
0	1	0
1	0	0
1	1	0





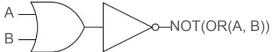
Combinaison de fonctions logiques

NAND est une inversion de AND au même titre que NOR est une inversion de OR.

A	В	AND	NAND	OR	NOR
0	0				
0	1				
1	0				
1	1				

Combinaison de fonctions/portes logiques

Exemple pour NOR(A, B) = NOT(OR(A, B))

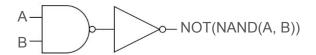


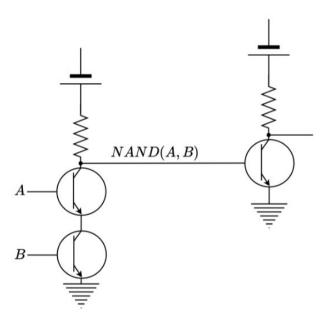
A	В	OR	NOR
0	0	0	1=not(0)
0	1	1	0=not(1)
1	0	1	0=not(1)
1	1	1	0=not(1)

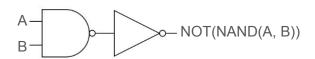
Combinaison de fonctions/portes logiques

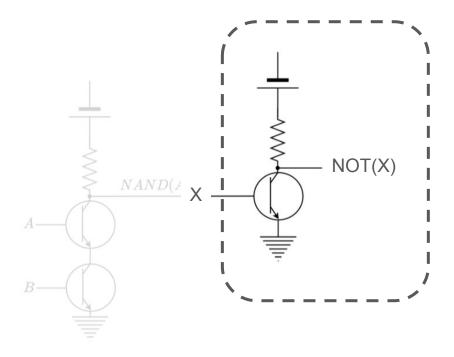
À l'inverse OR(A, B) = NOT(NOR(A, B))

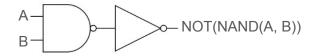
Ou encore AND(A, B) = NOT(NAND(A, B))

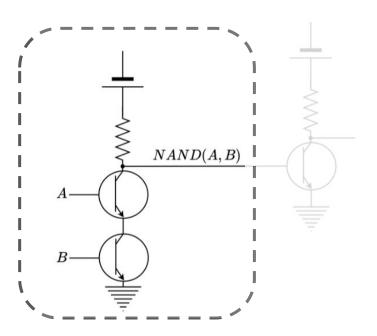


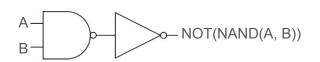


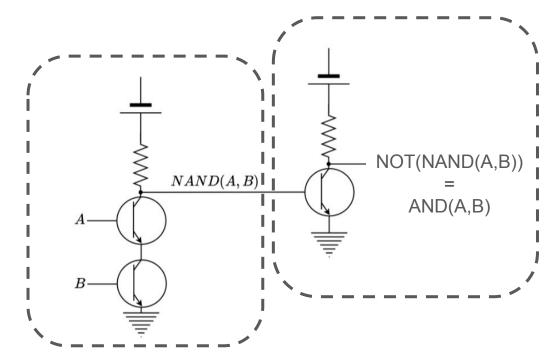












Algèbre de Boole

- Nous avons vu qu'un raisonnement logique pouvait être exprimé :
 - Comme une phrase du langage courant (ambigu).
 - Comme une table de vérité.
 - Comme un schéma (circuit logique). Cette dernière méthode peut s'implémenter comme un circuit électronique dans le monde physique, par exemple grâce à des transistors.

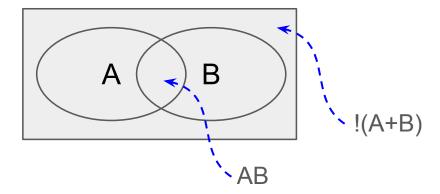
 Afin de simplifier et prouver l'équivalence de raisonnements logiques, nous allons maintenant utiliser une notation et des règles mathématiques : l'algèbre de Boole.

Fonctions logiques | Notation

$$1 = vrai et 0 = faux$$

Fonction	Algèbre	Logique	Programmation	Diagrammes logiques
NOT	!	¬ ou ~	!	-
AND		^	&& ou and	
OR	+	V	ou or	

Fonctions logiques | Vision ensembliste



Logique booléenne | Exemples d'écriture

Logique booléenne | Relations générales

- Comme on l'a vu, on peut dégager certaines relations générales.
 - Par exemple : OR(A, B) = NOT(NOR(A, B)) Ou encore (équivalent) : A + B = !(!(A + B))
- L'algèbre de Boole (vers 1850) formalise le calcul de propositions binaires.
 Permet de transformer des phrases (intuitionnistes) logiques en expressions algébriques.
- Nécessaire car :
 - Tous les raisonnements ne sont pas aussi simples que celui de l'excès de vitesse.
 - **Simplification** d'expressions en apparence complexes → impact sur le circuit correspondant !
 - On veut pouvoir fournir des preuves formelles.

Logique booléenne | Priorité des opérations

NOT(être hors localité) AND (rouler à + de 50 km/h) s'écrit : !A · B

 B

La négation est prioritaire sur les autres fonctions logiques.

Pour le reste, on suit l'ordre des opérations habituel en mathématiques :
 AND est prioritaire sur OR.

Logique booléenne | Règles - Double négation

Pour l'exemple, revenons sur la correspondance obtenue par table de vérité :

- À l'évidence, X = !(!X)
- Analogue à la double négation dans la langue française : "ce n'est pas irréaliste" signifie "c'est réaliste".
 "ce n'est pas faux" signifie "c'est vrai".

Logique booléenne | Preuve des règles

- Une façon de procéder pour les cas simples : vérification exhaustive.
- Exemple pour !(x + y) = !x !y

x	у	!(x + y)	!x !y
0	0		
0	1		
1	0		
1	1		

Logique booléenne | Règles importantes

Nom	Version AND	Version OR	
Valeur nulle	$0 \cdot x = 0$	1 + x = 1	
Valeur neutre	$1 \cdot x = x$	0 + x = x	
Complément	x!x = 0	x+!x=1	
Commutativité	xy = yx	x + y = y + x	
Associativité	x(yz) = (xy)z	x + (y+z) = (x+y) + z	
Distributivité	x(y+z) = xy + xz	$x + yz = (x + y) \cdot (x + z)$	
Idempotence	xx = x	x + x = x	
Absorption	x(x+y) = x	x + (xy) = x	
Théorème de De Morgan	(xy) = !x + !y	!(x+y) = !x!y	

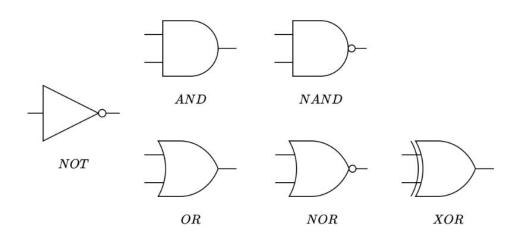
Exemples de simplification

- 1) xy + x = ? (sans utiliser absorption)
- 2) $C \cdot !(B + C) = ?$

Nom	Version AND	Version OR	
Valeur nulle	$0 \cdot x = 0$	1 + x = 1	
Valeur neutre	$1 \cdot x = x$	0 + x = x	
Complément	x!x = 0	x+!x=1	
Commutativité	xy = yx	x + y = y + x	
Associativité	x(yz) = (xy)z	x + (y+z) = (x+y) + z	
Distributivité	x(y+z) = xy + xz	$x + yz = (x+y) \cdot (x+z)$	
Idempotence	xx = x	x + x = x	
Absorption	x(x+y) = x	x + (xy) = x	
Théorème de De Morgan	(xy) = !x + !y	!(x+y) = !x!y	

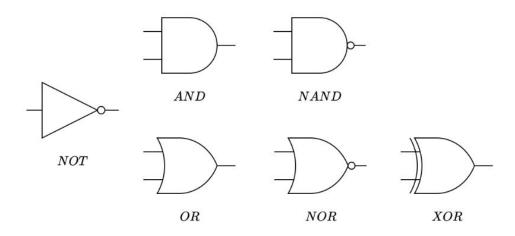
Logique booléenne | Fonction logique universelle

 Existe-t-il une fonction qui permette à elle-seule de formuler toutes les autres ?



Logique booléenne | Fonction logique universelle

- Existe-t-il une fonction qui permette à elle-seule de formuler toutes les autres ?
- Réponse : oui. Il en existe même deux.



Logique booléenne | Fonction logique universelle

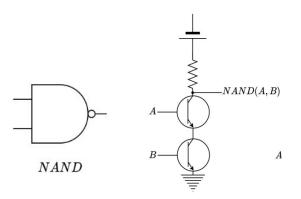
 Partons des trois fonctions qui nous semblent fondamentales : NOT, AND, OR, car on a déjà vu que le XOR (A⊕B = A!B + B!A) et les couples AND-NAND et OR-NOR peuvent s'exprimer à l'aide de leur négation.

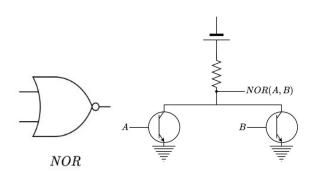
Voyons si l'on peut réduire ce triplet de fonctions.
 Arbitrairement, commençons par examiner OR:

Logique booléenne | Fonctions logiques universelles

NOR est universelle au même titre que NAND (démonstration similaire).

 Il se trouve que ce sont justement les portes les plus faciles à construire avec des transistors.



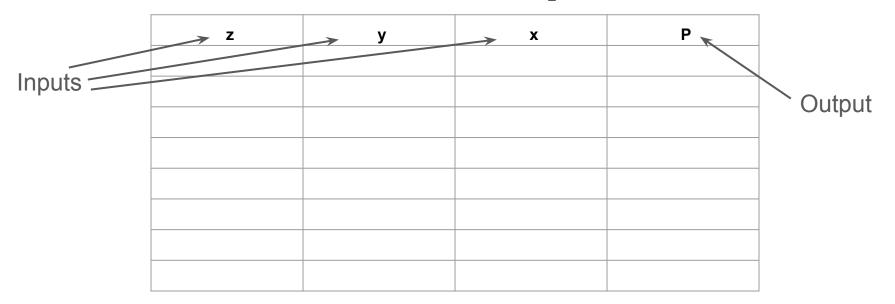


• Objectif : obtenir la table de vérité correspondant à la fonction logique P(x,y,z) telle que P(x,y,z) = 1 si et seulement si le nombre "zxy", est premier.

Exemples :

- \circ P(1,0,0) = 0 car 100₂ = 4 n'est pas premier.
- \circ P(1,0,1) = 1 car 101₂ = 5 est premier.

Objectif : obtenir la table de vérité correspondant à la fonction logique P(x,y,z) telle que P(x,y,z) = 1 si et seulement si le nombre $(zxy)_2$ est premier.



Objectif : obtenir la table de vérité correspondant à la fonction logique P(x,y,z) telle que P(x,y,z) = 1 si et seulement si le nombre $(zxy)_2$ est premier.

z	у	x	Р

Listons les conditions pour avoir P = 1:

$$P = !zy!x + !zyx + z!yx + zyx$$

Simplifions:

Listons les conditions pour avoir P = 1:

$$P = !zy!x + !zyx + z!yx + zyx = !zy + zx$$

Ce qui correspond au circuit :

Une approche méthodique pour l'expression d'une table

- Précédemment (nombre premier à 3 bits), nous avons listé toutes les façons de produire la valeur 1 en sortie, puis avons simplifié l'expression.
- Ces différentes façons de produire 1 sont combinées avec des OU logiques.
- Méthode : output = expression₁ + expression₂ + ... + expression_n.
- Cette méthode se nomme la méthode des mintermes.

Mintermes et maxtermes

- Mintermes : lister toutes les façons de produire la valeur 1 en sortie (combinées avec des OU).
- Maxtermes : lister toutes les façons de produire la valeur 0 en sortie (combinées avec des OU), puis en effectuer la négation.

Exemple pour les maxtermes | Nombre premier à 3 bits

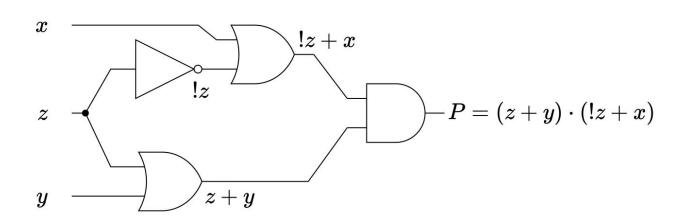
- Les entrées qui donnent P = 0 sont 000, 001, 100 et 110.
- Cela correspond à l'expression !P = !z!y!x + !z!yx + z!y!x + zy!x

Exemple pour les maxtermes | Nombre premier à 3 bits

- Les entrées qui donnent P = 0 sont 000, 001, 100 et 110.
- Cela correspond à l'expression !P = !z!y!x + !z!yx + z!y!x + zy!x
- Simplification : !P = !z!y(!x + x) + z!x(!y + y) = !z!y + z!x
- Négation : P = !!P = ! (!z!y + z!x) = !(!z!y) · !(z!x) = (!!z+!!y) · (!z+!!x)
 = (z + y) · (!z + x)

Exemple pour les maxtermes | Nombre premier à 3 bits

Finalement $P = (z + y) \cdot (!z + x)$



Note sur l'équivalence des deux derniers circuits

Circuit obtenu avec les mintermes :

$$P_m = zx + !zy$$

z $z \cdot x$ $z \cdot x$ y y y y

Circuit obtenu avec les maxtermes : $P_M = (z + y) \cdot (!z + x)$

$$z$$
 $|z+x|$
 y
 $|z+y|$

Note sur l'équivalence des deux derniers circuits

- Si nous n'avons pas fait d'erreur : P_m = P_M
- $P_M = (z + y) \cdot (!z + x) = z!z + zx + !zy + xy = zx + !zy + xy = P_m + xy$

Y a-t-il une erreur?

Note sur l'équivalence des deux derniers circuits

- zx + !zy + xy = zx + !zy correspond au théorème du consensus, ou théorème de la redondance.
- Preuve par l'algèbre de Boole en exercice.