

Reusing Scenario Based Approaches in Requirement Engineering Methods:
CREWS Method Base

Jolita Ralyté

CRI, Université Paris1- Sorbonne
90, rue de Tolbiac, 75013 Paris

ralyte@univ-paris1.fr

Abstract
 Scenarios have proven useful to elicit, validate and
document requirements but the development of new
methods and tools for Requirements Engineering
integrating scenario based approaches has been limited.
The view developed in this paper is that scenario based
approaches should be looked upon as reusable
components. Our concern is therefore twofold : first, to
represent scenario based approaches in a modular way
which eases their reusability and second, to specify the
design context in which these approaches can be reused in
order to facilitate their integration in existing methods.
The paper presents also an implementation of our
proposal using SGML-HTML to store scenario based
approaches in the multimedia hypertext documents and
illustrates the retrieval of components meeting the
requirements of the user by the means of SGMLQL
queries.

1. Introduction

 In the CREWS1 project four different scenario-based
approaches have been developed with the aim of
supporting system requirements acquisition and vali-dation
in a systematic way. Two approaches deal with the
requirements acquisition from real world scenes [1] and
from natural language scenario descriptions [2]. The two
other approaches deal with the requirements validation
through systematic scenario generation [3] and scenario
animation [4]. The project hypothesis is that each of the
approaches might be useful in specific project situations
which are not well tackled by existing analysis methods
and therefore, that it is worth looking for the integration of
such approaches in current methods. This shall lead to an

1 The work described in this paper is support by the European ESPRIT

project CREWS standing for "Co-operative Requirements Engineering
With Scenarios".

enhancement of the existing methods with scenario-based
techniques.
 We situate our work in the Situational Method
Engineering (SME) domain. The SME aims at defining
information systems development methods by reusing and
assembling different existing method fragments. This
approach allows to construct modular methods which can
be modified and augmented to meet the requirements of a
given situation. Following this approach, a method is
viewed as a collection of method fragments [5], [6]. New
methods can be constructed by selecting fragments from
different methods which are the more appropriate to a
given situation [7], [8]. Thus, method fragments are the
basic building blocks which allow to define methods in a
modular way. In our work we are interested in specific
method fragments, namely scenario based approaches, that
we call scenario method chunks.
 The objective of our work is to develop an approach
for integrating different kinds of scenarios as method
components into usual RE methods. To achieve this goal
we propose to represent scenario based approaches in a
method base as method components called scenario
method chunks. We define also an approach to guide the
selection of the must appropriate scenario method chunk to
the situation at hand. Finally, we need to define an
approach supporting the integration of the selected
component in the existing RE method.
 This paper is organised as follows. In section 2 we
present the structure of the CREWS scenario method base.
Section 3 explains the architecture of this base and finally,
in section 4 draws some conclusions and discussions
around our future work.

2. Structure of the CREWS Method Base

 The CREWS Method Base stores the chunks of the
methods based on the scenario use. The base is organised
in two levels: method knowledge level and method meta
knowledge level. Method knowledge level stores the

content of the scenario method chunks, whereas the meta-
knowledge level describes the reuse context of every
chunk.

2.1 Method knowledge level

 Figure 1 presents the meta model of the chunk. Every
chunk comprises a product model and a process model.
The product model represents the class of products
obtained as outputs from the use of a chunk, whereas the
process model represents the product development process
and is supported by a guideline.

comprises 1,1

1,N

comprises
1,1

1,1

Guideline
has

Atomic
Chunk

composed
of

1,N

1,1

Product Part

1,N

1,N

1,1

1,1

refers to

Aggregate
Chunk

has0,1 1,1

Strategic
Guideline

Tactical
Guideline

Informal
Guideline

ContextMap

1,N

1,1

 Interface

Situation

Intention

represented
by

1,1

1,1

has
1,1

1,1

Index
Name

Graphical
Representation

has

0,1 1,1

Component
Guideline

#

#

represented
by 1,1

0,1

Component
Context

represented
by

1,1

Application Example

ChunkChunk

composed
of

1,N

0,N

Product Model

Description

is-a

is-a

is-a

Tutorial
Support

has 0,11,1

is-a

Figure 1: The meta model of the chunk.

 The guideline has an interface and a body. The
interface is defined by a couple <situation, intention>
which characterises the conditions of its applicability: the
current situation which is the input to the chunk process
and the intention or the goal that the chunk achieves. The
body of the guideline details how to apply the chunk to
achieve the intention. It can be represented graphically or
described informally according to the type of the guideline.
There are three types of guidelines: strategic, tactical and
informal.
 Informal guidelines provide general assumptions and
informal explanation describing how to proceed to obtain
the target product.
 Tactical guidelines propose a step-wise process to
produce the corresponding product. They are represented
by a tree of contexts following the NATURE process
modelling formalism [9]. The informal description is
provided to facilitate the understanding and the application
of the chunk. Figure 2 shows an example of a tactical
guideline which is represented by a choice context. This
context proposes four different alternatives to write a
scenario describing how to achieve a given goal.

<(Goal), Write a scenario in free prose>

<(Goal), Write a scenario without guidelines>

<(Goal), Write a scenario with style guidelines>

<(Goal), Write a scenario with content guidelines>

<(Goal), Write a scenario with style and content guidelines>

a1 a2
a3

a4

a1: The scenario author is not an expert. He might take benefit of the set of style and
content guidelines provided by the chunk.
a2: The scenario author knows the style of writing a scenario.
But he wants to control the content of the scenario using the content guidelines.
a3: The scenario author wants to check his/her style of writing using the style guidelines.
a4: The scenario author is an expert. He believes he does not need any sort of guidelines.

Figure 2: The example of the tactical guideline.

 The contexts tree representing the tactical guideline
may have "leave" contexts which are represented in the
method base as other chunks and are called "component
chunks". Each leave context in Figure 2 is represented in
the method base as an other chunk.
 Strategic guidelines provide a strategic view of the
development process telling what intention can be
achieved following which strategy. It is represented by a
map and a set of guidelines [10]. A map is a labelled
directed graph in which the nodes are the intentions and
the edges between intentions are the strategies. The map
permits to represent a process allowing several different
ways to develop the product. As the requirements engineer
progress in the map the process model is constructed
dynamically.

alternative
discovery
strategy

composition
discovery
strategy

goal structure driven
strategy

Stop

template driven
strategy

template driven
strategy

free prose
strategy

computer
supported strategy

manual strategy completeness
strategy

linguistic
strategy

Write a
Scenario

initial goal
identification strategy

Elicit a Goal

Start

refinement
discovery
strategy

Conceptualise
a Scenario

Figure 3: The example of the map.

 Figure 3 depicts an example of the strategic
guideline represented by a map. The interface of this
guideline is <(Problem statement), Elicit goal / scenario
couples following CREWS-L'Ecritoire approach>2.
 Three kinds of guidelines are used in the map to guide
the requirements engineer in the construction of the
intention driven process. The Intention Achievement
Guideline (IAG) defines the way in which an intention can
be achieved. For every triplet <source intention, target
intention, strategy> in the map there exists one IAG. The

2 The CREWS-L’Ecritoire approach is a scenario based approach

developed by Paris 1 university in the CREWS project

IAG can be represented in the method base as an other
chunk. Two other types of guidelines help the requirements
engineer to progress in the map. The Strategy Selection
Guideline (SSG) determines the strategies connecting two
intentions and guides the selection of a strategy, whereas
the Intention Selection Guideline (ISG) determines all
succeeding intentions for a given one. Neither SSG nor
ISG can not be a chunk.
 As shown before, every tactical and strategic
guideline can be recursively composed of other guidelines
which can be represented in the method base as other
chunks. Therefore, there are two types of chunks in the
method base : atomic and aggregate ones. The aggregate
chunks are composed of several atomic chunks. Each
atomic chunk can participate in one or several aggregate
chunks. Thus, the method base proposes chunks with
different level of granularity.

2.2 Meta-knowledge level

 The knowledge on the reuse context of the chunk is
captured in the chunk descriptor. Figure 4 represents the
structure of the descriptor.

Type
Objective
Annotation
Experience

father

son

Descriptor
Intention

Method
Name
Author
Reference

DescriptorDescriptor
origin

1,1 1,N

0,1
0,N

0,N
0,N

0,10,1 reusable in

reusable
for

comprises

1,1 1,1
Chunk

Intention

comprises comprises

Design
Activity

1,N

1,N 1,N

1,1
1,11,N

has

1,1

1,1

refers to
Chunk

Situation1,1 1,1
Descriptor
Situation

Application
Domain

ParameterVerb
has has

1,1 1,N0,N 0,N

Figure 4: The structure of the descriptor.

 The descriptor defines the design situation in which
the chunk can be reused and the design intention which can
be fulfilled by the chunk. The situation of the descriptor
includes two aspects: the application domains in which the
chunk can be applied and the design activities in which the
scenario chunk is relevant. The intention of the chunk
descriptor expresses how the scenario approach
encapsulated in the chunk participates to the achievement
of the design activity. Information Systems, Business
Processes, Socio-Technical Systems, Human Computer
Interfaces are the examples of the application domains in
which a chunk may be applied. The design activities
supported by the chunk may be Requirements Capture,
Requirements Documentation, Requirements Validation
etc.. The origin of the chunk: the name of the method in
which the chunk has been identified, its author and the
references to the literature, is also captured in its
descriptor. The descriptor specifies the type of the chunk
(i.e. atomic or aggregate). If the chunk is an aggregate, its
descriptor is linked to the descriptors of its components (to
its sons). If the chunk is a component of one or several

aggregate chunks, its descriptor is connected with the
descriptors of the corresponding aggregates (its fathers).
The intention of the descriptor incorporate recursively the
intention of the corresponding chunk. "Discover system
requirements by eliciting an alternative goal in a goal
structure driven manner" in which the manner "by eliciting
an alternative goal in a goal structure driven manner"
expresses the intention of the corresponding chunk.

3. Architecture of the CREWS method base

 The CREWS method base is divided into two parts.
One part deals with the knowledge necessary to the chunk
selection and retrieval from the method base. This
knowledge is captured in the chunk descriptor and
represented using the SGML (Standard Generalized
Markup Language) document. The SGMLQL queries deal
with this part of the base and allow us to retrieve the chunk
from the method base. The second part deals with the
representation of the reusable knowledge to the method
base user. This part describes in the HTML (Hyper Text
Markup Language) documents the body of the chunk:
graphical representation and informal explanation of the
guidelines, links to component chunks and to the product
model description, its context of reuse etc. All chunks must
have the same SGML structure presented below. We also
propose a template for the HTML structure, but it can be
adapted for every chunk.

3.1 SGML part of the method base

 The SGML [11] is an international standard language
to describe a document using a set of mark ups defined in a
grammar. SGML documents are structured as trees.
SGML's query language, SGMLQL [12] enables a user to
query the method base. Besides SGMLQL is available to
query a base of SGML documents, we found the language
adequate for representing the descriptors of our chunks.
 The SGML part of the chunk captures the information
necessary for the chunk retrieval. This information is
represented in the chunk descriptor. The SGML structure
of the CREWS method base is presented by the tree in
Figure 5. The root is the element CREWS-BASE which
represents a collection of CHUNKs. The element CHUNK
is itself characterised by the attribute kind and the tags:
INDEX, PRODUCT-MODEL, DESCRIPTOR, HTML-
BODY etc. The INDEX is an identification of the chunk.
The PRODUCT-MODEL contains the name of the
corresponding product model. The DESCRIPTOR is
composed of DESCRIPTOR-SITUATION and
DESCRIPTOR-INTENTION.

CREWS-BASE

CHUNK*

NAME
PRODUCT-MODEL

DESCRIPTOR HTML-BODY
COMPONENT*

AGGREGATE*

DESCRIPTOR-SITUATION DESCRIPTOR-INTENTION

APPLICATION-
DOMAIN*
DESIGN-ACTIVITY*

CHUNK-SITUATION

PRODUCT-PART*

VERB
TARGET DIRECTION

SOURCE
DESTINATION

WAY

COMPLEX-
MANNER

MEANS

CHUNK-INTENTION
VERB

TARGET DIRECTION

SOURCE DESTINATION

WAY

MANNER
MEANS

ORIGINkind

type
medium
notation
coverage
context
.....type

medium
notation
coverage

INDEX

Figure 5: The structure of SGML part of the method base.

 As shown in Figure 5, the DESCRIPTOR-
SITUATION has three parts: APPLICATION-DOMAIN,
DESIGN-ACTIVITY and CHUNK-SITUATION. Every
chunk can be applied in one or several application domains
and supports one or several design activities. The
CHUNK-SITUATION establishes what are the required
PRODUCT-PARTs allowing to apply the chunk. If the
type of the required product is "scenario based", this
product must be characterised by providing values to the
scenario classification attributes. These attributes are
defined in the scenario classification framework [13]. They
permits to specify what is the required scenario medium
(text, table, graphic, image, etc.), notation (informal,
formal, semi-formal), coverage etc. DESCRIPTOR-
INTENTION is decomposed into a VERB and its
parameters TARGET, DIRECTION and WAY according
to the goal template [14]. The parameter

TARGET is mandatory in the intention description,
whereas the DIRECTION is optional. The COMPLEX-
MANNER of the parameter WAY is also mandatory
because it recursively describes the intention of the
corresponding chunk whereas the MEANS is optional. For
example, given the chunk intention "Write scenario in free
prose", the intention of the corresponding descriptor is
"Describe system requirements with write scenario in free
prose strategy ". The HTML-BODY contains the name of
the corresponding HTML file. The COMPONENT and
AGGREGATE tags capture the indexes of the component
chunks and the aggregate chunks respectively. The
ORIGIN permits to identify the chunk which represents the
overall method in which the corresponding chunk take
part.
 Owing to the SGMLQL query language, the query
represented in Figure 6 selects the chunks which support
the discovering of the system requirements. The search is
based on the descriptor intention verb "Discover" and
target "System requirements". The result of this query is a
list of selected chunk names linked to the corresponding
HTML documents.

global $myfile = file"MethodBase.sgml";
global $chunks=select "". text($n-
>NAME)."<A>"
from $c in every CHUNK within $myfile,

$di in every DESCRIPTOR-INTENTION within $c,
$v in first VERB within $d,
$t in first TARGET within $d,
$hb in HTML-BODY within $c

where text($v) match "Discover" and text($t) match "System
(functional, intentional, non-functional) etc. The requirements";

Figure 6: The example of the query.

Figure 7: The example of HTML pages representing the chunks from CREWS method base.

3.2 HTML part of the chunk

 The HTML part of a chunk represents its body and
the context of its applicability. Every chunk is represented
by an HTML document having the following structure: on
the top of the page we find links corresponding to the
objective, situation, intention, graphical representation etc.
of the chunk at hand. Clicking on the link "intention" for
example allows us to visualise the section specifying what
is the intention of the chunk. Because the intention of the
chunk has a predefined structure, each of its component
may be defined as a link to other HTML documents as
glossary providing definition of the intention verb or the
document including the details about the target product etc.
If the chunk is an aggregate we can directly access the
HTML pages of its components by clicking on its
graphical representation. Similarly, if the chunk is a
component of an aggregate we can visualise the HTML
document of the corresponding chunk by clicking on the
link to this document. Figure 7 shows the HTML
representations of three chunks. The chunk represented in
the top window is an aggregate. We can brows the content
of this chunk by clicking on the links in the top of this
HTML document or display the HTML pages of its
components (represented in the two other windows) by
clicking on the map elements or by clicking on the
component names listed in the section "Components".

4. Conclusion

 This paper have proposed an approach for supporting
the reuse of scenario based chunks made available in the
CREWS method base. The proposed approach advocates a
modular representation of scenario chunks and an
intentional description of their reuse context. The former
results cohesive chunks which are applicable in specific
situations for specific purposes whereas the later provides
contextual information identifying in which specific design
situations for which specific design intentions the chunks
are reusable. The paper also reports on the implementation
of a scenario method base in SGML and HTML.
 Future work shall concentrate on developing
guidelines to integrate scenario method chunks in existing
methods. Besides, in order to support the process for
retrieving chunks matching specific requirements we are
developing a set of SgmlQL macro-queries. At the
moment, the CREWS method base contains only the
chunks defined by CREWS project partners. In the future,
we shall add in our base the chunks coming from different
scenario based methods.

5. References

1. P. Haumer, K. Pohl, K. Weidenhaupt, Requirements
Elicitation and Validation with real world scenes. IEEE
Transactions on Software Engineering, Vol. 24, N°. 12,
Special Issue on Scenario Management, December. 1998.

2. C. Rolland, C. Souveyet, C. Ben Achour, Guiding Goal
Modelling Using Scenarios. IEEE Transactions on Software
Engineering, special issue on Scenario Management, 1998.

3. A. G. Sutcliffe, Scenario-based Requirements Analysis.
Requirements Engineering Journal, Vol 3 N° 1, (ed. P.
Loucopoulos, C. Potts), Springer Verlag. 1998.

4. E. Dubois, P. Heymans, Scenario-Based Techniques for
supporting the Elaboration and the Validation of Formal
Requirements, Submitted to RE Journal, 1998.

5. C. Rolland, N. Prakash, A proposal for Context-Specific
Method Engineering, IFIP TC8 Working Conference on
Method Engineering, Atlanta, Gerorgie, USA, 1996.

6. F. Harmsen, S. Brinkkemper, H. Oei, Situational Method
Engineering for Information System Projects. In Olle T. W.
and A. A. Verrijn Stuart (Eds.), Mathods and Associated
Tools for the Information Systems Life Cycle, Proceedings of
the IFIP WG8.1 Working Conference CRIS'94, pp. 169-194,
North-Holland, Amsterdam, 1994.

7. S. Brinkkemper, M. Saeki, F. Harmsen, Assembly Techniques
for Method Engineering. Proceedings of the 10th Conference
on Advanced Information Systems Engineering, CAiSE’98.
Pisa Italy, 8-12 June, 1998.

8. V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A.
Sutcliffe, E. Dubois, P. Heymans, A reuse-oriented approach
for the construction of scenario based methods. Proceedings
of the International Software Process Association’s 5th
International Conference on Software Process (ICSP’98),
Chicago, Illinois, USA, 14-17 June 1998.

9. G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. Plihon, S.
Si-Said, C. Ben Achour, C. Gnaho, Modelling and
Engineering the Requirements Engineering Process : an
erview of the NATURE approach. Requirements Engineering
Journal 2, pp. 115-131, 1997.

10. C. Rolland, N. Prakash, A. Benjamen, A multi-model view of
process modelling. To appear in the RE journal, 1999.

11. C. F. Goldfarb, « The SGML Handbook », Oxford Clarendon
Press, 1990.

12. J. Lemaitre, E. Murisasco, M. Rolbert, SgmlQL, "Un langage
d'interrogation de documents SGML", Proc. of the 11th
Conference on Advanced Data Bases, Nancy, France, 1995.

13. C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.
Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl,
Dubois, P. Heymans, A proposal for a scenario classification
framework. Requirements Engineering Journal Vol 3, No 1,
Springer Verlag, pp.23-47, 1998.

14. N. Prat, Goal formalisation and classification for
requirements engineering. Proceedings of the Third
International Workshop on Requirements Engineering:
Foundations of Software Quality REFSQ’97, Barcelona, June
1997.

