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Abstract

Decision trees are among the most popular pattern
types in data mining due to their intuitive represen-
tation. However, little attention has been given on the
definition of measures of semantic similarity between
decision trees. In this work, we present a general frame-
work for similarity estimation that includes as special
cases the estimation of semantic similarity between de-
cision trees, as well as various forms of similarity estima-
tion on classification datasets with respect to different
probability distributions defined over the attribute-class
space of the datasets. The similarity estimation is based
on the partitions induced by the decision trees on the
attribute space of the datasets. We use the framework
in order to estimate the semantic similarity of decision
trees induced from different subsamples of classification
datasets; we evaluate its performance with respect to
the empirical semantic similarity, which we estimate on
the basis of independent hold-out test sets. The avail-
ability of similarity measures on decision trees opens a
wide range of possibilities for meta-analysis and meta-
mining of the data mining results.

1 Introduction

Decision tree (DT) models are one of the most popular
learning paradigms in the area of data mining thanks
to a number of attractive properties, such as scalability
to large datasets and relative easiness of interpretation,
provided that their size does not exceed certain limits.
On the other hand they are also notorious for their
instability, small changes in the training dataset may
result to completely different decision trees that contain
different tests on the predictive attributes or even
different predictive attributes. These decision trees,
though structurally different, may describe the same
concept, i.e. they may be semantically similar or
even identical; in fact, they should be semantically
similar if they have been induced from datasets that
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come from the same generating distribution. Semantic
similarity in the presence of structural differences might
arise for a variety of reasons, such as superficially
different tests on attributes which are in fact equivalent,
different attributes that convey the same information
due to attribute redundancy, or simply because the
same concept can be described in different ways which
are nevertheless semantically equivalent. To capture
the degree of semantic similarity between decision trees
we need a measure of the semantic similarity of the
concepts that they describe.

There is a plethora of reasons for which the defini-
tion of similarity measures between decision trees and
classification datasets is required. By far, the most
important is being able to report whether the differ-
ences observed in decision trees induced from different
training sets (which however are thought to come from
the same data generating distribution) are only struc-
tural and do not correspond to semantic differences, or
whether the concepts described by the decision trees
are indeed semantically different. In the latter case, a
quantification of this semantic difference would be use-
ful. Moreover, the availability of a similarity measure on
classification models makes it possible to apply a num-
ber of standard mining tasks on classification models
rather than on raw data, resulting in what we could call
meta-analysis or meta-mining tasks. For example, the
semantic similarity measures can be used to cluster dif-
ferent sites into groups of similar behavior according to
the decision tree models learned locally on each of the
sites, e.g. clustering the different branches of a bank
according to the credit strategy they adopt.

Similarity could be also employed in order to study
the effect of the decision tree learning parameters, like
pruning level, on the resulting models or to compare a
decision tree model to a golden standard model. Also, in
case of dynamic data, like data streams, similarity could
be employed in order to monitor the evolution of the
induced decision tree models or classification datasets
across the time axis. A crucial question in this case
is whether the concept, which is captured through the
induced decision tree models, remains (about) the same
or there are concept drifts in the population.



In this paper, we propose a general similarity es-
timation framework that includes as special cases i)
the estimation of semantic similarity between decision
trees and ii) the estimation of similarity between differ-
ent probability distributions that govern different clas-
sification datasets, namely the marginal distribution of
the attributes, the joint attributes-class probability dis-
tribution and the attributes-conditional class distribu-
tion. The framework is based on the comparison of the
partitionings that decision trees define over a given at-
tribute space considering the probability distribution of
the data space over that partitioning. Similar ideas have
been previously used for dataset comparison, however to
the best of our knowledge this is the first time that the
semantic similarity of decision trees, on which we focus
in this paper, is explored. Depending on the available
information regarding the probability distribution that
generated the data, we get different instantiations of the
decision tree semantic similarity measure. To evaluate
the proposed decision tree semantic similarity measures
we compare them with the empirical semantic similar-
ity, which is estimated by applying the decision trees on
independent test sets.

The rest of the paper is organized as follows: In Sec-
tion 2 we present some preliminaries on decision trees.
Related work is presented in Section 3. The proposed
similarity framework is described in Section 4. The ex-
perimental evaluation of the different instantiations for
the decision tree similarity measures is reported in Sec-
tion 5. Finally, Section 6 discusses conclusions and out-
look.

2 Preliminaries on decision trees

Consider a classification problem described through a
vector of predictive attributes A = (a1, a2, ..., am) and
a class attribute C. Each predictive attribute, ai, has a
domain, d(ai) and the domain of the class attribute is
d(C) = {c1, c2, ..., ck}, where k is the number of classes.

To built a decision tree a set, D, of training
examples is provided as input to the DT induction
algorithm. Training examples are drawn from the joint
distribution P (A, C) of the predictive attributes and
the class attribute. The Cartesian products SA =
d(a1)×d(a2) . . .×d(am) and S(A,C) = SA×d(C) define
the attribute and attribute-class spaces, respectively.
Training examples have thus the form (x, y) ∈ S(A,C),
where x ∈ SA and y ∈ d(C). Let U(A) denote
the uniform distribution over the attribute space and
P (A) =

∑

C P (A, C) denote the marginal distribution
also defined over the attribute space.

3 Related work

Although decision tree induction is an extensively stud-
ied research area, limited work has been done on the
problem of decision tree comparison and more precisely
on the computation of semantic similarity between de-
cision trees; the only notable exception is [5]. More
recently, several approaches have been proposed that
utilize decision tree comparison as a means for dataset
comparison, e.g. [2, 4].

Turney, [5], presented a framework for evaluating
the stability of a classification algorithm, namely the
degree to which it generates repeatable results, when
trained on different datasets drawn from the joint dis-
tribution P (A, C). To quantify stability Turney uses
a semantic similarity measure called agreement. The
agreement of two classifiers is defined as the probability
of producing the same prediction over instances drawn
from U(A). Note that, according to Turney agreement
is measured over instances drawn from U(A) and not
from P (A, C); the underlying reason is that the agree-
ment should be examined over all possible input worlds.
Turney estimates the agreement of decision trees empiri-
cally, by applying them on artificial test sets of instances
drawn from the U(A) distribution.

Recently, several change detection methods have
been proposed that utilize decision trees for dataset

comparison. The intuition behind these approaches
is that the decision tree models capture interesting
characteristics of the datasets and thus they can be
used for similarity assessment between datasets. All the
methods in this category follow the same rationale: they
combine decision trees to induce a “finer” decision tree
structure, and then they compare the distributions of
the two datasets over this (common) “finer” structure.
Below, we describe some representative approaches in
this category.

Ganti et al. [2], propose the FOCUS framework for
measuring the deviation between two datasets D1, D2

in terms of the decision trees DT1, DT2 induced from
them. Each DT defines, via its leaf nodes, a set of non-
overlapping regions over the attribute space, whereas
by overlaying the regions of the two DTs a “finer”
structure arises. Authors compute the probability of
each region in the overlay by querying the original
raw datasets. Then, the distance between the two
datasets is computed by aggregating, for each region
in the overlay, the difference in the region probability
estimations between the two datasets.

Recently, Pekerskaya et al., [4], proposed a method
for mining changing regions between two datasets. A
region is characterized as changing if it appears under
different class labels in the two datasets. The authors
extend the traditional decision tree structure by fur-



ther splitting the leaf nodes through clustering. The
resulting model is called cluster-embedded decision tree

and provides a better approximation of the attribute
space probability distribution comparing to the approx-
imation of a (simple) decision tree. After extracting
the cluster-embedded DT structure for each dataset,
the overlay of the two structures is computed and its
statistics are estimated without re-querying the original
raw datasets, as in FOCUS [2]. Rather, the authors ap-
proximate the measure component of each region in the
overlay by employing the statistics of the corresponding
cluster-embedded decision trees.

Wang and Pei [7] quantify changes between two
datasets with class labels using as a common structure
for the comparison a set of random histograms. The
instances of the two datasets are projected into this
(common) structure and changes in their distributions
are detected.

Finally, there is a considerable amount of work on
comparing tree structures based on the edit distance,
e.g. [8]. These approaches are based on counting the
number and the cost of edit operations (insert, delete,
update) that are required in order to convert one tree
into the other. However, they work with symbolic trees
where the nodes are labeled with symbols from a given
alphabet. However in case of decision trees, the nodes
are more complex since they include conditions over
the symbols-attributes and furthermore, each decision
tree path is assigned an importance factor based on the
number of instances that follow that path.

4 The similarity estimation framework

A decision tree DT induced from a dataset D partitions
the attribute space into a set of non-overlapping regions
RDT = {ri, i = 1 . . . |RDT |}, via its leaf nodes. The
partition RDT can be considered as an approximation
of the joint attribute-class probability distribution in
the form of a histogram (Section 4.1). Each bin of
the histogram corresponds to a region of the partition
and respectively, to a leaf node of the decision tree.
A bin-region is defined by the tests on the predictive
attributes encountered on the path from the root to the
leaf node associated with that region. The frequencies
of a given bin are the class counts of the instances that
belong to the given bin. Different decision trees result
in different partitions; in Section 4.2 we show how to
derive the overlay partition of two decision trees and
how to estimate its statistics depending on whether we
have access to the original raw datasets or not. Based
on the overlay partition, we define various similarity
measures for decision trees and classification datasets
(Section 4.3).

4.1 Decision tree partitions Each region r ∈ RDT

is characterized by a structure and a measure compo-
nent that are directly derived from the decision tree.

The structure component of the region is defined as
the conjunction of the test conditions on the attributes
along the corresponding tree path from the root to the
leaf node associated with that region:

r.s := {∧t(ai), i = 1 . . .m}

Test conditions are usually numeric and can be ex-
pressed in the form t(a) := mina(r) ≤ a ≤ maxa(r)
denoting the min and max values of attribute a in re-
gion r. Let us also define the length of a test condition
on a as: |t(a)| := maxa(r) − mina(r) and the length of
the domain of a as: |dom(a)| := maxa −mina. Note
here that, if an attribute a is not included in the struc-
ture component r.s of a leaf node, i.e. no test on that
attribute has been included in the path from the root
to the leaf node during the training phase, then the test
condition on that attribute is t(a) := mina ≤ a ≤ maxa,
i.e. a can take any value from its domain. Thus, the
structure component of a region contains test conditions
over all (i.e. m) predictive attributes of the problem.

The measure component of a region is defined as
the number of training set instances that fall into this
region for each class, and it depends on the training set
D:

r.mD := [nc1
, nc2

, . . . , nck
](4.1)

where nci
, i = 1 . . . k is the number of instances that

fall into region r and belong to class ci. The size
of the measure component is: |r.mD| =

∑

1≤i≤k nci

and the class r.cl assigned to the region r is given by:
r.cl = argmaxci

r.mD.
The probability of a region represents the probabil-

ity that some instance of the problem will follow the
corresponding DT path. Formally, this probability is
given by: P (r) =

∫

r
P (A)dA, where P (A) is the proba-

bility density function of the instances. However, since
we do not have access to the exact form of P (A), we
should use the data to estimate it. More specifically, if
we consider the dataset D used for the construction of
the DT , we can make a dataset dependent estimation
of P (r) as follows 1 :

PD(r) =
|r.mD|

ND

(4.2)

This estimation is simply the percentage of the training
set instances that fall in region r. The vector:

PD(A) = [PD(ri)|ri ∈ RDT ](4.3)

1We denote the actual distribution by P and its estimation by

P.



is an approximation of P (A), from the dataset D.
Except for P (A), we can also approximate P (A, C)

by exploiting the measure component of the regions,
which describe the distribution of training set instances
within the different problem classes. The matrix:

PD(A,C) = [
ri.mD

ND

|ri ∈ RDT ](4.4)

in which each row corresponds to a region ri ∈ RDT and
each column to a class cj ∈ C, is an approximation of
the joint distribution, P (A, C) from the dataset D.

Furthermore, the measure component can provide
us with an estimation of the conditional probability of
the classes given the region r:

PD(C|ri) =
ri.mD

|ri.mD|

Then, the estimate of the attributes conditional distri-
bution of the class is the matrix:

PD(C|A) = [PD(C|ri)|ri ∈ RDT ]

where each cell of the matrix corresponds to the prob-
ability of observing a specific region under a specific
class.

4.2 Decision tree partitions overlay Let RDT1

and RDT2
be the partitions defined by the decision

trees DT1 and DT2, respectively. Overlaying the two
partitions, a finer partition RDT1×DT2

arises, where
each region r in it is the result of overlaying some
region ri ∈ RDT1

with some region rj ∈ RDT2
, that

is r = ri ∩ rj . The goal is to estimate the region
probability P (r) and the region-class probability P (r, c)
for each region r ∈ RDT1×DT2

and each class c ∈ C. To
this end, we rely on the observation that each region
r in the overlay is also a hyperectangle and thus it
can be described through a structure and a measure
component.

4.2.1 Structure component of the overlay re-

gions The structure component of the overlay region
ri ∩ rj is easily defined through the intersections of the
DT regions that participate in its formation:

ri ∩ rj .s := {∧t(ai), i = 1 . . .m}

t(a) := min
a

(ri ∩ rj) ≤ a ≤ max
a

(ri ∩ rj)

min
a

(ri ∩ rj) := max(min
a

(ri), min
a

(rj))

max
a

(ri ∩ rj) := min(max
a

(ri), max
a

(rj))

If maxa(ri∩rj) ≤ mina(ri∩rj), the overlay region ri∩rj

is not defined since the regions are disjoint.

4.2.2 Measure component of the overlay re-

gions The estimation of the measure component of
ri ∩ rj is dataset dependent; the obvious choices for the
dataset are D1, D2 and D1 ∪ D2. However, even if we
do not have anymore access to any of these datasets, we
can still estimate the measure component of the overlay
regions based on the measure components of the regions
of the original partitions RDT1

and RDT2
.

Data dependent probability estimation: If we
have access to the original raw datasets, we can get
the exact measure component of the overlay regions by
simply projecting each dataset D ∈ {D1, D2, D1 ∪ D2}
on RDT1×DT2

. That is:

ri ∩ rj.mD = [n′
c1

, . . . , n′
ck

],(4.5)

where n′
ci

= |{(x, ci)}|,

x ∈ ri ∩ rj ,x ∈ D

which simply gives us the number of training instances
that fall within the ri ∩ rj region for the D dataset for
each of the problem classes.
Pattern dependent probability estimation: Even
if we do not have access to the original raw datasets, we
can still make an estimation of the expected measure
for each region ri ∩ rj ∈ RDT1×DT2

using the measure
components of the original regions ri ∈ RDT1

and
rj ∈ RDT2

(which are derived directly from the DTs).
The expected measure of ri ∩ rj according to D1 is:

ri ∩ rj.mD1
= ri.mD1

V (ri ∩ rj)

V (ri)
(4.6)

where the term
V (ri∩rj)

V (ri)
represents the relative volume

of the intersection region ri ∩ rj with respect to the
volume of the region ri. Since the regions established
by a decision tree are axis parallel hyper-rectangles it
holds that:

V (r) =
∏

ai

|t(ai)|

|dom(ai)|

where the term |t(ai)|
|dom(ai)|

represents the relative impor-

tance of attribute ai in region r. If we assume a uniform
distribution U(A) of the instances over the attribute
space then V (r) = P (r). In Equation 4.6, though, we
adopt a middle assumption, namely that the D1 in-
stances are uniformly distributed within the region ri

of RDT1
, instead of being uniformly distributed within

the whole attribute space. Following the rationale of
Equation 4.6, the expected measure of ri ∩ rj according
to D2 is:

ri ∩ rj.mD2
= rj.mD2

V (ri ∩ rj)

V (rj)
(4.7)



Finally, if we assume that the two datasets come from
the same distribution P (A), we can get the expected
measure of ri ∩ rj according to the union, D1 ∪ D2:

ri ∩ rj.mD1∪D2
= ri ∩ rj.mD1

+ ri ∩ rj.mD2

So far, we have shown how we can estimate
the probabilities of the overlay regions depending on
whether we have access to the original raw datasets or
not. As with the single decision tree partition case (c.f.
Section 4.1), we can use these estimations to approx-
imate the distributions P (A), P (A, C), P (C|A). De-
pending on which dataset, D ∈ {D1, D2, D1 ∪ D2}, we
use to calculate the measures of the overlay regions, we
get the corresponding estimations of PD(A),PD(A,C)
and PD(C|A) under the RDT1×DT2

partition. To distin-
guish between the case where the measure components
are computed by accessing the original raw datasets
(Equation 4.5) or under the uniform region distribution
assumption (Equations 4.6, 4.7), we use the superscripts
Q and U respectively.

4.3 Similarity measures on decision trees and

datasets In the previous section we described methods
for the estimation of PD(A),PD(A,C) and PD(C|A)
under the RDT1×DT2

partition and for the different
datasets D ∈ {D1, D2, D1∪D2}. These estimations can
be used to compute similarities between either decision
trees or datasets.

Before we proceed with the definition of the actual
similarity measures, we first provide a similarity func-
tion between histograms, since all our estimations come
in the form of histograms. Let P, Q be the probability
density estimations for a random variable X from two
different populations, in the form of histograms. We as-
sume that P and Q are defined over the same bins. The
affinity coefficient between P and Q is given by:

s(P, Q) =
∑

i

√

PiQi

Based on the affinity coefficient and the different
overlay partition statistics, we can now define a number
of similarity measures between decision trees and
datasets:

Case a: We can measure the similarity of two datasets

D1, D2 with respect to their attribute space probability
distributions PD1

(A), PD2
(A) by directly computing

their affinity coefficient:

s(PD1
(A),PD2

(A))(4.8)

This similarity measure can be used to determine if the
two datasets were generated from the same distribution

P (A). The estimations PDi
(A), i = {1, 2} can be

either P
Q
Di

(A) or PU
Di

(A) depending on whether raw
data access is allowed or not.

Case b: We can measure the similarity of two decision

trees DT1, DT2 with respect to their predictions. This is
a measure of their semantic similarity, i.e. how similar
are the concepts described by the DTs, and corresponds
to the percentage of times that they produce the same
predictions on instances drawn from a given attribute
space distribution.

We first define the vector:

I(C|A) = [I(ri.cl, rj.cl)|ri ∩ rj ∈ RDT1×DT2
]

which indicates whether the two DTs agree or disagree
in their predictions over the regions of the overlay
partition RDT1×DT2

. I(ri.cl, rj .cl) returns 1 if the
predictions of the two DTs regarding the region ri ∩ rj

are the same, i.e. ri.cl = rj .cl, otherwise it returns 0.
The inner product 2:

S(DT1, DT2) = I(C|A)
′
P(A)(4.9)

computes the similarity in the predictions of DT1, DT2

under the P (A) distribution. The similarity score equals
to the sum of probabilities of the ri∩rj regions for which
the trees agree in their predictions.

One issue that rises here is which estimation of P (A)
we should employ. Possible choices include:

• the uniform distribution, U(A). In this case the
agreement will be examined over all possible input
worlds. Under this assumption, the probability
of a region ri ∪ rj is given by its hyper-volume.
Thus, the similarity between two DTs equals to
the total volume of the regions in which the two
decision trees agree in their predictions. In this
case, Equation 4.9 gives, in a closed form, the
semantic similarity between the two decision trees
as it was defined by Turney [5]. Note however
that, in contrast to [5], we do not require for this
estimation the generation of an artificial test set
drawn from U(A).

• a dataset dependent distribution PD(A), where D

can be one of the D1, D2 and D1 ∪ D2 datasets.
In this case, instances are assumed to follow the
distribution of the dataset D ∈ {D1, D2, D1 ∪D2}.
The union, D1∪D2, is the most appropriate choice
if the trees are generated from datasets following
the same distribution and we are interested in
evaluating their similarity under that distribution.

2We denote by X
′ the inverse of matrix X.



• finally, P (A) might be a distribution that is differ-

ent from the distributions that govern the training
sets.

Case c: We can also measure the similarity of two
datasets with respect to the attribute conditional proba-
bility distribution of the class attribute P (C|A) that the
decision trees, which were induced from these datasets,
impose over the attribute space. We first define the
vector:

S(C|A) =

[s(PD1
(C|A)[ri, ],PD2

(C|A)[rj , ])|

ri ∩ rj ∈ RDT1×DT2
]

S(C|A) has the same structure as I(C|A), but the
0/1 similarity function I(., .) has been replaced by
s(., .), which computes the similarity of the attribute
conditional class distributions of the ri ∩ rj region in
the D1 and D2 datasets. The inner product:

S(D1, D2) = S(C|A)
′
P(A)(4.10)

provides a measure of the similarity of the two datasets
with respect to their attribute conditional class distri-
butions under an attribute space that follows the P (A)
distribution.

Note here that this measure is similar to the mea-
sure that [4] use to rank the changing regions between
two datasets. In fact their approach is equivalent to
introducing a distance measure of the form:

D(D1, D2) = D(C|A)
′
P(A)

where D(C|A) has the same structure as S(C|A) but the
similarity function is replaced by the Euclidean distance
and P (A) is approximated by:

P(A) =
1

2
(PD1

(A) + PD2
(A))

However, [4] do not go as far as to define the D(D1, D2).
They rather define the product of D(C|A) and P (A),
i.e., the vector consisting of the pairwise products of
the coordinates of the two vectors, and use that in
order to rank regions according to their level of change
from one dataset to the other.

Case d: Finally, we can measure the similarity of the
joint attribute-class probability distribution of the two
datasets PD1

(A, C), PD2
(A, C) by simply applying the

affinity coefficient:

s(PD1
(A,C),PD2

(A,C))(4.11)

PDi
(A,C) is the estimation of PDi

(A, C) under the
overlay partition. Note here that if the two datasets

came from the same P (A) distribution then it can
be easily shown that this measure is equivalent to
S(D1, D2) given in Equation 4.10. In fact this is
the approach that was followed by FOCUS [2] for
measuring dataset deviation. The difference lies in
the fact that instead of the affinity coefficient, FOCUS
employs a difference function f (e.g. absolute or relative
difference) to compute the measure similarity within
each region and an aggregation function g (e.g. sum
or max) to aggregate the scores of the overlay regions
into an overall score.

In this section we presented a general framework
for similarity estimation between either decision trees
or datasets. Under this framework, we can estimate
the similarities of classification datasets with respect to
a number of probability distributions: i) the attribute
space distribution P (A) (Equation 4.8), ii) the class at-
tribute conditional distribution P (C|A) (Equation 4.10)
and iii) the joint attribute-class distributions P (A, C)
(Equation 4.11). We can also use this framework in or-
der to estimate the semantic similarity of decision trees
(Equation 4.9) under different assumptions for the at-
tribute space probability distribution; It is this direction
that we are going to explore and evaluate in more detail
in the next section.

5 Evaluation of the proposed similarity

measure on decision trees

The semantic similarity of any two classification models
M1, M2 is defined as the fraction of times that the two
models produce the same predictions over instances gen-
erated from a given attribute space probability distri-
bution P (A). As already mentioned, Turney [5] defined
a semantic similarity measure for classification models,
called agreement, as the probability that they will pro-
duce the same predictions over all possible instances
drawn from the uniform distribution on the attribute
space, U(A). Turney estimates the agreement between
two classification models empirically, by applying both
of them on a test set DH of instances drawn from the
U(A) distribution, and computing the percentage of
times that they produce the same predictions. The ar-
gument for employing U(A), instead of the distribution
P (A) that generated the data, was that the agreement
of two concepts should be examined in all possible input
worlds. We believe that in a real world application what
is more important is not the similarity of the DTs in all
possible worlds, but rather similarity in the world in
which the data exist. So, unlike [5], in order to estimate
the semantic similarity, we draw the DH dataset from
P (A), the distribution that governs the attribute space.
We denote by SH(DT1, DT2) the semantic similarity be-
tween DT1 and DT2; this similarity is empirically esti-



mated on the DH dataset by applying the two decision
trees on DH and computing the number of times that
they produce the same predictions. SH(DT1, DT2) pro-
vides the ground truth to which we will compare the
proposed DT semantic similarity measures.

5.1 Datasets We experimented with six different
datasets, a short description of which is given in Ta-
ble 1. The different mfeat datasets are versions of the
same pattern recognition problem in which the goal is
to classify handwritten numerals. The versions corre-
spond to different features used to describe the numer-
als: in mfeat-factors, attributes are profile correlations,
in mfeat-zernike zernike moments, in mfeat-karhunen

Karnhunen-Love coefficients and in mfeat-fourier fourier
coefficients of the character shapes [3]. Waveform-5000

is an artificial dataset where classes correspond to dif-
ferent types of waves [1]. In the segment-challenge

dataset, [6], features are high level descriptors of regions
of images and the goal is to classify each region to the
correct class, e.g. sky, grass.

5.2 Experimental setup We need a systematic way
to generate decision trees that exhibit varying degrees of
semantic similarity. To this end, we randomly divide a
given dataset D in two parts, a training set DT used
during the model construction phase, and a test set
DH used as the hold out set for the computation of SH

(|DH | = 1
3 |D|). Then, we create random sub-samples

of the DT of size p (p = 5% . . . 95%) with a step of 5%.
On each sub-sample DTp, a decision tree is trained and
compared to the decision tree that was created on the
complete training set, DT100. Then, we compute the
semantic similarity between the complete DT and the
sampled one, i.e. SH(DTp, DT100), on the hold out set
DH .

First of all, we should verify that the procedure we
employed for the generation of the different decision
trees DTp indeed results in trees that exhibit varying
levels of semantic similarity with respect to DT100. We
expect SH(DTp, DT100) to increase as p increases and
approaches 100%, since the training set Dp used in the
construction of DTp becomes more and more similar to
the training set D100 used in the construction of DT100.
This is indeed the case as one can see in Figure 1, where
we plot SH as a function of the sampling size p; there
is a smooth increase in the values of SH as p increases
towards 100%.

5.3 Evaluating semantic similarity The goal of
the experimental evaluation that we present in this sec-
tion is to examine how the different semantic similarity
measures that we propose correlate with SH .

dataset # inst # attrs # classes
mfeat-factors 2,000 21 10
mfeat-fourier 2,000 76 10
mfeat-karhunen 2,000 64 10
mfeat-zernike 2,000 47 10
segment-challenge 2310 19 7
waveform-5000 5,000 40 3

Table 1: Description of datasets.
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Figure 1: Evolution of SH(DTp, DT100)

The decision tree semantic similarity measure
S(DT1, DT2) that we propose (Equation 4.9) depends
on the estimation of the P (A) distribution that gov-
erns the attribute. In fact, the computation of similar-
ity makes sense for a given world, in which a specific
distribution P (A) holds for the attribute space. Then,
S(DT1, DT2) is simply the sum of the probability den-
sities, under the chosen P (A), of the ri ∩ rj regions in
which the two decision trees agree. As already men-
tioned, under the uniform distribution assumption this
sum equals to the sum of the hypervolumes of these re-
gions. Moreover, under that assumption S(DT1, DT2)
provides the semantic similarity of Turney [5] without

having to apply the learned models on the hold out set.
We will not further examine the uniform assumption as
a possible estimation for P (A). Instead, we will experi-
ment with three different instantiations of S(DT1, DT 2)
that differ with respect to the estimation of P (A) they
employ. In particular, we will investigate the following
estimations for P (A):

• PU
D1∪D2

: this is the estimation of P (A) that we
get when the measure components are computed
under the uniform region distribution assumption,
as in Equations 4.6, 4.7.
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Figure 2: Evolution of the decision trees semantic similarity measures with the sampling rate (first column) and
with SH (second column) for datasets: mfeat-factors (top), mfeat-karhunen (middle), mfeat-zernike (bottom)



• P
Q
D1∪D2

: this is the estimation of P (A) that we
get when the measure components are computed
from the direct application of the overlay partition
RDTp×DT100

on the Dp and D100 datasets.

• P
Q
H : this is the estimation of P (A) that we get

from the direct application of the overlay partition
RDTp×DT100

on the hold out set DH .

Each of these estimations, PY
X , of P(A) results in a

different instantiation of S(DT1, DT2) which we denote
by SP Y

X
(DT1, DT2). We should note that the order in

which the different PY
X are listed reflects an increasing

amount of knowledge about the P (A) distribution that
governs the computation of the semantic similarity SH

which we use in order to evaluate the proposed similar-
ity measures. PU

D1∪D2
assumes the less knowledge about

P (A); to estimate the measure components of the over-
lay tree, it only relies on the analysis of the structures
of the respective decision trees, under the assumption of
a uniform within region distribution. P

Q
D1∪D2

requires
querying D1 and D2 in order to estimate the measure
components of the overlay tree; as a result, its estima-
tion of P (A) is more precise than the one provide by

PU
D1∪D2

. Finally, P
Q
H has complete knowledge of P (A),

as this knowledge underlies in the DH dataset, since we
derive it by querying DH . As a result, S

P
Q

H

(DT1, DT2)

will correlate perfectly with SH . In that sense, S
P

Q

H

represents the ideal behavior that we get when we have
knowledge of the true P (A).

For each SP Y
X

(DTp, DT100) we show how its value
varies with respect to the sample size p, in the first
column of Figures 2, 3. All the measures exhibit a sim-
ilar pattern; similarity increase as p increases. More
particular, S

P
Q

D1∪D2

and S
P

Q

H

have a very regular be-

havior, with an almost steady increase of values and
small fluctuations. In case of the SP U

D1∪D2

similarity,

the trend is also increasing but here the fluctuations
can be considerably larger, as it happens in the mfeat-

zernike, mfeat-factors, segment-challenge, mfeat-fourier

datasets. S
P

Q

D1∪D2

is constantly overestimating decision

tree similarity compared to S
P

Q

H

, while SP U
D1∪D2

consid-

erably underestimates it; recall here that S
P

Q

H

reflects

the ideal behavior.
In the second column of Figures 2, 3, we see how the

three different versions of SP Y
X

(DTp, DT100) correlate

with the actual evaluation measure SH(DTp, DT100).
As it was expected, S

P
Q

H

correlates perfectly since its

estimation of P (A) is taken from the DH dataset on
which SH(DTp, DT100) is computed. Consequently,
S

P
Q

D1∪D2

is constantly overestimating SH(DTp, DT100),

while SP U
D1∪D2

is considerably underestimating it. The

performance of S
P

Q

D1∪D2

is quite close to the ideal

performance of S
P

Q

H

with the most notable cases being

segment-challenge and mfeat-factors, while the highest
discrepancy appears in the case of mfeat-karhunen.
Note here that datasets Dp, DT and DH are all drawn
from the same P (A) distribution. The discrepancy
between the behavior of S

P
Q

D1∪D2

and S
P

Q

H

can be

explained by the inaccuracy in the sampling procedure.
As the number of instances increases, the behaviors of
S

P
Q

D1∪D2

and S
P

Q

H

will converge since the estimations of

P (A) that the two methods employ will also converge.
Alternatively, if we use repeated sampling over the
DH , DT and Dp datasets and subsequently average
over the different samples, the two measures would also
converge. On the other hand, the behavior of SP U

D1∪D2

will be similar to that of S
P

Q

H

only to the level that

the assumption of a within region uniform distribution
is a valid assumption for the P (A) governing DH ;
nevertheless, as it is apparent for the datasets we
have considered here, this is far from being a valid
assumption.

5.3.1 Quantitative analysis of the measures

In order to quantify the behavior of each of the
SP Y

X
(DTp, DT100) we computed their Pearson correla-

tion coefficient with SH(DTp, DT100). The results are
depicted in Table 2, where it seems that S

P
Q

D1∪D2

ex-

hibits a very strong correlation with SH(DTp, DT100).
For most of the datasets, the correlation is higher than
0.9, with the notable exception of waveform-5000 for
which a low correlation coefficient is recorded. SP U

D1∪D2

has also a strong correlation with SH(DTp, DT100) al-
though not as strong as S

P
Q

D1∪D2

, again with the remark-

able exception of waveform-5000 for which it exhibits
its highest correlation value.

The Pearson correlation coefficient is an estimate
of the linear correlation of two values, nevertheless it
does not indicate how good predictor one variable is
for the other. This is especially true in our case,
since the pattern of linear correlation of any given
SP Y

X
(DTp, DT100) with SH(DTp, DT100) changes from

dataset to dataset as it is obvious from Figures 2, 3.
In order to estimate the predictive value of the various
SP Y

X
(DTp, DT100) with respect to SH(DTp, DT100), we

compute their Mean Absolute Deviation (MAD). The
MAD of two variables a and b for which we have N
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Figure 3: Evolution of the decision trees semantic similarity measures with the sampling rate (first column) and
with SH (second column) for datasets: mfeat-fourier (top), segment-challenge (middle), waveform-5000 (bottom)



dataset SP U
D1∪D2

S
P

Q

D1∪D2

S
P

Q

H

mfeat-factors 0.692 0.971 0.993
mfeat-fourier 0.852 0.927 0.999
mfeat-karhunen 0.858 0.910 0.999
mfeat-zernike 0.869 0.911 0.987
segment-challenge 0.831 0.951 0.986
waveform-5000 0.969 0.712 0.998

Table 2: Correlation coefficient of SP Y
X

(DTp, DT100)

with SH(DTp, DT100)

dataset SP U
D1∪D2

S
P

Q

D1∪D2

S
P

Q

H

mfeat-factors 0.504 0.063 0.014
mfeat-fourier 0.301 0.114 0.015
mfeat-karhunen 0.279 0.158 0.013
mfeat-zernike 0.316 0.108 0.022
segment-challenge 0.289 0.016 0.005
waveform-5000 0.120 0.140 0.003
Average 0.302 0.1 0.012

Table 3: Mean absolute deviation of SP Y
X

(DTp, DT100)

with SH(DTp, DT100)

paired observations is given by:

MAD(a, b) =
N

∑

i

|ai − bi|

N
,

The MAD results are given in Table 3. These results
indicate the good predictive performance of S

P
Q

D1∪D2

, its

average error (MAD) in predicting SH(DTp, DT100) is
0.1. The performance of SP U

D1∪D2

is considerably worse,

its average MAD is roughly 0.3.
The goal of the current section was to compare and

evaluate a number of different instantiations of a de-
cision tree semantic similarity measure. The different
instantiations are the result of different assumptions or
different ways of estimating the attribute space distri-
bution under which the semantic similarity computation
will take place. In fact, the semantic similarity compu-
tation of two decision trees makes sense if we can assume
a specific probability distribution P (A) governing the
attribute space. The overlayed tree provides a partition
of the full attribute space, the agreement or disagree-
ment of the two decision trees in a given segment of
that partition is more or less important depending on
the density of that region under P (A). If, for exam-
ple, the two decision trees disagree on a given region
this is not going to affect their similarity, even if the
volume of the region is large, as far as the probability
density of that region under P (A) is zero. Alternatively,
if we do not want to assume a specific attribute space

distribution and we want to compute similarity under
all possible worlds we should make the assumption of a
uniform distribution on the attribute space, a case that
is also covered by our framework.

In order to evaluate our semantic similarity mea-
sures, we used the semantic similarity empirically es-
timated on a separate hold-out set. The performance
of the different instantiations of the semantic similar-
ity measures depends on how different was the estima-
tion of P (A) used in them from the P (A) governing
the hold-out set, on which the semantic similarity was
computed. In fact, the choice of the appropriate P (A)
should be done based on the knowledge of the appli-
cation domain. If we know that our learning problem
is governed by a specific P (A), then it is that P (A)
that should be “plugged” in the decision tree similarity
measure. Alternatively, if no such knowledge exists, we
can estimate P (A) from the datasets from which the
decision trees were constructed, as it was done in the
S

P
Q

D1∪D2

semantic similarity measure.

6 Conclusions and Future Work

In this paper we presented a general framework for the
estimation of similarities between decision trees and
datasets, within a classification problem setting. We
employ the decision tree models in order to compute
either their semantic similarity or the similarity of the
datasets that were used for their induction. The deci-
sion tree similarity is computed in terms of the agree-
ment of the class predictions they return over the at-
tribute space and, it corresponds to the decision tree
semantic similarity. The computation of dataset simi-
larity can be done on the basis of their attribute space
probability distribution P (A), their attribute-class joint
probability distribution P (A, C) or their attribute con-
ditional class probability distribution P (C|A). All the
above comprise special cases of our framework.

Previous efforts have focused on comparing
datasets, either with respect to P (A, C) [2], or with re-
spect to P (C|A) [4]. In this paper we focus on the
estimation of the semantic similarity between decision
trees, i.e., the degree to which the decision trees agree
in their predictions over the attribute space. To the
best of our knowledge, this is the first work towards
this aim. The critical point in the computation of the
decision tree similarity is the selection of an appropri-
ate attribute space probability distribution P (A) under
which the computation will take place. This choice re-
flects our belief about the real world on which the de-
cision trees would be applied. If no prior knowledge
exists, we could simply select the uniform distribution
U(A) for P (A) and thus we would examine the decision



tree similarity over all possible input worlds.
We experimented with different ways of estimating

the attribute space probability distribution P (A) and
we compared the resulting instantiations of the deci-
sion tree semantic similarity measure with the actual
semantic similarity, as this was established by the appli-
cation of the decision trees on an independent hold-out
set. Depending on the knowledge we have about the
P (A) distribution that governs the independent hold-
out set, the computed decision tree semantic similarity
is a more or less good predictor of the actual semantic
similarity. More specifically, when P (A) is computed by
querying the actual datasets, the corresponding decision
tree similarity S

P
Q

D1∪D2

is a very good predictor of the

true semantic similarity. Actually, we expect the value
of S

P
Q

D1∪D2

to converge to the real value of the semantic

similarity as the size of the datasets increases, since the
estimated P (A) will converge to the true P (A).

We believe that the greatest contribution of a de-
cision tree semantic similarity measure is the potential
that it offers to determine whether the observed dif-
ferences are simply superficial structural differences or
they reflect real semantic differences on the described
concepts, and moreover, to quantify these differences -
this is a problem that “deplores” decision trees due to
their high sensitivity to training dataset changes.

The provision of a semantic similarity measure for
classification models, here decision trees, allows us to
perform a number of standard mining tasks that are
based on similarity/distance measures, not on the raw
data anymore, but rather on the classification models
extracted from these raw data, i.e. meta–mining. For
example, using the semantic similarity measure we can
cluster decision trees and compute a representative

decision tree for each cluster. A typical application of
that could be the simplification of ensembles of decision
trees, such as the ones produced by boosting, bagging
and random forests, where only the prototype decision
tree of each cluster is retained. Another alternative
to the simplification of decision tree ensembles, that
does not make use of the semantic similarity measure,
is the construction of the overlayed tree from all the
component decision trees of the ensemble. Each region
of the overlayed tree will be labeled according to the
labels of the corresponding regions of the original trees.
The overlayed tree will have the same predictive power
as the ensemble, since it will make exactly the same
predictions, however its partitions will be much finer
than the partitions of the original trees thus having a
larger complexity than its constituents. Nevertheless,
it is possible to simplify the overlayed decision tree by
applying standard pruning techniques. The apparent

advantage of having a single decision tree, or a small
set of decision trees, instead of the full ensemble is the
much easier interpretation of the learned model.

The idea of a representative decision tree for a set
of decision trees could be also useful in a classification

error estimation scenario. Typically, in error estimation
a re-sampling technique is applied resulting in a number
of different models, the final result is an estimation of
the classification performance of the algorithm and not
that of a single tree. The question is which model to
choose among the different models that were produced;
one solution would be to choose the median model, i.e.
the one that abstains the smaller distance from all the
other models.

Finally, there are several extensions/ improvements
over the basic framework. In the current version, we
restrict on continuous predictive attributes, however
categorical attributes should be also considered. Also,
in case of the pattern dependent probability estimation
(Equations 4.6, 4.7), we adopt the assumption that
instances are uniformly distributed within each region.
We plan to release this assumption by employing some
density approximation technique like histograms.
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