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AbstractThe goal of this thesis is to provide support to the analyst in selecting the appro-priate classi�cation algorithm for a speci�c problem, taking into considerationthe nature of the problem. We make no distinction between an algorithm andthe representational model of the algorithm, we consider the learning algorithmas the entity to be selected. We tackle the problem of inducer selection as a typ-ical classi�cation problem, although at a meta-level. In a classi�cation problema learner is given a dataset of training instances and is required to constructan inductive model in order to predict the classes of new unseen instances. Inour meta-learning framework training instances are the descriptions of datasets,and the meta-classi�cation or else meta-learning task is the prediction of thelearning algorithm that is more appropriate for a speci�c dataset.We provide a novel formulation of the meta-learning space in terms of pair-wise comparisons of learning algorithms. The meta-learning space simulatesclosely the typical process that an analyst adopts, when he has to select amongdi�erent inducers. The increased exibility that the meta-learning space o�ers.The incorporation of the pairwise meta-learning problems allows for a closerstudy of the factors a�ecting the relative performance of di�erent inducers.We proceeded to a systematic search for features that can adequately de-scribe a dataset, with the main emphasis placed on the description of attributeinterelationships. These features will constitute the predictive features of thepairwise meta-learning problems. An e�ort to �nd an appropriate way to bridgethe gap between features that describe properties of continuous attributes andfeatures that describe properties of discrete attributes. In that context we alsointroduced the notion of non-appl values, for these features whose computationdoes not make sense for discrete attributes and vice versa. A new representationof the features used to describe the properties of each attribute of a dataset orcombinations of attributes, via the use of histograms, in an e�ort to depict asclose as possible their distribution, without loss of discriminating information.We undertook extensive comparisons of di�erent ways of characterizing data-sets as well as performing inducer ranking, these included: an empirical com-parison of di�erent ways of characterizing datasets in order to perform inducerselection, under two di�erent meta-learning frameworks; an empirical compari-son of di�erent ways of characterizing datasets under a regression approach tometa-learning; the exploitation of the regression approach to predict rankingsof inducers, and a comparison of di�erent ranking methods.xix



xx ABSTRACTThe emprical evaluation of the system has shown that it can provide success-ful suggestions as to which learning algorithm is more appropriate for a speci�cdataset. The meta-learning models constructed by the inducers applied on themeta-learning problems allow us to have a better understanding of the datasetchatacteristics that a�ect the performance of the learning algorithms.



S�election d'Algorithme viaMeta-apprentissageI IntroductionLe domaine de l'apprentissage automatique est en constante �evolution et produitune multitude de mod�eles et d'algorithmes pour e�ectuer des tâches de classi-�cation, tels que les arbres de d�ecision, les r�eseaux de neurones, les inducteursde r�egles, le plus proche voisin, etc.L'analyste doit s�electionner, parmi ces mod�eles et algorithmes, ceux quicorrespondent le mieux �a la morphologie et aux caract�eristiques sp�eciales d'unprobl�eme donn�e.Cette s�election est un probl�eme extrêmement fastidieux �etant donn�e qu'iln'existe pas de mod�ele ou d'algorithme qui ait une meilleure performance qued'autres ind�ependamment des caract�eristiques sp�eci�ques du probl�eme, commecela a �et�e observ�e dans di��erentes comparaisons empiriques, (Aha, 1992; Salzberg,1991; Shavlik et al., 1991; Weis & Kapouleas, 1989).Par la suite, les r�esultats empiriques ont �et�e con�rm�es par di��erents th�eor�emesdu type "no free lunch", (Scha�er, 1994; Wolpert, 1996b; Wolpert, 1996a). En-tre autres, ils �etablissent le fait que pour deux algorithmes d' apprentissagequelconques, leur performance moyenne sur tous les probl�emes d' apprentissaged�e�nis sur un ensemble d'entrâinement sp�eci�que, sera exactement la même.Pour un groupe quelconque de probl�emes o�u un algorithme d' apprentissagesurpasse l'autre, il existe un domaine o�u l'inverse est vrai.Chaque algorithme a une "sup�eriorit�e s�elective", (Brodley, 1995), c�ad qu'ilest meilleur que les autres pour un type de probl�emes particulier. Ceci est dûau fait que chaque algorithme a ce que l'on appelle un "biais inductif" engendr�epar les hypoth�eses faites a�n de g�en�eraliser d'une donn�ee d'entrâinement �a desexemples jamais vus auparavant.Selon Mitchell (1997), "le biais inductif d'un algorithme d' apprentissage estl'ensemble de toutes les hypoth�eses requises pour justi�er ses inf�erences induc-tives comme �etant des inf�erences d�eductives". Donc, l'analyste doit poss�ederbeaucoup d'exp�erience pour pouvoir identi�er l'algorithme le plus appropri�e�a la morphologie du probl�eme pos�e. Le processus de s�election de mod�eles etd'algorithmes ad�equats est d�ecrit en d�etail par Brodley and Smyth (1997).xxi



xxii S�ELECTION D'ALGORITHME VIA META-APPRENTISSAGELe mod�ele d'un algorithme d�e�nit en fait l' "espace de recherche" ou l' "es-pace d'hypoth�eses", qui d�e�nit aussi le "biais repr�esentationnel", de l'algorithme,comme par exemple k-FND (forme normale disjonctive), ou k-FNC (forme nor-male conjonctive), les fonctions lin�eaires discriminantes, les r�egles, etc. L' algo-rithme "fouille" cet espace pour rechercher la bonne hypoth�ese, c�ad l'hypoth�esequi correspond le mieux aux donn�ees. L'algorithme d�etermine ainsi l'ordre devisite des �etats de cet espace, cet ordre est aussi appel�e le "biais de recherche"de l'algorithme. Par exemple, entre deux algorithmes qui recherchent dans unespace FND, l'un pourrait commencer la recherche par les formes FND quicontiennent un ensemble complet de variables, tandis que l'autre pourrait com-mencer par des ensembles ne contenant qu'une seule variable. Par cons�equent,le mauvais choix d'algorithme pourrait entrâiner une convergence lente vers labonne hypoth�ese, ou pourrait même ne pas aboutir �a la solution optimale �acause d'un minimum local. Un mauvais choix de mod�ele pourrait avoir un im-pact plus grave encore: une hypoth�ese appropri�ee �a notre probl�eme risqueraitd'être ignor�ee si elle n'est pas contenue dans l'espace de recherche du mod�ele.Une formalisation des espaces de biais est donn�ee par Gordon and desJardin(1995), o�u sont d�ecrits divers niveaux de biais. Au plus bas niveau nous trouvonsun espace d'hypoth�eses sp�eci�que et une m�ethode pour le fouiller. Au dessus,nous avons l'espace repr�esentationnel qui a comme �etats les di��erentes repr�esen-tations et divers espaces de recherche d�e�nis pour chacun des �etats de l'espacerepr�esentationnel. Le probl�eme du biais appropri�e devient alors un probl�eme derecherche dans ces espaces.La tâche de classi�cation est une tâche it�erative. L'analyste doit tout d'abords�electionner un model / une classe d'algorithmes, par exemple s�electionner entrela classe d'algorithme d'arbres de d�ecision ou la classe d'algorithme des r�eseauxde neurones. A l'�etape suivante on s�electionne un algorithme particulier im-pl�ementant une m�ethode sp�eci�que pour chercher �a travers l'espace repr�esenta-tionnel associ�e au mod�ele choisi. L'algorithme est ensuite appliqu�e et la qualit�ede ses pr�edictions est �evalu�ee. Si les r�esultats d'�evaluation sont m�ediocres, leprocessus est r�ep�et�e �a partir du stade ant�erieur avec de nouvelles s�elections. Laproc�edure d'�evaluation est ainsi assez coûteuse en temps et devient probl�ema-tique lorsque le volume de donn�ees est important.L'impact du travail et de l'exp�erience de l'expert dans cette proc�edure de"trial-and- error" est �evident. Une pl�eiade de syst�emes contenant une vari�et�e demod�eles et d'algorithmes existent et sont �a la disposition de l'analyste. Cepen-dant, la s�election parmi ceux-ci reste de la responsabilit�e de l'analyste et �a cejour il n'existe aucun syst�eme qui pourrait fournir des suggestions ou un sup-port pour d�eterminer laquelle des s�elections serait la plus appropri�ee pour unprobl�eme donn�e.II ContributionsLe but de cette th�ese est de fournir un support �a l'analyste pour s�electionnerl'algorithme de classi�cation appropri�e pour un probl�eme sp�eci�que en prenant



II. CONTRIBUTIONS xxiiien consid�eration la nature du probl�eme. Nous ne ferons pas ici une distinctionentre un algorithme et le mod�ele repr�esentationnel de l'algorithme. En revanche,nous consid�ererons que l'algorithme d' apprentissage est l'entit�e �a s�electionner.Nous traiterons le probl�eme de la s�election d' inducteur comme un probl�emetypique de classi�cation, mais �a un meta-niveau. Dans un probl�eme de clas-si�cation on donne �a un algorithme d' apprentissage un ensemble d'instancesd'entrâinement et il doit construire un mod�ele inductif a�n de pr�edire les classesde nouvelles instances inconnues. Dans notre base de travail de meta- apprentis-sage les instances d'entrâinement seront les descriptions des ensembles de don-n�ees individuels, et la meta-classi�cation ou bien la tâche de meta-apprentissagesera de pr�edire quel algorithme d' apprentissage est le plus appropri�e pour unensemble de donn�ees particulier.Nous �enum�erons ci-dessous les principales contributions de ce travail.1. Sur l'espace du meta-apprentissage� Une formulation originale de l'espace de meta-apprentissage en termede comparaisons par paire d'algorithmes d' apprentissage. L'espacede meta- apprentissage simule d'une mani�ere r�ealiste le processusqu'un analyste adopte lorsqu'il doit s�electionner parmi di��erents in-ducteurs.� La grande exibilit�e que l'espace du meta-apprentissage o�re. L'incorporation des probl�emes par paire de meta-apprentissage permetune �etude plus approfondie des facteurs qui a�ectent les performancesrelatives de di��erents inducteurs.2. Sur la d�e�nition des caract�eristiques� Une recherche syst�ematique pour des caract�eristiques qui peuventd�ecrire un ensemble de donn�ees d'une mani�ere ad�equate, avec l'accentprincipalement mis sur la description des relations qu'il y a entreles attributs. Ces caract�eristiques deviendront les caract�eristiquespr�edictives des probl�emes par paire de meta- apprentissage.� Un e�ort pour trouver une mani�ere appropri�ee pour faire la jonc-tion entre des caract�eristiques des propri�et�es d'attributs continus etdes caract�eristiques qui d�ecrivent des propri�et�es d'attributs discrets.Dans ce contexte nous avons aussi introduit la notion de valeur non-applicable, pour ces caract�eristiques dont le calcul n'a pas de senspour des attributs discrets et vice-versa.� Une nouvelle repr�esentation des caract�eristiques utilis�ees pour d�ecrireles propri�et�es de chaque attribut d'un ensemble de donn�ees ou com-binaisons d'attributs, �a travers l'utilisation d'histogrammes, dansl'optique de d�ecrire le plus �d�element possible leur distribution, sansperte d'informations discriminantes.3. Des comparaisons �etendues des di��erentes mani�eres de caract�eriser lesensembles de donn�ees ainsi que l'�etablissement d'une classi�cation d' in-ducteurs.



xxiv S�ELECTION D'ALGORITHME VIA META-APPRENTISSAGE� Une comparaison empirique des di��erentes fa�cons de caract�eriser lesensembles de donn�ees a�n d'e�ectuer une s�election d' inducteurs dansdeux bases de travail de meta-apprentissage di��erentes.� Une comparaison empirique des di��erentes fa�cons de caract�eriser lessets de donn�ees avec une approche de r�egression au meta- apprentis-sage.� L'exploitation de l'approche de r�egression pour pr�edire l'ordre des in-ducteurs et la comparaison de di��erentes m�ethodes d'ordonnancement.L'�evaluation empirique du syst�eme a montr�e qu'elle pouvait fournir des sug-gestions exactes quant �a savoir quel algorithme d' apprentissage est le plusappropri�e pour un ensemble de donn�ees sp�eci�que. De plus, les mod�eles demeta- apprentissage, construits par les inducteurs, appliqu�es sur les probl�emesde meta- apprentissage nous permettront d'avoir une meilleure compr�ehensiondes caract�eristiques des ensembles de donn�ees qui a�ectent la performance desalgorithmes d' apprentissage.III Sommaire des chapitresCi-apr�es nous donnons une br�eve description de chacun des chapitres de cem�emoire de th�ese.Chapitre 2. M�ethodes de s�election d'algorithmes. Dans ce chapitrenous donnons une vue d'ensemble des di��erentes approches existantes pour las�election d'algorithme. Nous pr�esentons les m�ethodes utilis�ees pour �evaluerles algorithmes d' apprentissage, estimons leurs erreurs et comment estimer lapertinence des r�esultats �a l'aide de tests de nature statistique. Nous contin-uerons avec une pr�esentation du travail e�ectu�e sur la s�election automatiqued'algorithmes et nous le d�ecrirons selon trois dimensions. Premi�erement lafa�con dont les ensembles de donn�ees peuvent être caract�eris�es, deuxi�emement lesdispositions d'�evaluation utilis�ees par les m�ethodes automatiques de s�electionsd'algorithmes et �nalement la mani�ere dont ces syst�emes fournissent des sugges-tions �a l'analyste. A la �n de ce chapitre nous pr�esentons quelques travaux quine sont pas directement associ�es avec la s�election automatique d'algorithmes.Chapitre 3. La base de travail du meta-apprentissage. Dans ce chapitrenous pr�esentons l'architecture du syst�eme. Nous donnons une description del'espace du meta-apprentissage et des probl�emes par paire de meta-apprentissageformant cet espace. Les probl�emes par paire de meta-apprentissage correspon-dent �a toutes les paires possibles de n algorithmes, qui donne n(n-1)/2 paires.Les instances de chacune des paires sont des descriptions des ensembles de don-n�ees accompagn�ees d'une �etiquette de classe indiquant quel algorithme de lapaire montre la meilleure performance pour l'ensemble de donn�ees correspon-dant. Nous montrons comment en combinant les meta-mod�eles construits �apartir des probl�emes par paire, nous arrivons �a avoir une pr�ediction quant �a



III. SOMMAIRE DES CHAPITRES xxvsavoir quel(s) inducteur(s) est (sont) les plus adapt�e(s) pour un nouvel en-semble de donn�ees qui ne faisait pas partie de l'ensemble d'entrâinement. Deplus, nous pr�esentons l'ensemble des ensembles de donn�ees que nous utilisonspour entrâiner et �evaluer le syst�eme, ainsi que la s�erie d' inducteurs �a partirdesquels nous allons e�ectuer la s�election d'algorithmes. Pour �nir ce chapitre,nous pr�esentons comment l'�evaluation du syst�eme sera e�ectue sous deux an-gles. Le premier, que nous appellerons la pr�ecision stricte, est le pourcentagede fois que le syst�eme donne la bonne pr�ediction, c�ad. le nombre de fois quele syst�eme pr�edit correctement les algorithmes qui constituent le groupe desmeilleurs algorithmes. Le deuxi�eme, que l'on appelle la pr�ecision libre, corre-spond au pourcentage de fois que le syst�eme a donn�e comme r�esultat un en-semble d'algorithmes d' apprentissage qui �etait un sous-ensemble des meilleursalgorithmes.Chapitre 4. La description des ensembles de donn�ees. La bonne s�elec-tion des caract�eristiques qui seront utilis�ees pour d�ecrire les ensembles de don-n�ees est cruciale pour la performance du syst�eme. Ceux-ci devraient d�ecriredes caract �eristiques morphologiques des ensembles de donn�ees qui a�ectent laperformance des algorithmes de classi�cation. Di��erents inducteurs montrentdi��erentes sensibilit �es aux morphologies sp�eci�ques des ensembles de donn�ees.Ce que nous voulons faire c'est de montrer comment ces morphologies a�ectentla performance relative des di� �erents inducteurs. Par exemple, des inducteurspr�esentent di��erents degr�es de sensibilit�e �a la pr�esence d'attributs incongrus.Les approches du plus proche voisin y sont tr�es sensibles, tandis que les algo-rithmes d'arbres de d�ecisions et de r �eseaux de neurones sont assez robustes, carils poss�edent des m�ecanismes internes qui e�ectuent des s�elections d'attributs.Un autre exemple est la distinction entre les approches num�eriques, commeles r�eseaux de neurones, ou les discriminants lin�eaires, et ceux bas�es sur unerepr�esentation symbolique tels que les arbres de d�ecision ou les inducteurs der�egles. Le premier est plus adapt�e aux ensembles de donn�ees o�u les attributssont en majorit�e num�eriques et le second plus adapt�e pour les ensembles de don-n�ees o�u les attributs sont majoritairement symboliques. Nous nous e�orceronsde trouver un ensemble de caract�eristiques qui d�ecrive le mieux possible cesfacteurs.Dans ce chapitre nous �etablissons l'ensemble de caract�eristiques qui sera util-is�e pour d�ecrire les ensembles de donn�ees et construire les probl�emes par paire demeta-apprentissage apr�es avoir pass�e en revue les m�ethodes existantes de carac-t�erisation d'ensembles de donn�ees. Une des principales limitations de ces m�eth-odes est la fa�con dont ils traitent les caract�eristiques qui peuvent être d�e�niessur la base d'un attribut ou d'une paire d'attributs. Les m�ethodes existantescomptent sur l'utilisation de moyennes des caract�eristiques qui sont d�e�nies pourun ensemble d'attributs. Par exemple dans le cas de concentration de coe�cientpour k attributs il y aura k(k-1) coe�cients distincts dont chacun est associ�e�a une paire sp�eci�que. Les m�ethodes existantes remplacent ces ensembles devaleurs par leur moyenne, ce qui r�esulte en une perte d'information pr�ecieuse



xxvi S�ELECTION D'ALGORITHME VIA META-APPRENTISSAGEsur la distribution des coe�cients. Nous proposons l'utilisation d'histogrammespour d�ecrire d'une mani�ere plus �ne cette distribution. Nous subdivisons les car-act�eristiques des ensembles de donn�ees en cinq cat�egories di��erentes selon quellepropri�et�e de l'ensemble de donn�ees elles d�ecrivent et nous donnons les caract�eris-tiques qui appartiennent �a chaque cat�egorie. La premi�ere de ces cat�egories con-tient les caract�eristiques qui donnent une information sur le type des attributsqui apparaissent dans l'ensemble de donn�ees, par exemple le nombre d'attributscontinus ou discrets. La seconde d�ecrit les attributs individuels, un exempleen est l'entropie des attributs. La troisi�eme donne des moyens d'associationd'attributs comme les coe�cients de corr�elation et de concentration. Dans laquatri�eme cat�egorie nous pla�cons les moyens d'association des attributs avecla classe, et dans la derni�ere cat�egorie nous mettons les caract�eristiques qui nepeuvent pas être class�ees dans aucune des cat�egories pr�ec�edentes.A la �n nous �evaluons le coût en terme de calcul de ces caract�eristiqueset nous comparerons avec le coût d'une validation crois�ee pour s�electionner lemeilleur algorithme d' apprentissage.Chapitre 5. Meta-apprentissage �a partir d'instances. La s�election del' inducteur ad�equat qui sera utilis�e au niveau du meta-apprentissage a�ecterad'une mani�ere critique la performance du syst�eme. Pour commencer, nous util-isons un simple algorithme d' apprentissage �a partir d'instances. Les algorithmesd' apprentissage �a partir d'instances n' induisent pas de mod�eles �a partir desdonn�ees d'entrâinement, ils se basent uniquement sur des mesures de distancedes instances qui doivent être classi��ees �a partir des donn�ees utilis�ees pourl'entrâinement. Il y a deux raisons principales pour la s�election d'un algorithmed' apprentissage �a partir d'instances au meta-niveau. Premi�erement et le plusimportant, est que nous nous attendons �a ce que les algorithmes d' apprentissagemontrent des performances similaires sur des ensembles de donn�ees avec des car-act�eristiques similaires, pour que l'on puisse exploiter la performance ant�erieured'algorithmes pour pr�edire la performance sur des ensembles de donn�ees incon-nus. Deuxi�emement, il est facile d'adapter la mesure de distance utilis�ee par unalgorithme �a partir des instances a�n qu'il int�egre la valeur "non-applicable"dans ses calculs. Nous d�e�nissons la similarit�e entre les ensembles de donn�eesen terme de proximit�e g�eom�etrique dans l'espace de morphologie, dont les di-mensions sont d�e�nies par les caract�eristiques de l'ensemble de donn�ees, et nousobservons l'espace de morphologie comme un espace euclidien conventionnel,�etendu par "non-applicable". Nous avons modi��e la d�e�nition de distance del'algorithme du plus proche voisin pour prendre en compte des attributs dontle domaine est R U non-applicable. Les caract�eristiques morphologiques sonttoutes normalis�ees �a l'intervalle [0,1] avant l'application de l'algorithme.Nous pr�esentons les r�esultats de l'�evaluation du syst�eme lorsque l' inducteur�a partir d'instances est utilis�e sur le meta-niveau. Deux variantes de l'ensembledes ensembles de donn�ees de caract�eristiques sont compar�ees par rapport �a leurperformance pr�edictive, histo et +histo. La di��erence entre la seconde et la pre-mi�ere est qu'elle a �et�e �etendue pour inclure les distributions d'une mesure bas�ee



III. SOMMAIRE DES CHAPITRES xxviiANOVA dans l'optique de d�ecrire les associations entre des attributs discrets etcontinus. Les r�esultats ont montr�e, en ce qui concerne l'algorithme d' appren-tissage �a partir d'instances, que l'incorporation de ces caract�eristiques r�eduit lepouvoir de discrimination de la caract�erisation.Une question qui a recueilli peu d'attention, pour ne pas dire aucune, dansle domaine du meta-apprentissage, est l'explication et la compr�ehension desfacteurs qui a�ectent la performance des inducteurs. Tous les e�orts pr�ec�e-dents avaient pour but de maximiser les capacit�es pr�edictives du meta-apprentisans pour autant �eclaircir les facteurs (c�ad les propri�et�es des ensembles de don-n�ees) qui a�ectent la performance des algorithmes. En appliquant la s�electionde variables au meta-niveau on pourrait combler cette lacune et par la-mêmeam�eliorer la performance du meta- apprentissage. En utilisant la s�election devariables, nous pouvons avoir une meilleure id�ee sur les facteurs qui a�ectent laperformance des algorithmes d' apprentissage. Ceci est encore plus vrai lorsquel'algorithme de meta-apprentissage utilis�e est un algorithme d' apprentissage �apartir d'instances, qui ne donne aucune suggestion dans la pertinence des at-tributs utilis�es. C'est pourquoi dans le même chapitre nous avons aussi examin�el'utilisation d'un algorithme d' apprentissage �a partir d'instances en associationavec un m�ecanisme de s�election de variables. Pour chacun des probl�emes parpaire de meta-apprentissage nous examinons les attributs s�electionn�es par lem�ecanisme de s�election d'attributs et �a la �n nous caract�erisons chaque attribut�a l'aide de son pouvoir de discrimination total, c�ad �a quelle fr�equence apparâitcette variable sur la totalit�e des probl�emes de meta- apprentissage. Les r�esul-tats montrent que l'utilisation de s�election de variables peut en e�et am�eliorerla performance du syst�eme en terme de son pouvoir pr�edictif.Chapitre 6. Comparaison des algorithmes d' apprentissage au meta-niveau. Dans ce chapitre nous explorons l'utilisation d'algorithmes d' appren-tissage plus �elabor�es sur le plan du meta-apprentissage : les algorithmes �a based'arbre de d�ecisions. Le but principal est d'am�eliorer encore la performance dusyst�eme. Nous analysons aussi les mod�eles produits, a�n d'�evaluer le pouvoirpr�edictif des caract�eristiques des ensembles de donn�ees, ceci de la même mani�ereque nous avions analys�e les caract�eristiques qui �etaient s�electionn�ees par le m�e-canisme de s�election de variables du chapitre pr�ec�edent. Ce chapitre est organ-is�e comme suit. Premi�erement, nous examinons la performance des nouveauxmeta-apprentis avec les deux ensembles distincts des ensembles de donn�ees decaract�eristiques, c�ad +histo et histo, a�n de voir avec lequel nous obtenons lameilleure performance. Les r�esultats sont n�eanmoins di��erents des compara-isons analogues du chapitre pr�ec�edent. Avec les inducteurs bas�es sur les arbresde d�ecision la di��erence de performance entre les deux caract�erisations n'estpas statistiquement signi�cative. Ensuite, nous comparons les performancesdes meta-apprentis, y compris celui de fsIBL sur l'ensemble de donn�ees histo.C50boost se trouve être le meilleur meta-apprenti, celui dont les pr�edictionssont les plus pr�ecises.Et �nalement les mod�eles inductifs construits par deux des meta-apprentis



xxviii S�ELECTION D'ALGORITHME VIA META-APPRENTISSAGEsont analys�es a�n d'examiner le pouvoir discriminatoire des caract�eristiques etles caract�eriser �a nouveau en terme de leur pouvoir discriminatoire total.Chapitre 7. Comparaison de datasets de caract�erisations. En com-men�cant par le projet STATLOG en 1994, et jusqu'�a aujourd'hui avec le projetMETAL, une grande vari�et�e de mesures est utilis�ee pour d�ecrire et caract�eriserles ensembles de donn�ees dans le but de pr�edire les performances d'algorithmesd' apprentissage. A notre connaissance, il n'existe pas de comparaisons syst�e-matiques des di��erentes approches de caract�erisation d'ensemble de donn�ees. Ala seule exception pr�es, celle du travail de Bensusan et Giraud-Carrier (2000),o�u ils comparent la performance de "landmarking" avec celle d'une caract�eri-sation des ensembles de donn�ees bas�ee sur l'information dans le même espritque STATLOG. Les ensembles de donn�ees utilis�es dans cette �etude sont ar-ti�ciels. La description bas�ee sur l'information consistait en une entropie declasse, nombre �equivalent �a d'attributs, entropie moyenne d'attributs, moyenned'information r�eciproque, moyenne entropie jointe et rapport signal sur bruit ;ce qui repr�esente un ensemble limit�e de caract�eristiques qui est en fait un sous-ensemble de celles utilis�ees dans STATLOG. Les d�ecouvertes exp�erimentales ontmontr�e que le "landmarking" devance la description bas�ee sur l'information,cependant les r�esultats doivent être pris avec pr�ecaution, vu que l'�etude a �et�emen�ee seulement sur des ensembles de donn�ees arti�ciels, l'ensemble des carac-t�eristiques bas�e sur l'information �etait plutôt limit�e et de plus il n'y avait pasde contrôle sur la pertinence statistique des r�esultats.Le but de ce chapitre est d'e�ectuer une comparaison contrôl�ee et syst�ema-tique des di��erents ensembles de donn�ees de caract�erisations, sur des ensemblesde donn�ees r�eels. Nous examinons cinq ensembles di��erents de caract�eristiques.Quatre d'entre eux suivent l'approche bas�ee statistique/information pr�esent�eedans STATLOG et la cinqui�eme est l'approche "landmarking" pour caract�eriserun ensemble de donn�ees. Plus pr�ecis�ement nous examinons les ensembles suiv-ants :� statlog, l'ensemble de caract�eristiques utilis�e dans le projet STATLOG.� dct, un ensemble des ensembles de donn�ees de caract�eristiques plus richeextrait de l'outil DCT qui a �et�e d�evelopp�e �a la suite du projet METAL.� histo, l'ensemble de caract�eristiques que nous avons �etabli.� histo-limited, une version r�eduite de histo.� land, une caract�erisation des ensembles de donn�ees en terme de perfor-mance pr�edictive de simples algorithmes d' apprentissage.La comparaison implique 65 ensembles de donn�ees r�eels, principalement dud�epôt de l'UCI et du projet METAL. Le nombre des ensembles de donn�ees auraitdû être plus �elev�e si l'outil de "landmarking" n'avait pas �echou�e en caract�erisant



III. SOMMAIRE DES CHAPITRES xxixun nombre trop important des ensembles de donn�ees. Nous utilisons deux struc-tures de meta-apprentissage di��erentes pour e�ectuer les comparaisons. La pre-mi�ere est la structure par paire que nous avons introduit au chapitre 3, la secondeest une approche plus simple du meta-apprentissage et son but principal �etantla pr�ediction de l'algorithme d' apprentissage qui atteindra la plus haute pr�e-cision. Ici nous n'utilisons pas de comparaisons par paire, nous avons juste unprobl�eme de meta- apprentissage simple dont le but est de pr�edire l'algorithmequi accomplit la plus grande exactitude pour un ensemble de donn�ees donn�e.Les instances de l'ensemble de donn�ees du meta-apprentissage sont les descrip-tions des ensembles de donn�ees accompagn�ees d'une �etiquette de classe donnantl'algorithme qui a la plus grande pr�ecision sur l'ensemble de donn�ees, ceci estd�etermin�e par la m�ethode de validation crois�ee strati��ee. Aucun type de testd'une pertinence statistique n'est utilis�e pour s�electionner le meilleur algorithme,seule la valeur absolue de la pr�ecision estim�ee par la validation crois�ee est priseen consid�eration.C50boost a �et�e utilis�e dans les deux structures comme �etant le meta- ap-prenti. La strat�egie d'�evaluation pour la deuxi�eme structure de meta- appren-tissage sera la pr�ecision de c50boost estim�ee par validation crois�ee strati��ee.En ce qui concerne la premi�ere structure de meta-apprentissage et la perfor-mance sur les probl�emes par paire, les r�esultats n'ont pas �et�e concluants. Deuxdes cinq caract�erisations, statlog et land n'ont pas pu devancer la pr�ecision debase �a un niveau statistiquement signi�catif dans aucun des 28 probl�emes parpaire. En fait, land a eu une pr�ecision moyenne qui �etait encore pire que lamoyenne de pr�ecision de base. Les trois caract�erisations restantes ont surpass�ela pr�ecision de base pour deux ou trois probl�emes par paire. En ce qui concernela performance par rapport �a la suggestion �nale, seule les approches bas�eessur l'histogramme ont pu d�epasser la pr�ecision de base en terme d'exactitudestricte. Les trois approches restantes ont �et�e encore pires que la pr�ecision de basecorrespondante. Malheureusement, les di��erences avec les approches bas�ees surl'histogramme quant �a la pr�ecision de base n'�etaient pas statistiquement perti-nentes.Les r�esultats sur la structure simple du meta-apprentissage sont l�eg�erementdi��erents. Ici, quatre des cinq caract�erisations d�epassent la pr�ecision de base:histo, histo-limited, dct et statlog; la seule qui ait montr�e une pr�ecision inf�erieure�a celle de base �etait le set land, probablement du au fait que nous avons utilis�eun ensemble plus limit�e que les landmarkers initiaux. Le set histo r�ealise lameilleure performance avec une am�elioration consid�erable par rapport �a la base,mais encore une fois cette am�elioration n'est pas statistiquement signi�cative.Chapitre 8. Meta-apprentissage bas�e sur la r�egression. Dans tous leschapitres pr�ec�edents, nous avons consid�er�e le probl�eme de meta-apprentissagecomme une tâche de classi�cation. Dans ce chapitre nous explorons une autrealternative o�u nous approchons le probl�eme comme �etant un probl�eme de r�e-gression. Nous abordons les tâches de meta-apprentissage comme des tâches der�egression o�u nous cherchons des rapports entre les propri�et�es d'un ensemble de



xxx S�ELECTION D'ALGORITHME VIA META-APPRENTISSAGEdonn�ees et la performance du classi�eur. Cette approche directe est plus exibleque le meta-apprentissage pour la s�election de mod�eles puisque les estimationsne sont pas relatives �a un ensemble sp�eci�que de classi�eurs. Avec ce sc�enario der�egression, nous pouvons utiliser les mod�eles construits pour e�ectuer des s�elec-tions d' inducteurs, c�ad s�electionner les inducteurs les plus appropri�es pour unensemble de donn�ees, ainsi qu'un ordonnancement d' inducteurs, c�ad ordonnerles inducteurs par leur performance pr�evisionnelle sur un ensemble de donn�ees.Nous �evaluons l'approche de r�egression pour les deux tâches et nous examinonsla performance des mod�eles de r�egression construits �a partir des cinq ensemblesde caract�eristiques utilis�es dans l'�etude comparative du chapitre 7. L'algorithmede r�egression utilis�e est un algorithme de r�egression-noyau. En �n, nous inclu-ons dans notre �etude la classi�cation bas�ee sur le "zooming" introduite dans(Soares & Brazdil, 2000). Le land accomplit de loin la meilleure performanceen terme d'estimation d'erreurs des inducteurs individuels. Mais lorsque cesestimations ont �et�e utilis�ees a�n d'ordonner les algorithmes par rapport �a leurperformance pr�evue, le r�esultat fut tr�es m�ediocre, même consid�erablement plusmauvais que l'ordre de base. Les meilleurs r�esultats d'ordonnancement ont �et�eobtenus par la combinaison de Kernel et dct, suivi par celle de Kernel et histo-limited et histo. L'ordre bas�e sur la r�egression a d�epass�e en g�en�eral l'ordre bas�esur le "zooming", n�eanmoins la di��erence entre les m�ethodes et entre les m�eth-odes et la performance de l'ordre de base n'ont pas �et�e signi�catifs au niveaustatistique. Lorsque les pr�edictions de r�egression ont �et�e utilis�ees pour e�ectuerune s�election d' inducteur, seules trois m�ethodes arrivent �a d�epasser la pr�eci-sion de base, mais pas �a un niveau statistiquement signi�catif. En premi�ereposition nous trouvons Kernel et histo, le même ensemble qui avait montr�e lameilleure performance lorsque nous avions abord�e le probl�eme de s�election d'inducteur �a travers la classi�cation. Suivi de Kernel avec dct et histo-limited.Le reste des m�ethodes a eu une performance plus mauvaise que celle de la pr�e-cision de base. En g�en�eral l'approche bas�ee sur la r�egression semble avoir uneperformance l�eg�erement moindre �a celle de l'approche de type "classi�cation".



Chapter 1IntroductionThe machine learning �eld has been evolving for a long time and has given usa variety of models and algorithms to perform the task of classi�cation, e.g.decision trees, neural nets, rule inducers, nearest neighbor etc. The analystmust select among them the ones that better match the morphology and thespecial characteristics of the problem at hand. This selection is one of the mostdi�cult problems since there is no model or algorithm that performs better thanall others independently of the particular problem characteristics, as it has beenobserved in various empirical comparisons, (Aha, 1992; Salzberg, 1991; Shavliket al., 1991; Weis & Kapouleas, 1989).Later the empirical results have been con�rmed by the various \no free lunchtheorems", (Scha�er, 1994; Wolpert, 1996b; Wolpert, 1996a). Among othersthey state that for any two learners, their performance averaged over all thepossible learning problems de�ned over a speci�c training set, will be exactlythe same. For any class of problems where one learner outperforms the otherthere will be another area in which the opposite situation holds.Each algorithm has a \selective superiority",(Brodley, 1995), i.e. it is betterthan the rest for speci�c types of problems. This happens because each algo-rithm has a so-called \inductive bias" caused by the assumptions it makes inorder to generalize from the training data to unseen examples. According toMitchell (1997), \the inductive bias of a learning algorithm is the set of all theassumptions which are required in order to justify its inductive inferences asdeductive inferences". Hence, the analyst must posses a lot of experience to beable to identify the most appropriate algorithm for the morphology of the prob-lem at hand. The process of selecting the appropriate models and algorithms isdescribed thoroughly by Brodley and Smyth (1997).The model of an algorithm actually de�nes the \search space" or \hypoth-esis space", which also determine the \representational bias" of the algorithm,such as k-DNF (disjunctive normal form), or k-CNF (conjunctive normal form),linear discriminant functions, rules etc. The algorithm searches this space forthe right hypothesis, i.e. for the hypothesis that better �ts the data. The algo-rithm determines the order of visiting the states in this space, this order is also1



2 CHAPTER 1. INTRODUCTIONcalled the \search bias" of the algorithm. For example, between two algorithmsthat both search in DNF space, one might start the search from DNF formsthat contain the complete set of features, while the other might start from setsconsisting of only one feature. Hence, the wrong choice of algorithm may resultin slow convergence towards the right hypothesis, or may even end at a subop-timal solution due to a local minimum. A wrong choice of model can have amore severe impact: A hypothesis appropriate for the problem at hand mightbe ignored because it is not contained in the model's search space.A third source of bias comes from the method used to evaluate the learningalgorithms, this form of bias is usually identi�ed as \validation bias". As Baileyand Elkan (1993) note, the best choice of error estimation procedure dependson which learning algorithm is been evaluated.A formalization of the bias spaces is given by Gordon and desJardin (1995),where various levels of bias are described. At the lower level we have a speci�chypothesis space and a way to search it. Above it we have the representationalspace having as states the di�erent representations, and various search spacesde�ned for each of the states of the representational space. The problem of theappropriate bias then becomes a problem of searching those spaces.The classi�cation task is an iterative task. The analyst must �rst select amodel/class of algorithms, for example select between the class of decision treealgorithms or the class of neural network algorithms. On a next step a particularalgorithm implementing a speci�c way to search through the representationalspace associated with the chosen model, is selected. The algorithm is theninvoked and the quality of its predictions is evaluated. If the evaluation resultsare poor, the process is repeated from a previous stage with new selections. Theevaluation procedure is quite time consuming, and becomes problematic whenthe volume of data is high.The human e�ort and experience in this trial-and-error procedure is appar-ent. A plethora of systems with a variety of models and algorithms exist at theanalyst's disposal. However, the selection among them is left to the analyst andso far there is no system that can provide support or suggestions as to whichselections are more appropriate for a speci�c problem.1.1 ContributionsThe goal of this thesis is to provide support to the analyst in selecting theappropriate classi�cation algorithm for a speci�c problem, taking into consid-eration the nature of the problem. We will not make a distinction betweenan algorithm and the representational model of the algorithm. We will ratherconsider the learning algorithm as the entity to be selected. We will tackle theproblem of inducer selection as a typical classi�cation problem, although at ameta-level. In a typical classi�cation problem a learner is given a dataset oftraining instances and is required to construct an inductive model in order topredict the classes of new unseen instances. In our meta-learning frameworkthe training instances will be the descriptions of individual datasets, and the



1.1. CONTRIBUTIONS 3meta-classi�cation or else meta-learning task will be to predict which learningalgorithm is more appropriate for a speci�c dataset.We will now give, a list of what we think that are the main contributions ofthis work.1. On the meta-learning space(a) A novel formulation of the meta-learning space in terms of pairwisecomparisons of learning algorithms. The meta-learning space simu-lates closely the typical process that an analyst adopts, when he hasto select among di�erent inducers.(b) The increased exibility that the meta-learning space o�ers. The in-corporation of the pairwise meta-learning problems allows for a closerstudy of the factors a�ecting the relative performance of di�erent in-ducers.2. On the de�nition of features(a) A systematic search for features that can adequately describe a dataset,with the main emphasis placed on the description of attribute intere-lationships. These features will become the predictive features of thepairwise meta-learning problems.(b) An e�ort to �nd an appropriate way to bridge the gap between fea-tures that describe properties of continuous attributes and featuresthat describe properties of discrete attributes. In that context we alsointroduced the notion of non-appl values, for these features whosecomputation does not make sense for discrete attributes and viceversa.(c) A new representation of the features used to describe the propertiesof each attribute of a dataset or combinations of attributes, via theuse of histograms, in an e�ort to depict as close as possible theirdistribution, without loss of discriminating information.3. Extensive comparisons of di�erent ways of characterizing datasets as wellas performing inducer ranking(a) An empirical comparison of di�erent ways of characterizing datasetsin order to perform inducer selection, under two di�erent meta-learning frameworks.(b) An empirical comparison of di�erent ways of characterizing datasetsunder a regression approach to meta-learning.(c) The exploitation of the regression approach to predict rankings ofinducers, and a comparison of di�erent ranking methods.The empirical evaluation of the system has shown that it can provide success-ful suggestions as to which learning algorithm is more appropriate for a speci�c



4 CHAPTER 1. INTRODUCTIONdataset. Furthermore the meta-learning models constructed by the inducers ap-plied on the meta-learning problems will allow us to have a better understandingof those dataset characteristics that a�ect the performance of the learning al-gorithms.1.2 A guide to the chaptersThe remainder of this dissertation is organized as follows. In chapter 2 we givean overview of the existing approaches to algorithm selection. In chapter 3we present the architecture of the system. That is, we give a description ofthe meta-learning space and the pairwise meta-learning problems constitutingthat space. We show how from combining the meta-models constructed fromthe pairwise problems, we can get a prediction as to which inducer(s) is(are)more appropriate for a dataset. Furthermore, we present the set of datasetswe use in order to train and evaluate the system, as well as the pool of in-ducers from which we are going to perform the algorithm selection. Finally,we present how the evaluation of the system will be done. In chapter 4 weestablish the set of features that will be used to describe the datasets, andto construct the pairwise meta-learning problems, after reviewing the existingwork in characterizing datasets. The idea of histograms is also presented, andvarious issues are discussed concerning the quality of the characteristics andthe problems that they set. Finally, an estimation of the computational costof the dataset characteristics is provided. In chapter 5 we present the resultsof the evaluation of the system when an instance based inducer is used on themeta-level. Two variations of the set of dataset characteristics are comparedwith respect to their predictive performance. In the same chapter we examinethe use of feature selection in order to improve the performance of the instancebased inducer. One clear result is the fact that the features �nally selected aredi�erent for each pairwise problem. Chapter 6 provides a comparison of fourdi�erent learners on the meta-learning level, in order to establish which is themost suitable inducer. The meta-models of two of the inducers are analyzed inorder to characterize the discriminatory power of the datasets characteristics.In chapter 7 we perform a comparative study of di�erent ways of characteriz-ing datasets, using only real world datasets. The comparison is done under twodi�erent meta-learning frameworks, and the results show an advantage of thehistogram based characterizations, over the other characterizations. In chap-ter 8 we deviate from the approach that we followed in the previous chapters,where we handled the problem of algorithm selection as a classi�cation prob-lem. Here instead, we explore the use of a regression algorithm to predict therelative errors of pairs of algorithms, but also to predict the absolute error ofevery algorithm. The predictions are used to perform algorithm selection andto provide rankings of algorithms. We examine the performances of di�erentstrategies of characterizing datasets, under the regression scenario and we com-pare the regression based ranking with a well established method of ranking. Inthe last chapter we give an overview of the work, along with the problems that



1.2. A GUIDE TO THE CHAPTERS 5we faced, the remaining open issues and possible ways to address them.



6 CHAPTER 1. INTRODUCTION



Chapter 2Methods of AlgorithmSelectionFormulating and solving a classi�cation problem is a time intensive task consist-ing of many phases, which requires a considerable amount of diverse knowledgefrom the analyst. Before anything else, there is the de�nition of the classi�ca-tion problem and the collection of the appropriate data for solving the problem.In this stage it is the domain expert who has to formulate the problem, deter-mine the features that provide relevant information for solving it, and of courseprovide them. It can be a quite time consuming process and since usually thedata do not come for free, the amount of relevant information at the end can belimited. The quality of the available data is one of the most crucial factors inachieving a high performance solution. However, we will not go into the detailsof data collection and of the quality of the available data. The analysts's maintask will be to select the most appropriate learning algorithm, according to someperformance measures and within the constraints imposed by the application.In �gure 2.1, we give an overview of the analysis process. The analysthas at his disposal a pool of classi�cation algorithms, from which he initiallyselects some for evaluation on the speci�c problem. The initial selection canbe based on knowledge of the problem, that is select those algorithms whosecharacteristics better match the characteristics of the dataset, or even on theanalyst's preferences for speci�c learning algorithms. The evaluation usuallyrequires extensive experimentation, which consists in repetitive execution of theselected algorithms. The form of evaluation depends on constraints imposed bythe application and the volume of the data; sometimes it is possible to performcomputational intensive evaluation, while other times this is prohibitive. It canbe that the results of the evaluation are poor for all the algorithms evaluated,this can be due to a bad choice of inducers, or even worse an indication thatthe quality of data is poor. Whichever the cause, the result is a reiteration ofthe process. After completing successfully the evaluation, the next step is thecomparison of the achieved performances in order to select the most appropriate7
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Fig. 2.1. Model and task selection for knowledge discoveryclassi�cation algorithm. The selected algorithm will be the one used to constructthe �nal classi�cation model from the available data.The goal of all algorithm selection systems is to relieve the analyst of theintensive evaluation phase, using information about the problem and the datasetin order to directly suggest the more appropriate inducer.In the forthcoming sections, we will �rst give an overview of the evaluationphase, the issues involved and the methods used in order to perform it, followedby an overview of the existing systems for algorithm selection.2.1 Algorithm Evaluation and SelectionThe typical process in selecting which inducer will be applied to a dataset inorder to construct a classi�cation model, depends on the goal of the analysis. Forexample, if the target is to acquire an understanding of the data, the analystcan choose from the beginning to eliminate from the pool of algorithms that



2.1. ALGORITHM EVALUATION AND SELECTION 9he is considering to use, the ones that do not produce understandable andinterpretable models. Examples of which are nearest neighbors methods thatdo not produce any kind of models, or neural nets that produce models di�cultto interpret. If time is a critical concern, this can lead to a di�erent set ofpossible candidates, from which the computationally intensive algorithms areexcluded. In a di�erent scenario, which will be also our working hypothesis,the analyst is interested in selecting the classi�cation algorithm that can better�t the data, that is, he is interested in the inducer that will exhibit the lowestgeneralization error. To determine the appropriate inducer, he �rst uses someerror evaluation method, in order to get an estimate of the errors of the initiallyselected ones. In a next step he compares the error estimates, usually via somekind of statistical hypothesis test, in order to determine which is the best forthe dataset under examination.Before proceeding to a more thorough description of the evaluation andcomparison methods, we will give a description of the basic constituents of thelearning process, and of the notion of generalization error.� Consider a generator G of random vectors X , which are drawn accordingto an unknown, but �xed, probability distribution, P (X).� A supervisor S that assigns output values, class labels, Y = S(X), to theX random vectors, according to an unknown, but also �xed, conditionalprobability distribution P (Y jX).� The pairs (X;Y ), drawn from the probability distribution P (X;Y ) =P (Y jX)P (X), constitute the learning space.� The goal of an inducer I , is to construct a hypothesis H(X) that bestapproximates the response of the supervisor, S(X).In the real world the inducer has access to a datasetD with a limited numberof examples, drawn from the distribution P (X;Y ). The inducer will be trainedon this dataset in order to construct the approximation of S(X).The generalization error of the H(X) hypothesis, constructed by I on thedataset D, is the probability that H will misclassify an example drawn at ran-dom from P (X). That is :generalization error = Px2P (X)(H(x) 6= S(x))Since we can not draw an in�nite number of new examples from P (X), on whichwe could compute the exact generalization error, we have to rely on estimationsof it using the available data, D, by some error estimation procedure. It is theseerror estimates which will be later used in order to select the best inducer, bymeans of some statistical test.2.1.1 Error EstimationThe general idea underlying all error estimation procedures, is the division ofthe available set of examples in two disjoint sets. One is used for training,



10 CHAPTER 2. METHODS OF ALGORITHM SELECTIONand the other is used for testing/evaluating the generated model. The test setshould not contain examples that have been used in the training set, as thiswould provide optimistically biased estimates of the error. Various methods areused for obtaining the division to train/test sets and estimating the error. Wewill briey present some of them.The simplest method and the one with the lowest computational require-ments is the holdout method, where the available set of examples is partitionedin two disjoint sets. Usually 2=3 of the initial examples are used for trainingthe inducer and the remaining 1=3, called the holdout set, is used for testingthe produced model. The method is used when the volume of the data is quitehigh, and the repetitive execution of training and testing phases, required byother methods, is prohibitive. It makes poor use of the examples for training,since 1=3 of them is never used. Nevertheless, when the number of examples ishigh it gives reliable estimates.In k-fold cross validation method the available set is split into k disjointsets. The inducer is then trained on the union of k � 1 sets and tested on theremaining set. The whole process is repeated k times, each time a di�erent setfrom the k is used as a test set. The estimation of the error is simply the averageof the observed errors over the k folds. When k equals the number of examplesthen the method is called leave-one-out. A variant of cross validation is strati�edcross validation, where the partitions are constructed in such a way, that thedistribution of the classes, as it appears in the initial dataset, is preserved.In the bootstrap method the initial set of examples is sampled with replace-ment, so that a new set of the same size is established. The instances not chosenin the sampling process will form the testing set. The whole process is repeateda number of times, k, usually between 50 and 200, each time using a di�erentsample of the examples. The estimation of the error is given by the followingformula : err = 1k kXb=1(0:632�testb + 0:368�train)where �testb is the error of the model on the b test set, and �train the error ofthe model on the complete initial set.Leave-one-out produces almost unbiased estimates of the true error, but withhigh variance. The variance is reduced when we move to k-fold cross validation,with k in the area of �ve to ten, and it is further reduced when we are usingstrati�ed cross validation, still being relatively high. One method to reduce thevariance of cross validation is to repeat the whole procedure for a number oftimes. For both cross validation and strati�ed cross validation the estimatesof the mean are almost unbiased. In bootstrap the error estimates are highlybiased, but they have a very low variance. Bootstrap's bias is high especiallywhen algorithms that �t perfectly the training data are evaluated, e.g. a nearestneighbor algorithm. In that case �train is zero, leading to optimistic estimationof the error. Efron and Tibshirani (1995), propose a bootstrap version whichthey call the 632+ rule, which is designed to provide less biased estimates of theerror. A comparative study of cross validation, strati�ed cross validation and



2.1. ALGORITHM EVALUATION AND SELECTION 11bootstrap can be found in (Kohavi, 1995). The author concludes that the use often fold strati�ed cross validation is appropriate for algorithm selection, even ifthe computational power available is su�cient for more computational intensivemethods of error evaluation. In a similar study, Bailey and Elkan (1993), com-pared the performance of bootstrap and leave-one-out cross validation; they alsoconcluded that the use of cross validation is preferable, since it exhibits muchsmaller bias than bootstrap. They noted though that the best choice of errorestimation method depends on which algorithm is evaluated.The simple comparison of the estimated errors of a number of inducers isnot su�cient to determine which is the best for a speci�c dataset. The observeddi�erences in the error estimates might not be signi�cant in a statistical context.The estimates of the errors are sample estimates of the true error. It is obviousthat two inducers can have the same true error, but di�erent sample estimates.In order to establish whether the di�erences in the sample estimates reect adi�erence in the true error or are simply the result of random uctuations ofthe sample estimates around the same mean, the use of statistical signi�cancetests is essential.2.1.2 Algorithm Selection based on Signi�cance TestingStatistical signi�cance tests are used to control whether some hypothesis holdsor not. In what concerns the comparison of learning algorithms, usually thehypothesis examined is whether two inducers have the same true error. Thestatistical test used should depend on the way that the evaluation of the errorhas been done.When the evaluation of the error is done using a single split of the dataset,there are two main options. The McNemar test is a test that checks for thedi�erence of two proportions. It is based on the number of times that the twoalgorithms disagree in their predictions. The number of times that the two al-gorithms are both correct or both wrong are not considered by the test. Thesecond option is to consider the errors of the inducers as coming from a bino-mial distribution, which can in turn be approximated by a normal distribution,and use a simple test of the di�erences of the two means based on the normaldistribution assumption.In the case of cross validation one can use the paired t-test and test whetherthe di�erence of errors of the inducers between the folds of the cross validationis zero. Another option is to use the McNemar test again, but now the numberof times that the two algorithms disagree will be computed from the union ofthe test sets. Another possibility is the sign test, that tests for the sign of theerror di�erences between the folds. It assumes a binomial distribution, if thetwo inducers have no signi�cant di�erence, then the number of + for each oneof them should be approximately equal.Special care should be to the assumptions of the statistical tests by the errorestimation procedure. For example the paired t-test requires that the test setsare independent, that is they should not overlap. The same requirement isalso imposed for the training sets. In the case of k-fold cross-validation this



12 CHAPTER 2. METHODS OF ALGORITHM SELECTIONrequirement is not violated for the test sets, since they are always disjoint, butit is violated for the training sets. Obviously, if we use repeated k-fold cross-validation then even the assumption of the independence of the test sets doesnot hold. For a thorough description and a comparative study of some of theaforementioned statistical tests in combination with error evaluation proceduressee (Dietterich, 1998).When the number of learning algorithms compared is limited to two, theapplication of the statistical tests is straight forward. But if the number ofalgorithms compared is higher than two, there is one more factor that should beconsidered, which is known as the multiplicity e�ect. Every statistical test haswhat is called a Type I error, which is actually the probability of rejecting thehypothesis examined when actually it holds. This type of error is controlled bythe signi�cance level, �, set by the analyst for the test. When n comparisonstake place, the probability of committing a Type I error in one of them, is nolonger �, but rather 1�(1��)n, the quantity (1��)n is the probability that weget all the comparisons correct. In order for the complete results to be signi�cantat a desired signi�cance level, �0, we have to adjust the signi�cance levels, �,of each of the pairwise comparisons according to �0 = 1 � (1 � �)n. For adetailed discussion on issues concerning the comparisons of learning algorithmssee (Salzberg, 1997; Feelders & Verkooijen, 1995).It is obvious that the selection of the most appropriate inducer, the one thatachieves the lowest error, is not a trivial task. Apart from extensive experimen-tation in order to evaluate the algorithms, a sound knowledge of the weaknessesand strengths of the evaluation strategies and a good understanding of statisticsis required, in order to select the appropriate combination of statistical test andevaluation procedure.2.2 Automatic Algorithm SelectionAs it is apparent, the task of algorithm selection is quite intensive and timeconsuming, since most of the evaluation procedures require repetitive applica-tion of the learning algorithms. The goal of systems that provide suggestionsas to which algorithm should be used is to avoid the time demanding processof evaluation. Such systems usually rely on some kind of mapping between adescription of the datasets and performance measures of the algorithms. Theexisting approaches can be characterized along the following dimensions :� Dataset descriptions : the properties used to describe the datasets.� Evaluation measures : the performance measures with respect to whichthe suggestion is provided, e.g. error, time performance.� Form of suggestion : the form in which the suggestion of the system comes,e.g. whether it proposes a single algorithm, or a list of algorithms.



2.2. AUTOMATIC ALGORITHM SELECTION 13� Method used to construct the suggestion : how the mapping from the prop-erties of the datasets to the performance measures is done.We will shortly review the work done along these dimensions, for some of thema more thorough description will be given in the forthcoming chapters, wherethis is appropriate.2.2.1 Datasets DescriptionThere are two main directions used so far in order to characterize a dataset forproviding suggestion as to which classi�cation algorithm(s) is(are) more appro-priate for a speci�c dataset. In the �rst one, measures that describe statisticaland information based properties of the datasets are used. In the second onea dataset is described using the performance of very simple learners. In a verysuccessful metaphor the �rst category of measures is described as the genotypeof the datasets, i.e. the inner structure of the dataset, and the second categoryas the phenotype of the datasets, i.e. the visible properties of the dataset pro-duced by the interaction of its genotype with the environment in our case thesimple learners.The description of a dataset in terms of its information/statistical proper-ties, in order to provide recommendation as to which algorithm to use, appearedfor the �rst time within the framework of the STATLOG project (Michie et al.,1994). The authors used a set of 15 characteristics, spanning from simple oneslike the number of attributes or the number of examples, to more complexones, like the �rst canonical correlation between the attributes and the class at-tribute, or the mean mutual information between attributes and the class. Theset of characteristics introduced there was later used in various studies, aimedat solving the problem of algorithm selection, (Brazdil et al., 1994; Todorovski& Dzeroski, 1999; Sohn, 1999). Lindner and Studer (1999), continue in thesame way, providing an exhaustive list of information and statistical measuresof a dataset computed for each attribute or pairs of attributes. They providea tool for the automatic computation of these characteristics which they callDCT. Nevertheless, they point out that only a limited set of these measures isrelevant in providing recommendation. Set that in fact, was very similar to theone de�ned in STATLOG. Sohn (1999) also uses the STATLOG set as a start-ing point, but she proceeds with a careful evaluation of their properties in astatistical framework. As a result, she discovers that some of the characteristicsare highly correlated, and she omits the redundant ones from her study. Fur-thermore she introduces new features that are transformations or combinationsof the existing ones, like ratios or seconds powers, with the goal of providingmore successful predictions.Todorovski et al. (2000) relied on the set of characteristics produced byDCT. In order to overcome the limitations of the use of the average valuesfor the characteristics which are computed per attribute, or per attribute pair,they included in their set of characteristics the minimum and maximum values



14 CHAPTER 2. METHODS OF ALGORITHM SELECTIONof these. They also include new characteristics which are ratios of the alreadyexisting.In the second approach as already mentioned above a dataset is describedin terms of accuracy performance that simple learners achieve on the partic-ular dataset. This approach is called landmarking and it was introduced in(Pfahringer et al., 2000). A more thorough description of the related work willbe given in section 4.1 of chapter 4, where we will introduce the set of charac-teristics used in the present study.2.2.2 Evaluation measuresIn order to provide suggestions as to which inducer should be applied on aparticular dataset, performance measures should be used, according to which apreference order among the inducers will be established.An obvious performance measure is that of the accuracy that the algorithmsachieve. So the goal of a system providing recommendations would be to sug-gest the algorithm that achieves the highest accuracy. However, there can becases where other performance dimensions are also of interest. For example theamount of training time (i.e. the amount required by the algorithm to constructa model), the amount of test time (i.e. time required to classify an example)or the memory requirements of the algorithm. There can be more, less easy toquantify, performance measures, like the simplicity or the understandability ofthe models that the learning algorithms produce. Each one of these could pro-vide a basis for algorithm suggestion. When multiply criteria should be takeninto account the problem of algorithm selection can be considered as a multi-objective optimization problem. Nevertheless in practice and in what concernsmeta-learning endeavors, accuracy is the one most often used. Examples ofstudies where the selection criteria was based on accuracy, include the STAT-LOG project, (Michie et al., 1994), the work on landmarking, (Pfahringer et al.,2000), and the work of Sohn (1999).The only case in which the goal of prediction was performance of the inducersin terms of time was in VBMS,(Rendell et al., 1987). VBMS was actuallythe �rst e�ort to predict which algorithm from a set of available algorithmswill perform better for a given classi�cation problem, by associating simplecharacteristics of the datasets like the number of training examples and thenumber of attributes, with the performance in terms of execution time. VBMSis trained in an incremental way, i.e. it acquires experience as new classi�cationtasks are presented to it.There are cases in which the goal is to evaluate the learning algorithms,taking into account more than one performance dimension. For example the usermight be interested in a tradeo� between training time and accuracy, willing tosacri�ce some level of accuracy if he can have an algorithm that can constructthe learned model much faster. In such cases there is a need for a mapping ofthe multidimensional performance measures onto a single scalar value, whichwill then be used to de�ne the preference order among the available algorithms.The work done by Soares (2000) provides a way to combine two performance



2.2. AUTOMATIC ALGORITHM SELECTION 15measures of classi�cation algorithms, namely accuracy and total execution time(i.e. the sum of the time required to construct an inductive model and the timerequired to test that model). The user can adjust the importance of accuracyover time via a tunable parameter. The method used to de�ne a preferenceorder among the inducers is called the adjusted ratio of ratios,(ARR). ARRgives a measure of the advantage of a learning algorithm A over another learningalgorithm B, in terms of the accuracy they achieve and the execution time fora speci�c dataset. When it comes to ranking n inducers, the ARR of eachinducer is computed, with respect to every one of the n � 1 other inducers,resulting in a total number of n(n � 1) ARRs. The next step is to providea summary of these ARRs for every inducer, and this is done by the overallmean adjusted ratio of ratios,(OMARR), which is actually the average of allthe n � 1 ARRs associated with a speci�c inducer. The higher the value ofthe OMARR, the higher the advantage of an inducer for the speci�c dataset.The preference order is de�ned using the OMARR values. The method can alsoprovide a ranking of the inducers considering their performance in m datasets.In this case the n(n� 1) ARRs are computed for each dataset. Then for everyinducer its advantage over each one of the n� 1 inducers is computed, via thepairwise mean adjusted ratio of ratios, PMARR, which is the average of therelated ARRs over the m datasets. Finally for each inducer the OMARR iscalculated, but now the average is taken over the PMARR values. The rankingis done the same way as before, based on the value of OMARR.One limitation of the ranking schema proposed by Soares is that it can onlyaccommodate accuracy and time as performance measures. A more exibleschema is proposed in (Nakhaeizadeh & Schnabl, 1997), based on Data Envel-opment Analysis, (DEA). The proposed method can incorporate any numberof performance criteria. Two types of performance measures are considered,those that measure positive properties of the algorithms, i.e. more is better,for example accuracy, and those that measure negative properties, i.e. less isbetter, like training time. In DEA the positive properties are called outputcomponents and the negative input components. They de�ne the e�ciency of alearning algorithm as a weighted sum of the output components over the inputcomponents. The weights of the input and output components are computedfor each learning algorithm, so that its e�ciency is as close as possible to one,under the constraint that there is no other inducer for which the same set ofweights would give an e�ciency of more than one. The method is objective,in the sense that the weights are computed in such a way that they maximizethe e�ciency of each inducer. Algorithms that achieve an e�ciency of one, aree�cient algorithms. The set of e�cient algorithms forms the e�ciency frontier.The e�ciency of an algorithm can only provide a partial ranking, since all thee�cient algorithms have the same e�ciency of one. In order to provide a com-plete ranking they introduce the notion of the AP-value. The AP-value is theamount by which the e�cient algorithms can increase their input componentswhile still remaining e�cient. For the algorithms that are not e�cient the AP-value is equal to their e�ciency value. The �nal ranking of the algorithms isbased on the AP-value.



16 CHAPTER 2. METHODS OF ALGORITHM SELECTIONIn section 2.2.4, we will see how the various performance measures, simple orcomplex, have been used in a number of meta-learning e�orts in order to supportthe user in selecting the most appropriate classi�cation algorithm, according tothe performance measure under consideration.2.2.3 Form of SuggestionThe various approaches in providing recommendation to the user, when he hasto perform a classi�cation task on a dataset, give suggestions in one of thefollowing forms :1. A list of applicable algorithms2. The best algorithm3. A ranking of the algorithmsIn the �rst category we have the work done in STATLOG, which was alsoadopted in (Brazdil et al., 1994; Lindner & Studer, 1999; Todorovski & Dze-roski, 1999). In this framework the pool of available classi�ers is divided intwo distinct sets: the applicable inducers and the the non-applicable inducers.Applicable inducers are expected to achieve a fair performance on the datasetunder examination, while non-applicable ones are expected to have a poor per-formance. All the mentioned methods used the accuracy of the inducers as aperformance criterion.In the second category we classify all the approaches where the suggestionconsists of a single algorithm, that is, the algorithm which is expected to performbest on the dataset under examination, according to the performance criterionthat it is used. In this category we �nd the work of Bensusan and Giraud-Carrier (2000) where landmarkers are used in order to predict the inducer thatwill achieve the lowest error, and the work of Koepf et al. (2000), who use aset of statistical and information based measures to predict again the algorithmwith the lowest error.In the third category the recommendation consists in providing a completeranking of the available inducers. This order can be based on a simple perfor-mance measure like accuracy, as it was done in (Sohn, 1999) and (Bensusan& Kalousis, 2001). Or it can be based on a more complex performance mea-sure that incorporates simpler ones. Examples are zoomed ranking, (Soares &Brazdil, 2000), which provides rankings of the inducers based on the adjustedratio of ratios and the work by Paterson et al. (2001), where the suggestedranking is based on the e�ciency score de�ned by Data Envelopment Analysis.



2.2. AUTOMATIC ALGORITHM SELECTION 172.2.4 Constructing Recommendations from Dataset Char-acterizationsHaving presented the possible ways to characterize a dataset, and the perfor-mance criteria which can be used, what remains is to give an overview of howdataset characterizations can be associated with the measures of performance.There are two main possibilities; the �rst one uses classi�cation techniques totackle the problem, while the second one uses regression.In both approaches a collection of Meta-Learning problems is established,with the number of problems depending on the number of classi�cation algo-rithms among which the recommendation is to be provided. We character-ize these problems as meta-learning problems, since their purpose is to learnsomething about the performance of learning algorithms. The collection of themeta-learning problems will constitute the Meta-Learning Space. Usually it isthe combined solution of the meta-learning problems that will provide the basisfor the recommendation. By solution, we mean here a number of Meta-Modelsthat will be constructed from the application of a learning algorithm on theseproblems. In the classi�cation approach the meta-learning problems are for-mulated as classi�cation problems, while in the regression approach they areformulated as regression problems. We will continue by �rst reviewing the var-ious e�orts that have adopted the classi�cation approach, and then the onesthat follow the regression approach. In what follows, unless otherwise speci�ed,the performance criterion used is accuracy.In STATLOG, for a pool of n inducers among which the selection will beperformed, the Meta-Learning Space consists of n classi�cation problems, eachone associated with one of the n inducers. The instances of these classi�cationproblems consist of datasets descriptions and the class label. The class labelcan take one of the values, appl, non-appl, depending on whether the algorithmis considered to be applicable or not to the corresponding dataset, i.e. whetherit exhibits high or low performance on the speci�c dataset. For each of themeta-learning problems, a meta-model is constructed, that can predict whetheran algorithm is applicable or not to a speci�c dataset. The algorithm usedto construct the meta-models was the rule system of c4.5, (Quinlan, 1992a).The approach is described in �ner detail in (Brazdil et al., 1994). Exactly thesame formulation of the meta-learning space was adopted in (Lindner & Studer,1999; Todorovski & Dzeroski, 1999). Lindner and Studer advocate the use ofa case based reasoning system to represent the meta-learning problems andperform the inductive process, but they did not implement that. At the endthe meta-learning models that they induce are created via the c4.5 decision treealgorithm. Todorovski and Dzeroski, explore the use of �rst order inductivealgorithms in order to make full use of the dataset characteristics which arecomputed on an attribute basis. Meta-learning approaches mentioned so far relyon propositional learners on the meta-level, which have limited representationalpowers. Normally one had to rely on the means of characteristics that werecomputed for each attribute so that they can be represented in a propositionalframework. First order inducers overcome this limitation and are able to make



18 CHAPTER 2. METHODS OF ALGORITHM SELECTIONfull use of the information contained in the dataset characteristics.Another formulation of the Meta-Learning Space is to create (n2) meta-learning problems that correspond to all the pairwise comparisons of learnersfrom a given pool. The instances of the meta-learning problems will be alsocomposed by the description of a dataset and a class label. But this time theclass label will indicate which algorithm of the pair is more appropriate for thespeci�c dataset. Here the goal of meta-learning will be to construct meta-modelsthat will describe the conditions under which one inducer is preferable over an-other. The meta-models can then be combined in order to determine from thepartial ordering, which inducer is the most appropriate, or even provide a rank-ing of them. This formulation was followed in (Pfahringer et al., 2000), butthey stopped in the construction of the meta-models, without proceeding intheir combination in order to select the most appropriate inducer. To constructthe metal-models they used Ripper, a rule inducer (Cohen, 1995).Finally in the simplest formulation of the Meta-Learning space, there is onlyone meta-learning problem. In this case the class label is simply the inducer thatis most appropriate for the corresponding dataset. The meta-model, a globalone that gives directly the conditions under which one inducer is preferableover all the others. This approach was adopted in (Bensusan & Giraud-Carrier,2000). In what concerns the inducer used on the meta-level, they examined theperformance of ten di�erent learners.In the regression approach, the goal usually is the direct prediction of the er-ror or of the accuracy of an inducer from the characteristics of the dataset. Herethe Meta-Learning Space consists of one regression problem for each inducer.The meta-models are established via the application of a regression algorithm.The predictions of the meta-models, can then be used to perform either algo-rithm selection, i.e. suggest the learning algorithm with the lowest predictederror, or algorithm ranking, return a ranking of the available inducers accordingto their predicted errors.Regression methods were �rst used to predict the error of inducers by Gamaand Brazdil (1995). They tested three di�erent regression methods: simple lin-ear regression, instance based regression and a piecewise linear method. Theydid not however use the produced regression models in order to perform algo-rithm selection or algorithm ranking. Sohn (1999) uses simple linear regressionto predict the errors of inducers and then proceeds to rank the inducers ac-cording to their predicted errors with quite promising results. Finally Koepfet al. (2000), used regression in order to perform algorithm selection and theycompared that with algorithm selection via classi�cation, their results favoredregression based algorithm selection over classi�cation based. The datasets onwhich they worked were arti�cial datasets. A more detailed description of re-gression based approaches will be given in section 8.1.There is a third approach in constructing suggestions which cannot be clas-si�ed in classi�cation or regression approaches, and consists of methods thatproduce rankings of inducers. Two methods fall in this category; they bothuse a combination of ranking schemas with variations of the nearest neighbormethod. The use of the nearest neighbor method is essential in both systems,



2.2. AUTOMATIC ALGORITHM SELECTION 19because in order to provide a ranking of the inducers for a speci�c dataset, theyneed the establishment of a set of similar datasets, i.e. sets with similar charac-teristics. In order to construct the ranking for the new dataset the performancesof the inducers on the set of similar datasets will be considered.The �rst method is that of zoomed ranking introduced in (Soares & Brazdil,2000). They use a three nearest neighbor method in order to establish a similarset of datasets with the one for which a ranking should be constructed. Afterestablishing the set of similar datasets they apply the ranking method based onthe adjusted ratio of ratios, already described in section 2.2.2, in order to de-termine the ranking. In a similar way Paterson et al. (2001) use a combinationof three nearest neighbors and the e�ciency score de�ned by DEA (Data Enve-lope Analysis), in order to provide a ranking of the inducers. Since the e�ciencyscore cannot directly accommodate the performance of inducers among di�erentdatasets, as the adjusted ratio of ratios does, they use a weighted average ofthe e�ciency scores of every inducer among the three nearest neighbors. Theweights are determined according to the distance of each of the three nearestneighbors from the dataset under examination. The ranking of the inducersis then based on the weighted average. As performance measures from whichthe e�ciency score is computed they used, accuracy, train time, test time andhypothesis size. Hypothesis size is the model size that an inducer produces fora speci�c dataset.2.2.5 Related WorkIn this section, we will present work that is related to the problem of algorithmselection but could not be characterized along the dimensions that we haveestablished, in the previous sections.In a similar line of research that also involves dataset characterization, Aha(1992), proposes a methodology for constructing rules that describe the rel-ative performance of inducers starting from a speci�c dataset for which theyexhibit signi�cant di�erence in performance. One of the key assumptions of theproposed method is the availability of information concerning the inner struc-ture of the dataset. This information includes characteristics like the numberof instances, number of classes, the number of prototypes per class and thenumber of relevant and irrelevant attributes and will be used to construct anumber of, hopefully similar, arti�cial datasets that will populate the spacearound the initial dataset. The construction of the arti�cial datasets is doneby slight perturbations of the parameters that describe the initial dataset. Thecharacteristics used on the construction of the arti�cial datasets along with theperformance of the inducers on them will constitute a series of meta-learningproblems, from which rules will be induced by the application of a classi�cationalgorithm. The rules will describe how the relative performance of the inducersis determined by the characteristics of the datasets.Sleeman et al. (1995), present an expert system called Consultant. Thesystem is built to support the use of a Machine Learning Toolbox, an integratedarchitecture of ten machine learning tools. It relies heavily on close interaction



20 CHAPTER 2. METHODS OF ALGORITHM SELECTIONwith the user; it asks several questions trying to determine the nature of theapplication and the nature of the data. It does not examine the data. At theend of the interaction a list of possible algorithms is presented and the user mayselect one of them. The system is not expandable (i.e. it can not incorporate newalgorithms) and in the end relies heavily on the user for selecting the appropriatealgorithm.Constructive induction systems face a number of problems similar to thoseinvolved in algorithm selection. These systems view learning as a dual searchprocess. They perform a search both for an appropriate representation in thespace of representational spaces and for an appropriate hypothesis in a spe-ci�c representational space. The traversal of the representational space is donewith the use of constructive and destructive operators. Constructive operatorsexpand the representation space using attribute generation methods, e.g. nu-merical or logical combinations of the existing attributes. Destructive operatorscontract the representational space through attribute selection and attributeabstraction,(Bloedorn & Michalski, 1998). Again similar questions arise, i.e.which operators should one apply, in which order they should be applied, andon which attributes,(Bloedorn et al., 1994). The order of application of opera-tors critically a�ects the quality of the �nal outcome. Bloedorn et al. (1993),built meta-rules, from meta-data characterizing datasets, to guide the selec-tion of operators. According to the information source used to select operatorsand attributes, constructive induction methods are classi�ed in three categories:data driven, hypothesis driven and knowledge driven methods. In data drivenconstructive induction, information from the training examples is used. For ex-ample in order to select attributes from which new ones will be derived one mayuse the information gain metric of the attributes,(Bloedorn & Michalski, 1998;Bloedorn et al., 1993). In hypothesis driven constructive induction, results fromthe analysis of the form of intermediate hypothesis are used. For example onemay use patterns appearing in the intermediate hypothesis, in order to con-struct new attributes,(Wnek & Michalski, 1994). Finally in knowledge drivenconstructive induction, domain knowledge which is provided by experts is used.2.3 Model CombinationA line of research parallel to algorithm selection is that of model combination.There, unlike algorithm selection where the goal is to select the single bestperforming algorithm for a particular dataset, the goal is to combine di�erentclassi�cation models in order to improve accuracy.There are many di�erent ways to combine classi�cation models, the simplestcombination strategy is voting. There a number of classi�cation models areconstructed from the training data; when a new instance has to be classi�edeach one of the models produces a prediction. The class most often predicted isconsidered as the class to which the instance belongs to. More elaborate votingstrategies have been proposed, where the prediction of each model is weighted,usually by a quantity associated with the quality of prediction of the model.



2.3. MODEL COMBINATION 21A more elaborate combination schema, is stacked generalization, (Wolpert,1992). In stacking each of the base inducers, referred to as level-0 inducers,produces a prediction for each instance of the training set, usually by an innercross-validation procedure. These predictions along with the class labels willconstitute a new training set which will be given as input to another inducer,called level-1 inducer. The goal is to construct a classi�cation model that will beable to describe how the predictions of the level-0 inducers relate to each other,when they fail or succeed, and how they related to the class label. We havedescribed a two level process, the one most often employed, but in theory therecan be many levels of combinations. In order to classify a new instance, each oneof the level-0 inducers produces its prediction, which are then given to the level-1 inducer in order to determine the class label. Note here that voting can beconsidered as a simple variant of stacking. Another variant of stacking is to use,instead of the class labels, the probability distribution of the class labels as theyare calculated by the level-0 inducers. This variant has been found to producebetter results than using only the predicted class label, (Ting & Witten, 1997).Another variant of stacked generalization is cascade generalization, proposed byGama and Brazdil (2000). There the set of initial attributes is extended by theprobability distributions of the class labels, produced by the level-0 inducers,and then passed as input to the level-1 inducer.So far, all the model combination methods mentioned use the predictions ofall the classi�cation models to produce the �nal class label. There is another lineof research in model combination, where at the end the prediction of only one ofthe base inducers is used to assign the class label to a new instance; this approachcan be referred to as dynamic model selection. The goal in dynamic modelselection, is to choose the most appropriate classi�cation model for a regionof the instance space. The assumption underlying this approach is that everyclassi�cation model has a di�erent region of competence within the instancespace on which it was constructed. That is, one of the classi�cation models mightprovide better predictions than the others for speci�c regions of the instancespace, and vice versa. When a new instance has to be classi�ed, one mustidentify which is the best performing model for the region in which the instancefalls, and then use that model to produce the �nal prediction.We must note here the similarity of this approach with the problem of al-gorithm selection. In algorithm selection the instance space consists of all thepossible datasets, and the goal is to �nd for each instance, i.e. dataset, thebest performing classi�cation algorithm. In dynamic model selection the goalis, for each instance within a particular dataset, to �nd the classi�cation modelexhibiting the best performance, the one that has the highest probability ofcorrectly classifying it.The key component in dynamic model selection is the characterization of thedi�erent areas of the instance space according to the competence of each model.One simple way to achieve that is by using cross-validation within the trainingset and select the algorithm that exhibits the highest accuracy, to construct the�nal classi�cation model, as proposed in (Scha�er, 1993). This is a rather crudeapproach, since it considers the whole training set to perform the selection and



22 CHAPTER 2. METHODS OF ALGORITHM SELECTIONcharacterize the instance space. A more elaborate approach is to use a meta-learner to characterize the various regions of the instance space according tothe performance that the classi�er exhibits. Usually this characterization isdone within the training set via a cross-validation procedure. Then when a newinstance is to be classi�ed the model or models constructed by the meta-learneris(are) used in order to determine in which region of the instance space it falls,and select accordingly the appropriate model. For example Woods (1997), usesa nearest neighbor approach in order to determine the region in which a newinstance falls, the set of nearest neighbors is then used to get a local accuracyestimate of the base level classi�ers, and the one with the highest accuracy isselected to provide the class label. Koppel and Engelson (1996), use a decisiontree to characterize the accuracy of the classi�cation models for the di�erentregions of the instance space. Whenever a new instance has to be classi�eda decision tree is used for each of the available classi�cation models, in orderto determine the area of the instance space in which the instance belongs to,and the accuracy of the corresponding model for that area. The model withthe highest performance is then chosen to classify the instance. Todorovski andDzeroski (2000), also use a decision tree in order to select which model shouldbe applied to a speci�c instance. Here the leaves of the decision tree, which theycall meta-decision tree, use properties of the predictions of the base classi�ersin order to select which base model should be selected. These properties arebased on the probability distribution of the class labels that each base modelproduces.In a slightly di�erent approach which can still be characterized as dynamicmodel selection, the instance space is characterized based on the predictionsthat the base classi�ers produce. Whenever a new instance is to be classi�edall the models are applied to it and their predictions are used in order to locatein a look-up table all the instances that exhibit the same pattern of predictionsin the training set. Merz (1995) then uses an estimate of the performance ofthe models in that set of instances in order to select the best performing modelto produce the classi�cation, while Huang and Suen (1995) simply return themajority class that corresponds to that set of instances. This is not a majorityvote, since the predictions of the models are used in order to de�ne an area inthe instance space and do not vote to classify the instance. Ting (1997) usesinducer speci�c measures to characterize the instances of the instance spaceaccording to their typicality. The more typical an instance is for a speci�clearning algorithm, the higher our con�dence is in the prediction assigned toit by that learning algorithm. When a new instance has to be classi�ed itstypicality is computed for each inducer, then the inducer for which the instancehas the highest typicality is chosen to provide the prediction for the speci�cinstance.Another approach to model combination are hybrid classi�cation algorithms.This category of classi�cation algorithms includes inducers that integrate di�er-ent learning paradigms within a single structure without relying on individualapplication of base inducers. For example Tcheng et al. (1989) present theCRL/ISO, a system that uses optimization in order to search in the inductive



2.3. MODEL COMBINATION 23bias space. The CRL component is a learning system that manages a set ofdiverse inductive biases, including multiple decomposition strategies, multiplefunction approximation strategies and multiple decomposition evaluation strate-gies, and produces hybrid concept representations. The ISO component is theoptimization component that searches in the inductive bias space for an opti-mum bias. Ting (1994) produced a system that combines decision trees withinstance based learning in order to improve the performance of decision treesfor the problem of small disjuncts. However the two algorithms are not tightlycoupled, since they are trained independently. The decision as to which oneof the two should be used in order to classify an instance is based on whetherthat instance belongs to a small disjunct; if this is the case the instance basedclassi�er is used, if not the decision tree model will be used. Domingos (1996)presents RISE, a system that tightly integrates rule and instance based induc-tion. In this system instances are considered as rules of maximal speci�city sothere is no distinction between rules and instances. Brodley (1995) integratesthree di�erent learning approaches, univariate tests, linear discriminants andinstance based, under a decision tree structure. At each node of the decisiontree if-then rules are used to guide the selection of the appropriate learner basedon data characteristics and the performance of the learners. Kohavi (1996) de-scribes NBtree, a combination of decision tree and Naive Bayes inducer, wherethe leaves of the decision tree are replaced by a Naive Bayes classi�er. Gamaand Brazdil (2000) under the framework of cascade generalization describe localcascade generalization, where they combine a decision tree structure with NaiveBayes and linear discriminants. At each node of the decision tree the currentset of attributes is extended by the probability distributions of the class labelsthat the base inducers provide, trained only on the examples that belong tothat decision node. The new attributes are propagated in the tree structureand they are treated as normal attributes.Another way to perform model combination is via the use of models con-structed from the same inducer but on di�erent versions of the training set,usually created by same kind of resampling. The two main representatives ofthis category of algorithms are bagging and boosting. The �rst one was intro-duced by Breiman (1996) and creates replications of the initial training set ofequal size by sampling with replacement. From each replicate set a classi�eris constructed and the �nal prediction is given by the voting of the individ-ual classi�ers. Boosting was �rst introduced by Schapire (1990) as a methodfor boosting the performance of a weak learning algorithm. AdaBoost was in-troduced in (Freund & Schapire, 1996). The category of boosting algorithmsuses a weighted voting schema among classi�cation models constructed by thesame inducer, where the weights are determined on the basis of the performanceof the classi�cation models on the training set. The classi�cation models areconstructed sequentially starting from the initial set of training instances. Themain idea of boosting is that it gives more importance to the training exampleswhich are misclassi�ed; this is done by the incorporation of a weighting mecha-nism where each example is assigned a weight. At each iteration of the trainingphase the weights of the training instances which are misclassi�ed is increased



24 CHAPTER 2. METHODS OF ALGORITHM SELECTIONby a quantity which is inversely proportional to the total error on the trainingset. The instance weights can then be used by a classi�cation algorithm that isable to directly incorporate weights of instances in the learning process, or usedin order to resample the training set. The process continues for a �xed numberof iterations.2.4 SummaryThe process of algorithm selection is a complicated and time intensive task asit was already exhibited in section 2.1. In order to relieve the analyst fromthe evaluation e�ort, various approaches have been proposed that directly uti-lize information drawn from the dataset, without having to perform extensiveexperimentation.Our work falls within that framework, i.e. the automatic selection of clas-si�cation algorithms based on dataset characteristics, and it covers a variety oftopics within it. We took special care in the construction of a modular meta-learning space and the de�nition of the meta-learning problems that populateit. The dataset characteristics were chosen carefully in an e�ort to provide a setthat can best discriminate among the performance of di�erent inducers; further-more we proceeded to a systematic experimentation to characterize their dis-crimination power. We also undertook a systematic experimentation in order todetermine the most appropriate inducer for meta-level learning, and comparedour set of features with various di�erent approaches to dataset characterization.Finally we also explored the use of regression in order to select the most ap-propriate algorithm or provide a ranking of algorithms, and compared it with awell established method of ranking. Where our work di�ers from and where itresembles existing approaches will be clari�ed in the forthcoming chapters.



Chapter 3The Meta-LearningFrameworkThe goal of this work is to provide a system which will act as an assistant for al-gorithm selection in the context of the classi�cation task. The task of algorithmselection is viewed as a meta-learning task. The system builds its knowledgefrom a number of speci�c training episodes, applications of classi�cation algo-rithms to a set of classi�cation problems. The system keeps a set of registeredclassi�cation algorithms, among which algorithm selection will be performed inthe future.During an initialization phase, every registered inducer is applied to eachone of the available classi�cation problems and its performance is evaluated.The morphological characteristics of these classi�cation problems/datasets arerecorded and constitute a morphology space. For a new dataset the system willsuggest the most appropriate inducer, deciding on the basis of morphologicalsimilarity between the new dataset and the existing collection of datasets.The morphological characteristics along with the performance measures ofthe inducers will be the building elements of a meta-learning space. Any inducercan then be applied on this meta-learning space, in order to construct inductivemodels, on which the system will rely to suggest the most appropriate inducerfor a new unseen dataset. The construction of the meta-learning space followsclosely the process of evaluation and comparison of a number of classi�cationalgorithms to a speci�c dataset.3.1 Conceptual DescriptionThe overall architecture of the system is depicted in �gure 3.1. The algorithmsuggestions are provided by Selector, which uses for that the Knowledge Base,(KB), available to the system. The knowledge base is simply a collection ofinductive models describing the areas of competence of each of the registeredinducers, and it is built during the initialization phase of the system. Whenever25



26 CHAPTER 3. THE META-LEARNING FRAMEWORKa new dataset is presented to the system, Selector will combine the models of theknowledge base and use them, together with the morphological characteristicsextracted from the new dataset, in order to provide a suggestion.
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Fig. 3.1. Architecture of the systemThe establishment of the knowledge base is performed by the Meta-Learner,which can be any classi�cation algorithm. The Meta-Learner constructs Meta-Models, which are actually classi�cation models, that associate morphologicalcharacteristics of datasets with the performance behavior of the registered in-ducers, performance which is measured in terms of the predictive accuracy.Data on the performance behavior of the registered classi�cation algorithmson the repository of datasets, are retained and managed by the Meta-Learning-Space-Manager. These performance data, along with the morphological char-acteristics that describe the datasets of DSs, give raise to a collection of Meta-Learning problems, a collection that constitutes the Meta-Learning-Space. Itis from these meta-learning problems that the Meta-Learner, will construct themeta-models which are going to be stored in the knowledge base.The appropriate construction of the Meta-Learning-Space is crucial, sincethe quality of the information contained there, will determine to a great extentthe future performance of the system. This quality depends on two factors. Firstand most important is the set of morphological characteristics used to describe adataset. Second the procedure via which these characteristics are mapped to theperformance behavior of the inducers in order to formulated the meta-learningproblems, this procedure will be described in detail in section 3.2.1.We de�ne morphological characteristics or dataset characteristics, as a set of



3.2. META-LEARNING-SPACE 27structural characteristics that jointly determine the performance of a classi�eron a dataset. The problem of specifying the appropriate dataset characteristicsthat adequately characterize the performance of a classi�er can be regarded asa feature extraction problem. We need the set of features with the highest dis-criminatory power. It is desirable to keep this set as small as possible. However,it must be large enough to ensure that no two datasets with the same morphol-ogy have similar performance values for the same classi�er. So special care mustbe taken in de�ning the right set of characteristics. The establishment of anappropriate set of data characteristics will be the subject of chapter 4. There isanother alternative in establishing the most discriminatory set of features. Inthis we do not place any constraints in the mumber and type of the featuresthat we use for meta-learning, but prior to using them for meta-learning weapply principal component analysis in order to get a smaller set of uncorrelatedfeatures. The main drawback of the principal component analysis is that thenew features are linear combinations of the base features and the produced clas-si�cation models do not directly use the initial features, being thus harder toanalyze and explain.In the remaining sections of the chapter we will give a detailed descriptionof the various components of the system, that is how the Meta-Learning-Spaceis constructed and how a suggestion is provided for a new unseen dataset. Wewill present the process via which we populated the DSs set of datasets and theset of registered inducers among which the selection is performed. Finally wewill give the evaluation measures that will be used in the forthcoming chaptersto measure the quality of suggestions that the system provides.3.2 Meta-Learning-SpaceOnce the morphology characteristics that will be used have been established,along with the performance measures, the construction of the Meta-Learning-Space, can take place. In this section we will give a description of the Meta-Learning-Space, after presenting the related work.In (Michie et al., 1994; Brazdil et al., 1994; Lindner & Studer, 1999; Todor-ovski & Dzeroski, 1999), the methodology followed was to de�ne for each al-gorithm a separate meta-learning problem. In this approach each instance ofthe meta-learning problem is composed of the morphological characteristics of aspeci�c data set and one of the class labels applicable, non-applicable, describingwhether the algorithm is applicable for the data set or not. In order to decidewhich class label should be assigned to an instance, the accuracies of all thealgorithms for the speci�c data set are needed. Then the best accuracy is usedas a basis for determining the class label of all the algorithms for that data set.If an algorithm's accuracy is found to be \much worse" than the accuracy ofthe best algorithm then the instance is assigned the class label non-applicable,otherwise it is assigned the label applicable.We see two problems in this methodology, �rst we do not get the truly bestalgorithm(s), only a division of the set of algorithms to applicable and non-



28 CHAPTER 3. THE META-LEARNING FRAMEWORKapplicable. By truly best, we mean here that set of inducers that achieve thehighest performance, and whose performance di�erences are not statistically sig-ni�cant di�erent. Second and more important, is the way that the meta-learningproblems are constructed. As mentioned above, in this framework, the accuracyis used for the assignment of class labels. The accuracy was computed by crossvalidation. Nevertheless, cross-validation, and in general all error estimationprocedures, give only an estimate of the true accuracy, along with a con�denceinterval which might be quite wide if the data set on which the accuracy is mea-sured is small. Under this framework, the assignment of classes is based on asimple comparison of the estimated accuracies, not involving any kind of test ofstatistical signi�cance of the estimated di�erences in performance. This resultsin class assignments which can be erroneous, causing the meta-learning problemsto be distorted by noise, thus reducing the quality of the Meta-Learning-Spaceand making the induction process more di�cult. For a thorough description ofthe methodological issues involved in comparing classi�ers see (Dietterich, 1998;Feelders & Verkooijen, 1995; Salzberg, 1997).The problem of getting the best algorithm can be addressed by the variousranking systems, like ranking with zooming, (Soares & Brazdil, 2000), or DEAbased ranking, (Paterson et al., 2001). The main limitation of both of theaforementioned methods is that they rely on a single global meta-model, that isbased on a k-nearest neighbor approach, since in order to produce the rankingsa set of similar datasets to the one under examination should be established.Moreover the single meta-model requires also the use of a unique and uniformway of describing the datasets, independently of the inducers that are involved inthe selection. Nevertheless, it is quite probable that the factors that determinethe relative performance of a speci�c pair of classi�ers vary among di�erentpairs. With a single meta-model we lose in exibility. The same limitationof the single meta-model appears also in (Bensusan & Giraud-Carrier, 2000),where a single classi�cation meta-model is produced.A more exible approach is regression based ranking as it is used in (Sohn,1999; Bensusan & Kalousis, 2001), or regression based algorithm selection,(Koepf et al., 2000). Under the regression scenario the constraint for a singlemeta-model is lifted. The meta-learning-space will consist of one meta-learningproblem for each inducer, thus giving rise to a distinct meta-model for eachinducer. Under this scenario, it is possible to use a di�erent set of dataset char-acteristics for each algorithm, i.e. that set that best describes its performance.The way we construct the Meta-Learning-Space, closely simulates the eval-uation and comparison process, followed by an analyst, when he has to selectamong a set of inducers the one that achieves the best accuracy. We constructmeta-learning problems that correspond to pairwise comparisons of inducers.We control the class assignments on the meta-learning problems via a test ofstatistical signi�cance, as it is done in a regular analysis scenario. The statisti-cally controlled assignment of class labels results in well de�ned meta-learningproblems, thus increasing their quality. Furthermore the formulation of theMeta-Learning-Space, based on the pairwise meta-learning problems, allows forgreat exibility since di�erent meta-models can be used to describe the rela-



3.2. META-LEARNING-SPACE 29tive performance of di�erent pairs of inducers. By di�erent meta-models wemean either models that have been constructed by a di�erent set of datasetcharacteristics, or even by a di�erent meta-learner.3.2.1 Establishing the Meta-Learning-SpaceLet us now give a description of the Meta-Learning-Space. Suppose we have apool of n classi�cation algorithms, from which we want to perform the selection.We create a Meta-Learning-Space containing (n2) meta-learning problems. Eachone of these problems corresponds to a speci�c pair of classi�cation algorithms.Each instance of a meta-learning problem corresponds to one data set from thecollection of the initial datasets, DSs, and consists of the dataset's morphologicalcharacteristics and the class label. The class label is determined by a signi�cancetest on the accuracy that the two algorithms achieve and is one of (algorithm-x, algorithm-y, tie), depending on whether there was a statistically signi�cantdi�erence in favor of the �rst (algorithm-x) or second algorithm (algorithm-y),or no di�erence (tie).To summarize, all the possible pairs of n inducers de�ne a Meta-Learning-Space containing (n2) meta-learning problems. Each instance of these meta-learning problems maps the characteristics of a given dataset to a label describ-ing a relative ranking within each inducer pair. Below we give a description ofthe process in pseudocode.D : the number of datasets, N : the number of algorithmsEstablish Metalearning Spacefor db = 1 to DCharacteristics[db] = get characteristics(db)for algo1 = 1 to Nfor algo2 = algo1 + 1 to NMetalearning Dataset[algo1; algo2]=Create Metalearning Dataset(algo1; algo2)Create Metalearning Dataset(algo x; algo y)set signi�cance level = 0.05for db = 1 to Dlabel=McNemarTest(algo x; algo y; db,signi�cance level)Metalearning DataSet[algo x; algo y][db]=(Characteristics[db],label)To decide which of the three possible classes should be assigned to a speci�cinstance of a meta-learning problem (i.e. a data set), we use strati�ed 10-foldcross-validation1 and we test the signi�cance of the di�erence with the binomialtest. The procedure is the following:1. Split the data set into k = 10 non-overlapping strati�ed folds1The choice of 10-fold strati�ed cross-validation was based on the conclusions of (Kohavi,1995), were it was stated that it is the most appropriate method for model selection



30 CHAPTER 3. THE META-LEARNING FRAMEWORK2. let n = nxy = nyx = 0,nxy : the number of times that algorithm-x is right while algorithm-y iswrongnyx : the number of times that algorithm-y is right while algorithm-x iswrongn = nxy + nyx the number of times that the two algorithms produceddi�erent results3. let the signi�cance level � = 0:054. for i = 1 to k do� train algorithm-x , algorithm-y on the k � 1 folds� test on the remaining fold and increase nxy; nyx; n appropriately5. if nxy � nyx thenif P (nyx; n) � � then assign label algorithm-yelse assign label tieelse if nyx < nxy thenif P (nxy; n) � � then assign label algorithm-xelse assign label tieelse assign label tieThe �fth step of the above procedure is a binomial hypothesis test2. It is usedto compare two algorithms in terms of their accuracy on the same data set,since it does not assume independence of the sets (Salzberg, 1997). Assumingthat the test cases are independent then under the null hypothesis:H0 : nxyn = nyxnwe have: nxy � B(n; 12)nyx � B(n; 12)B(n; p) is the binomial distribution with n number of experiments and p theprobability of success. P (nxy; n) and P (nyx; n) are the probabilities of havingnxy, nyx or more successes under the null hypothesis. Success in this context2Depending on the context, the binomial test can be found under the names of Sign test orMcNemar test. The di�erence between the two is that the former is used to test for a di�erencebetween continuous variables, while the later to test for the di�erence between dichotomousvariables. At the end both rely on the binomial distribution, or on an approximation to it



3.2. META-LEARNING-SPACE 31is the number of times that one algorithm predicted correctly while the otherwrongly. So for example the P (nxy; n) is given by the formula:P (nxy; n) = P (s � nxyjp(success) = 12) = nXs=nxy n!s!(n� s)! (0:5)nwhere n!s!(n�s)! (0:5)n is the probability of observing exactly s successes. Usingdirectly the binomial distribution becomes problematic when the values of n; sbecome large, due to the presence of the factorials. The binomial distributioncan be approximated, when n > 10, by the �2 distribution with 1 degree offreedom and the continuity correction term of �1 in the numerator (Yates'correction), to account for the fact that the statistic is discrete while the �2 iscontinuous, (Dietterich, 1998).�2 = (jnxy � nxyj � 1)2nxy + nyxStrictly speaking, we are using the McNemar test of signi�cance, since the vari-ables that we are testing are dichotomous (correct prediction, false prediction).The probability of falsely rejecting the null hypothesis (TYPE I error) is�. This means that in �100% of the cases we falsely assign the class label TIEresulting in �100% noise in the class labels. It is obvious that we can controlthat source of error by appropriately setting the value of �. Unfortunately in thecase of TYPE II error (i.e. accept the null hypothesis when actually it doesnot hold), which is the type of error that we would like to control the most3,we cannot have an estimate of the actual error since that requires knowledge ofthe true di�erence in the algorithms' performance.The McNemar test is a non-parametric statistical test. The only assumptionthat it makes is the independence of the test cases (assumption which is validwhen the test set is a random sample of the population). The disadvantage ofthe non-parametric statistical tests, when compared to tests that make use of theassumption of normality, is the fact that they are more likely to do a TYPE IIerror. However in (Dietterich, 1998), the McNemar test is compared with fourother statistical tests. It is shown to have a very low Type I error (i.e. rejectthe null hypothesis when it is actually true, �nd a di�erence in accuracies whenactually there is no di�erence). It is also shown to have a low Type II error,(i.e. accept the null hypothesis when it is actually false, do not spot a di�erencewhen there is one), although not the best one among the �ve tests examined.Taking into account the results of these study, plus the weak assumptions thatthe McNemar test requires, we have decided to use it in order to check thestatistical signi�cance of the di�erences of the algorithms.One problem that appears due to the multiple comparisons is the multiplicitye�ect. We can control it by appropriately adjusting the signi�cance level, �, asit is described in section 2.1.2.3Our main goal is to spot di�erences when they actually exist



32 CHAPTER 3. THE META-LEARNING FRAMEWORKMeta-Learning-Space-Manager establishes the Meta-Learning-Space by ap-plying each registered inducer on each dataset of the DSs collection, thus cre-ating a meta-learning problem for each pair of algorithms.Assessments on the performance of an inducer for an unknown dataset arebased on the performance of the inducer for known datasets in the Meta-Learning-Space. The operability depends therefore on the density of the mor-phology space. Despite the number of publicly available datasets, the morphol-ogy space is very large and its density grows very slowly. In an e�ort to populatethe space of datasets included in DSs we constructed semi-arti�cial datasets, us-ing real ones as a starting point; the procedure will be given with more detailin section 3.4.3.3 Meta-Learner and Selector: Provision of Sug-gestionMeta-Learner is responsible for extracting inductive models from the Meta-Learning-Space and incorporating them into the Knowledge Base. Then, foreach new dataset given to the system, the Selector module consults the Knowl-edge Base, triggers the inductive models and suggests the most appropriateclassi�er(s).3.3.1 Establishing the Inductive Models of the KB withMeta-LearnerFor the knowledge base to be created, an inductive process must be appliedon every meta-learning problem of the Meta-Learning-Space. Meta-Learnerapplies a classi�cation algorithm to every one of the (n2) meta-learning problem,resulting in (n2) inductive models. The produced models are stored in the KBand are later combined by the Selector to rank the algorithms, for a new dataset.BuildMetaModelsfor algo1 = 1 to Nfor algo2 = algo1 + 1 to NMetaModel[algo1; algo2]=CreateMetaModel(Metalearning Dataset[algo1; algo2])One may easily see that we are facing again the dilemma of which classi�-cation algorithm should be used, on the problems of the Meta-Learning-Space.We could even choose to have a di�erent classi�cation algorithm for every meta-learning problem. As a starting point we decided to use a version of a Near-est Neighbor classi�cation algorithm; the details of the speci�c implementationalong with the results will be given in chapter 5. Furthermore we examinedmore complicated inducers, whose results will be given in chapter 6.



3.4. POPULATING THE DSS 333.3.2 Combining the Inductive Models with SelectorWhenever a new dataset is input to the system, Selector extracts its morpho-logical characteristics, in a preprocessing step, and feeds them to the inductivemodels in the KB. Each model proposes one of the two algorithms (associatedwith the meta-learning problem from which it was produced) or indicates atie. The suggestions of the inductive models are then combined to impose anorder on the registered algorithms. The �nal suggestion of the system is theclassi�er or the group of classi�ers that get the highest rank score. A schematicdescription of the process is given below.Produce a Ranking of Algorithms for a new Datasetcharacteristics=get characteristics(new db)rank[1::N ]=0for algo1 = 1 to Nfor algo2 = algo1 + 1 to Nif algo1 = MetaModel[algo1; algo2](characteristics)rank[algo1]++else if algo2 = MetaModel[algo1; algo2](characteristics)rank[algo2]++3.4 Populating the DSsOne of the problems that we faced was the limited number of datasets thatwe could use in order to populate the Meta-Learning-Space. The quality ofthe suggestions that the system provides, depends on the density of the Meta-Learning-Space, the more populated the space is, the higher the quality of thepredictions.In order to populate the Meta-Learning-Space we used a combination of realdatasets and modi�cations of them. As a starting point we used 47 datasets4,mainly from the UCI repository (Blake et al., 1998). The additional datasetswere produced in the context of two big scale studies designed to explore thebehavior of learning method in response to two additional dataset de�ciencies,namely missing values and irrelevant attributes.As a part of the missing values study two suites of datasets were generated.The �rst suite contains data that are missing completely at random (MCAR)while the second contains data that are missing at random (MAR). Data aresaid to be missing completely at random when their pattern of missingness isindependent of the values of any features in the dataset, whether observed orincomplete. They are missing at random when the fact that they are missingdepends on the values of other, completely observed, attributes. (For a moreformal de�nition of MCAR and MAR values; the interested reader is referredto Schafer (1997).) From each original dataset, new datasets with 1%, 5%,4The list of the 47 datasets can be found in section A.1 of the appendix



34 CHAPTER 3. THE META-LEARNING FRAMEWORK10%, 15%, 20%, 25%, 30%, and 40% of missing values were generated. MCARdata were produced by randomly deleting a given percentage of attribute values,whereas MAR data were produced by deleting a given percentage of values fromcertain features, contingent on the values of other features which are themselvescompletely observed. Thus the initial 47 datasets gave rise to 2*8*47=753 newones. For a complete description of the results and the experimental design see(Kalousis & Hilario, 2000a).To explore the impact of irrelevant attributes on the di�erent learning algo-rithms, we corrupted the initial datasets by creating new attributes whose valueswere generated in a purely random fashion, thus ensuring their irrelevance tothe class variable. This procedure was followed to produce variants with 5%,10%, 20%, 30%, 40% and 50% of irrelevant attributes, yielding 6*47=282 newdatasets. For a complete description of the results and the experimental studiessee (Hilario & Kalousis, 2000).Finally the total number of datasets used to train and test the system was47+ 753 + 282 = 1082, of them 7 had to be excluded from the DSs because forvarious reasons (either failure of some classi�cation algorithms, or unavailabilityof their morphology characteristics), the full set of information required by thesystem was not available.One could argue that the new datasets are morphologically close to theinitial ones, so the estimation of the performance of the system is optimistic.Nevertheless it should be noted here that the performance of the inducers withrespect to the new datasets di�ers from the performance that they exhibit inthe base datasets; this makes the problem even harder since in datasets withsimilar features the algorithms exhibit completely di�erent performance.3.5 Pool of registered classi�ersThe pool of registered classi�cation algorithms, among which the selection isperformed, incorporates a broad variety of learning algorithms: an orthogonaldecision tree inducer from Quinlan's C5.0 (c50tree), an oblique decision treeinducer Ltree (Gama & Brazdil, 1999), two rule inducers, Ripper (Cohen, 1995)and the rule version of C5.0 (c50rules), a linear discriminant (Lindiscr), a boost-ing algorithm from C5.0 (c50boost), an instance-based learner (IBL), and NaiveBayes (NB) (the last two from the MLC++ library (Kohavi et al., 1996)). Thechoice of algorithms included in the pool was done so that they will representa wide and diverse variety of classi�cation algorithms with di�erent areas ofcompetence each.By including eight classi�cation algorithms, a total number of (82) = 28 meta-learning problems is created, with the application of the procedure describedin section 3.2.1. Table 3.1 gives the distribution of classes algo-x, algo-y, tiefor each of these problems. The last column speci�es the percentage of themajority class; this will serve as the baseline or default accuracy against which toevaluate the accuracies estimated by the learned meta-models. Any reasonablemodel should have an accuracy that is higher than this default accuracy. If their



3.5. POOL OF REGISTERED CLASSIFIERS 35Table 3.1. Class Distributions for each of the meta-learning problems.(algo{x, algo{y) pairs algo{x algo{y tie Default Accuracyc50rules c50boost 4.47% 37.40% 58.14% 58.14%c50tree c50boost 3.91% 38.33% 57.77% 57.77%c50tree c50rules 13.02% 13.95% 73.02% 73.02%Lindiscr c50boost 3.63% 64.47% 31.91% 64.47%Lindiscr c50rules 12.09% 52.65% 35.26% 52.65%Lindiscr c50tree 10.98% 54.70% 34.33% 54.70%Ltree c50boost 13.21% 35.16% 51.63% 51.63%Ltree c50rules 27.07% 14.23% 58.70% 58.70%Ltree c50tree 25.21% 15.26% 59.53% 59.53%Ltree Lindiscr 61.12% 6.51% 32.37% 61.12%IBL c50boost 1.02% 64.65% 34.33% 64.65%IBL c50rules 10.79% 49.77% 39.44% 49.77%IBL c50tree 7.91% 52.00% 40.09% 52.00%IBL Lindiscr 42.33% 21.21% 36.47% 42.33%IBL Ltree 9.30% 56.65% 34.05% 56.65%NB c50boost 2.70% 60.84% 36.47% 60.84%NB c50rules 14.33% 51.44% 34.23% 51.44%NB c50tree 12.09% 52.93% 34.98% 52.93%NB Lindiscr 37.30% 21.58% 41.12% 41.12%NB Ltree 5.58% 58.23% 36.19% 58.23%NB IBL 29.12% 34.79% 36.09% 36.09%ripper c50boost 1.58% 50.98% 47.44% 50.98%ripper c50rules 8.09% 32.00% 59.91% 59.91%ripper c50tree 2.70% 37.21% 60.09% 60.09%ripper Lindiscr 46.14% 17.02% 36.84% 46.14%ripper Ltree 3.44% 43.35% 53.21% 53.21%ripper IBL 34.42% 19.44% 46.14% 46.14%ripper NB 41.30% 16.93% 41.77% 41.77%average 54.14%
performance is deemed acceptable, these models can then be used to provide aranking of inducers for new datasets.Concerning the �nal suggestion of the system, (i.e. the classi�er or classi�ersthat take the �rst position), theoretically we can have any of the 28 � 1 = 255possible subsets of the initial set of the eight classi�cation algorithms. Using theresults of the McNemar tests we can get the true ranking of the classi�cationalgorithms for each dataset of the DSs. At the top position we observe only 80of the 255 possible subsets of inducers. In Table 3.2 we give the distribution ofclassi�er(s) that get the top ranking in more than 1% of the total number of thedatasets. For example we can see from this table, that c50boost is the singlebest algorithm in 26.23% of the 1075 datasets registered in the system. Sincec50boost is the classi�er that most often takes the �rst place we will use as thedefault accuracy for the �nal suggestion of the system the percent of c50boost.



36 CHAPTER 3. THE META-LEARNING FRAMEWORKTable 3.2. Groups of inducers that were ranked at the top for more than 1% of the datasetsGroup # Datasets Percentc50boost 282 26.23Ltree 140 13.02c50rules c50tree Ltree 54 5.02c50rules c50boost c50tree 47 4.37c50rules c50boost c50tree Lindiscr Ltree IBL NB ripper 47 4.37Lindiscr 41 3.81NB 30 2.79c50rules c50boost c50tree Ltree ripper 29 2.7c50boost Ltree 29 2.7c50rules c50boost c50tree Ltree IBL ripper 27 2.51IBL 27 2.51c50rules c50boost c50tree Ltree 25 2.33c50rules c50boost 23 2.14c50rules c50tree 22 2.05c50rules 20 1.86Ltree NB 14 1.3c50boost IBL 14 1.3c50boost c50tree 13 1.21Lindiscr Ltree 12 1.12c50tree 11 1.02c50rules c50boost c50tree Lindiscr Ltree NB ripper 11 1.023.6 Evaluation MethodSince the main goal of the system is to predict which inducer(s) to use, wemeasure the performance of the system in terms of its predictive accuracy. Thepredictive accuracy we estimate is always associated with the classi�er that wehave chosen to apply on the meta-learning problems and the dataset character-istics that we use.As it is described in the previous sections, the system works on two levels.The �rst level consists of the meta-learning models that describe the relativeperformance of speci�c pairs of learners. The second level is the combinationof these models in order to provide the �nal suggestion (i.e. which classi�eror classi�ers are the best for a speci�c dataset). We evaluate the performancefor both levels using 10-fold cross validation. In the case of the pairwise meta-learning problems the procedure is straight forward.In the case of the �nal suggestion the estimation is more complicated. Themeta-datasets associated with each pair of classi�cation algorithms are splitinto exactly the same ten folds. That is, the i fold of all the meta-datasetswill contain exactly the same datasets (i.e. the characteristics of the datasetsalong with their labels), with exactly the same order. In every step of the crossvalidation the nine folds will be used to construct the meta-learning models.The characteristics of the datasets contained in the remaining fold will be givento each of the produced meta-models and each one will output a prediction.These predictions will be combined, as described in section 3.3.2, to producethe �nal suggestion of the system, which will be compared with the truly best



3.7. OPERATIONALIZATION AND INCREMENTALITY 37set of classi�cation algorithms to determine whether the suggestion is successfulor not.We will use two di�erent ways to characterize the suggestions of the systemas successful or not. In the �rst, we consider a suggestion successful only if itmatches exactly the correct class, i.e. the algorithm(s) that the system suggestsis (are) exactly the one(s) that really take the �rst place. In this case we havea typical 0/1 loss function, and the evaluation measure that we compute is thetypical accuracy, for clarity reasons we will refer to it as strict accuracy.In the second the main idea is: when in the �rst place we have two or morealgorithms whose performance is not statistically signi�cant di�erent, we arenot that much concerned with �nding all the algorithms involved in it. Insteadwe are satis�ed if the suggested one(s) constitute a subset of the true set. Withthis approach we get an estimate of the percentage of cases in which the systemgives an acceptable suggestion i.e. a suggestion that is a subset of the truetop classi�ers(s). We will call the evaluation measure that corresponds to thisscenario loose accuracy.3.7 Operationalization and IncrementalityIf the described system is to be placed in an operational environment it shouldbe adaptable and able to update its knowledge in an incremental way. It shouldbe possible to incorporate new inducers whenever they become available andimprove its performance incrementally as it faces new learning episodes.The incorporation of a new inducer requires the application and evaluationof the new inducer on all the datasets of the DSs used to construct the initialKB of the system. In a next step all the pairwise meta-learning problems asso-ciated with the new inducer will be constructed and the respective meta-modelswill be produced. The steps involved in the incorporation phase of a new algo-rithm are not di�erent from the initialization phase of the system. They haveextensive computational cost which mainly comes from the extensive evaluationphase of the new inducer on all the available datasets of the DSs, but they areindispensable if we want to have an initial knowledge that will guide the use ofthe new algorithm.The system should be able to bene�t, and improve its knowledge, from newlearning episodes. That is whenever the user asks for a suggestion on a newdataset, and �nally evaluates a set of inducers on the new dataset, the systemshould be able to exploit the evaluation results to improve the quality of itsKB. This is not straightforward since the complete results will not be availablefor all the inducers of the initial pool of inducers on every new dataset. Theusers typically evaluate only a limited number of inducers on a new dataset.Two options exist here, the �rst one leads to an incomplete but still operationalKB, and the second one to a complete KB with the cost of extra computationalrequirements.In the �rst option the system updates only these pairwise meta-models thatcorrespond to the pairs of those algorithms that the user has evaluated on



38 CHAPTER 3. THE META-LEARNING FRAMEWORKthe new dataset. The result of this partial update is that some of the meta-models will be more complete and will better discriminate among the algorithmsinvolved in the corresponding pairs, i.e. they will provide predictions of betterquality. Apart from that there is no other implication, since the predictions ofthe meta-models are combined independently, and the way and the data fromwhich each meta-model was constructed is not relevant.In the second option the system performs a complete evaluation of all theavailable algorithms in the new dataset, probably in a batch mode, guarantyingthus that all the meta-models have the same quality and are constructed usingthe full amount of available information. Both options should be available andit will be left to the analyst to decide which one he prefers every time. In anycase if the system is able to meta-learn from new learning episodes it will notonly improve the quality of its KB but on the same time reect in a much moreprecise way the morphologies of the datasets that the user most often dealswith, thus being able to provide more accurate suggestions.



Chapter 4Description of DatasetsWhat is crucial for the performance of the system is the appropriate selection ofthe characteristics that will be used to describe the datasets. These should de-scribe morphological characteristics of the datasets that a�ect the performanceof classi�cation algorithms. Di�erent inducers exhibit di�erent sensitivity tospeci�c idiosyncrasies of the datasets. What we want to do is model how theseidiosyncrasies a�ect the relative performance of the di�erent inducers. For ex-ample inducers exhibit varying degrees of sensitivity to the presence of irrelevantattributes. Nearest Neighbor approaches are very sensitive to them, while de-cision tree and neural network algorithms are quite robust since they possesinternal mechanisms that perform attribute selection. Another example is thedistinction between numerically oriented approaches, like neural networks, orlinear discriminants and symbolic based ones like decision trees or rule induc-ers. With the former being more appropriate to datasets where the attributesare mainly numeric and the later more appropriate for datasets where the at-tributes are mainly symbolic. We will strive for a set of characteristics thatdescribe as completely as possible these factors. Before continuing to the de-scription of the characteristics that we used let us shortly examine the relatedwork in characterizing datasets.4.1 Related WorkThe �rst attempt to characterize datasets in order to predict the performance ofclassi�cation algorithms was done by Rendell et al. (1987). The approach wasvery simple and so were the characteristics that they used, namely the numberof features and the number of examples. The goal was to predict the executiontime of the classi�cation algorithms.In STATLOG, Michie et al. (1994), studied the performance of twenty threedi�erent learning algorithms on more than twenty di�erent datasets. As abyproduct of STATLOG an e�ort was done to predict the error of classi�ca-tion algorithms using the datasets characteristics. This approach was further39



40 CHAPTER 4. DESCRIPTION OF DATASETSexamined in (Brazdil et al., 1994; Gama & Brazdil, 1995), mainly in terms ofusing di�erent meta-learners but the set of dataset characteristics was alwaysthe same and no e�ort has been done to improve it. Here we will give a briefpresentation of the dataset characteristics that were used. They distinguishthree categories of dataset characteristics, namely, simple, statistical and in-formation theory based. Statistical characteristics are mainly appropriate forcontinuous attributes, while information theory based are more appropriate fordiscrete attributes. The full list of characteristics established in the frameworkof STATLOG is the following:� simple characteristics{ Number of examples, (n){ Number of attributes, (attr){ Number of classes, (cl){ Number of binary attributes, (bin)� Statistical Characteristics{ Standard deviation ratio, (SD:ratio){ Mean absolute correlation of attributes, (cj�j){ First canonical correlation, (�max){ Fraction separability due to �rst canonical correlation, (frac1){ Mean Skewness of Attributes, (̂){ Mean Kurtosis of Attributes, (�̂)� Information theory characteristics{ Entropy of class, (H(C)){ Mean Entropy of Attributes, ( dH(X)){ Mean Mutual Information of class and attributes, ( dM(C;X)){ Equivalent number of attributes, (EN:attr){ Noise-signal ratio, (NS:ratio)Since we are also going to include all these characteristics in our characterization,their complete and detailed description can be found in section 4.2.One of the main conceptual limitations of the STATLOG approach was thefact that most of the characteristics that they used to describe the datasets wereaverages over the number of attributes. For example to describe the correlationbetween continuous attributes they used the correlation coe�cient and at theend they reported only the average of all the correlation coe�cients. Clearlythis results in a great loss of discriminating power, since completely di�erentdistributions of the correlation coe�cients could result in the same mean. This



4.1. RELATED WORK 41was done for any characteristic that was computed on an attribute basis. Fur-thermore they did not examine associations between discrete attributes, andbetween continuous and discrete attributes.Lindner and Studer (1999), keep the same meta-learning framework as theone introduced in STATLOG and extend the set of dataset characteristics. Theyintroduce a variety of new dataset characteristics:� new measures that are more appropriate for testing the assumption ofnormal distribution based on the BHEP-test� measurements about the location and dispersion of numeric attributeslike the minimum,maximum, mean, median, � trimmed mean, empiri-cal quantiles,standard deviation, interquartile range and median absolutedeviation� measures that describe attribute-class associations: joint entropy, condi-tional entropy, information gain ratio, gini-index, relevance measure andthe g-function� �nally as a measure of class di�erences they used Wilks-Lambda whichexamines the di�erences of the centers of the classes.The main goal of the study is the identi�cation from the set of characteristicsthat they have used of the ones that a�ect the performance of classi�ers, alwaysin the meta-learning framework of STATLOG. They �nally came up with aset of characteristics that does not include any of the dispersion and locationmeasures, and from the ones that describe the association between attributesand class, the only discriminating one was mutual information. A possiblereason for the rejection of most of the measures they introduced, might be thefact that in order to use them for meta-learning they had to rely on their means,losing again valuable information about the distribution of the measures.A completely di�erent approach to characterizing datasets called landmark-ing appeared in (Pfahringer et al., 2000; Bensusan & Giraud-Carrier, 2000).They use the performance of simple learners which they call landmarkers todescribe a dataset. The intuitive idea behind landmarking is to associate theperformance of speci�c learners with the performance of landmarkers. That is,if landmarker A outperforms landmarker B on a speci�c task then learner X willalso outperform learner Y on this task. A crucial issue in landmarking is theappropriate choice of the simple learners. It has to be ensured that the chosenlandmarkers have quite distinct learning biases. In order to describe a datasetthey use the following landmarkers :� Decision node : A single decision node based on the attribute that maxi-mizes the information gain ratio.� Worst node : Same as above but now based on the attribute that minimizesthe gain ratio.



42 CHAPTER 4. DESCRIPTION OF DATASETS� Randomly chosen node : Same as above, but now the attribute is randomlyselected.� Naive Bayes : The classical Naive Bayes learner.� 1-Nearest Neighbor : The classical nearest neighbor learner.� Elite 1-Nearest Neighbor : A nearest neighbor where the attributes thatare taken into account for classi�cation are limited to the subset of themost informative attributes, as they are determined by the informationgain ratio.� Linear Discriminant : A classical linear discriminant algorithm.The performance of landmarkers is estimated through the use of ten fold cross-validation, resulting in an elevated computational cost, especially in the casewhere landmarkers are full edged learners like Naive Bayes, Linear Discrimi-nants and the di�erent versions of nearest neighbors.4.2 Dataset CharacteristicsIn this section we will present the characteristics that we will use to describe adataset. We can cluster them in the following categories:� characteristics that describe the nature of attributes� characteristics that describe attributes� characteristics that describe associations between attributes� characteristics that describe associations between attributes and the targetvariable� othersIn general we use characteristics that are appropriate either for nominal orfor continuous attributes. To describe nominal attributes and their associationswe use mainly information based measures, while for the continuous we usestatistical measures. This results in a non-uni�ed treatment of the attributes of adataset. Furthermore this causes a problem with the description of associationsbetween nominal and continuous attributes. In an e�ort to describe associationsbetween discrete and continuous attributes we will use characteristics that areused in analysis of variance. Table 4.1 gives the full set of dataset characteristicsthat we will use to describe a dataset. Their complete de�nition will be given inthe forthcoming sections. Whenever a characteristic is introduced that will bea part of the dataset characteristics its entry number in Table 4.1 will be alsoprovided.



4.2. DATASET CHARACTERISTICS 43Table 4.1. Dataset Characteristics, the superscript s is used to indicate the characteristicsthat where used in STATLOG.No Characteristics Notation1s number of classes cl2s number of attributes attr3s number of instances n4 dimensionality of the dataset dim = attrn5 number of missing values mvals6 percentage of missing values %mvals = mvalsattr�n7 # nominal attributes nom8..11 max, min, mean, stdv max:val; min:val... of nominal attributes distinct values mean:val; stdv:val12..21 concentration histogram [�1::�10]... of discrete attributes22 non computable concentration �NaN23..32 concentration histogram [�C1 ::�C10 ]... of discrete attributes and class33 non computable concentration �CNaN34 # continuous attributes con35..44 correlation histogram [�1::�10]45 non computable correlation �NaN46..55 missing values histogram [mvals1::mvals10]56 percent of continuous attributes %con = con=attr57 percent of discrete attributes %nom = nom=attr58s Binary Attributes bin59s Variation from frac1 = �1Pi �i... �rst linear discriminant60s First Canonical Correlation �max =q �11+�161s Mean Skew ̂ = Pconi=1 icon62s Mean Kurtosis �̂ = Pconi=1 �icon63s Class Entropy H(C)64s Mean Attribute Entropy dH(X) = Pnomi=1 H(Xi)nom65s Mean Mutual Information dMI(C;X) = Pnomi=1 MI(C;Xi)nom66s Equivalent number of attributes EN:attr = H(C)dMI(C;X)67s Noise to signal ratio NS:ratio = dH(X)� dMI(C;X)dMI(C;X)68s Mean Multiple Attribute Correlation R̂ = Pconi=1 Ricon69s SD.ratio SD:ratio = exp( MconPcli=1(ni�1) )70..79 p� value histogram [p� val1::p� val10]... of continuous attributes80..89 p� value histogram [p� valC1 ::p� valC10 ]... of continuous attributes and class



44 CHAPTER 4. DESCRIPTION OF DATASETS4.2.1 Attribute TypeThe balance between numerical and nominal attributes is important since somealgorithms are better suited for numerical domains and others for symbolical.To describe the nature of the attributes of a dataset we used various measures.These include the number of continuous, con, (No 34), and nominal attributes,nom, (No 7), their percentages with respect to the total number of attributes,%con;%nom, (No 56,57). Another measure falling in this category is the num-ber of binary attributes, bin, (No 58), that is the number of binary attributesthat we get when all nominal attributes are presented using local binary encod-ing. This measure is crucial especially in the case of numerical based classi�-cation algorithms since they make use of local binary encoding when they dealwith discrete attributes, a fact that gives them a disadvantage since it increasesthe dimensionality of the problem, while keeping the same number of trainingexamples. Similarly to the bin characteristic, we determine for each nominalattribute the number of distinct values that it has. Then from all the nominalattributes we compute the maximum, minimum, mean and standard deviationof the number of distinct values, max:val;min:val;mean:val; stdv:val, (No 8-11).4.2.2 Attribute DescriptionLet us introduce some notation that will be used to describe the measuresthat we are going to use. Consider two nominal attributes X;Y with I; J dis-tinct values respectively. We display their joint distribution with a contingencytable having I rows for variable X and J columns for variable Y . The prob-ability distribution f�ijg is the joint distribution of X and Y . The marginaldistributions of X and Y are given by the row and column totals obtainedby summing the joint probabilities, and they are denoted with f�i+g (for rowvariable X , �i+ = p(X = xi) = Pj �ij) and f�+jg (for column variable Y ,�+j = p(Y = yi) = Pi �ij). The marginal distributions are single variabledistributions and do not contain any information for the association betweenthe two variables. The conditional distribution of Y given X is f�jjig where�jji = P (Y = yj jX = xi).If X is a continuous variable we denote by �X ; �X ; �XX , its mean, standarddeviation, and variance. The sample mean, standard deviation and varianceare denoted by c�X ; c�X ; sXX . The covariance and sample covariance of twocontinuous attributes X;Y are denoted by �XY and sXY .The entropy, H(X), of a discrete attribute X is a measure of randomness ordispersion of the attribute and is given byH(X) = �Xi p(X = xi)log2(p(X = xi))= �Xi �i+log2(�i+)The entropy takes its highest value of �log2(�i+) = log2(I) when all the I



4.2. DATASET CHARACTERISTICS 45distinct values of X have an equal probability of appearing. In the extreme casewhere one attribute takes only one value then its entropy is 0, this attributebrings no useful information. So the entropy of an attributeX lies in the interval[0; log2(I)], and the length of the interval depends on the number of distinctvalues of the attribute. The more uniform the distribution of an attribute is,the higher the value of its entropy; the less uniform the lower the value of theentropy.To characterize continuous attributes two measures from descriptive statis-tics are used, skewness and kurtosis. Both are measures of departure of a givendistribution from normality. The assumption of normality is made by variouslearning algorithms, e.g. linear discriminants, Naive Bayes.Skewness is the lack of symmetry in a probability distribution. Positiveskewness indicates a distribution with an asymmetric tail extending towardsmore positive values. Negative skewness indicates a distribution with an asym-metric tail extending towards more negative values. For example, a normal or auniform distribution have zero skewness because they are symmetric about theirmean. An exponential distribution has positive skewness equal to 2. Skewnessis de�ned as the third moment of the distribution divided by the third power ofthe standard deviation:  = E(X � �X)3�3XKurtosis is a measure of how "fat" a probability distribution's tails are,measured relative to a normal distribution having the same standard deviation.A distribution is said to be leptokurtic if its tails are fatter than those of acorresponding normal distribution, and platykurtic if its tails are thinner thanthose of a normal distribution. The normal distribution has a kurtosis of 3, theuniform 95 and the exponential 9. The kurtosis of a distribution is de�ned asthe ratio of the fourth moment of the distribution to the fourth power of thestandard deviation � = E(X � �X)4�4XSince the learning algorithms that make the assumption of normality dothat on a class basis, i.e. attributes are assumed to follow a normal distributionwithin each class, we compute both the kurtosis and skewness of an attributeon a class basis.4.2.3 Attribute AssociationsClassi�cation algorithms are a�ected by the degree of redundancy within adataset. The redundancy comes from the fact that the attributes of a datasetare not always independent. The following metrics provide a way to measureit, to some extent, since they quantify the strength of the relationships betweenattributes. The list of metrics given below is in no way exhaustive, there are lotmore measures that can describe attribute relations. Furthermore we restrict tometrics for linear relationships between continuous attributes, and metrics that



46 CHAPTER 4. DESCRIPTION OF DATASETSdescribe associations only between pairs of discrete attributes. Higher ordercorrelations are not examined, nor associations involving more than just twodiscrete attributes.To measure the association between nominal attributes we used Goodmanand Kruskal's � otherwise known as the concentration coe�cient (Agresti, 1990).Using the notation given in 4.2.2 the concentration coe�cient between two nom-inal attributes, X;Y , with I; J , distinct values is de�ned as :�xy = IXi=1 JXj=1 �2ij�i+ � JXj=1 �2+j1� JXj=1 �2+j (4.1)Here X is considered to be the independent attribute and Y the dependent. Theinterpretation given to �xy in (Agresti, 1990) is that it describes "the propor-tional reduction in the probability of an incorrect guess predicting Y using X ."�xy takes values in the interval [0; 1]. The higher the value of �xy the strongerthe association is, in the sense that we can guess Y much better when we knowX than when we don't. We have to note here that the concentration coe�cientis not symmetric i.e. �xy 6= �yx. So it is not enough to compute the (nom2 )coe�cients, corresponding to all pairs of nominal attributes, but for each pairwe have to compute both coe�cients.We measure the association between two continuous variables, X;Y , usingthe correlation coe�cient �xy. �xy is a measure of the linear relationship betweenthe two variables. The correlation coe�cient takes values in the interval [�1; 1]and it is symmetric, i.e. �xy = �yx. A value of 1 indicates a perfect positivelinear relationship, a value of �1 a perfect negative linear relationship and avalue of 0 the complete absence of a relationship. The correlation coe�cient isgiven by the following formula:�xy = Cov(X;Y )pV ar(X)V ar(Y )= �XYp�XX�Y YFor the continuous attributes we do not only examine correlations betweenpairs of attributes but we also examine the correlation between each attributeand the linear combination of the rest. This is done with the use of the multiplecorrelation coe�cient (Engels & Theusinger, 1998). Given continuous attributesX1; X2; :::Xcon, the multiple correlation coe�cient, Ri, between attribute Xiand the multivariate variable Zi = (X1; :::; Xi�1; Xi+1; :::; Xcon) is the maximalcorrelation coe�cient between Xi and some linear function Zi� of Zi, (themaximum is taken over all possible nonzero vectors �). Ri is given by :Ri = argmax�6=0 Cov(Xi; Zi�)pV ar(Xi)V ar(Zi�)



4.2. DATASET CHARACTERISTICS 47= argmax�6=0 �XiZi�p�XiXi�Zi�Zi�= argmax�6=0 �0�XiZip�XiXi�0�ZiZi�= s�0XiZi��1ZiZi�XiZi�XiXiWhere� a is a column vector of dimensions (p� 1)� 1,� �ZiZi , is the covariance matrix of Zi with dimensions (p� 1)� (p� 1),� �XiZi is a (p�1)�1 vector that contains the covariances of Xi, with eachof the p� 1 attributes of Zi.The maximum value of Ri is attained for � = ��1ZiZi�XiZi . Let E be the randomvector consisting of the attributes X1; X2; :::; Xcon. Then the sample multiplecorrelation coe�cient, R̂i between attribute Xi and Zi is de�ned asR̂i =sS0XiZiS�1ZiZiSXiZisXiXiIf SEE is the unbiased sample covariance matrix1 of the attributes of E thenSZiZi is the submatrix that we get from SEE , when we remove column andline i, which corresponds to the sample covariance matrix of the Zi attributes.SXiZi is the (p � 1) � 1 vector constructed from the ith column of the SEtable, removing the element of the ith line, and contains the sample covariancesbetween attribute Xi and each of the p � 1 attributes of Zi. The multiplecorrelation coe�cient takes values in the interval [0; 1]. A value of 1 means thatXi is a linear combination of the attributes of Zi. A value of 0 indicates thatXi is linearly independent of Zi.Having described the associations between discrete attributes, and then theassociations between continuous, there is still a gap. Namely we need a way todescribe associations between continuous and discrete attributes. In order todo that we are going to use the F-distribution the same way as in Analysis ofVariance (ANOVA), but we will not proceed to a signi�cance test but ratherreport the p�value, as a measure of the association. With ANOVA we examinewhether one independent categorical variable a�ects a dependent quantitativeone. We can only examine one way associations, that is whether the values ofa continuous variable depend on the values of a discrete variable, but not theother way around, i.e. how a continuous variable a�ects a discrete one. LetX be a discrete variable with I distinct values and Y a continuous one. Wewant to examine whether the values of X a�ect the values of Y . The I di�erentvalues of X de�ne I groups on Y . ANOVA examines whether the means of the1SEE = 1n�1Pn(Ei �c�E)(Ei �c�E)0



48 CHAPTER 4. DESCRIPTION OF DATASETSI groups de�ned on Y are di�erent, based on a comparison of the between groupvariance with the within group variance. The between group variation, SS(B)2,measures the variation of the group means, �Yi , of the variable Y , around theglobal mean, �Y , and it is given by :SS(B) =Xi ni(�Yi � �Y )2 (4.2)where ni is the number of observations of Y that belong to the i group. Wecould consider the between group variation, as the variation we get when all themembers of a group are identical to the mean of the group. Since we have Idistinct groups and we get one data value for each group (i.e. the sample mean ofthe group, �Yi), the degrees of freedom of SS(B) are I�1, so the between groupvariance, or else denoted Mean Square between groups, is MS(B) = SS(B)I�1 .The within group variation, SS(W ), is the sum of the groups variations aroundtheir corresponding means. Each group variation is given by :SSi =Xy2i(y � �Yi)2 (4.3)so the within group variation is given by :SS(W ) =Xi SSi (4.4)The degrees of freedom of SS(W ) is the sum of the degrees of freedom of allthe SSi. Since its one of them has ni� 1 degrees of freedom, SS(W ) has n� I .And the within group variance is MS(W ) = SS(W )n�I . ANOVA examines theratio of between group variance to within group variance. When the variancebetween groups is much larger compared to the variance within the groups,then the means of the groups probably are di�erent. The ratio MS(B)MS(W ) followsthe F-distribution with I � 1 and n� I degrees of freedom. From the value ofthe ratio we retrieve the corresponding probability (p-value) of observing thespeci�c value, under the assumption that the group means are equal. A p-valueclose to zero indicates that the initial assumption of means equality should berejected, consequently the di�erent values of the X variable de�ne groups on Ythat are di�erent. A p-value close to one indicates that the assumption is true,so the values of X do not de�ne di�erent groups on Y . Although p-value is byno means a measure of association, however it gives an indication of whetherthe X variable a�ects Y and also an indication of the level of the association.Since the quantity is a probability its values are in the interval [0; 1].4.2.4 Attribute-Class AssociationsA very important aspect, probably the most important one, in classi�cationproblems, is the amount of information that attributes bring about the class.2SS stands for Sum of Squares



4.2. DATASET CHARACTERISTICS 49It is obvious that the higher the information content of the attributes aboutthe class, the easier the task of classi�cation is. The information content ofattributes with respect to the class varies for di�erent attributes. Irrelevant at-tributes do not contain any useful information about the class. Di�erent learningalgorithms exhibit di�erent degrees of resilience to irrelevant attributes (Hilario& Kalousis, 2000). Decision trees or neural networks for example are consid-ered quite robust with respect to irrelevant attributes, due to their internalmechanisms, (feature selection and weight adjustment respectively), althoughthis behavior was not con�rmed for the neural networks in the aforementionedstudy. On the other hand simpler algorithms like nearest neighbors are sen-sitive to irrelevant attributes. Datasets with attributes that individually havelow information content about the class are a challenge to most classi�cationalgorithms. Usually low information content indicates the need for new higherorder attributes. If this is the case feature construction algorithms have a betterchance of achieving higher performance than simple ones.One of the most common measures of the information that one attributeX conveys about another attribute Y is the mutual information MI(Y;X).Mutual information describes the reduction in the uncertainty of Y due to theknowledge of X , and it is given by:MI(Y;X) = H(Y )�H(Y jX)where H(Y jX) is the conditional entropy of Y given X and it is de�ned as :H(Y jX) = IXi=1 p(X = xi)H(Y jX = xi)= � IXi=1 p(X = xi) JXj=1 p(Y = yj jX = xi)log(p(Y = yj jX = xi))= � IXi=1 �i+ JXj=1 �jjilog(�jji)Mutual information is symmetric, that is, MI(X;Y ) = MI(Y;X). It is one ofthe most common measures used in decision trees to perform the selection ofthe attributes on which a test will take place. The attribute with the highestmutual information with the class, is selected for the split.In the machine learn-ing literature it usually appears as information gain (Quinlan, 1992a; Cohen,1995). The values of mutual information of two attributes X;Y fall in the in-terval [0;min(H(X); H(Y ))]. A mutual information of zero means that the twoattributes are independent. The maximum value of mutual information appearswhen one of the two attributes completely determines the other. That is whenone of H(X jY ); H(Y jX) is zero. We compute the mutual information of eachattribute Xi with the class attribute C, that is MI(C;Xi) = H(C)�H(CjXi).Another metric of association between nominal attributes, based on the mu-tual information, is the uncertainty coe�cient (Agresti, 1990). The uncertainty



50 CHAPTER 4. DESCRIPTION OF DATASETScoe�cient is the mutual information normalized by the entropy of the dependentattribute, i.e.:U(Y;X) = MI(Y;X)H(Y ) = H(Y )�H(Y jX)H(Y ) = 1� H(Y jX)H(Y )This measure is also very popular in the machine learning community usuallyit is described as the information gain ratio, (Quinlan, 1992a; Gama & Brazdil,1999), and it is used extensively in decision tree algorithms, in the same wayas the mutual information. In the case of classi�cation problems the dependentattribute is obviously the class attribute, so one would expect the normalizationto be done with the class entropy. However instead of normalizing by the classentropy, they normalize with the entropy of the independent attribute, whichin essence is the U(X;C) concentration coe�cient. So what actually the infor-mation gain ratio measures is the proportional reduction in the variation of theattribute X when C is known, and not the other way around as it would havebeen expected. In other words the information gain ratio selects as a splittingattribute the one for which the class attribute contains the most information!The advantage of the uncertainty coe�cient over the mutual information isthat since it is normalized its values fall in the interval [0; 1]. The uncertaintycoe�cient is not symmetric, however there is the following extension which issymmetric with respect to the two attributes, and its values still fall in the [0; 1]interval : Usymmetrical(Y;X) = 2MI(Y;X)H(X) +H(Y )The uncertainty coe�cient and the concentration coe�cient presented in sec-tion 4.2.3 have the same semasiology. They both describe the proportionalreduction in the variation of the dependent attribute with the knowledge ofthe independent attribute. Because of that we limit ourselves only to the con-centration coe�cient in order to describe the associations between the discreteattributes and the class. So for each discrete attribute Xi we compute the �XiC .The above measures are not always adequate, because they are only ableto capture interactions between only two attributes. Higher order relationshipsinvolving more than two attributes are not captured. For example if our conceptis the parity problem the mutual information of every attribute with the class isalways zero, a fact that is logical since by looking only one attribute we cannothave any information about the class, here all attributes have to be examinedon the same time.In an e�ort to describe the association between the continuous attributesand the class attribute we can use the p-value of the F-distribution as it wasdescribed previously in section 4.2.3. Note again, that what we are examining iswhether the class attribute de�nes di�erent groups in the continuous attributes,and not how the continuous attributes a�ects the class attribute. However if thevalues of the class attribute are associated with distinct groups of a continuousvariable, then these variables can be used to discriminate between di�erentclasses. This is why we use again the same measure to describe the associationbetween the continuous attributes and the class attribute.



4.2. DATASET CHARACTERISTICS 51Describing the associations between the continuous attributes and the classattribute requires some knowledge of discriminant and canonical correlationanalysis. Canonical correlation analysis examines the correlations between twosets of variables (Anderson, 1984). Unlike traditional correlation analysis itlooks for correlations in new transformed spaces where the correlations betweenthe new variables are maximal. A new coordinate system is established for eachset of variables in such a way that the new coordinates display clearly the sys-tem of correlation. This is done by �nding the linear combinations of variablesin each set that have the maximum correlation; these linear combinations arenow the �rst coordinates in the new system. Then a second linear combinationin each set is sought such that the correlation between these is the maximumof correlations between such linear combinations as are uncorrelated with the�rst linear combinations. The procedure is continued until the two new coordi-nate systems are completely speci�ed. The new variables that are produced bythe linear combinations are called canonical variates. Here we are interested inthe maximal canonical correlation or the �rst canonical correlation which corre-sponds to the correlation of the �rst canonical variates on the new transformedsystem. Consider two multivariate random vectors, X;Y , and the two columnvectors, wx; wy, then the �rst canonical correlation is given by:�max = argmaxwx;wy Cov(Xwx; Y wy)pV ar(Xwx)V ar(Y wy) (4.5)When computing the �rst canonical correlation between the continuous at-tributes and the class attribute we consider as X , the random vector E consist-ing of the X1; X2; :::; Xcon continuous attributes, and as Y the class attributerepresented in local binary encoding, i.e. Y is a cl dimensional vector. We arelooking for the column vectors, wx; wy, that maximize the correlation betweenthe attributes and the class. There are di�erent ways to solve that problem,i.e. �nd the linear combinations and the maximal correlation coe�cient. Oneof them makes use of discriminant analysis, which is closely related to canonicalcorrelation analysis.Let us consider again the multivariate random vector E consisting of thecontinuous attributes. Each observation e of the random vector belongs toclass ci; 1 � i � cl. In discriminant analysis the goal is the computation ofa set of linear transformations Yi = Ewi; 1 � i � cl � 1 of the initial set ofvariables that project the initial con dimensional space to a cl � 1 dimensionalspace. If we consider asW , the con�(cl�1) matrix, that has as columns the wivectors, then we can write the linear transformation as a single matrix equation,Y = EW . The linear transformations are chosen in such a way that in the newspace the projected samples are well separated. There are di�erent criteriaof class separability based on within-class, between-class and mixture scattermatrices, (Fukunaga, 1990). The within class scatter matrix gives a measure ofthe variation of the instances of each class around the class mean, the between-class scatter matrix a measure of the di�erence of the means of the di�erentclasses, and the mixture scatter matrix a measure of the variation of the whole



52 CHAPTER 4. DESCRIPTION OF DATASETSdataset. The separability criterion that is of interest to us is the one suggestedby Fisher (1936) for two class problems and extended by Rao (1948), to handlemulticlass ones. The reason is that the maximization of the proposed criterionis directly associated with the canonical correlation coe�cients, between the Evariable and the class variable.Let �ci ; � be the con dimensional vectors giving the means of the ci classand the total mean respectively,�ci = 1nci Xe2ci e� = 1nX e = 1nXci nci�cithen the total scatter matrix of the dataset is given byST =Xe (e� �)0(e� �) (4.6)the scatter matrix of the class ci is given bySci =Xe2ci(e� �ci)0(e� �ci) (4.7)the within class scatter matrix bySW =Xci Sci (4.8)and the between class scatter matrix bySB =Xci nci(�ci � �)0(�ci � �) (4.9)Applying the W transformation on the E random vector results in the followingwithin class and between class scatter matrices, on the new transformed space,gSW = W 0SWWfSB = W 0SBWIntuitively, to improve class separability in the new space, we can maximize thedistances of the classes in the new space while minimizing the variation of theinstances of each class, by appropriately selecting W . One way to do that is tomaximize the ratio of the determinants of the two matrices, i.e.argmaxW jfSB jjgSW j = argmaxW jW 0SBW jjW 0SWW jThe columns of the matrixW that maximize the ratio are the generalized eigen-vectors that correspond to the largest eigenvalues ofSBwi = �iSwwi (4.10)



4.2. DATASET CHARACTERISTICS 53with the eigenvectors given by(SB � �iSW )wi = 0 (4.11)If SW is non-singular then the generalized eigenvalue problem given by equa-tion 4.10 can be converted to a conventional eigenvalue problem of �nding theeigenvalues �i of S�1W SB . Since S�1W SB is positive semide�nite its eigenvaluesare non-negative. The number of positive eigenvalues of S�1W SB is equal to itsrank. And the rank of S�1W SB is bounded byrank(S�1W SB) � min(rank(S�1W ); rank(SB)) = min(cl � 1; con)SB is the sum of cl matrices with the rank of each one being at most one. Thisfollows from the fact that each one of them is the result of the outer productof two vectors, i.e. (�ci � �)0(�ci � �). Furthermore since the cl class meanssatisfy � = 1nPci �ci at most cl-1 of these matrices are linear independent. Asa result of these rank(SB) � min(cl� 1; con).It can be shown (Ripley, 1996), that the vector, wx, that maximizes equa-tion 4.5, is the eigenvector associated with the largest eigenvalue computed byequation 4.10. The resulting variable is called the �rst linear discriminant, andit is the �rst canonical variate. In the same way the vector that gives the sec-ond highest canonical correlation is the eigenvector associated with the secondlargest eigenvalue of equation 4.10, and gives the second linear discriminant orthe second canonical variate, etc. Furthermore the canonical correlation coe�-cient of the i canonical variate with the class variable is given by �i = q �i1+�i .Consequently if �1 is the largest eigenvalue then the �rst canonical correlationcoe�cient is �max =r �11 + �1Because the eigenvalues are non-negative, we have 0 � �i � 1.The wi eigenvectors that correspond to the largest eigenvalues of equa-tion 4.10 are the ones that have the highest discrimination power. �i measuresthe ratio of the between to within group variances on the ith linear discriminant.The total variation of the linear discriminants is just the sum of the eigenvalues.The proportion of variation explained by the �rst linear discriminant is denotedas frac1 and it is computed asfrac1 = �1Pi �i ; (No 59)this quantity can be also seen as the discriminating power of the �rst lineardiscriminant.Note here the very close relation of the ANOVA based procedure described insection 4.2.3, used to measure the degree of association between a continuous anda discrete attribute, with discriminant analysis. The classes' scatter matrices(equation 4.7), the within class scatter matrix (equation 4.8) and the between



54 CHAPTER 4. DESCRIPTION OF DATASETSclass scatter matrix (equation 4.9) used by the discriminant analysis are thestraightforward extensions of the groups' variation (equation 4.3), the withingroup variation (equation 4.4) and the between group variation (equation 4.2),from one dimensional variable to multivariate variable. While the ANOVA basedprocedure just measures the degree of association, discriminant analysis seeksfor these linear transformations that maximize the associations.The information required to specify the class of an instance is H(C). Theinformation that all the attributes provide about the class is MI(C;E). It canbe very easily seen that this quantity can be greater than the sum of the mutualinformation of the individual attributes with the class; a typical example of thatis the parity problem. In a simplistic case all attributes are independent so themutual information of the full vector of attributes with the class equals the sumof the mutual information of individual attributes with the class, i.e.MI(C;E) = attrXi=1MI(C;Xi)under that scenario each attribute contributes information independently of therest. We could then consider that the mutual information of each attribute withthe class attribute equals the average of the individual mutual information,dMI(C;X) = Pattri=1 MI(C;Xi)attr ; (No 65)By taking the ratio EN:attr = H(C)dMI(C;X) ; (No 66)we can have a rough estimate of the number of attributes on average requiredto describe the class, this quantity is called the equivalent number of attributes.Finally in an e�ort to estimate the amount of non-useful information of adataset we use the noise to signal ratio. Which is given by :NS:ratio = dH(X)� dMI(C;X)dMI(C;X) ; (No 67)dH(X) is the average information of the attributes. Then dH(X) � dMI(C;X)is the mean non-useful information of the attributes. So the ratio gives thepercentage of non-useful information within the dataset.4.2.5 Other dataset characteristicsHere we will give a description of these dataset characteristics that cannot beclassi�ed to any of the previous categories.One factor that a�ects the di�culty of a classi�cation problem is the dimen-sionality problem. It is known that increasing the number of features beyond



4.2. DATASET CHARACTERISTICS 55a certain point is likely to be counterproductive (Duda & Hart, 1973). Thenumber of examples required for learning grows exponentially with the numberof features. But since we cannot always increase the number of examples, thelearning space becomes sparsely populated and generalization becomes more dif-�cult. As a rough measure of the dimensionality we use the ratio of the numberof attributes to the number of instances, dim, (No 4).The distribution of training examples among the di�erent classes could alsoa�ect the performance of learners. One way to describe this distribution isthe entropy of class, H(C), (No 63). The lower its value is, the more skewedthe distribution of instances among classes is. The higher the value the morebalanced the distribution is.Missing values also a�ect the performance of the learning algorithms, anddi�erent learning algorithms have di�erent ways to handle them. For examplec5.0 has a speci�c mechanism for them, while IBL uses a very naive strategy.So the result is that they exhibit di�erent degrees of tolerance to presence ofmissing values. We used two simple measures to describe them, namely the totalnumber of missing values, mvals, (No 5), and their proportion with respect tothe product of the number of attributes with the number of instances, %mvals,(No 6). Apart from that, we record the number of missing values for eachattribute, in a later section (section 4.4) we will describe how these will berepresented so that they can be handled by a propositional learner.When one is using discriminant functions for classi�cation the relation be-tween the covariance matrices of the di�erent classes determines whether linearor quadratic discriminants should be used. In the case where covariance matri-ces are equal then linear discriminants are used, when they are not equal thenquadratic discriminant functions are used. A measure characterizing the equal-ity or not of the covariance matrices could be predictive for the performance oflinear discriminants. Box's M-statistic is a measure that can be used to test theequality of covariances. It is given byM =  clXi=1(ni � 1)log jSjjSijwhere  = 1� 2con2 + 3con� 16(con+ 1)(cl � 1)( clXi=1 1ni � 1 � 1n� cl )S is the pooled covariance matrixS = 1n� cl clXi=1 SciSi is the i class covariance matrixSi = Scini � 1



56 CHAPTER 4. DESCRIPTION OF DATASETSand Sci is the i class scatter matrix.The M-statistic can be reexpressed as the geometric means ratio of the pooledstandard deviations to the classes' standard deviations via the standard devia-tion ratio, SD:ratio,SD:ratio = exp( MconPcli=1(ni � 1)); (No 69)SD:ratio is strictly greater than one if the covariances di�er and is equal toone if and only if the M-statistic is zero, that is when all individual covariancematrices are equal to the pooled covariance matrix.4.3 A discussion on characteristicsHere we will discuss some practical problems associated with the use of datasetcharacteristics.In many of the characteristics used to describe a dataset, the range of theirpossible value varies depending on the speci�c attributes of the dataset on whichthey are measured. Examples of characteristics like that are the entropy of theattributes, the mutual information between an attribute and the entropy of theclass attribute. This fact causes problems when it comes to the comparison ofthe values of a speci�c characteristic for di�erent datasets, although we have thesame characteristic the range of values is di�erent. In order to be more concretelet us examine the case of the class entropy. We want to compare the classentropy of two di�erent datasets, in order to determine how similar these twodatasets are in that dimension. This is not straightforward since, as we haveseen, the possible range of values of the class entropy depends on the numberof di�erent classes that each dataset has, and it is bounded by [0; log(cl)]. Onepossible solution, in order to alleviate the problem is to normalize these char-acteristics so that they will all fall in the same value interval. Note that hereby normalizing we mean, in the case of the class entropy, the division with themaximum theoretical entropy, i.e. log(cl). When extending the set of charac-teristics provided in STATLOG we took special care in selecting ones that hadalways the same range independently of the dataset attributes on which theyare computed.Another problem arises with the use of measures which can be computedonly for discrete, or only for continuous attributes. There might be datasetsfor which it makes no sense to compute some characteristics. For example in adata set in which all the attributes are continuous, none of the characteristicsfor discrete attributes applies (e.g. entropy, concentration coe�cient etc) andvice versa. The typical way to handle those cases so far was to consider thesevalues as missing values but this alters the semantics of the problem, since theyare not missing values but they deliver useful information about the natureof the dataset. They are rather a distinct value. To handle those cases weassign the label non-appl to the corresponding characteristics. This results incharacteristics that have either continuous values or the value non-appl. In



4.4. STAYING PROPOSITIONAL 57order to perform learning in the meta-level, we need inductive algorithms thatcan handle features of that nature.A last problem with dataset characteristics is associated with speci�c patho-logical cases that may appear when computing the value of a characteristic,resulting in a non-numerical value for that characteristic. For example the con-centration coe�cient between two attributes can take the value of 1 when thedistinct values of an attribute are not properly de�ned. This situation can ap-pear when one of the di�erent values of one of the two attributes never appearsin the dataset (although de�ned in the dataset schema), resulting in a �i+ ofzero, in formula 4.1, giving the concentration coe�cient. Again one solution tohandle the speci�c problem, would be to encode these cases as missing values,but that would again alter the semantics of the problem, so we have decided tohandle them as another distinct value of the characteristics.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1Fig. 4.1. Example of distributions of the correlation coe�cients of two di�erent datasets with thesame mean, but completely di�erent form4.4 Staying PropositionalOne of the weak points of the STATLOG approach, as well of the subsequente�orts in the spirit of STATLOG (i.e. (Brazdil et al., 1994; Lindner & Studer,1999; Sohn, 1999; Soares & Brazdil, 2000)), was the management of the datasetscharacteristics which are computed for each attribute or for pairs of attributes.Let us take as example the case of the correlation coe�cient. The speci�c



58 CHAPTER 4. DESCRIPTION OF DATASETScharacteristic is computed for all the pairs of continuous attributes, resultingin O(con2 ) coe�cients. The use of propositional learners on the meta-learninglevel requires that training instances should be described by exactly the samepredictors. It is obvious that in the case of the correlation coe�cients theirnumber depends on the number of continuous attributes. So there is a need fora mapping of this varying length set of numbers to a constant representationwhich is independent of the number of attributes of a dataset. What was done inSTATLOG and also in the subsequent similar approaches was to map every suchset of characteristics to its mean value, so that �nally every dataset is describedby the same and �xed number of attributes. The limitations of this approachare obvious and we will exhibit them with a small example. In �gure 4.1 we cansee the distribution of the correlation coe�cients for two di�erent hypotheticaldatasets. In the distribution given by the solid line there is a strong correlationamong the attributes. The values of the correlation coe�cients are concentratedto the extremes of the [�1; 1] interval. Consequently there is a high degree ofpleonasm in the dataset. On the other side we have the dataset whose correlationcoe�cients distribution is given by the dotted line. Here the values of thecorrelation coe�cients are concentrated around zero, so the dataset has a lowlevel of pleonasm (at least when we are examining it, in terms of simple linearrelationships). So what we �nally have are two completely di�erent datasets,which however when they are described by their mean, have exactly the samedescription, (since both distributions share the same mean of zero).Todorovski et al. (2000) tried to attack the problem including also theminimum and maximum value for each characteristic that is computed on anattribute basis. In a more interesting approach Todorovski and Dzeroski (1999)use inductive logic programming to overcome the representational restrictionsposed by the use of propositional learners on the meta-level. Inductive logiclearners have richer representation power since they rely on relational represen-tations of the instances. Like that, it is possible to maintain the full informationcontained in the initial characteristics without having to map them to a �xedrepresentation. A similar approach is proposed in (Hilario & Kalousis, 2001),where they make use of a case based reasoning system. Case based systemsalso make use of relational representations of the instances thus overcoming therestrictions of propositional learners, however most of the available systems, in-cluding the one used in the (Hilario & Kalousis, 2001), do not induce �rst orderrules.Since in this work we restricted ourselves to the use of propositional learnerswe have to �nd a way to overcome their representational limitations by keepingas much information as possible from the initially available in the full set ofthe dataset characteristics. In order to achieve this, we use for each set ofvalues associated with a speci�c characteristic, the histogram of the values inthat set, instead of just its mean. More precisely for every characteristic ofthis type we compute its theoretical range of values, for example in the caseof the concentration coe�cient this is the interval [0; 1]. This interval is thendivided in ten equal length bins. For each bin we compute the percentage of



4.4. STAYING PROPOSITIONAL 59the pairs of attributes that have a concentration coe�cient that belongs to thatbin. Furthermore we also create one more bin which is associated with thosepathological cases for which a characteristic is non-computable, as for examplein the cases of concentration coe�cient in which we take 1 as a value.The histograms where applied to all the dataset characteristics with whichwe have extended the STATLOG set of characteristics, plus the correlation co-e�cients that were used in STATLOG. More precisely we used the histogramrepresentation for the following characteristics: the concentration coe�cientsbetween discrete attributes, [�1::�10], (No 12-21), and between the class vari-able and the discrete attributes, [�C1 ::�C10 ], (No 23-32); the correlation coef-�cient between continuous attributes, [�1::�10], (No 35-44); the p-value of theF-distribution used to describe the associations between continuous and discreteattributes, [p�val1::p�val10], (No 70-79), and also between the continuous at-tributes and the class variable, [p�valC1 ::p�valC10 ], (No 80-89). The patternsof missing values among the attributes were also described using histograms, inthe following paragraph we describe how this was done.For a particular dataset, the percentage of the missing values alone gives al-most no information on their structure. It is typical to have datasets which haveexactly the same total percentage of missing values but a completely di�erentdistribution among the attributes; in that case the proportion of missing valueshas no discriminatory power. In (Kalousis & Hilario, 2000a) we have also shownthat the way the missing values are distributed among the di�erent attributesof a dataset critically a�ects the performance of the learning algorithms. Todescribe the way missing values are distributed among attributes, we computethe percentage of missing values for each attribute and then create a histogramof missing values, [mvals1::mvals10], (No 46-55), i.e. the �rst bin contains theproportion of attributes that have between 0% and 10% missing values, the sec-ond between 10% and 20%, etc. In this way we are able to describe patterns ofmissing values in a �ner detail.For the rest of characteristics, whose number of values depend on the num-ber of attributes, used in STATLOG, (i.e. attributes entropy, mutual informa-tion, skew, kurtosis) and the multiple correlation coe�cient, we did not use thehistogram representation but just their means, dH(X); dMI(C;X); ̂; �̂; R̂, (No64,65,61,62,68), as it was done in STATLOG.Using the histograms for the multiple correlation coe�cient is straightfor-ward since it takes values from a constant interval. For the entropy of theattributes and the mutual information the procedure is not straightforward,since their maximum theoretical value depends on the number of distinct val-ues of the attributes on which the characteristics are computed, meaning thatdi�erent attributes or di�erent pairs of attributes will have di�erent theoreticalbounds. Consequently we can not describe their global distribution, since thereis no common interval of values, on which to de�ne the bins of the histogram.The problem could be solved with the normalization procedure described insection 4.3. Unfortunately for the kurtosis and skew values there is no way tonormalize them in order to have common bounds.



60 CHAPTER 4. DESCRIPTION OF DATASETSTable 4.2. Computational Cost. n is the number of examples in the training set, and m thenumber of examples in the test set.Algorithm Train Cost Test Cost 10CV costc50boost O(10 � n� con� logn) O(m) O(100� n� con� logn)c50rules O(n3) O(m) O(10 � n3)c50tree O(n� con� logn) O(m) O(10� n� con� logn)Ltree O(n� con� logn) O(m) O(10� n� con� logn)Lindiscr O(n) O(m) O(10� n)IBL O(1) O(m� n) O(10 � n2)NB O(n) O(m) O(10� n)ripper O(n� log2n) O(m) O(10� n� log2n)4.5 Computational ComplexityOne of the critical factors concerning the operational performance of the systemis the computational requirements of the characteristics used to describe thedatasets. If these require more computational time than the evaluation of theavailable learning algorithms, then clearly the system would have been useless.Concerning the characteristics that are computed for the discrete attributesthe main computational requirements stem from the construction of the con-tingency tables. This can be done in only one pass of the dataset, thus havinga computational complexity of O(n). For the characteristics that involve onlyone discrete attribute with I distinct values, their computation cost for all thenominal attributes is O(nom � I). The computational cost of characteristicsthat involve two nominal attributes with I; J distinct values, for all the pairs ofnominal attributes is O((nom2 )� I�J) = O(nom2� I�J). So the total compu-tational cost for the characteristics that are applied on the nominal attributesis O(n+nom2� I�J +nom� I), which is dominated by O(n) when nom� n.When it comes to the characteristics that are computed for the continuousattributes the main computational requirements stem from the construction ofthe covariance matrices, the computational complexity of which is O(n). Thecomputation of some of the characteristics is based on the eigenvalues of acon� con matrix, which in order to be computed require the inverse of a matrixwith the same dimensions. Inversing a matrix of con�con dimensions has a costof O(con3), the same a the computation of the eigenvalues of a matrix with thesame dimensions. So the total computational cost of the characteristics used todescribe continuous attributes is O(n+con3) which again is dominated by O(n)when con� n.To conclude the total computational cost of the dataset characteristics isO(n) when attr � n, otherwise it is O(n+ nom2 � I � J + nom� I + con3).Let us now examine briey the computational cost of estimating the accura-cies through cross validation in order to select the best algorithm from the poolof eight learning algorithms that we are using here. In a typical application ofcross validation one would use ten repetitions of train and test phases, using 90%of the available data as a training set, and the rest 10% as a test set. The com-putational cost of that heavily depends on the algorithm that one is currently



4.5. COMPUTATIONAL COMPLEXITY 61evaluating and it will be : 10� (TrainCostalgo(90%n) + TestCostalgo(10%n)).In order to simplify things we will consider that attr � n. Based on that as-sumption the computational cost of the test phase only depends on the numberof instances in the test set.Cohen (1995) computes the computational cost of ripper and they compareit with that of c4.5rules. Since c5.0rules is an evolution of c4.5rules, and thereis no documentation of it, we will consider that it has a similar cost to thatof c4.5rules. He computes the cost of ripper to be on the order of O(nlog2n)and that of c4.5rules to be O(n3), which is also con�rmed by their experimen-tal �ndings. In (Ruggieri, 2002) the computational complexity of c4.5tree iscalculated to be on the order of O(n � (con � logn + nom)) which is roughlyequal to O(n � con � logn). For the same reasons with c5.0rules, we considerthe cost of c50tree to be equivalent to that of c4.5tree. Ltree follows the samedivide and conquer strategy with c50tree so they share the same computationalcost. In the case of c50boost the computational cost is determined by the mul-tiple executions of c50tree, ten in our experiments. So the cost of c50boost issimply O(10 � n � con � logn). In the case of Lindiscr the cost of training isO(n+attr3), since the algorithm consists of computing the covariance matricesand solving an eigenvalue problem, with respective cost of O(n) and O(attr3).And under the initial assumption of attr � n, this gives a computational costof O(n). Naive Bayes requires just one pass of the data to build the model, andIBL does not even require a pass since it does not construct a model, howeverIBL is much more expensive in the testing phase, where its computational costis O(n�m) = O(n2).The main cost of cross validation for all the algorithms except from IBL,comes from the application of the training phase for ten times. So roughly thecost of cross validation is ten times the cost of the training phase. In the case ofIBL the main cost of cross validation comes from the application for ten timesof the test phase. In table 4.2, we summarize the computational costs of theeight algorithms, for the train, test and the cross validation. It is obvious thatthe cost of using ten fold cross validation to �nd the best learning algorithm in agiven dataset, is by far greater of that of computing the dataset characteristics.The cost of cross-validation mentioned so far it is the worst case scenario.It is possible to develop special versions of classi�cation algorithms that in-corporate in the model construction phase the cross-validation cycle. This isstraightforward for simple classi�cation algorithms like Naive Bayes and Near-est Neighbors and results in cross validation costs similar to that of a singleapplication of the algorithm. It is less trivial for more complex algorithms likedecision trees and neural networks where the speedup of the cross validation ver-sion of the algorithm depends on the form of the concept, (Blockeel & Struyf,2001), and it lies between the cost of a single application of the algorithm andthe cost of normal cross validation.
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Chapter 5Instance BasedMeta-LearningThe selection of the appropriate inducer which will be used at the meta-learninglevel will critically a�ect the performance of the system. As a starting pointwe use a simple instance based learning algorithm. Instance based learning al-gorithms induce no model from the training data, they only rely on distancemeasures of the instances that have to be classi�ed from the data used for train-ing. There were two main reasons for the selection of an instance based learneron the meta-level. First and more important is that we expect learning algo-rithms to exhibit similar performance on datasets with similar characteristics,so we can exploit past algorithm performance to predict performance on un-seen datasets. Second, the fact that it is straightforward to adapt the distancemeasure of an instance based learner so that it can handle the non-appl valuesmentioned in section 4.3.We de�ne similarity between datasets in terms of geometrical proximity inthe morphology space, whose dimensions are de�ned by the dataset character-istics, and observe the morphology space as a conventional Euclidean space, ex-tended by non-appl. We modi�ed the distance de�nition of the Nearest Neighboralgorithm to handle attributes whose domain is < [ non� appl. The morpho-logical characteristics are all normalized to the interval [0; 1], prior to applyingthe algorithm.De�nition 5.0.1 LetM1; : : : ;Mn denote the characteristics constituting a datasetmorphology. The distance d between two datasets D;D0 with respective mor-phologies < m1; : : : ;mn > and < m01; : : : ;m0n > is:d = nXi=1 d2iiwhere : dii = mi �m0i if mi;m0i 2 <63



64 CHAPTER 5. INSTANCE BASED META-LEARNING= 1 if one of mi;m0i is non-appl= 0 if both of mi;m0i are non-appl 2We experimented with two di�erent sets of datasets characteristics. In the�rst one, which we will call histo, we excluded all the ANOV A based measures,used to describe the associations between discrete and continuous attributes,that is we did not include characteristics after the 70th position of table 4.1.In the second, which we identify as +histo, we used all the characteristics ofthe given table. This was done in order to examine whether the extensionof the dataset characteristics with the ANOV A based measures, improves thediscriminating power of the characterization.5.1 Results with simple IBLFor the training and evaluation of the system we used the 1075 datasets de-scribed in section 3.4 and the evaluation method described in section 3.6. Ine�ect we have two levels on which we evaluate the performance of a speci�ccombination of dataset characterization and meta-learning algorithm. The �rstlevel is the performance in terms of accuracy for the pairwise meta-learningproblems. The second level concerns the �nal suggestion of the system and weuse both normal accuracy and the loose accuracy as it was de�ned in section 3.6.5.1.1 Results on the histo set of characteristicsUsing IBL on the histo set of dataset characteristics, gives quite good resultsboth in terms of the accuracy of prediction on the pairwise meta-learning prob-lems, as well as in the �nal suggestion of algorithm.Results on the Pairwise Meta-Learning Problems In table 5.1, we givethe achieved accuracies for all the pairwise meta-learning problems and theimprovement over the default accuracy. For all of them the improvement is quitesigni�cant, moreover it is always signi�cant in statistical terms. The completeclass distributions for each of the pairwise meta-learning problems was alreadygiven in table 3.1.In the most remarkable case, the pair of IBL and Naive Bayes, the default ac-curacy is 36.09% and the predictive accuracy is 85.02%, that is, an improvementof 48.93% over the default. It is obvious that the current set of characteristicsis quite discriminating for the speci�c pair. This can be explained by the factthat the characteristics used give quite an emphasis on the description of in-terelations between the attributes, as well as between the attributes and theclass, giving an implicit measure of the redundancy and the level of irrelevant



5.1. RESULTS WITH SIMPLE IBL 65information present in a dataset. In what concerns the level of irrelevant in-formation in a dataset, we could state that Naive Bayes and simple instancebased learners have a completely di�erent region of expertise, with the formerbeing able to cope far better on datasets with irrelevant attributes than thelater. The reason is that Naive Bayes uses the class conditional probabilities ofthe attributes in order to classify an instance; with this mechanism the e�ectof the irrelevant attributes is reduced. When one attribute is irrelevant withrespect to the class attribute we expect that its distribution will not change overthe di�erent classes, that is the class conditional probabilities of the irrelevantattributes do not change among the classes. When an instance is to be classi�edthe irrelevant attributes will have exactly the same e�ect when computing theclass posterior probabilities. On the other hand the instance based inducer usedhere gives equal importance to all attributes, independently of whether they arerelevant or not, thus its performance is hampered by the presence of irrelevantattributes.Overall the average improvement over the default accuracy is 27.24%, rela-tively high especially if one considers the di�cult nature of the problem.The achieved accuracy and the improvement over the default di�er from pairto pair, implying the obvious, i.e. that the best set of discriminating character-istics is di�erent from pair to pair.Results on the Final Suggestion The results concerning the accuracy of the�nal suggestion, given in table 5.2, of the system are less satisfactory, especiallyif we consider the high level of accuracy that is achieved on the pairwise meta-learning problems. Here the accuracy falls down to 47.72%, nevertheless thereis still a signi�cant improvement, over the default accuracy that corresponds tothe �nal suggestion, of 21.49%. The explanation to that is that the errors weget on the pairwise meta-learning problems do not occur on the same instances,in our case datasets. This is more easily demonstrated with an example. Let ussuppose a simple scenario with three inducers on the base level. This would giverise to three di�erent pairwise meta-learning problems. If the accuracy on allthree hypothetical meta-learning problems was 90%, then in the worst case theaccuracy of the �nal suggestion1 would be 100%�3�10% = 70%. This scenariowould happen when the produced meta-learning models make errors in disjointsets of datasets and these errors a�ect the decision as to which algorithms areranked in the top position. There could be errors in the individual pairwisemeta-learning models that do not a�ect the correctness of the �nal suggestion.Thus the error of the �nal suggestion can be in the worst case the cumulationof the individual errors, of the pairwise meta-learning models.Examining the performance of the system in terms of loose accuracy, i.e. thepercentage of times that the system fails to �nd the correct set of algorithmsthat together occupy the top position but instead �nds a subset of that set the1Remember here that the �nal suggestion is the result of the combination of the individualsuggestions of the pairwise meta-learning problems



66 CHAPTER 5. INSTANCE BASED META-LEARNINGTable 5.1. Accuracies of IBL on the histo feature set.pair Accuracy Improvementc50rules c50boost 82.42% 24.28%c50tree c50boost 80.00% 22.23%c50tree c50rules 78.14% 5.12%Lindiscr c50boost 84.84% 20.37%Lindiscr c50rules 85.12% 32.47%Lindiscr c50tree 85.58% 30.88%Ltree c50boost 78.60% 26.98%Ltree c50rules 82.14% 23.44%Ltree c50tree 78.79% 19.26%Ltree Lindiscr 81.21% 20.09%IBL c50boost 85.40% 20.74%IBL c50rules 74.88% 25.12%IBL c50tree 79.53% 27.53%IBL Lindiscr 81.49% 39.16%IBL Ltree 74.60% 17.95%NB c50boost 85.02% 24.19%NB c50rules 84.74% 33.30%NB c50tree 84.47% 31.54%NB Lindiscr 77.95% 36.84%NB Ltree 84.37% 26.14%NB IBL 85.02% 48.93%ripper c50boost 85.02% 34.05%ripper c50rules 77.86% 17.95%ripper c50tree 84.09% 24.00%ripper Lindiscr 78.70% 32.56%ripper Ltree 75.81% 22.60%ripper IBL 81.30% 35.16%ripper NB 81.67% 39.91%average 81.39% 27.24%Table 5.2. Final suggestion results of IBL on histoStrict Accuracy Improvement Loose Accuracy47.72% 21.49% 69.67%situation is better. The results are correct in 69.67% of the cases (table 5.2).5.1.2 Results on the +histo set of characteristicsThe addition of the p-values histograms derived from the ANOV A based proce-dure was done in order to capture to some extend the interelations that exist be-tween discrete and continuous attributes and between the continuous attributesand the class. Hopefully this would increase the discriminating power of thedataset characteristics, thus resulting in a better predictive performance. Nev-ertheless the results indicate that the incorporation of the p-values histogramsdo not improve the performance, but rather harm it.



5.1. RESULTS WITH SIMPLE IBL 67Table 5.3. Accuracies of IBL on +histo feature set.pair Accuracy Improvementc50rules c50boost 80.56% 22.46%c50tree c50boost 79.26% 21.53%c50tree c50rules 77.96% 4.98%Lindiscr c50boost 82.05% 17.63%Lindiscr c50rules 81.68% 29.05%Lindiscr c50tree 81.31% 26.70%Ltree c50boost 76.38% 24.77%Ltree c50rules 78.42% 19.80%Ltree c50tree 75.73% 16.27%Ltree Lindiscr 78.70% 17.58%IBL c50boost 85.31% 20.75%IBL c50rules 75.63% 25.93%IBL c50tree 78.70% 26.70%IBL Lindiscr 77.12% 34.87%IBL Ltree 73.96% 17.35%NB c50boost 81.49% 20.66%NB c50rules 80.38% 28.96%NB c50tree 81.87% 28.97%NB Lindiscr 74.24% 33.18%NB Ltree 82.24% 23.97%NB IBL 78.52% 42.51%ripper c50boost 82.14% 31.32%ripper c50rules 76.38% 16.49%ripper c50tree 82.14% 22.11%ripper Lindiscr 75.73% 29.66%ripper Ltree 73.49% 20.29%ripper IBL 79.73% 33.66%ripper NB 79.35% 37.63%average 78.94% 24.85%Results on the Pairwise Meta-Learning Problems The results on the+histo set of characteristics are given in table 5.3. The average accuracy over allthe pairwise meta-learning problems is 78.94% a reduction of 2.45% comparedto the average performance on the histo set of characteristics. In all the pairwisemeta-learning problems but one, the accuracy on the +histo set of character-istics is lower than the corresponding on the histo set. In section 5.1.3 we willexamine in more detail the statistical signi�cance of the observed di�erencesamong the two sets of characteristics.Results on the Final Suggestion Evaluating the quality of the �nal sug-gestion we can see that in terms of the accuracy of the �nal suggestion the+histo set of characteristics achieves almost the same accuracy with the histowith a slight decrease of 0.65%. If we move now to the loose accuracy there thereduction in performance is higher, 2.97%. The performance of the +histo issummarized in table 5.4.



68 CHAPTER 5. INSTANCE BASED META-LEARNINGTable 5.4. Final suggestion results of IBL on +histoStrict Accuracy Improvement Loose Accuracy47.07% 20.84% 66.70%5.1.3 Comparing the discriminating power of +histo; histoIn this section we will proceed to the comparison of the two di�erent waysof dataset characterization to determine whether the observed di�erences arestatistically signi�cant or not. In order to do that we will apply the McNemartest of statistical signi�cance both in the pairwise metalearning problems andin the �nal suggestion. We set the � level of statistical signi�cance at 0:05.Results on the Pairwise Meta-Learning Problems In table 5.5 we givethe results of the McNemar test on each of the individual pairwise meta-learningproblems. The columns labeled histo Correct, +histo Correct give the numberof cases where the histo set of characteristics gave a correct prediction while the+histo set gave a wrong prediction, and vice-versa. By examining the outcomeof the McNemar test we can see that there is a statistical signi�cance in favor ofthe histo set in 18 out of the 28 meta-learned models. In all the other cases thereis no signi�cant di�erence. There is no pairwise meta-learning problem wherethe +histo outperforms the histo, thus providing strong evidence for the supe-riority of the histo set over the +histo at least for the pairwise meta-learningproblems.Results on the Final Suggestion Examining the results of the statisticalsigni�cance test on the �nal suggestion, table 5.6, we see that the two sets havethe same performance when it comes to strict accuracy, i.e. their di�erence is notstatistically signi�cant. In the case of loose accuracy histo outperforms +histoand now the di�erence is statistical signi�cant. The columns histo Correct,+histo Correct give the number of cases where the histo set of characteristicsgave a correct prediction while the +histo set gave a wrong prediction, andvice-versa.The overall picture from the preceding tests of statistical signi�cance is that,at least when IBL is the meta-learner chosen, histo outperforms +histo. Wesee two possible explanations for this somehow counterintuitive phenomenon.One possible reason could be the fact that the extra features of +histo simplydo not bring any useful information about the problem. As we have stated inthe description of these extra features, they provide a crude way to describethe interelations between continuous and discrete attributes lacking anothercharacteristic better adapted to that kind of need. The reason for that is theirunderlying assumption, i.e. the independent variable is the discrete variable andthe dependent is the continuous, in that way they can only describe unidirec-tional dependencies. One other explanation could be the fact that the additionof new dataset characteristics increases the dimensionality of the problem thus



5.2. META-FEATURE SELECTION 69Table 5.5. Results of McNemar test comparing the accuracies of histo and +histo, on thepairwise meta-learning problems. = indicates no statistical di�erence, + indicates statisticaldi�erence. pair histo +histoCorrect Correct p� valuec50rules c50boost 70 50 0.083 =c50tree c50boost 60 52 0.509 =c50tree c50rules 49 47 0.919 =Lindiscr c50boost 69 39 0.006 +Lindiscr c50rules 75 38 0.001 +Lindiscr c50tree 74 28 0.001 +Ltree c50boost 81 57 0.051 =Ltree c50rules 74 34 0.001 +Ltree c50tree 76 43 0.004 +Ltree Lindiscr 76 49 0.021 +IBL c50boost 46 45 1.000 =IBL c50rules 65 73 0.552 =IBL c50tree 66 57 0.471 =IBL Lindiscr 74 27 0.00 +IBL Ltree 74 67 0.614 =NB c50boost 69 31 0.001 +NB c50rules 84 37 0.001 +NB c50tree 74 46 0.014 +NB Lindiscr 93 53 0.002 +NB Ltree 60 36 0.019 +NB IBL 100 30 0.00 +ripper c50boost 73 43 0.008 +ripper c50rules 58 42 0.134 =ripper c50tree 60 39 0.045 +ripper Lindiscr 77 45 0.006 +ripper Ltree 73 48 0.030 +ripper IBL 61 44 0.119 =ripper NB 70 45 0.026 +making learning more di�cult. It still remains to be seen whether the sameobservation holds when more elaborate inducers are used on the meta-learning.5.2 Meta-Feature SelectionAn issue that has received little attention, if any, in the meta-learning �eld, isthe explanation and the understanding of the factors that a�ect inducer perfor-mance. All previous e�orts have aimed at maximizing the predictive capabili-ties of the meta-learner without shedding light on the factors (i.e. properties ofthe datasets) that a�ect the performance of the algorithms. Applying featureselection to the meta-level can cover this gap and at the same time improvemeta-learning performance. Using feature selection we can have a better ideaof the factors that a�ect the performance of the learners. This is especially truewhen the meta-learning algorithm used is an instance based learner, which givesno insight into the relevance of the attributes used for learning.The �rst attempt at meta-feature selection appeared in the meta-learning



70 CHAPTER 5. INSTANCE BASED META-LEARNINGTable 5.6. Results of the McNemar test comparing the accuracies of histo and +histo, on the�nal suggestion, both in terms of strict and loose accuracy.histo +histoCorrect Correct p� valuestrict Accuracy 76 69 0.6183 =loose Accuracy 90 58 0.0119 +framework of zooming-ranking (Todorovski et al., 2000). As it was mentionedpreviously the main limitation of this framework is the mandatory use of a sin-gle and global meta-learning model (an instance based model), independentlyof the pool of algorithms from which the selection is to be performed. Howeverthe factors that determine the relative performance of a group of algorithms,may be quite di�erent from the factors that determine the relative performanceof another group of algorithms. Moreover even within a speci�c group of learn-ing algorithms the factors that determine the relative performance of a pair ofalgorithms from the group, can be quite di�erent from the factors that a�ectthe relative performance of the algorithms of an another pair. It is exactly thiscase that calls for use and combination of di�erent meta-learning models. Herethe diversity of the meta-models comes from the use of di�erent sets of meta-features (i.e. dataset characteristics). This is where we can make full use of theexibility of our meta-learning framework. By applying feature selection to thepairwise meta-learning problems we get di�erent sets of meta-features whichwill give rise to di�erent meta-learned models.5.2.1 Feature SelectionTwo are the main ways that feature selection is performed in machine learning,the �lter and the wrapper approach (Liu & Motoda, 1998).In the �lter approach, only properties of the datasets are used in order toperform the selection of the features. These properties could be measures ofassociation between features, measures of distance or dependence.In the wrapper approach (Kohavi & John, 1997), the driving force is theaccuracy of the learning algorithm that is going to be applied on the dataset. Anextensive and systematic search is performed in the state space of all the possiblefeature subsets using heuristic search methods, like hill climbing, simulatedannealing or best �rst. The search can begin either from the full set of features(backward elimination) or from the empty set (forward selection). The featureselection algorithm conducts the search using the estimated accuracy of theinduction algorithm as the evaluation function. At the end, the feature setachieving the highest accuracy is selected.Here we have chosen to use the wrapper approach to perform the featureselection on the meta-level. Although it requires a substantial amount of compu-tational time, in the case of meta-learning this factor is not so important, sinceit will only be performed once. To perform feature selection we used MLC++feature selection capabilities. The search strategy used is best �rst search. In



5.2. META-FEATURE SELECTION 71table 5.7 we give in pseudo code the algorithm for performing the search on thestate space of the feature sets. We start the search from the full set of features,thus using backward elimination. At each execution of the repeat loop the bestfeature set, which is not yet expanded, is chosen and all its children sets arecomputed by the application of the Expand function. A child set is created bythe removal or addition of a feature from the parent set. The best set is de�nedas the one that achieves the maximum accuracy, as this is estimated by tenfold cross validation2. If it is better than the best set so far by more than " itbecomes the new best set. The value of " was set to 0.001, and the value ofk was set to 10. So if there is no improvement in accuracy after ten loops thesearch terminates, and the best set of features found so far is returned.Table 5.7. Wrapper approach with best �rst search strategyNotExpanded  InitialSetExpanded  ;BestSet  InitialSetrepeat CurSet  argmaxset2NotExpandedAcc(set)NotExpanded NotExpanded� CurSetExpanded  Expanded [CurSetif Acc(CurSet)� " > Acc(BestSet) thenBestSet CurSetChildren  Expand(CurSet)foreach s 2 Children; s 62 (Expanded [NotExpanded) doNotExpanded NotExpanded [ suntil no change in BestSet for k loopsReturn BestSet5.2.2 Results on the Meta-Learning problemsFeature selection was applied to all of the 28 pairwise meta-learning problemsresulting in a new set of features for each one of them. As a starting feature setwe used the histo, since the wrapper feature selection process is time consum-ing3, and the histo set exhibited superior performance compared to +histo. Sothe initial set of characteristics consisted of 69 features.In table 5.8 we can see the accuracy results for all the meta-learning prob-lems, along with the improvement over the simple IBL inducer, of IBL coupledwith feature selection4. Feature selection gives a systematic improvement of ac-curacy, in all but two pairwise meta-learning problems (the pairs of IBL, c50treeand IBL, Lindiscr). Nevertheless the observed di�erences are statistically signif-icant, under a McNemar test of signi�cance, in only six out of the twenty eightpairwise problems. The average improvement, when compared to standard IBL,2Note here that the ten fold cross validation, takes place only in the training set3The whole evaluation procedure for the feature selection took twenty days, in a SUNBlade 100 workstation with 512 MB of main memory4hereafter noted as fsIBL



72 CHAPTER 5. INSTANCE BASED META-LEARNINGover all the 28 meta-learning problems, is 1.21%, and the average improvementover the default accuracy is 28.45%. Apart from the improvement in perfor-mance, feature selection also reduces the number of dataset characteristics usedfor inducer selection from 69 to an average of 25.25 features per pairwise prob-lem. In order to determine the �nal set of dataset characteristics we appliedagain fsIBL on each pairwise problem, but this time we used the complete datai.e. all 1075 instances of the meta-learning problems, since the goal was not theevaluation of fsIBL, but the establishment of the most discriminating set of fea-tures for every pair of inducer. These feature sets were not used for evaluatingfsIBL.Table 5.11 shows which characteristics were selected for some of the meta-learning problems. It is clear that the set of discriminating characteristicschanges for di�erent pairs of algorithms. Examining the selected character-istics for each pair of inducers we can only draw conclusions as to which factorsimpact their relative performance. The features selected by fsIBL for each meta-learning problem can be found in appendix, section A.2. However we cannotexplain how these factors determine that relationship, i.e. what are the valuesof the characteristics for which it is better to use one inducer instead of another.If for example we examine the pair (IBL, Ltree) we see that all the elementsof the correlation coe�cients histogram have been selected, whereas the ele-ments of the concentration coe�cients histogram (both between attributes andattributes and class) have very low selectivity. Based on that we can arguethat for the speci�c pair of inducers the correlation coe�cients between pairsof continuous attributes play an important role in determining which induceris better, whereas the concentration coe�cients between the discrete attributesplay only a marginal role. The presence of correlated features can a�ect the per-formance of IBL in di�erent ways depending on whether the correlated featuresare relevant, in which case IBL can exhibit good performance, or irrelevant inwhich case the performance of IBL would deteriorate. On the other hand Ltreecan exhibit a high degree of resilience to correlated attributes due to the incor-poration of linear discriminant that allows the mapping of correlated featuresto a new uncorrelated space. An indication of the relevance of the features isgiven by the First Canonical Correlation, characteristic which is selected forthis pair of algorithms, together with the correlation histogram they give anindication of the level of correlation among attributes and the relevance of theattributes for the classi�cation problem. If we have a high level of correlationamong attributes and a high First Canonical Correlation then we expect IBLto perform fairly. In the case that the First Canonical Correlation is low IBLshould perform bad, but Ltree will be una�ected since it will reduce the e�ectof irrelevant redundancy through the use of linear discriminants. In anotherexample, examining the pair (NB, c50boost) we observe that the correlation co-e�cients histogram has again full selectivity; but this time we get full selectivityalso in the upper half of the concentration coe�cients histogram, which deliversinformation on discrete attributes that exhibit a high degree of association, (adataset characteristic known to a�ect the performance of Naive Bayes). To geta quantitative description of how the dataset characteristics determine inducers'



5.3. CONCLUSIONS 73superiority we plan to use a di�erent meta-learning algorithm. Possible selec-tions are inducers that produce a model of the classi�cation, e.g decision treesor rule inducers.Another way to examine the results is to explore the 'total' discriminatingpower of each dataset characteristic, that is how often it gets selected over allthe meta-learning problems. Table 5.12 shows the relative frequency with whicheach feature is selected. The most often selected attribute is the noise to signalratio, present in 25 of the 28 meta-learning problems. Although a rough approx-imation, since it is based on the mean attribute entropy and the mean mutualinformation between the attributes and the class, it is quite useful in determin-ing the relative performance of the algorithms. The correlation histogram isanother noteworthy characteristic: one of its bins shares the noise-signal ratio'sextremely high selection rate, and eight of the others are above the 50% level.This seems to indicate the non negligible inuence of correlated attributes onlearning, due to varying degrees of sensitivity exhibited by the learners. Thenext characteristic in terms of 'total' discriminating power is the ratio of thenumber of attributes to the number of instances. It is known that increasingthe number of features beyond a certain point is likely to be counterproductive(Duda & Hart, 1973). The number of classes is also selected very often as one ofthe features, providing an indication that inducers react di�erently to variationsin the number of classes. Information theoretical measures such as mean mutualinformation and mean attribute entropy also appear to be discriminating fea-tures considering their high selection rate. The only characteristic that seemsto be completely useless is the histogram of missing values, none of its elementsis ever selected. This characteristic describes the distribution of percentagesof missing values of the attributes. Overall the discriminating power of eachcharacteristic is quite di�erent, and with the notable exception of the missingvalues histogram, all of them are used at least in one pair of base-inducers.5.2.3 Results on the �nal suggestionsIn Table 5.9 we see the accuracy that the instance-based inducer, enhanced withfeature selection, achieves on the �nal suggestion of base level inducers. For thestrict accuracy, feature selection does not really a�ect the performance of themeta-learning, since IBL achieves a strict accuracy of 47.45%, (Table 5.2), andfsIBl a strict accuracy of 47.44%. The di�erence is obviously not signi�cantwith a p-value of 0:858, table 5.10. The loose accuracy without feature selectionis 69.67% and increases to 74.98% with feature selection. The p-value of thetest of signi�cance for the loose accuracy is zero, which means the di�erence issigni�cant at any level of signi�cance.5.3 ConclusionsIn this chapter we tested the performance of an instance-based inducer, as theinducer to be used on the meta-learning level. The results were encouraging,



74 CHAPTER 5. INSTANCE BASED META-LEARNING
Table 5.8. Results with feature selection, fsIBL, on the histo feature set.Improvementpair Accuracy over IBL p-value #featuresc50rules c50boost 82.60% 0.18% 0.908 (=) 32c50tree c50boost 81.12% 1.12% 0.224 (=) 30c50tree c50rules 82.79% 4.65% 0.000 (+) 23Lindiscr c50boost 85.67% 0.83% 0.297 (=) 19Lindiscr c50rules 86.23% 1.11% 0.182 (=) 20Lindiscr c50tree 86.98% 1.40% 0.091 (=) 18Ltree c50boost 80.00% 1.40% 0.105 (=) 34Ltree c50rules 82.70% 0.56% 0.561 (=) 31Ltree c50tree 79.63% 0.84% 0.342 (=) 25Ltree Lindiscr 82.33% 1.12% 0.256 (=) 25IBL c50boost 85.86% 0.46% 0.602 (=) 22IBL c50rules 79.07% 4.19% 0.000 (+) 16IBL c50tree 79.07% -0.46% 0.644 (=) 25IBL Lindiscr 81.40% -0.09% 1.000 (=) 24IBL Ltree 76.84% 2.24% 0.028 (+) 27NB c50boost 85.67% 0.65% 0.400 (=) 39NB c50rules 86.70% 1.96% 0.038 (+) 23NB c50tree 86.98% 2.51% 0.002 (+) 24NB Lindiscr 79.16% 1.21% 0.227 (=) 23NB Ltree 85.02% 0.65% 0.409 (=) 48NB IBL 85.49% 0.47% 0.614 (=) 34ripper c50boost 85.12% 0.10% 1.000 (=) 27ripper c50rules 81.30% 3.44% 0.001 (+) 21ripper c50tree 84.56% 0.47% 0.614 (=) 22ripper Lindiscr 79.16% 0.46% 0.582 (=) 32ripper Ltree 76.84% 1.03% 0.278 (=) 37ripper IBL 81.95% 0.65% 0.482 (=) 22ripper NB 82.42% 0.75% 0.388 (=) 31Average 82.59% 1.21% 25.25Improvementover default 28.54%
Table 5.9. Final suggestion results with feature selection, fsIBL, on the histo feature set.Strict Accuracy Improvement Loose Accuracy47.44% 21.21% 74.98%



5.3. CONCLUSIONS 75Table 5.10. Results of the McNemar test comparing the accuracies of IBL with feature selectionand no feature selection, on the �nal suggestion, both in terms of strict and loose accuracy.Feature Selection No Feature SelectionCorrect Correct p-valuestrict Accuracy 61 64 0.858 =loose Accuracy 84 27 0.000 +
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Fig. 5.1. Frequency with which every characteristic is selected among all the pairwise problems,fsIBLthe achieved performance signi�cantly outperforms the default accuracy in allthe cases. Furthermore we examined the performance of IBL with two di�erentcharacterizations of the datasets. We found out that the addition of featuresthat try to capture associations between discrete and continuous attributes,+histo dataset, instead of enhancing, harms the performance of the system,whether this is considered on the level of the pairwise metalearning problems orfor the �nal suggestion. Nevertheless this should not be interpreted as a de�niteindication that the same will be true for more elaborate classi�ers. Actually thishypothesis will be examined in the next chapter, where more elaborate inducerswill be used in an e�ort to further improve the performance.One of the observations made on the results of these experiments was thefact that the discriminatory power of the sets of characteristics seemed to bedi�erent for di�erent pairs of algorithms. It was quite logical to assume thatthe factors that a�ect the relative performance of pairs of algorithms di�erdepending on the algorithms involved. In order to verify this hypothesis we
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Table 5.11. Characteristics selected for three of the meta-learning problems, 1 indicates se-lection of the corresponding characteristic, 0 elimination.Attribute IBL NB IBL Ltree NB c50boost# classes 1 1 1# attributes 1 0 0# instances 1 0 1# attributes#instances 1 1 0# unknown values 1 0 0# unknown values# attributes * # instances 1 1 1# nominal attributes 1 1 1max,min,mean,stdv of nominalattribute values 1101 1010 10101..10 concentration histogram 1101110000 0101000000 1010111111non computable conc. histogram 0 0 11..10 concentration histogramwith class 1001000000 0000000000 1101000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 0 01..10 correlation histogram 1111111001 1111111111 1111111111non computable correlation his-togram 0 0 11..10 missing values histogram 0000000000 0000000000 0000000000# continuous# attributes 0 0 0# nominal# attributes 0 0 1Binary Attributes 0 1 1Frac1 1 0 0First Canonical Correlation 1 1 1Mean Skew 1 1 1Mean Kurtosis 1 1 1Class Entropy 0 0 1Mean Attribute Entropy 1 1 0Mean Mutual Information 1 1 1Equivalent number of attributes 0 0 1Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 1 1SDratio 0 1 0



5.3. CONCLUSIONS 77
Table 5.12. Frequency with which attributes are selected, by fsIBLAttribute frequency# classes 82.21# attributes 64.28# instances 42.85# attributes#instances 85.71# unknown values 25.00# unknown values# attributes * # instances 60.71# nominal attributes 67.85max,min,mean,stdv of nominal attribute values 57.14, 25.00, 64.28, 64.281..5 concentration histogram 78.57, 60.71, 46.42, 50.00, 50.006..10 concentration histogram 35.71, 28.57, 21.42, 21.41, 21.42non computable conc. histogram 21.421..5 concentration histogram with class 53.57, 53.57, 3.57, 75.00, 3.576..10 concentration histogram with class 3.57, 3.57, 3.57, 0, 0non computable conc. histogram with class 3.57# continuous attributes 50.001..5 correlation histogram 60.71, 75.00, 64.28, 50.00, 64.286..10 correlation histogram 75.00, 60.71, 53.57, 39.28, 53.57non computable correlation histogram 10.711..10 missing values histogram 0, 0, 0, 0, 0, 0, 0, 0, 0, 0# continuous# attributes 7.14# nominal# attributes 14.28Binary Attributes 32.14Frac1 28.57First Canonical Correlation 64.28Mean Skew 53.57Mean Kurtosis 60.71Class Entropy 50.00Mean Attribute Entropy 75.00Mean Mutual Information 78.57Equivalent number of attributes 71.42Noise to Signal Ratio 89.28Mean Mult. Correl. Coef. 67.85SDratio 64.28



78 CHAPTER 5. INSTANCE BASED META-LEARNINGperformed feature selection on the pairwise meta-learning problems. Examiningthe meta-models created for each pair of inducers we saw that indeed the factorsdetermining the relative performance of inducers vary from pair to pair. Theuse of feature selection not only improves the performance, but also provides abetter understanding of what is relevant and what is not.One of the main limitations of the IBL inducer used, is that it treats all fea-tures in the same way independently of the nature of the problem. For examplewhen there is a dataset with 90% of continuous attributes and 10% of discreteattributes the same importance is given to all dataset characteristics indepen-dently of whether they describe properties of continuous or discrete attributes.One solution to that could be to use a weighted version of IBL, where the weightsare not constant but depend on the proportion of continuous and discrete at-tributes in the dataset for which a suggestion is asked. This in e�ect wouldalter the euclidean distance putting each time the emphasis on the appropriatedimensions of the morphological space. Yet, another solution could be againthe use of decision tree based algorithms. The tree based models that decisiontrees produce could hopefully capture this balance, for example by generatingdecision nodes that branch according to the percent of continuous attributesand then on the subsequent subtrees use di�erent characteristics to perform theinducer selection.



Chapter 6Comparing MetalearnersIn this chapter we are going to explore the use of more elaborate learners onthe meta-learning level, namely decision tree based learners. The main goal isto further improve the performance of the system. We also analyze the modelsproduced, in order to characterize the dataset characteristics in terms of theirpredictive power, in a similar way that we analyzed the characteristics that wereselected by fsIBL in the previous chapter.The rest of the chapter is organizedas follows. First we examine the performance of the new meta-learners on thetwo distinct sets of datasets characteristics, i.e. +histo and histo, in orderto see with which one we get better performance. Then we compare the per-formances of the meta-learners, including that of fsIBL. Finally the inductivemodels constructed by two of the meta-learners are analyzed.6.1 The Meta-LearnersWe are going to examine the performance of four new learners on the meta-learning level. The c5.0 decision tree inducer (c50tree), a descendant of the c4.5decision tree inducer that constructs decision trees where the splits on the deci-sion nodes are orthogonal to the axes de�ned by attributes of the classi�cationproblem. The rule inducer of c5.0 (c50rules), also a descendant of the c4.5 ruleinducer. c50rules starts with a decision tree constructed by c50tree and con-verts it to a set of rules. The Ltree inducer, which is also a decision tree inducer,however the splits here are not only orthogonal to the axes but they can alsobe oblique. Ltree constructs new attributes which are linear combinations ofthe initial attributes. The construction of the new attributes is done with theuse of linear discriminant algorithm. We also applied c5.0 boost (c50boost), aboosting algorithm that combines multiple decision trees built by the repetitiveapplication of c50tree on a dataset.A problem that we have to deal with, when we apply the above inducers onthe meta-learning level is the fact that they can handle only attributes which areeither continuous or nominal. As mentioned already in section 4.3 the attributes79



80 CHAPTER 6. COMPARING METALEARNERSthat we use in order to describe the datasets can have, either a continuous valuewhen the corresponding characteristic can be computed from a dataset, or thevalue non-appl when the computation of that feature does not make sense.Since the new learners cannot handle attributes of that type, we had to adopta representation that would respect the semantics of the non-appl value. Onepossible solution could be their representation as missing values, however thiswould alter their semantics because the algorithms do not handle missing valuesas a distinct value, which is what we need. In order to achieve that we havechosen to recode the non-appl values to new numeric values which are alwaysoutside the de�nition domain of a given characteristic. This way a decision treecan create splits that on one side can have that special numeric value whichcorresponds to the non computable cases, and on the other side the normalvalues that correspond to the computable cases. This kind of recoding keepsthe initial semantics of the non-appl values unchanged.6.2 Comparing +histo and histoWe will examine the performance of the four new meta-learners on the twodi�erent sets of datasets characteristics. The results we get here are di�erentfrom the ones that we obtained with IBL as the meta-learner. There we sawthat the performance of the system was harmed by the incorporation of theANOV A based characteristics, both in terms of the accuracies on the pairwisemeta-learning problems and on the �nal suggestion of algorithm(s). In whatconcerns the inducers examined here, we will see in the two forthcoming sections,that the incorporation of the ANOV A based characteristics does not harmthe performance. One reason for that could be the internal feature selectionmechanism that all these inducers possess, allowing them to select the mostdiscriminative set of characteristics on each case.6.2.1 Results on the Pairwise Meta-learning ProblemsIn table 6.1 we see the mean accuracies that the four inducers achieve on the+histo and histo sets, over the 28 meta-learning problems. As it is obviousthe performance on the two sets is quite similar, the di�erences are very smallfor every one of the four inducers1. This is more apparent when we examinethe results of the McNemar test of signi�cance to compare the performance ofeach meta-learner on +histo and histo for each pairwise meta-learning prob-lem (Table 6.2)2. For example in the case of c50boost there is a statisticallysigni�cant di�erence in favor of the histo set in only 3 out of the 28 pairwiseproblems, for the remaining 25 problems the di�erences are not statistically sig-ni�cant. A similar situation holds for the rest of the meta-learners where there1The complete results of the four meta-learners in each one of the 28 pairwise problemscan be found in the appendix, Table A.67 for the histo characterization and in Table A.68 forthe +histo2The complete results of the McNemar test for each pairwise problem are given in theappendix, Table A.69



6.2. COMPARING +HISTO AND HISTO 81Table 6.1. Mean accuracies and improvement over the mean default accuracies, that thefour meta-learners achieve over the 28 meta-learning problems, for the histo,+histo sets ofcharacteristics.Meta-Learner histo +histoAccuracy Improvement Accuracy Improvementc50boost 84.96% 30.82% 84.58% 30.44%c50rules 82.22% 28.07% 81.75% 27.61%c50tree 82.01% 27.86% 81.56% 27.42%Ltree 81.18% 27.03% 81.05% 26.91%Table 6.2. Summary of signi�cant wins for the histo, +histo datasets for each of the fourmeta-learners over the 28 meta-learning problems.Meta-Learner +histo wins Ties histo winsc50boost 0 25 3c50rules 0 27 1c50tree 0 26 2Ltree 1 27 0is no statistically signi�cant di�erence for almost all the pairwise meta-learningproblems.6.2.2 Results on the Final SuggestionHere also the performance of the four learners does not di�er signi�cantly amongthe two sets, both in terms of the strict and loose accuracy, (Tables 6.3,6.4).When performing the McNemar test to compare the performances on the histoand +histo we see that for all the learners there is no signi�cant di�erence be-tween the two sets with respect to the two ways of evaluating the �nal suggestion(Table 6.5).Since the results show that there is no signi�cant di�erence between thetwo ways of characterizing a dataset, in what follows and for the performancecomparison of the meta-learners we will restrict ourselves only to the histo setof characteristics.Table 6.3. Results on the �nal suggestion for all the four meta-learners on histo.Meta-Learner Strict Accuracy Improvement Loose Accuracyc50boost 51.16% 24.93% 76.74%c50rules 45.58% 19.35% 75.07%c50tree 45.58% 19.35% 76.93%Ltree 43.07% 16.84% 73.02%



82 CHAPTER 6. COMPARING METALEARNERSTable 6.4. Results on the �nal suggestion for all the four meta-learners on +histo.Meta-Learner Strict Accuracy Improvement Loose Accuracyc50boost 50.98% 24.75% 76.47%c50rules 46.98% 20.75% 76.19%c50tree 45.77% 19.54% 76.84%Ltree 42.60% 16.37% 73.58%Table 6.5. Results of McNemar's test comparing the accuracies of histo, +histo, on the �nalsuggestion, for each of the four meta-learners.histo +histoCorrect Correct p-valuec50boost strict Accuracy 61 59 0.927 =loose Accuracy 54 51 0.846 =c50rules strict Accuracy 73 88 0.269 =loose Accuracy 61 73 0.342 =c50tree strict Accuracy 70 72 0.933 =loose Accuracy 61 60 1.00 =Ltree strict Accuracy 91 86 0.763 =loose Accuracy 73 79 0.686 =6.3 Looking for the best Meta-LearnerIn this section we compare the performance of the inducers used in the meta-learning level in order to establish whether the di�erences observed are statis-tically signi�cant, and identify the top performing one(s). The comparison willtake place among �ve inducers, (c50boost, c50rules, c50tree, fsIBL, Ltree), onthe histo set of characteristics. They will be compared on three levels, i.e. theirperformance on the individual pairwise problems, strict and loose accuracy ofthe �nal suggestion. Since we have multiply comparisons we must take intoaccount the number of di�erent comparisons and appropriately adjust the sig-ni�cance level according to the Bonferroni adjustment. The number of pairwisecomparisons among �ve di�erent algorithms is ten and the Bonferroni adjust-ment gives a signi�cance level of 0.005 for every pair, so that results will besigni�cant on the 0.05 level for all the comparisons.6.3.1 Results on the Pairwise Meta-Learning ProblemsExamining the mean accuracies that the �ve inducers achieve on the meta-learning level, table 6.6, we can see clearly that c50boost has the highest averageaccuracy, 84.96%, over all the other inducers. The remaining four exhibit similarperformance, with an average accuracy ranging from 81.2% to 82.6%, with Ltreebeing the worst of the four, and fsIBL the best. The di�erences between thefour are quite small though.When we examine closely the performances on the individual problems, (ta-ble 6.7), in terms of the statistical signi�cance the advantage of c50boost overthe rest is further con�rmed. Compared to any of the other inducers it is never



6.4. DISCRIMINATING POWER OF CHARACTERISTICS 83signi�cantly overtaken and more over it signi�cantly outperforms them for themajority of the pairwise problems. The number of its signi�cant wins rangesfrom 10 to 23 depending on which inducer it is compared with. One interestingobservation here is that c50boost and fsIBL have a similar performance, i.e. notsigni�cantly di�erent, on 18 out of the 28 pairwise meta-learning problems. Thecomparison between the remaining four inducers shows that their performanceis quite similar, and there is no signi�cant di�erence for the big majority of prob-lems. One explanation for the relatively poor performance of Ltree, in terms ofthe average accuracy, is the way that we have chosen to encode the non-applvalues. Since the new values are also numerical values, Ltree uses them like anyother numerical value when it constructs new attributes from linear combina-tions of the existing ones. A fact that does not match with the semasiology ofthe non-appl values. These values should be handled as di�erent-distinct val-ues and the use of simple orthogonal splits on the space de�ned by the initialfeatures satis�es this requirement. On the other hand, the clear advantage ofc50boost, over the rest of the inducers, can be explained by the fact that it is aboosting algorithm, while the others are single model algorithms.6.3.2 Results on the �nal suggestionContinuing the evaluation of the performances of inducers with respect to their�nal suggestion we observe a similar situation in what concerns the comparisonalong the strict accuracy, table 6.8. c50boost achieves by far the highest strictaccuracy, and Ltree is again the worst. fsIBL, c50tree and c50rules have asimilar performance, with fsIBL having a small advantage. When we examinethe statistical signi�cance of the results, table 6.9, the superiority of c50boostis con�rmed. Its performance with respect to the strict accuracy is signi�cantlybetter than the performance of any other classi�er. Between c50tree, c50rules,fsIBL and Ltree the di�erences are not signi�cant, with the exception of the(fsIBL, Ltree) pair where fsIBL is signi�cantly better than Ltree.In terms of loose accuracy the results are slightly di�erent, table 6.8. Theworse performing inducer is still Ltree, but now c50tree very close to c50boost,is on the top position. C50rules and fsIBL have a similar performance. Interms of the statistical signi�cance of the di�erences, there is no clear winner,i.e. an inducer that is signi�cantly better than all the others. Only two pair-wise comparisons revealed signi�cant di�erences; the full results are given intable 6.10.6.4 Discriminating Power of CharacteristicsTo perform the splits on the nodes of the tree, decision tree based algorithmspossess internal feature selection mechanisms, for choosing the features thatconvey the highest amount of information about the class variable. All thealgorithms used in this chapter use the same criterion for selecting an attributeas a split node, that of information gain.



84 CHAPTER 6. COMPARING METALEARNERSTable 6.6. Mean accuracies and improvement over the mean default accuracies, that the �vemeta-learners achieve over the 28 meta-learning problems, for the histo sets of characteristics.Meta-learner Accuracy Improvementc50boost 84.96% 30.82%c50rules 82.22% 28.07%c50tree 82.01% 27.86%fsIBL 82.59% 28.45%Ltree 81.18% 27.03%Table 6.7. Distribution of signi�cant wins, based on McNemar's test, over the 28 pairwisemeta-learning problems, on the histo set of characteristics. In a triplet AA/BB/CC, AA isthe number of signi�cant wins of the row inducer, CC is the number of signi�cant wins of thecolumn inducer and BB is the number of ties.c50rules c50tree fs-IBL Ltreec50boost 15/13/0 14/14/0 10/18/0 23/5/0c50rules 0/28/0 0/26/2 1/27/0c50tree 0/26/2 0/28/0fs-IBL 3/25/0Table 6.8. Results on the �nal suggestion of the �ve meta-learners on histo.Meta-Learner Strict Accuracy Improvement Loose Accuracyc50boost 51.16% 24.93% 76.74%c50rules 45.58% 19.35% 75.71%c50tree 45.58% 19.35% 76.93%fs-IBL 47.44% 21.21% 74.98%Ltree 43.07% 16.84% 73.02%Table 6.9. Results of the McNemar test comparing the accuracies of the �ve meta-learners,in terms of the strict accuracy on histo. + indicates a signi�cant win for the row inducer, - asigni�cant win for the column inducer, and = a tie.c50rules c50tree fs-IBL Ltreec50boost +(0.000) +(0.000) +(0.004) +(0.000)c50rules =(0.912) =(0.210) =(0.070)c50tree =(0.198) =(0.078)fs-IBL +(0.000)Table 6.10. Results of the McNemar test comparing the performances of the �ve meta-learners,in terms of the loose accuracy on histo. + indicates a signi�cant win for the row inducer, - asigni�cant win for the column inducer, and = a tie.c50rules c50tree fs-IBL Ltreec50boost =(0.171) =(0.934) =(0.149) +(0.005)c50rules =(0.030) =(1.000) =(0.122)c50tree =(0.159) +(0.004)fs-IBL =(0.193)



6.4. DISCRIMINATING POWER OF CHARACTERISTICS 85We will analyze the models produced by c50tree and c50boost in order tocharacterize the discriminatory power of the di�erent characteristics, in thesame way we did with the analysis of the feature sets selected by fsIBL. Themodels analyzed are the results of the application of the two algorithms to thefull set of training examples, that is to training sets of 1075 instances. For eachmodel3 we compute the number of times that a characteristic is selected as asplit node. At the end we compute for each characteristic the percent of modelsin which it is selected at least once as a split node, (for c50tree see table 6.14, forc50boost see table 6.16). Since in decision tree models, a feature can be selectedmore than once, we also compute the frequency with which a characteristic isselected to become a decision node among all the decision trees. This avenue ofanalysis will provide a better insight in the case of c50boost, since there almostevery characteristic is used at least once in every pairwise problem, resulting ina selectivity of 100%, going to a �ner detail will provide a more clear picture ofthe discriminatory power of the characteristics, (Tables 6.15, 6.17)4. We makethe assumption that the more often a characteristic is selected the higher itsdiscriminatory power is.It should be noted that the method which we used to determine the discrim-inatory power of the dataset characteristics based on the decision tree models isapproximate and rather rough. More precisely when measuring the percentageof times that a feature appears in a decision tree we do not take into account thelevel of the decision tree at which the speci�c feature appears. As it is knownfeatures that are selected at nodes near the root of the tree have higher discrim-inatory power than features that are selected near the leaves. We would havea more precise picture of the discriminatory power of the features if we wereweighting their appearance by the level at which they appear. A further sourceof imprecision, in the case of the c50boost models, comes from the aggregationof the percentages of appearances of the features among the di�erent decisiontrees of a boosting model. In boosting the di�erent decision trees are weightedby their error on the training. Consequently the importance of features thatappear in di�erent trees of a boosting model is di�erent and depends on theweight of the corresponding tree. A more precise way to measure the discrimi-natory power of the features would be to weight them taking into account theweight of the decision tree in which they appear.Examining the produced models we can see that at least for c50tree the setof discriminating characteristics di�ers between pairs, as it was also the casewith fsIBL. When we examine the characteristics selected by c50boost, we seethat it consistently uses almost all the available features. Nevertheless if we lookmore closely to the selection frequencies of the di�erent characteristics, we seethat these can change signi�cantly between di�erent pairwise problems, which isan indication that the discriminatory power of the characteristics varies amongdi�erent pairs of inducers. To support these we will examine more closely theselection frequencies of the characteristics for the pairs (NB, IBL) and (NB,3Remember here that a model is associated with a speci�c pairwise problem4The frequency of selection of the characteristics for each pairwise problem are given inthe appendix, section A.3 for c50boost, and section A.4 for c50tree.



86 CHAPTER 6. COMPARING METALEARNERSLtree). In what concerns the models produced by c50tree we will only give thebar graph that presents the selection rates of the characteristics for the twoproblems, �gure 6.1. From the graph it is obvious that not only the selectionrate of the characteristics is di�erent, but also there are characteristics whichare never selected in one pair and are selected in the other. In what concernsc50boost the situation is similar, although here we will not �nd often charac-teristics which are selected in one problem and not in the other, however thefrequency of selection di�ers among the problems, �gure 6.2. In the case of theNB-IBL pair we can see a relatively high selection rate for the higher bins of thecorrelation coe�cient, (bins �ve to ten). These bins describe the percentage ofattributes that exhibit medium to strong correlation, both IBL and Naive Bayesare sensitive to correlated attributes. If we examine the concentration coe�cienthistogram, between the attributes and the class, the selection rate is higher forthe lower bins. These bins give the percentages of attributes that exhibit weakassociation with the class attribute. The higher their number the more di�cultthe classi�cation problem is. If we now turn to the IBL-Ltree pair we observea di�erent pattern. In what concerns the correlation coe�cient histogram allof its bins exhibit now a relatively high selection rate. For the concentrationcoe�cient histogram, between the attributes and the class, the pattern is alsoslightly di�erent, with the higher four bins never selected and the lower onesexhibiting lower selectivity with respect to the one that they exhibited on theNB-IBL pair.c50tree and c50boost use a higher number of features in their models, com-pared to fsIBL. For c50tree the average number of selected features overall thepairwise problems is 38.92, while for c50boost it goes up to 61.53 here almostevery characteristic is selected at least once, (Table 6.13). c50tree and c50boostselect attributes that describe the patterns of missing values with a quite highfrequency, (e.g number of unknown values, histogram of missing values). Thisis di�erent from what we saw with fsIBL, (Table 5.12), where the selectivity ofthose characteristics was quite low, and in the case of the histogram of missingvalues it never used even one of its elements. Nevertheless the performance offsIBL is very similar to that of c50tree, if not better. It would be interestingto examine whether c50tree and c50boost could achieve the same performanceif we remove the missing values histogram for the set of characteristics. Simplefeatures that describe the number of classes or the number of attributes havealso a high selectivity rate for both c50tree and c50boost. The same also holdsfor STATLOG characteristics like class entropy, �rst canonical correlation, at-tribute entropy etc. They are selected frequently among the di�erent pairwiseproblems and they have a high selection rate as decision nodes.Concerning the remaining characteristics described via histograms, the cor-relation coe�cient histogram also exhibits high selectivity rates for all of itselements. The same holds for the �rst �ve bins of the concentration coe�cienthistograms (both between attributes, and between attributes and the class).The upper �ve bins of these histograms, have quite low selectivity rate whichin some cases approaches zero. In general the observations for these three typesof histograms agree with the ones made with fsIBL, there also the correlation
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Table 6.11. Frequency with which characteristics are selected for the NB-IBL pair byc50boost.Attribute frequency# classes 3.37%# attributes 1.80%# instances 4.16%# attributes#instances 4.27%# unknown values 5.51%# unknown values# attributes * # instances 2.02%# nominal attributes 1.01%max,min,mean,stdv of nominal attribute values 1.12%, 0.034, 1.46%, 0.67%1..5 concentration histogram 1.35%, 0.90%, 1.35%, 1.12%, 1.24%6..10 concentration histogram 0.34%, 0.67%, 0.00%, 0.00%, 0.22%non computable conc. histogram 1.01%1..5 concentration histogram with class 1.91%, 1.24%, 1.12%, 2.02%, 0.79%6..10 concentration histogram with class 0.56%, 0.00%, 0.11%, 0.22%, 0.11%non computable conc. histogram with class 0.00%# continuous attributes 1.01%1..5 correlation histogram 2.02%, 0.90%, 1.80%, 0.90%, 1.57%6..10 correlation histogram 1.24%, 1.12%, 1.12%, 1.46%, 0.79%non computable correlation histogram 1.01%1..5 missing values histogram 0.00%, 2.47%, 2.70%, 3.60%, 3.37%6..10 missing values histogram 1.80%, 1.12%, 0.00%, 0.79%, 0.22%# continuous# attributes 0.11%# nominal# attributes 0.00%Binary Attributes 1.01%Frac1 1.80%First Canonical Correlation 2.14%Mean Skew 1.80%Mean Kurtosis 1.69%Class Entropy 4.16%Mean Attribute Entropy 2.25%Mean Mutual Information 4.05%Equivalent number of attributes 2.14%Noise to Signal Ratio 2.02%Mean Mult. Correl. Coef. 2.02%SDratio 1.69%
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Table 6.12. Frequency with which characteristics are selected for the IBL-Ltree pair byc50tree.Attribute frequency# classes 2.12%# attributes 2.12%# instances 3.39%# attributes#instances 2.75%# unknown values 5.08%# unknown values# attributes * # instances 1.90%# nominal attributes 0.85%max,min,mean,stdv of nominal attribute values 1.16%, 0.42%, 1.16%, 1.69%1..5 concentration histogram 0.95%, 0.42%, 0.63%, 1.06%, 0.74%6..10 concentration histogram 1.16%, 0.32%, 0.00%, 0.11%, 0.63%non computable conc. histogram 0.74%1..5 concentration histogram with class 0.85%, 1.06%, 0.42%, 1.69%, 0.74%6..10 concentration histogram with class 0.42%, 0.00%, 0.00%, 0.00%, 0.00%non computable conc. histogram with class 0.00%# continuous attributes 1.27%1..5 correlation histogram 1.80%, 2.12%, 2.43%, 1.27%, 1.16%6..10 correlation histogram 1.69%, 2.01%, 1.69%, 2.43%, 0.85%non computable correlation histogram 1.06%1..5 missing values histogram 0.00%, 3.17%, 4.55%, 2.43%, 2.01%6..10 missing values histogram 1.80%, 0.63%, 0.11%, 0.53%, 0.11%# continuous# attributes 0.32%# nominal# attributes 0.32%Binary Attributes 0.63%Frac1 2.01%First Canonical Correlation 2.75%Mean Skew 1.27%Mean Kurtosis 2.43%Class Entropy 5.93%Mean Attribute Entropy 3.49%Mean Mutual Information 2.65%Equivalent number of attributes 1.48%Noise to Signal Ratio 2.54%Mean Mult. Correl. Coef. 2.54%SDratio 1.90%
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Fig. 6.1. Frequency with which characteristics are selected as decision nodes for the pairs (NB,IBL) and (IBL, Ltree) by c50treehistogram had a high selectivity rate for all of its bins. The concentration coe�-cient histogram between the class and the attributes had high selectivity rate forthe �rst few bins and quite low, even zero, for the remaining bins. In what con-cerns though the concentration coe�cient histogram between attributes there isa slight di�erence from the pattern observed in c50tree and c50boost. The �ve�rst bins have high selectivity rate by fsIBL too, but in the case of the upper�ve, the selectivity is average and not zero, as it is the case with c50boost andc50tree.To summarize, simple and STATLOG characteristics tend to have high se-lectivity rates among the three di�erent meta-learners examined. fsIBL tendsto ignore the characteristics that describe the patterns of missing values, (itnever uses the histogram of missing values), while for c50tree and c50boostthey are among the most often selected. However the performance of fsIBL isvery similar to that of c50tree. The elements of the correlation histogram havehigh selectivity rates by all the three inducers. In the case of the concentrationcoe�cient histograms, high selectivity rates are observed for their �ve �rst bins,while for the upper �ve the selectivity approaches zero. The only exception to
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Fig. 6.2. Frequency with which characteristics are selected as decision nodes for the pairs (NB,IBL) and (IBL, Ltree) by c50boostthat is fsIBL, where for the upper �ve bins of the concentration coe�cient be-tween attributes the selectivity is average. We have to note here that the studyand the models were produced from a set of datasets that included datasetswhose characteristics were manipulated in order to increase the number of ourtraining examples. In a following chapter we will further control the validity ofour observations on the discriminatory power of the dataset characteristics, inmodels which are created only from real world datasets.6.5 Summary and ConclusionsIn this chapter we examined the performance of four di�erent meta-learners onthe two di�erent ways of characterizing a dataset, histo and +histo. There wasno performance variation among the two di�erent versions. The reader mayremember that the performance of the instance based inducer was deterioratingon the +histo set of characteristics. The performance of the four meta-learnerspresented here, remained una�ected due to the feature selection mechanism



6.5. SUMMARY AND CONCLUSIONS 91Table 6.13. Number of features used for each pairwise problem.pair fsIBL c50tree c50boostc50rules c50boost 32 40 61c50tree c50boost 30 39 64c50tree c50rules 23 36 61Lindiscr c50boost 19 36 62Lindiscr c50rules 20 39 62Lindiscr c50tree 18 36 60Ltree c50boost 34 44 60Ltree c50rules 31 40 61Ltree c50tree 25 42 62Ltree Lindiscr 25 41 63IBL c50boost 22 33 58IBL c50rules 16 42 62IBL c50tree 25 40 63IBL Lindiscr 24 41 61IBL Ltree 27 39 62NB c50boost 39 35 64NB c50rules 23 35 60NB c50tree 24 41 59NB Lindiscr 23 41 61NB Ltree 48 36 62NB IBL 34 43 62ripper c50boost 27 34 61ripper c50rules 21 40 63ripper c50tree 22 39 61ripper Lindiscr 32 43 59ripper Ltree 37 43 65ripper IBL 22 30 62ripper NB 31 42 62Average 25.25 38.92 61.53that all of them posses. Moving to the comparison of the performances of themeta-learners, there were clear evidence for the superiority of c50boost bothin terms of the quality of predictions on the individual pairwise problems andthe �nal suggestion. In what concerns the discriminatory power of the datasetcharacteristics as this is determined by their selection rate this was similaramong the three meta-learners. There was however one notable exception. Thefact that fsIBL was ignoring the characteristics which are describing the patternof missing values, while for c50tree and c50boost are among the ones most oftenselected, and still achieving similar performance to that of c50tree. A sectionof the following chapter will be devoted to the analysis of the models producedby c50boost on real world datasets, in order to cross check them with the onesproduced here.
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Table 6.14. Frequency with which characteristics are selected among the di�erent pairwiseproblems, c50tree.Attribute frequency# classes 100%# attributes 96.42%# instances 96.42%# attributes#instances 78.57%# unknown values 100%# unknown values# attributes * # instances 71.42%# nominal attributes 46.42%max,min,mean,stdv of nominal attribute values 85.71% 67.85% 53.57% 35.71%1..5 concentration histogram 71.42% 60.71% 39.28% 32.14% 39.28%6..10 concentration histogram 21.42% 25.00% 10.71% 0.00% 50.00%non computable conc. histogram 64.28%1..5 concentration histogram with class 64.28% 60.71% 32.14% 75.00% 32.14%6..10 concentration histogram with class 10.71% 0.00% 0.00% 0.00% 32.14%non computable conc. histogram with class 0.00%# continuous attributes 57.14%1..5 correlation histogram 67.85% 71.42% 78.57% 53.57% 75.00%6..10 correlation histogram 71.42% 82.14% 71.42% 75.00% 85.71%non computable correlation histogram 64.28%1..5 missing values histogram 0.00% 81.14% 92.85% 92.85% 96.42%6..10 missing values histogram 85.71% 75.00% 14.28% 67.85% 21.42%# continuous# attributes 0.00%# nominal# attributes 14.28%Binary Attributes 53.57%Frac1 67.85%First Canonical Correlation 89.28%Mean Skew 64.28%Mean Kurtosis 50.00%Class Entropy 96.42%Mean Attribute Entropy 85.71%Mean Mutual Information 75.00%Equivalent number of attributes 64.28%Noise to Signal Ratio 46.42%Mean Mult. Correl. Coef. 67.85%SDratio 82.14%
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Table 6.15. Frequency with which characteristics are selected as decision nodes, c50tree.Attribute frequency# classes 4.43%# attributes 3.78%# instances 4.29%# attributes#instances 2.07%# unknown values 6.28%# unknown values# attributes * # instances 1.80%# nominal attributes 1.10%max,min,mean,stdv of nominal attribute values 2.12% 1.15% 1.24% 0.60%1..5 concentration histogram 1.52% 1.01% 0.69% 0.50% 0.78%6..10 concentration histogram 0.27% 0.32% 0.13% 0.00% 0.73%non computable conc. histogram 0.87%1..5 concentration histogram with class 1.61% 1.24% 0.55% 1.24% 0.41%6..10 concentration histogram with class 0.18% 0.00% 0.00% 0.00% 0.50%non computable conc. histogram with class 0.00%# continuous attributes 1.15%1..5 correlation histogram 1.34% 1.61% 1.34% 1.24% 1.47%6..10 correlation histogram 1.52% 2.03% 1.57% 1.75% 2.03%non computable correlation histogram 1.24%1..5 missing values histogram 0.00% 2.77% 3.23% 3.14% 3.23%6..10 missing values histogram 1.89% 1.38% 0.18% 1.24% 0.27%# continuous# attributes 0.00%# nominal# attributes 0.23%Binary Attributes 0.87%Frac1 1.75%First Canonical Correlation 3.09%Mean Skew 1.38%Mean Kurtosis 1.01%Class Entropy 4.99%Mean Attribute Entropy 2.17%Mean Mutual Information 1.66%Equivalent number of attributes 1.75%Noise to Signal Ratio 0.73%Mean Mult. Correl. Coef. 1.34%SDratio 1.66%
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Table 6.16. Frequency with which characteristics are selected among the di�erent pairwiseproblems, c50boost.Attribute frequency# classes 100%# attributes 100%# instances 100%# attributes#instances 100%# unknown values 100%# unknown values# attributes * # instances 100%# nominal attributes 100%max,min,mean,stdv of nominal attribute values 100% 100% 100% 100%1..5 concentration histogram 100% 100% 100% 100% 100%6..10 concentration histogram 92.85% 100% 39.28% 10.71% 100%non computable conc. histogram 96.42%1..5 concentration histogram with class 100% 100% 96.42% 100% 100%6..10 concentration histogram with class 82.14% 14.28% 3.57% 32.14 64.28%non computable conc. histogram with class 28.57%# continuous attributes 100%1..5 correlation histogram 100% 100% 100% 100% 100%6..10 correlation histogram 96.42% 100% 100% 100% 100%non computable correlation histogram 100%1..5 missing values histogram 0.0% 100% 100% 100% 100%6..10 missing values histogram 100% 100% 75% 100% 75%# continuous# attributes 60.71%# nominal# attributes 89.28%Binary Attributes 96.42%Frac1 100%First Canonical Correlation 100%Mean Skew 100%Mean Kurtosis 100%Class Entropy 100%Mean Attribute Entropy 100%Mean Mutual Information 100%Equivalent number of attributes 100%Noise to Signal Ratio 100%Mean Mult. Correl. Coef. 100%SDratio 100%
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Table 6.17. Frequency with which characteristics are selected as decision nodes, c50boost.Attribute frequency# classes 2.93%# attributes 2.26%# instances 3.67%# attributes#instances 2.41%# unknown values 4.84%# unknown values# attributes * # instances 2.24%# nominal attributes 0.95%max,min,mean,stdv of nominal attribute values 1.55% 0.82% 1.08% 0.95%1..5 concentration histogram 1.25% 1.04% 1.09% 0.99% 0.92%6..10 concentration histogram 0.52% 0.46% 0.006% 0.001% 0.80non computable conc. histogram 0.91%1..5 concentration histogram with class 1.31% 1.08% 0.60% 1.84% 0.73%6..10 concentration histogram with class 0.30% 0.001% 0.000% 0.004% 0.01non computable conc. histogram with class 0.0003%# continuous attributes 1.31%1..5 correlation histogram 1.96% 1.79% 1.59% 1.48% 1.58%6..10 correlation histogram 1.54% 1.61% 1.45% 1.47% 1.45non computable correlation histogram 1.24%1..5 missing values histogram 0.0% 2.85% 2.92% 2.74% 2.83%6..10 missing values histogram 1.96% 1.49% 0.22% 1.29% 0.31%# continuous# attributes 0.15%# nominal# attributes 0.25%Binary Attributes 0.8%Frac1 1.61%First Canonical Correlation 2.63%Mean Skew 1.63%Mean Kurtosis 1.46%Class Entropy 4.49%Mean Attribute Entropy 2.77%Mean Mutual Information 2.55%Equivalent number of attributes 2.30%Noise to Signal Ratio 2.00%Mean Mult. Correl. Coef. 2.03%SDratio 2.41%
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Fig. 6.3. Frequency with which characteristics are selected among the di�erent pairwise problems,c50tree
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Fig. 6.4. Frequency with which characteristics are selected as decision nodes, c50tree
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Fig. 6.5. Frequency with which characteristics are selected among the di�erent pairwise problems,c50boost
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Chapter 7Comparing DatasetCharacterizationsStarting with the STATLOG project in 1994, and continuing until nowadayswith the METAL project a variety of measures is used to describe and charac-terize datasets in order to predict the performance of learning algorithms. Toour knowledge there is no systematic comparison of the di�erent approaches ofdataset characterization. The only exception to that is the work by Bensusanand Giraud-Carrier (2000), where they compare the performance of landmark-ing with that of an information based characterization of datasets in the spiritof STATLOG. The datasets used in this study were arti�cial datasets. Theinformation-based description was consisting of, class entropy, equivalent num-ber of attributes, average entropy of attributes, average mutual information,average joint entropy and signal-to-noise ratio, a rather limited set of character-istics which is actually a subset of the ones used in STATLOG. The experimental�ndings showed that landmarking outperforms the information-based descrip-tion, however the results should be accepted with caution, since the study wasdone only on arti�cial datasets, the set of information based characteristics wasrather limited and moreover there was no control on the statistical signi�canceof the results.The goal of this chapter is to perform a systematic and controlled com-parison of di�erent dataset characterizations, on real world datasets. We willexamine �ve di�erent sets of characteristics. Four of them follow the statisti-cal/ information-based approach �rst presented in STATLOG and the �fth isthe landmarking approach of characterizing a dataset. More speci�cally we willexamine the following sets:� statlog, the set of characteristics used in the STATLOG project, whosedescription was already given in section 4.1.� dct, a richer set of dataset characteristics extracted from the DCT tool,which was developed as a result of the METAL project.99



100 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONS� histo, the set of characteristics that we have established.� histo-limited, a smaller version of histo.� land, the set of landmarkers given in section 4.1.In section 7.1 we will give a more detailed description of the dct and of thehisto-limited sets of characteristics. In a later section, 7.4, we will also explorethe combined use of some of these sets of characteristics in order to improvepredictive performance.The comparison will involve 65 real world datasets mainly from the UCIrepository and the METAL project1. The number of datasets should have beenhigher if the landmarking tool had not failed in characterizing a considerablenumber of datasets. We will use two di�erent meta-learning frameworks toperform the comparison. The �rst one is the pairwise framework that we havedeveloped in chapter 3. The second one is a simpler approach to meta-learningand the main goal is the prediction of the learner that will achieve the highestaccuracy. Here we do not use pairwise comparisons, we have just one simplemeta-learning problem where the goal is to predict the algorithm that achievesthe highest accuracy for a given dataset. The instances of the meta-learningdataset are the descriptions of the datasets along with a class label which givesthe algorithm with the highest accuracy on the dataset, as this is determinedby 10 fold strati�ed cross validation. No kind of test of statistical signi�cance isused in order to select the best algorithm, just the absolute value of the accuracyas it is estimated by the cross validation.We will use c50boost in both frameworks as a metalearner. The evalua-tion strategy for the second meta-learning framework will be the accuracy ofc50boost, as it is estimated by 10 fold strati�ed cross validation.7.1 Description of the dataset characterizationsbeing comparedWe will describe only the dct and histo-limited sets of characteristics since thedescriptions of land, histo and statlog were already given in previous chapters.The dct set of characteristics is an extension of the statlog based set of char-acteristics, that includes 33 features. The additional characteristics include thefollowing descriptions of missing values: the total number of missing values, thepercentage of missing values, the number of instances with missing values andthe percentage of instances with missing values. A new characteristic that givesthe number of linear discriminant functions produced when a linear discrimi-nant algorithm is applied to the dataset. The number of outliers in the dataset.A number of characteristics that describe attribute class associations; theseare the gini index, (Breiman et al., 1984), attribute relevance and g-function,(Cooper & Herskovits, 1992), and �nally the multiple correlation coe�cient of1The complete list of the 65 datasets, can be found in section B.1 of the appendix



7.2. PAIRWISE FRAMEWORK 101each attribute with the other attributes. Since the last four characteristics arecomputed for every attribute of a dataset, apart from their mean value we alsoinclude their minimum and maximum values.The histo-limited set, is just the set we obtain from histo, when we removethe characteristics already used in STATLOG. The set consists of the charac-teristics numbered 1 to 55 given in table 4.1. We decided to add this set ofcharacteristics in the comparative study in order to get an indication of the dis-criminatory power of the histogram based characteristics, from which this setmainly consists.7.2 Pairwise FrameworkBefore proceeding on giving the results of the comparative study we will givethe details of the meta-learning problems de�ned by the 65 datasets used in thecomparative study. In what concerns the pairwise meta-learning problems wegive in table 7.1 the class distribution for each one of them, along with the defaultaccuracy. The average default accuracy over all the 28 meta-learning problemsis 54.45%. For any set of characteristics to be satisfactory, its mean accuracyover all the meta-learning problems should be better than the average defaultaccuracy. Moreover it should outperform the default accuracy on the individualproblems. It is for this reason that apart from comparing the di�erent sets ofcharacteristics between them, we also compare them with the default accuracy.In what concerns the �nal suggestion we give in table 7.2 the frequenciesof groups of inducers that are ranked in the top position. Again for any char-acterization strategy to be successful, it should give better results than justpredicting the group that most often takes the �rst position. This correspondsto the default accuracy of the �nal suggestion and it is with this quantity thatwe will be comparing the strict accuracy (here the inducer taking most often thetop position is Lindiscr with a frequency of 13.84%). Again we will compare allcharacterizations not only between them, but also with that default accuracy.The number of comparisons involved is 15, four di�erent ways of charac-terizing a dataset and the default accuracy. So we have to take into accountthe multiplicity e�ect and apply the Bonferroni adjustment. The new level ofsigni�cance will be now 0:0034. For any result to be signi�cant it has to achievea signi�cance level less than that.Before continuing let us make a remark on the way that the meta-learningproblems are constructed for the land set of characteristics. In section 4.1 wegave the list of landmarkers used in land, we can see that some of them, NaiveBayes, 1-nearest neighbor and linear discriminants, are also part of the pool ofinducers from which the selection is performed. It is obvious that these land-markers cannot be used as dataset descriptors in those pairwise meta-learningproblems that they are involved, and consequently they are removed. For exam-ple we remove from the set of landmarkers, the Naive Bayes landmarker fromall the pairwise meta-learning problems where one of the inducers is the NaiveBayes inducer.



102 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONS7.2.1 Results on the Pairwise Meta-Learning ProblemsAll the �ve ways of characterizing a dataset give poor results on the pairwisemeta-learning problems. Their average improvement over the average defaultaccuracy is quite small. The highest is that of the dct set, (5.11%) and thelowest that of land where actually we cannot talk for an improvement but for adeterioration with respect to the average default accuracy of -1.7%, (Table 7.3)2.Examining the results with respect to the signi�cant wins, (Table 7.4), again wesee that all the �ve sets �nd it very di�cult to statistically outperform the de-fault accuracy. For statlog and land there is no pairwise problem for which theirperformance is statistically signi�cantly better then default accuracy. dct, histoand histo-limited, outperform the default accuracy in a statistically signi�cantlevel only for two to three pairwise problems out of the 28. One possible ex-planation for such a disappointing performance could be the limited number oftraining examples, as we have seen the training set consists of only 65 datasets.In what concerns the statistical signi�cance of the di�erences between the setswe see that none of them outperforms the others in a signi�cant level for any ofthe pairwise problems.With these results it is quite hard to draw any reliable conclusions aboutthe discriminating power of the examined characterizations; we can say that,based mainly on the results of the signi�cant wins of the sets over the defaultaccuracy, we can divide them to two groups. In the �rst group we have dct,histo and histo-limited that exhibit signi�cant wins over the default accuracyfor a limited number of pairwise problems, while on the second group we haveland and statlog that never outperform the default accuracy in a statisticallysigni�cant way.7.2.2 Results on the �nal suggestionWhen examining the performances of the di�erent sets with respect to the qual-ity of the �nal prediction that they provide the results are somehow di�erentfrom the ones obtained on the pairwise problems. From the �ve sets, only two,(histo,histo-limited) achieve a strict accuracy that overpasses the default accu-racy of 13.84%. The three remaining sets, dct, statlog, land, have a similar strictaccuracy which is around 7%, considerably less than the default, (Table 7.5),in other words they are not useful in predicting the exact group of inducersthat takes the top position for a speci�c dataset. If we compute the statisticalsigni�cance of the di�erences, (Table 7.6), between the sets we again observethat none of them signi�cantly outperforms the others in terms of the strictaccuracy. Although the di�erences are quite high for some pairs, for examplehisto-limited outperforms dct almost by 14%, however the di�erences are notsigni�cant at the 0:0034 level. When comparing with the default accuracy noneof histo and histo-limited outperforms it in a statistically signi�cant level.2The complete accuracy results on each pairwise problem can be found in section B.2 ofthe appendix



7.2. PAIRWISE FRAMEWORK 103Table 7.1. Class Distributions for each of the pairwise meta-learning problems on the 65datasets. Default(algo{x, algo{y) pairs algo{x algo{y tie Accuracyc50rules c50boost 6.15% 16.92% 76.92% 76.92%c50tree c50boost 7.69% 26.15% 66.15% 66.15%c50tree c50rules 4.61% 18.46% 76.92% 76.92%Lindiscr c50boost 10.76% 49.23% 40.00% 49.23%Lindiscr c50rules 10.76% 43.07% 46.15% 46.15%Lindiscr c50tree 13.84% 41.53% 44.61% 44.61%Ltree c50boost 9.23% 30.76% 60.00% 60.00%Ltree c50rules 13.84% 20.00% 66.15% 66.15%Ltree c50tree 23.07% 21.53% 55.38% 55.38%Ltree Lindiscr 43.07% 12.30% 44.61% 44.61%IBL c50boost 3.07% 38.46% 58.46% 58.46%IBL c50rules 4.61% 36.92% 58.46% 58.46%IBL c50tree 7.69% 35.38% 56.92% 56.92%IBL Lindiscr 38.46% 24.61% 36.92% 38.46%IBL Ltree 15.38% 43.07% 41.53% 43.07%NB c50boost 7.69% 53.84% 38.46% 53.84%NB c50rules 10.76% 49.23% 40.00% 49.23%NB c50tree 15.38% 49.23% 35.38% 49.23%NB Lindiscr 29.23% 27.69% 43.07% 43.07%NB Ltree 7.69% 50.76% 41.53% 50.76%NB IBL 18.46% 36.92% 44.61% 44.61%ripper c50boost 15.38% 35.38% 63.07% 63.07%ripper c50rules 4.61% 26.15% 69.23% 69.23%ripper c50tree 10.76% 23.07% 66.15% 66.15%ripper Lindiscr 38.46% 27.69% 33.84% 38.46%ripper Ltree 9.23% 35.38% 55.38% 55.38%ripper IBL 29.23% 16.92% 53.84% 53.84%ripper NB 46.15% 20.00% 33.84% 46.15%Average 54.45%Shifting now to the performance in terms of the loose accuracy the situationis similar, (Table 7.5). The histo and histo-limited sets exhibit the highest looseaccuracy, around 50%. That is for about 50% of the cases the set of inducers thatthey propose is a subset of the truly best inducers. dct and statlog follow withsimilar performance and at the last position we have the land set. Neverthelesswhen we calculate the statistical signi�cance of the di�erences, (Table 7.7), wesee that there is no set of characteristics that signi�cantly outperforms any otherset.To summarize the above, in terms of the �nal suggestion the default accuracyis quite hard to beat and even harder to beat it at a statistically signi�cantlevel. Nevertheless the histogram oriented sets, histo and histo-limited exhibit aperformance that is better than the default. Between the �ve di�erent ways ofcharacterizing a dataset there is evidence to support the claim that histogrambased characterization may provide increased discriminatory power over theother methods of characterization; but still the results are not conclusive.



104 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONSTable 7.2. Groups of inducers that were ranked at the top for more than 3% of the 65datasets.Group Frequency PercentLindiscr 9 13.84%c50boost 8 12.30%Ltree 6 9.2%c50rules c50tree Ltree 4 6.15%c50rules c50boost c50tree 3 4.61%NB 2 3.07%IBL 2 3.07%Lindiscr Ltree 2 3.07%c50rules c50boost c50tree Ltree IBL ripper 2 3.07%c50rules c50boost c50tree Lindiscr Ltree ripper 2 3.07%c50rules c50boost c50tree Lindiscr Ltree IBL NB ripper 2 3.07%c50boost IBL 2 3.07%c50boost Ltree 2 3.07%c50boost c50tree 2 3.07%Table 7.3. Mean accuracies and improvement over the mean default accuracy, for each one ofthe �ve di�erent dataset characterizations over the 28 meta-learning problems.Characterization Accuracy Improvementdct 59.56% 5.11%land 52.75% -1.70%histo 59.18% 4.73%histo-limited 57.80% 3.35%statlog 57.14% 2.69%7.2.3 Discriminatory power of the characteristics: c50booston the 65 datasetsIn section 6.4 we examined the discriminatory power of the characteristics ofthe histo, based on how often these were selected in the models that the learningalgorithms constructed for each of the pairwise problems. The characterizationwas done based on the results that we obtained when training took place onthe manipulated datasets. In order to verify the results obtained there we willrepeat the same procedure here, but this time we will use only the 65 datasetsused in the comparison study of this chapter. Furthermore we will only exam-ine the models produced by c50boost. Since the number of examples is limited,the c50boost algorithm is not able to grow trees as big as when we used 1075examples, this results in fewer attributes selected for each pairwise problem,and accordingly the selectivity of each characteristic is now reduced. In factthe average number of characteristics used in each pairwise problem drops from61.53, (Table 6.13), to 36.46, (Table 7.8). In general the models produced fromthe 1075 examples were much more complex than the ones produced from the65 examples, the availability of a big number of training instances allows deci-sion tree algorithms to grow much more complex hypothesis, (Oates & Jensen,1998). In order for the results to be comparable with the ones presented insection 6.4 we will limit the presentation only to the frequency with which each



7.2. PAIRWISE FRAMEWORK 105Table 7.4. Distribution of signi�cant wins, based on the McNemar's test, over the 28 pairwisemeta-learning problems. In a triplet AA/BB/CC, AA is the number of signi�cant wins of therow characterization, BB the number of signi�cant wins of the column characterization andCC the number of ties.Characterization land histo histo-limited statlog defaultdct 0/0/28 0/0/28 0/0/28 0/0/28 2/0/26land 0/0/28 0/0/28 0/0/28 0/0/28histo 0/0/28 0/0/28 3/0/25histo-limited 0/0/28 3/0/25statlog 0/0/28Table 7.5. Results on the �nal suggestion of the �ve ways of characterizing a dataset.Characterization Strict Accuracy Improvement Loose Accuracydct 6.15% -7.69% 43.08%land 7.69% -6.15% 36.92%histo 15.38% 1.54% 52.31%histo-limited 20.00% 6.16% 47.69%statlog 7.69% -6.15% 41.54%characteristic is selected to become a decision node3.In table 7.9, we give the frequency with which the various characteristics areselected by the c50boost inducer; we will compare these results with the selec-tion rates of the characteristics as they were determined on the 1075 datasets,table 6.17, in �gure 7.1 we give the graph bars that correspond to the two tables.We can make the following remarks; the selectivity of the simple characteristics,like the number of attributes, number of instances or the ratio of attributes toexamples, still remains quite high. The statlog based characteristics like classentropy, entropy of attributes, mutual information etc, also retain their highselectivity, although the selection rate is slightly reduced compared to the oneobserved on the 1075 training instances. Two notable exceptions to that, are theSDratio and Mean Multiple Correlation Coe�cient characteristics, whose selec-tion rate went down to zero. In what concerns the characteristics that describethe patterns of missing values, whereas they exhibited very high selectivity onthe training set of 1075 instances, their selection rate is now considerably re-duced. For example the selection rate of the number of unknown values dropsfrom 4.84% down to 1.56%, the selection rate of the percent of unknown valuesdrops from 2.24% down to 0.35%. A similar decrease is also observed in the his-togram of missing values, where now there are more bins that are never selected,and the selection rate of the ones that are still used, is considerably reduced.An explanation could be the fact that in the 1075 datasets, there were manymanipulated datasets whose di�erence was mainly the pattern of missing values.This could force c50boost to consider the characteristics describing the patternsof missing values highly discriminating and use them with a high frequency.Nevertheless let us note here that fsIBL was not putting a high emphasis on3The selection rates of the characteristics for each pairwise problem can be found in sec-tion B.4 of the appendix.



106 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONSTable 7.6. Results of the McNemar test comparing the accuracies of the �ve characterizations,in terms of the strict accuracy. + indicates a signi�cant win for the row characterization, �a signi�cant win for the column characterization, and = a tie.land histo histo-limited statlog defaultdct =(1.00) =(0.113) =(0.03) =(1.000) =(0.227)land =(0.267) =(0.08) =(1.000) =(0.342)histo =(0.50) =(0.227) =(1.000)histo-limited =(0.043) =(0.386)statlog =(0.422)Table 7.7. Results of the McNemar test comparing the performances of the �ve characteriza-tions, in terms of the loose accuracy. + indicates a signi�cant win for the row characterization,� a signi�cant win for the column characterization, and = a tie.land histo histo-limited statlogdct =(0.454) =(0.239) =(0.647) =(1.000)land =(0.067) =(0.211) =(0.628)histo =(0.606) =(0.146)histo-limited =(0.454)the patterns of missing values. Concerning the remaining characteristics de-scribed with the use of histograms, the correlation coe�cient exhibits similarhigh selectivity as in the case of the 1075 instances. The bins of the histogramof the concentration coe�cient between the attributes, have now a higher se-lection rate; even the upper �ve bins that in the case of the 1075 instances hada quite small selectivity are now selected with higher frequencies. This patternwas already observed in the feature sets produced by fsIBL. Finally in whatconcerns the histogram of the concentration coe�cient between the attributesand the class attribute the selectivity is slightly increased for all of the bins,with the upper �ve bins still having a low selection rate. Finally some of thecharacteristics that had small selection rate, like the percent of continuous ordiscrete attributes have now a zero selection rate.In general the central observation is that the main di�erence between themodels produced on the 1075 datasets and the ones produced on the 65 datasetsby c50boost, lies on the much smaller emphasis on the patterns that describethe missing values. We can also note a similarity between the selection ratesproduced by fsIBL on the 1075 instances and the selection rates produced byc50boost on the 65. We believe that the discriminatory power of the character-istics as it is given by c50boost on the 65 instances and fsIBL on the 1075, ismore representative of their true status.7.3 Simple FrameworkUnder the simple framework hypothesis the goal of the meta-learning problemis to predict for a speci�c dataset the inducer that will achieve the highestaccuracy. The class distribution of the corresponding meta-learning dataset is



7.3. SIMPLE FRAMEWORK 107Table 7.8. Number of features used, by c50boost, for each pairwise problem, when trained onthe 65 datasets. pair number of featuresc50rules c50boost 27c50tree c50boost 36c50tree c50rules 28Lindiscr c50boost 40Lindiscr c50rules 39Lindiscr c50tree 36Ltree c50boost 41Ltree c50rules 32Ltree c50tree 34Ltree Lindiscr 38IBL c50boost 31IBL c50rules 35IBL c50tree 42IBL Lindiscr 37IBL Ltree 39NB c50boost 35NB c50rules 44NB c50tree 41NB Lindiscr 44NB Ltree 37NB IBL 35ripper c50boost 37ripper c50rules 34ripper c50tree 34ripper Lindiscr 31ripper Ltree 35ripper IBL 41ripper NB 38Average 36.46given in table 7.10. In the table we can see how many times an inducer, fromthe pool of inducers, achieves the highest accuracy over all the 65 datasets. Theinducer positioned most often at the top is c50boost, with a frequency of 32.30%.This quantity corresponds to the default accuracy of the simple meta-learningframework. For any strategy of characterization to be useful it should achievean accuracy which is better than this default accuracy. Again the signi�cancelevel is readjusted, to take into account the multiplicity e�ect, to 0:0034.In what concerns the construction of the meta-learning dataset we have tonote that in the case of the land set, for obvious reasons, we have to omit allthese landmarkers that are full edged inducers and are also a part of the pool ofinducers, i.e. Lindiscr, Naive Bayes and 1-nearest neighbor. This leaves us withthe four following features in the land set: decision node, worst node, randomlychosen node and elite 1-nearest neighbor.Before continuing with the presentation of the results let us make more clearthe relation between the two meta-learning frameworks. The class distributionof the simple meta-learning framework, table 7.10, corresponds conceptually tothe distribution of the groups of inducers that take the top position for the �nal



108 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONS
Table 7.9. Frequency with which characteristics are selected as decision nodes, by c50boostwhen trained on the 65 datasets.Attribute frequency# classes 4.07%# attributes 2.95%# instances 3.00%# attributes#instances 2.73%# unknown values 1.56%# unknown values# attributes * # instances 0.35%# nominal attributes 1.03%max,min,mean,stdv of nominal attribute values 1.74% 2.59% 0.40% 0.85%1..5 concentration histogram 2.33% 1.07% 1.65% 1.07% 1.43%6..10 concentration histogram 1.25% 1.56% 1.97% 0.85% 0.94%non computable conc. histogram 0.76%1..5 concentration histogram with class 2.73% 1.25% 1.83% 2.95% 1.21%6..10 concentration histogram with class 1.29% 0.49% 0.00% 0.76% 0.08%non computable conc. histogram with class 0.0008%# continuous attributes 1.47%1..5 correlation histogram 3.40% 1.74% 1.16% 1.16% 1.29%6..10 correlation histogram 2.10% 1.74% 1.21% 1.65% 2.64%non computable correlation histogram 1.03%1..5 missing values histogram 0.00% 0.62% 1.61% 1.92% 1.52%6..10 missing values histogram 1.74% 0.00% 1.56% 0.00% 0.00%# continuous# attributes 0.00%# nominal# attributes 0.00%Binary Attributes 0.00%Fract 1.03%Cancor 2.51%Mean Skew 2.73%Mean Kurtosis 2.01%Class Entropy 3.72%Entropy Attributes 1.16%Mutual Information 2.19%Equivalent number of attributes 3.54%NoiseSignal Ratio 2.42%AttrMultiCorrel 0.00%SDratio 0.00%
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Fig. 7.1. Frequency with which characteristics are selected as decision nodes on the 1075 and 65datasets by c50boostsuggestion of the pairwise framework, table 7.2. A source of confusion could bethe fact that in the pairwise framework the group of inducers that get most oftenthe top position consists of Lindiscr while in the simple framework the inducerthat most often gets the top position is c50boost. The reason for that is thatin the �rst framework statistical signi�cances are taken into account whereas inthe second we simply ignore them. So when we see in table 7.2 that Lindiscris the one that gets more often the top position, (9 datasets), this means thatfor these datasets Lindiscr is statistically signi�cant better than all the otherinducers. From table 7.10 we can see that Lindiscr has the highest accuracy in13 datasets, but only in 9 of them as it is stated in table 7.2 it is signi�cantlybetter than all the other inducers. Obviously the same applies for c50boost.When in table 7.2 we see that it gets the top position in 8 datasets, this meansthat for these datasets it is signi�cantly better than all the other inducers, eventhough as it is stated in table 7.10 it has the highest accuracy in 21 datasets.



110 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONSTable 7.10. Class distribution for the simple meta-learning frameworkClass # Frequencyc50boost 21 32.30%Lindiscr 13 20.00%Ltree 12 18.46%c50rules 9 13.84%NB 3 4.61%IBL 3 4.61%c50tree 3 4.61%ripper 1 1.53%7.3.1 Results for the simple meta-learning frameworkWhen we examine the accuracies that the �ve methods of characterizationachieve, table 7.11, we can distinguish three groups of sets that achieve sim-ilar performance. The top group consists of only the histo set, which achievesthe highest accuracy with an improvement over the default of 18.47%. In thesecond group we have histo-limited, statlog and dct with a similar performanceand an improvement over the default of around 10%. The last group consists ofthe land4 which is the only method of characterization that has a performanceworse than the default, with a deterioration of 7.68%. Checking the statisti-cal signi�cance of the di�erences between the characterizations, table 7.12, we�nd only one pair where the di�erence is signi�cant, that of histo, land. Withrespect to the default accuracy again none of the sets manages to beat it in astatistically signi�cant level.Table 7.11. Accuracy and improvement over the default accuracy, of the �ve sets of datasetcharacterization, for the simple meta-learning framework.Characterization Accuracy Improvementdct 41.54% 9.24%land 24.62% -7.68%histo 50.77% 18.47%histo-limited 43.08% 10.78%statlog 41.54% 9.24%Table 7.12. Results of the McNemar test comparing the accuracies of the �ve characterizations,under the simple framework. + indicates a signi�cant win for the row set, - a signi�cant winfor the column set, and = a tie.land histo histo-limited statlog defaultdct =(0.045) =(0.263) =(1.000) =(1.000) =(0.326)land -(0.002) =(0.030) =(0.037) =(0.358)histo =(0.382) =(0.211) =(0.044)histo-limited =(1.000) =(0.281)statlog =(0.307)4Remember here that the land set consists of only four features



7.4. COMBINING CHARACTERIZATIONS 1117.4 Combining CharacterizationsSo far the dataset characterizations that we examined were based on a uniqueparadigm, either a description of the datasets in terms of the statistical andinformation based properties, (dct, statlog, histo, histo-limited) or a descriptionbased on the performance of simple learners, (land). In an e�ort to furtherimprove the description of the datasets we will combine two di�erent paradigmsin a single characterization. We will combine the histo characterization, thebest performing among the statistical and information based, with the landcharacterization. We will evaluate the new set, which we will call combined,both under the pairwise and the simple metalearning frameworks.In table 7.13 we give the performance results of the combined characteriza-tion for the pairwise meta-learning framework. The average accuracy overpassesthe default average accuracy by 4.01% with a value of 58.46%. Compared to itsconstituent sets, i.e. land and histo, its average accuracy is slightly worse thanthat of histo and better than land, but the di�erences are not statistically signif-icant for any of the 28 meta-learning problems. Compared to the performanceof the default accuracy it is signi�cantly better in three out of the 28 problems,for the remaining ones the di�erences are not signi�cant, (table 7.14).In what concerns the performance of the �nal suggestion in terms of thestrict accuracy, combined is quite better than land but only marginally betterfrom histo, in both cases the di�erences are not statistically signi�cant. Mea-suring the performance with loose accuracy, combined is better than land butworse than histo. But again the di�erences are not statistically signi�cant. Tosummarize the results on the pairwise framework, the combined set exhibits abetter performance than land, but it is slightly worse than the histo set, (Ta-bles 7.13, 7.15).Table 7.13. Performance of the combined characterization, in terms of average, strict andloose accuracy over the 28 metalearning problems.Combined Impr. over default land histoAverage Accuracy 58.46% 4.01% 52.75% 59.18%Strict Accuracy 16.92% 3.08% 7.69% 15.38%Loose Accuracy 49.23% 36.92% 52.32%Table 7.14. Distribution of signi�cant wins of combined compared with land and histo overthe 28 meta-learning problems. In a triplet AA/BB/CC, AA is the number of signi�cant winsof Combined, BB the number of signi�cant losses and CC the number of ties.land histo defaultcombined 0/0/28 0/0/28 3/0/25The results are similar when we examine the performance of the combinedset under the simple framework, Table 7.16. The combined characterizationperforms better than the default accuracy and the land characterization but



112 CHAPTER 7. COMPARING DATASET CHARACTERIZATIONSTable 7.15. Signi�cance levels comparing combined with its constituent sets and the default,�nal suggestion. land histo defaultStrict Accuracy =(0.181) =(1.000) =(0.851)Loose Accuracy =(0.170) =(0.790)Table 7.16. Performance of the combined characterization on the simple meta-learning frame-work. Accuracy Impr. over default land histo44.62% 12.32% 24.62% 50.77%worse than the histo. Once more the di�erences are not statistically signi�cant,table 7.17.In general the performance of the combined in all the frameworks is lowerthan that of one its constituent sets, i.e. histo. The incorporation of the land-marking based characteristics in the histo set seems to harm performance, stillit should be pointed that the results are not conclusive due to the absence ofstatistical signi�cance. Furthermore what should be explored is the possibil-ity to use a subset of the combined set that would be selected with a featureselection mechanism.7.5 Summary and ConclusionsIn this chapter we conducted a systematic study of the discriminatory power ofdi�erent ways of characterizing datasets, under two meta-learning frameworks,on real world datasets. To our knowledge it is the �rst study of this kind.In what concerns the �rst meta-learning framework and the performanceon the pairwise problems the results were not conclusive. Two out of the �vedi�erent characterizations, statlog and land could not outperform the defaultaccuracy in a statistical signi�cant level in any of the 28 pairwise problems.Actually land had an average accuracy which was even worse than the aver-age default accuracy. The remaining three characterizations outperformed thedefault accuracy for only two or three pairwise problems. Moving to the perfor-mance with respect to the �nal suggestion, only the histogram based approachesmanaged to beat the default accuracy, in terms of strict accuracy. The remain-ing three approaches performed much worse than the corresponding defaultaccuracy. Unfortunately the di�erences of the histogram based approaches withrespect to the default accuracy were not statistically signi�cant.The results on the simple meta-learning framework are slightly di�erent.Here four out of the �ve di�erent characterizations beat the default accuracy,histo, histo-limited, dct and statlog; the only one that exhibited an accuracylower than the default was the land set, probably due to the fact that we useda more limited set of the initial landmarkers. The histo set achieves the topperformance with a considerable improvement over the default, however once



7.5. SUMMARY AND CONCLUSIONS 113Table 7.17. Signi�cance levels comparing combined with its constituent sets and the defaultaccuracy for the simple meta-learning frameworkland histo default=(0.016) =(0.208) =(0.1858)more this improvement is not statistically signi�cant.In an e�ort to further improve the performance of the predictions we exam-ined the combined use of two di�erent paradigms of characterizing a dataset,one based on the landmarkers and the other based on the histogram represen-tation of the statistical and information based properties of the datasets. Theresults were not clear either for or against the combined use of the di�erentparadigms since the observed di�erences were not statistically signi�cant. Thecombined set exhibited a performance which was slightly worse than the histoset one of its constituents.The most disappointing observation was that none of the dataset character-izations manage to beat the baseline performance, in any of the experimentalframeworks that we used, in a statistically signi�cant level. However the his-togram based approaches exhibited systematically better performance than theother sets. For the �rst framework they were the only ones that manage to over-pass the strict default accuracy, while for the second framework they were onthe top two positions. Based on these observations we could argue that the useof histograms can only improve the performance in the meta-learning problemsthat we are dealing with, thus providing more reliable predictions. We believethat the poor performance is mainly due to the limited number of datasets used,and that with a greater number of datasets better results can be achieved.As a byproduct of the comparative study under the pairwise framework, weanalyzed the models produced by c50boost. This was done in order to determinethe discriminatory power of the characteristics as it is established from realworld datasets, and compare it with the one established from the manipulateddatasets. The results produced showed some di�erences mainly with respect tothe discriminatory power of the characteristics describing the patterns of missingvalues. This can be attributed to the presence of a considerable number ofdatasets, among the 1075 datasets used previously, that di�ered mainly in theirpattern of missing values. Nevertheless the produced description by c50boosthad similarities with the one produced by fsIBL on the 1075 datasets. Webelieve that this characterization is a more reliable one.
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Chapter 8Regression BasedMeta-LearningSo far in all the previous chapters we handled the meta-learning problem as atypical classi�cation task. In this chapter we will explore another alternative,where we cast the problem as a regression problem. We face meta-learning tasksas regression tasks whereby we look for relationships between the propertiesof a dataset and the performance of the classi�ers. We adopt two di�erentmeta-learning frameworks. The �rst one is based on the pairwise meta-learningframework introduced in the previous chapters. The second one relies on thedirect estimation of the expected error of inducers on a given set. The directerror estimates can be used either to perform inducer selection, i.e. select themost appropriate inducer for a dataset, or inducer ranking, i.e. rank the inducerswith respect to their expected performance on a dataset.We will evaluate the regression approach for both frameworks and examinethe performance of regression models constructed from all the �ve sets of char-acteristics used in the comparative study of chapter 7. Finally we will comparethe regression based ranking with zooming based ranking introduced in (Soares& Brazdil, 2000).8.1 Related WorkConcerning the direct estimation of performance of learners, little experimentalresults with working systems has been reported. The idea of using regressionto predict the performance of learning algorithms was �rst used by Gama andBrazdil (1995), while they continued on the framework adopted in STATLOG.They tried to directly predict the error of an algorithm for a speci�c datasetbased on the characteristics of the dataset, as these were de�ned in the STAT-LOG project. For each of the learners they evaluated various regression modelslike linear regression, instance based regression and rule based regression. Theyreport poor results in terms of the Normalized Mean Squared Error (NMSE).115



116 CHAPTER 8. REGRESSION BASED META-LEARNINGFrom the 23x3x4=276 di�erent regression models that they used only 63 wereuseful, i.e. had an NMSE of less than 1. They stopped there, without trying touse the regression models for model selection, or for ranking the algorithms.Sohn in (Sohn, 1999) uses the results of STATLOG (i.e. same data charac-terization, same learning algorithms and same datasets) and constructs linearregression models that predict the errors of the learning algorithms on unseendatasets. As she is using the results of STATLOG, the study is limited to 19datasets and 11 learning algorithms. To overcome the small number of datasetsshe used bootstrapping resampling to estimate the parameters of the regressionmodels. The regression models used were simple linear regression models pre-dicting the logit1 transformation of the errors of the learners. The models wereused to provide a ranking of the available learning algorithms. The results showthat the statistical models produced exhibit high performance. However theymust be interpreted cautiously because of the limited number of datasets usedin the study.A recent paper provided some initial results related to the use of estimatedperformances for model selection (Koepf et al., 2000). It shows that estimatingperformances leads to a better result in selecting a learner from a pool thanlearning through a repository of datasets classi�ed in terms of the best perform-ing algorithm in the pool. Using a pool composed by three classi�ers, (LinearDiscriminant, Quadratic Discriminant and 1-Nearest Neighbor) the paper in-dicates that regression (by M5, (Quinlan, 1992b)), when used to estimate theerror of the three classi�ers, selects the classi�er with least error with betterperformance than using classi�cation (with C5.0) to decide the best algorithmfor a dataset. The experiments, however, were preliminary and concentratedonly on one strategy of dataset characterization, on only three classi�ers andwere performed on arti�cially generated datasets.A work with a regression like avor is also the work on ranking with zooming(Soares & Brazdil, 2000). The goal there is to determine a preference order overa pool of classi�ers, based on predictive accuracy and computational cost. Theranking for a new dataset is built by inspecting a number of k-nearest neighborsin a collection of reference datasets, that form a meta-dataset. In the meta-dataset each dataset is described by a number of features and labeled by theperformance obtained by each classi�er in the pool. The produced ranking isbased on a preference function that weights cost and accuracy on the numberof neighbors that are to be considered. This could be considered similar tokernel based regression, which �ts a regression model to a neighborhood ofan instance. The main di�erence though is that in ranking with zooming thepreference function is static. The approach cannot be used as is to estimateaccuracies of learners, but only to provide a relative ranking of them. One ofthe main limitations of the method is that it relies on a single global meta-modelthat is based on the k-nearest neighbor approach. Meta-models constructed bylearners other than k-nearest neighbor, have been shown to give better results(Kalousis & Hilario, 2000b). Also the dataset characteristics that a�ect the1logit(x) = ln xx�1



8.2. PAIRWISE FRAMEWORK 117performance of a learner vary from one learner to another (Kalousis & Hilario,2001), but ranking with zooming requires the use of a single set of datasetcharacteristics, independently of the learner.Our goal here is, to broaden the previous line of research, explore di�er-ent strategies of dataset characterization for regression based meta-learning andcompare the di�erent approaches under a common framework. The experimen-tal framework will be the same as the one used in chapter 7. That is, we willuse the same �ve sets of dataset characteristics, the same 65 datasets on whichthe evaluation will take place, and the same pool of eight inducers.8.2 Pairwise frameworkWe use the pairwise framework described in chapter 3. That is we construct(n2) pairwise metal-learning problems for n inducers, but unlike the classi�cationbased approach we learn on each of these problems using regression. The mainidea is that instead of trying to predict which of the two inducers to use viaclassi�cation, we try to directly estimate their relative error di�erence usingregression and select among them the one with the lowest relative error. On thenext level we combine all the pairwise predictions to take the �nal suggestion ofthe system, in the same way we did it for the classi�cation based approach. Aninstance of a pairwise metalearning problem consists of a dataset descriptionand the di�erence of the errors of the two inducers on the speci�c dataset.Unlike the classi�cation based approach we do not use any test of statisticalsigni�cance. As a result the prediction for a pairwise problem can be only one ofthe two inducers involved and the notion of ties does not exist anymore. In ta-ble 8.1 we give the class distributions for each of the 28 meta-learning problems,the corresponding default accuracies, and the average default accuracy overallthe 28 problems (67.36%). Since now we do not have ties the �nal suggestionof the system is a single inducer, the one that achieves the lowest relative erroramong all inducers. Consequently the �nal suggestion is not anymore the setof the best inducers and the notions of strict and loose accuracy merge to thenotion of normal accuracy. The distribution of the inducers that take the topposition has already been given in table 7.10. The default accuracy with whichwe will compare the performance of the �nal suggestion is again determined bythe frequency of the top inducer, which is c50boost in 32.30% of the datasets.8.2.1 Results on the Pairwise Meta-Learning ProblemsAll the �ve di�erent ways of characterizing a dataset give poor results on thepairwise metalearning problems. The improvement over the average defaultaccuracy is very small with the best characterization, dct, being better thanthe average default accuracy only by 3.02%. The land set is again by far theworst, having a performance which is lower than the average default accuracy



118 CHAPTER 8. REGRESSION BASED META-LEARNINGTable 8.1. Class Distributions for each of the pairwise regression based meta-learning prob-lems on the 65 datasets. Default(algo{x, algo{y) pairs algo{x algo{y Accuracyc50boost c50rules 67.69% 32.30% 67.69%c50boost c50tree 75.38% 24.61% 75.38%c50boost Lindiscr 69.23% 30.76% 69.23%c50boost Ltree 56.92% 43.07% 56.92%c50boost IBL 92.30% 07.69% 92.30%c50boost NB 73.84% 26.15% 73.84%c50boost ripper 83.07% 16.92% 83.07%c50rules c50tree 72.30% 27.69% 72.30%c50rules Lindiscr 63.07% 36.92% 63.07%c50rules Ltree 63.07% 36.92% 63.07%c50rules IBL 70.76% 29.23% 70.76%c50rules NB 67.69% 32.30% 67.69%c50rules ripper 76.92% 23.07% 76.92%c50tree Lindiscr 63.07% 36.92% 63.07%c50tree Ltree 58.46% 41.53% 58.46%c50tree IBL 69.23% 30.76% 69.23%c50tree NB 67.69% 32.30% 67.69%c50tree ripper 69.23% 30.76% 69.23%Lindiscr Ltree 27.69% 72.30% 72.30%Lindiscr IBL 53.84% 46.15% 53.84%Lindiscr NB 55.38% 44.61% 55.38%Lindiscr ripper 44.61% 55.38% 55.38%Ltree IBL 78.46% 21.53% 78.46%Ltree NB 73.84% 26.15% 73.84%Ltree ripper 72.30% 27.69% 72.30%IBL NB 56.92% 43.07% 56.92%IBL ripper 47.69% 52.30% 52.30%NB ripper 44.61% 55.38% 55.38%Average 67.36%by 6.26%. In table 8.22 we give the average accuracy for each characterization.Examining the results with respect to the signi�cant wins3 (Table 8.3) we seethat there is no characterization that manages to beat the default accuracy ata signi�cant level. Moreover the di�erences among the characterizations forthe big majority of the 28 meta-learning problems are not signi�cant either.Note here that these results are not directly comparable with the results on thepairwise meta-learning problems with classi�cation given in section 7.2, sincethe distribution of classes and the actual classes are di�erent.8.2.2 Results on the �nal suggestionAs it has already been mentioned the �nal suggestion of the system in the regres-sion pairwise framework corresponds to the single inducer who is expected to2The complete accuracy results on each pairwise problem can be found in section B.3 ofthe appendix3We are taking again into account the multiplicity e�ect and apply the Bonferroni adjust-ment setting the signi�cance level to 0.0034



8.3. DIRECT ACCURACY PREDICTION FRAMEWORK 119Table 8.2. Mean accuracies and improvement over the mean default accuracy, for the �vedi�erent dataset characterizations over the 28 meta-learning problems, for the regression basedpairwise approach. Characterization Accuracy Improvementdct 70.38% 3.02%land 61.10% -6.26%histo 69.29% 1.92%histo-limited 69.45% 2.09%statlog 68.19% 0.82%Table 8.3. Distribution of signi�cant wins, based on the McNemar's test, over the 28 meta-learning problems, for the regression based pairwise approach. In a triplet AA/BB/CC, AAis the number of signi�cant wins of the row characterization, BB the number of signi�cantwins of the column characterization and CC the number of ties.Characterization land histo histo-limited statlog defaultdct 3/0/25 0/0/28 0/0/28 0/0/28 0/0/28land 0/2/26 0/0/28 0/1/27 0/1/27histo 0/0/28 0/0/28 0/0/28histo-limited 0/0/28 0/0/28statlog 0/0/28achieve the highest accuracy for a given dataset. In that sense we are providingexactly the same type of predictions as in the case of the simple meta-learningframework for algorithm selection given in section 7.3. Table 8.4 gives the ac-curacy results for the �ve characterizations for the �nal suggestion. At the topposition we have the histo set which is better than the default accuracy by15.30% and again on the last position we have the land set of characteristicswhich is worse than the default accuracy by 12.30%. In what concerns the sta-tistical signi�cance of the results, no characterization outperforms the defaultaccuracy in a statistical signi�cant level (Table 8.5).The accuracy results in table 8.4 are directly comparable with the corre-sponding results on inducer selection under the simple framework, table 7.11.It seems that the straight selection via classi�cation has an advantage over theregression pairwise selection. It provides better results for all the �ve di�erentways of dataset characterization. The regression based approach exhibits thehighest degradation in performance for the statlog and histo-limited characteri-zations, 13.85% and 6.16% respectively. For the remaining characterizations thedegradation of performance is between 1% and 4%. The explanation for thatdi�erence in performance is that the pairwise selection is more prone to errorssince an error in one of the pairwise selections can harm the �nal suggestion.8.3 Direct accuracy prediction frameworkThe primary goal here is to predict the actual accuracy of an inducer on a newunseen dataset using a regression model constructed from the available trainingdata. Then these predictions can be used either for inducer selection, or inducer



120 CHAPTER 8. REGRESSION BASED META-LEARNINGTable 8.4. Accuracy and improvement over the default accuracy, of the �ve sets of datasetcharacterization, for the �nal suggestion on the pairwise regression problemCharacterization Accuracy Improvementdct 40.00% 7.70%land 20.00% -12.30%histo 47.69% 15.30%histo-limited 36.92% 4.62%statlog 27.69% -4.61%Table 8.5. Results of the McNemar test comparing the accuracies of the �ve characterizations,in terms of the accuracy of the �nal suggestion, for the pairwise regression approach. +indicates a signi�cant win for the row characterization, � a signi�cant win for the columncharacterization, and = a tie.land histo histo-limited statlog defaultdct =(0.025) =(0.301) =(0.813) =(0.098) =(0.556)land -(0.002) =(0.072) =(0.423) =(0.027)histo =(0.045) =(0.012) =(0.137)histo-limited =(0.211) =(0.859)statlog =(0.570)ranking.A meta-dataset is constructed for each inducer. In order to do that, eachdataset has to be characterized by a dataset characterization strategy. Everyinstance of the meta-dataset corresponds to a speci�c dataset and consists of thedataset characterization along with the accuracy of the inducer on that datasetas it is measured by 10 fold cross validation. The meta-dataset can then betreated as an ordinary regression problem.8.3.1 Predicting accuraciesRegression was used to estimate the performance of classi�ers using the di�erentstrategies of dataset characterization. Since the quality of the estimate dependson its closeness to the actual accuracy achieved by the classi�er, the meta-learning performance is measured by the Mean Absolute Deviation (MAD).MAD is de�ned as the sum of the absolute di�erences between real and predictedvalues divided by the number of test items. It can be seen as measure of thedistance between the actual values and the predicted ones.In order to compare the estimation capabilities of the �ve strategies ofdataset characterization we used a kernel method (Torgo, 1999) to performregression on the meta-dataset. Kernel methods work in an instance-basedprinciple and they �t a linear regression model to a neighborhood around theselected instance. It is straightforward to alter their distance metric in orderto make better use of the semantics of the non-applicable values that occur inmeta-attributes of dct, statlog, histo and histo-limited.For each classi�er meta-dataset, we run 10-fold cross-validation to assess thequality of performance estimations. The quality of the estimation is assessed by



8.3. DIRECT ACCURACY PREDICTION FRAMEWORK 121Table 8.6. Kernel performance on estimating performance.Classi�er dct histo histo-lim land statlog dMADc50boost 0.112 0.123 0.122 0.050 0.119 0.134c50rules 0.109 0.120 0.121 0.051 0.114 0.133c50tree 0.109 0.125 0.123 0.054 0.116 0.137Lindiscr 0.118 0.128 0.129 0.063 0.116 0.137Ltree 0.105 0.115 0.113 0.041 0.108 0.132IBL 0.120 0.140 0.137 0.081 0.133 0.153NB 0.121 0.142 0.143 0.064 0.122 0.146ripper 0.113 0.129 0.127 0.056 0.125 0.145the MAD in the 10 folds, and it is compared with the default MAD (dMAD). Thelatter is the MAD obtained by predicting that the error of a classi�er in a testdataset is the mean of the error obtained in the training datasets. dMAD is abenchmark for comparison, and one can think of it as the quantity correspondingto default accuracy in a typical classi�cation problem. We expect regression toproduce a smaller MAD than the dMAD. We have to note here that, in thecase of landmarkers, whenever we build a model to predict the performanceof a classi�er that is a member of the set of landmarkers the correspondinglandmarker is removed.The quality of the estimation with the kernel method using di�erent datasetcharacterization strategies is shown in table 8.6. The table presents the MAD inthe 10 folds for every regression problem and the dMAD. Landmarking outper-forms the other by far and produces estimated accuracies with a MAD smallerthan 0.081 for every classi�er. This means that the average error of the esti-mated accuracy in unseen datasets will be in the worst case (that of mlcib1)8.1%.The rest of the characterization strategies do not produce estimates as goodas those produced by landmarking. One could suspect that this is becausethe meta-dataset is relatively small when compared to the large number ofmeta-attributes used by these two strategies of dataset characterization. Tocheck whether reducing the dimensionality of the problem would signi�cantlyimprove the estimates, we performed feature selection through wrapping onthe four meta-datasets. The estimates, however, were not greatly improved.We conclude that landmarking performs best in performance estimation usingkernel.To examine whether the results presented are signi�cant we performed pairedt-tests of signi�cance. In Table 8.7 we give the results of the paired t-testbetween each model and the dMAD. In this table and in the following ones, +indicates that the method is signi�cantly better than the default, = signi�esthat there is no di�erence, and � that the method is signi�cantly worse thenthe default. Since we have multiple comparisons with the default MAD wewill once again adjust the signi�cance level for the multiplicity e�ect, the newsigni�cance level will be 0.006. The table shows that the performance of landis always signi�cantly better than the default. For the other characterizationsthe di�erences are not signi�cantly di�erent. However the dct characterization



122 CHAPTER 8. REGRESSION BASED META-LEARNINGTable 8.7. P-values of paired T-tests of signi�cance comparing with the dMAD.Classi�er dct histo histo-limited land statlogc50boost = (0.112) = (0.430) = (0.361) + (0.00) = (0.287)c50rules = (0.075 = (0.346) = (0.319) + (0.00) = (0.154)c50tree = (0.045) = (0.373) = (0.242) + (0.00) = (0.122)Lindiscr = (0.110) = (0.485) = (0.548) + (0.00) = (0.107)Ltree = (0.030) = (0.153) = (0.115) + (0.00) = (0.051)IBL = (0.037) = (0.361) = (0.269) + (0.00) = (0.173)NB = (0.036) = (0.758) = (0.807) + (0.00) = (0.058)ripper = (0.024) = (0.243) = (0.217) + (0.00) = (0.152)Table 8.8. Average Spearman's Correlation Coe�cients with the True RankingmodelsCharacterization Kernel Zoomingdefault 0.330 0.330dct 0.435 0.341histo 0.394histo-limited 0.405 0.371land 0.180land- 0.190statlog 0.385appears to have a small advantage over them, exhibiting lower signi�cance levels.Furthermore, land is always signi�cantly better than the rest of the charac-terization sets for all the eight di�erent learning algorithms. Between the foursets, the di�erences are not statistically signi�cant for any of the 8 learners.In conclusion we can say that the use of landmarkers to perform accuracyestimation is a method with very good performance and low estimation error,signi�cantly better than the others. The reason is that landmark based charac-teristics are better suited for that type of task: they provide a direct estimationof the hardness of the problem since they are themselves performance estima-tions. On the other side, the rest of the sets give an indirect description ofthe hardness of the problem, through the use of characteristics like attributescorrelations, which are more di�cult to directly associate with accuracy.8.3.2 Ranking inducersAn obvious way to use the accuracies predicted by regression is to build a rankingof the learners based on these predictions. In this section we give results forvarious ways of predicting rankings. We validate their usefulness by comparingthem with the true ranking, and the performance of a default ranking.To evaluate the di�erent approaches, the rankings produced for a datasetare compared to the true ranking of the learners on this dataset. The trueranking is known since we know the accuracies of all the learners on the 65datasets that we are using. As a measure of similarity of the rankings, weused Spearman's rank correlation coe�cient (Neave & Worthington, 1992). Wealso compare our method with ranking via zooming (Soares & Brazdil, 2000).



8.3. DIRECT ACCURACY PREDICTION FRAMEWORK 123Zooming cannot be applied to the full set of landmarkers, since that will meanusing the performance of Lindiscr, IBL and NB to predict their ranking. Thisis why the corresponding combination, (zooming+land) is not included in thetable. Also the results of ranking with zooming for the statlog and histo setswere not available. In the same table we give the average Spearman's rankcorrelation coe�cient of the default ranking with the true ranking. The defaultranking is a ranking that remains the same no matter what the dataset underexamination is. It is computed on the basis of the mean accuracies that thelearners achieve over all the datasets. The default ranking, starting from thebest learner, is : c50boost, c50rules, c50tree, Ltree, ripper, IBL, NB, Lindiscr. Aranking method is interesting if it performs signi�cantly better than this defaultranking: in this case it is worth applying the meta-learning method to discovera suitable ranking for a given dataset.One of the drawbacks of using the Spearman's correlation coe�cient to eval-uate rankings is the fact that it treats errors in a rank in the uniformly inde-pendently of whether they appear at the top or at the bottom of the rank. Itis obvious that an error at the top of the rank is more important than an errorin the bottom, since we are mainly interested in the top rated algorithms. Toovercome that limitation of the Spearman's rank correlation coe�cient we canfocus only in the top position of the ranking and see how often the rankingspredict correctly the top classi�cation algorithm. The complete results withrespect to that dimension of ranking evaluation are given in section 8.3.3. Moreelaborate evaluation measures of rankings exist based on modi�cations of theSpearman's correlation coe�cient. In these modi�cations errors are penalizedaccording to the position of the ranking list where they occur, (Soares et al.,2000).The results in terms of the average Spearman rank correlation coe�cientare given in table 8.8. Surprisingly enough in the top position we �nd the com-bination of Kernel with dct followed closely by Kernel with histo, histo-limitedand statlog. What is interesting is that regression based ranking performs bet-ter than ranking with zooming, even though the latter is a method speci�callydesigned to produce rankings. What is even more surprising is the poor per-formance of the landmarking based characterizations, although landmarkingconstructs regression models that have a very low MAD error, it fails to providea good ranking of the classi�ers. The predictions provided by Kernel and dct,while worse than the ones provided by landmarking based models, systemati-cally keep the relative order of the accuracies of the classi�ers. So although theydo not estimate the performances accurately, they do rank the classi�ers well.A reason for the poor performance of landmarking in ranking is that landmark-ing based regression models give the error as a function of the error of simplelearners. This can lead to models where the error of an inducer is proportionalto the error of another inducer resulting in a more or less �xed ranking of theavailable inducers, a fact that explains the poor performance of landmarkerswhen it comes to ranking inducers. Examining whether the di�erences are sig-ni�cant, after adjusting for the multiplicity e�ect on a 0.006 level, we see thatnone of the examined methods achieves a performance that can beat that of the



124 CHAPTER 8. REGRESSION BASED META-LEARNINGTable 8.9. P-values of paired t-tests, between the rank correlation coe�cients of the modelsand the rank correlation coe�cient of the default ranking.modelsCharacterization Kernel Zoomingdct =(0.050) =(0.862)histo =(0.261)histo-limited =(0.147) =(0.482)land =(0.010)land- =(0.018)statlog =(0.311)default ranking in a signi�cant level, table 8.9.To explain better the counter-intuitive bad performance of the landmarkingapproach with respect to ranking, we used Cubist (Quinlan, 2000), a regres-sion algorithm that produces rule based models, and examine the structure ofthe constructed models. The reason for the use of Cubist is that the Kernelbased regression does not produce models. The performance of land with Cu-bist is very similar to that with Kernel, both in terms of the quality of theerror predictions for each inducer (very good predictions), and the ranking (theranking correlation coe�cients with the ideal ranking are much worse than theperformance of the default ranking). In table 8.10 we give the regression modelsproduced by Cubist for each one of the eight inducers. Each of the producedmodels gives the error of the corresponding inducer as a function of the errorgiven by the landmarkers. Six out of the eight models are very simple linear re-gression equations. If we examine the equations that give the errors of c50boostand c50rules we can see that they are very similar, and they are based on theerror of the IBL landmarker. The equations on the one hand give a very goodprediction of the error of the two inducers, but on the same time always rankthem in the same way for every dataset, with c50boost always predicted to havea smaller error than c50rules. This results in a ranking of the two inducers thatis always the same irrespectively of the dataset under examination. The samesituation holds also for other inducers, for example NB and ripper, whose errorsare given as a function of the same landmarkers (i.e. Lindiscr and IBL). It isexactly this phenomenon, of a more or less �xed ranking between the inducers,that explains the poor performance of land in what concerns ranking.Using regression to perform ranking is essentially di�erent from ranking withzooming. Even when the regression model used is a kernel based one, whoseidea is the same with that of nearest neighbors used in ranking with zooming,the similarities end there. In zooming, k-nearest neighbor is used to establisha set of similar datasets to the one under examination. In order to performthe ranking, the relative performances of the learners on the similar datasetsare used. In the case of ranking through regression, we don't make use of therelative performance of the learners and there is no need to establish a set ofsimilar datasets. Instead, the accuracies of the learners are directly predictedusing the extracted characteristics of the dataset under examination. As aresult of that we are not committed to any speci�c meta-learning model. More



8.3. DIRECT ACCURACY PREDICTION FRAMEWORK 125Table 8.10. Models produced by Cubist on the land set of characteristicsInducer Regression Modelc50boost error=-0.0127 + 0.888 IBLc50rules error=-0.0045 + 0.884 IBLc50tree error=-0.0134 + 0.595 IBL + 0.346 NBLindiscr error= 0.0333 + 0.869 NBLtree error=-0.025 + 0.407 IBL + 0.332 Lindiscr + 0.24 NBIBL IF Lindiscr <= 0.396 THENerror=0.0202 + 0.726 NBIF Lindiscr > 0.396error=-0.0835 + 0.82 Lindiscr + 0.34 Elite NodeNB IF Lindiscr <= 0.237 THENerror=0.0211 + 0.645 IBL + 0.174 LindiscrIF Lindiscr > 0.237 THENerror=0.0227 + 0.833 Lindiscr + 0.132 IBLripper error=-0.0077 + 0.604 IBL + 0.377 LindiscrTable 8.11. Accuracy results on the inducer selection problem, via regression.Kernel ZoomingCharacterization Acc. Impr. Acc. Impr.dct 38.46% 6.16% 27.69% -4.34%histo 46.16% 13.86%histo-limited 36.92% 4.62% 29.24% -3.06%land 27.69% -4.61%land- 23.08% -9.22%statlog 29.23% -3.07%expressive models can be used that provide a better insight of how the datasetcharacteristics a�ect the performance of the learners, exactly like we do in thecase of Cubist.8.3.3 Selecting the best inducerAs already mentioned one of the drawbacks of evaluating rankings via the Spear-man correlation coe�cient is the uniform treatment of errors independently oftheir position in the ranking list. Here we will focus only in the top positionof the rankings and we will examine how often they correctly predict the bestclassi�cation algorithm. The meta-learning problem is exactly the same as theone described in section 7.3, the di�erence comes from the way we are tryingto solve it. There we used classi�cation methods, while here we are using re-gression methods, to solve what at the end, is a typical classi�cation problem.



126 CHAPTER 8. REGRESSION BASED META-LEARNINGObviously the class distribution is the one given in table 7.10 and the defaultaccuracy is also the same. It is also the same meta-learning problem with theone de�ned in section 8.2. While there we were based on relative performanceprediction of pairs of algorithms via regression to select the best algorithm, herewe are relying on direct accuracy prediction.We will examine the performance of Kernel combined with all the �ve pos-sible ways of characterizing a dataset, plus the performance of zooming on thethree sets on which the results are available. The evaluation was done using10 fold cross validation. In table 8.11 we give the results on accuracy alongwith the improvement over the default accuracy. As a �rst fast insight into theresults, we can see that only the Kernel models produce accuracy results thatare better than the default for some of the sets. Models produced by zoomingare all worse than the default.Kernel gives results which are better than the default for the dct, histo andhisto�limited sets. histo is again the set that achieves the highest improvementover the default, as it was also for the same problem when we tried to attackit via classi�cation. Again the improvement over the default is not statisticallysigni�cant.Comparing the results of the regression based approach with the resultsobtained by the classi�cation based approach, table 7.11, we can see that for allthe characterizations regression produces worst results than direct classi�cation.However since the di�erences are small we can not draw safe conclusions aboutthe superiority of classi�cation over regression.8.4 Summary and ConclusionsIn this chapter we examined an alternative approach to classi�cation, for solvingthe meta-learning problem, which was based on regression. We explored twodi�erent meta-learning frameworks. The �rst one was based on the de�nitionof pairwise problems and the second one on the direct prediction of the errorsof inducers. In the later framework the regression models can be used eitherto rank inducers or simply to select the best inducer for a speci�c dataset.We examined the performance of �ve di�erent dataset characterizations underboth frameworks and investigated the use of regression to rank classi�cationalgorithms.In what concerns the �rst framework the predictive accuracy with which theappropriate algorithm was chosen was relatively low, around 48% for the bestcharacterization (the histo set). In total three characterizations overpassed thedefault accuracy related with the �nal suggestion but none at a statisticallysigni�cant level.For the direct error estimation the land set achieved by far the best perfor-mance. But when these estimates were used to rank the algorithms accordingto their expected performance it performed miserably, even signi�cantly worsethan the default ranking. The best results with ranking were obtained by thecombination of Kernel and dct, followed by Kernel with histo-limited and histo.



8.4. SUMMARY AND CONCLUSIONS 127The regression based ranking in general outperformed the ranking via zooming,nevertheless the di�erences between the methods, and between the methods andthe performance of the default ranking was not statistically signi�cant.When we used the error estimates to select the best inducer only three ofthe methods managed to beat the default accuracy, but not in a statisticallysigni�cant level. On the top position we found Kernel with histo, the sameset that exhibited the highest performance when the problem of inducer selec-tion was tackled via classi�cation, section 7.3 or via the pairwise regression,section 8.2. Followed by Kernel with dct and histo-limited. The rest of the meth-ods performed worse than the default accuracy. In general the regression basedapproach seems to perform slightly worse than the classi�cation approach.



128 CHAPTER 8. REGRESSION BASED META-LEARNING



Chapter 9Overview, Limitations andFuture WorkThe goal of this dissertation is to provide support to the analyst in selectingthe most appropriate learning algorithm for a classi�cation problem refrainingfrom the tedious task of systematic experimentation with various learning algo-rithms. As a �rst step to that goal we relied on meta-learning, viewing inducerselection as a typical classi�cation problem although at a meta-level. Withinthis approach our work spans the whole range of tasks required for the solu-tion of a typical classi�cation problem. That is, we searched for an appropriateformulation of the meta-learning space, and we constructed it in such a wayso that it closely simulates the steps followed by the analyst when he has toselect among di�erent learners. Special care was also given to the feature ex-traction part of the process, in order to have a set of characteristics that can bestdiscriminate between di�erent datasets, a step which involved experimentationwith di�erent sets of features. We proceeded to a systematic experimentationof di�erent learners on the meta-level and compared the set of characteristicsthat we established with sets of characteristics from previous similar work. Inthe last chapter of the dissertation we explored a di�erent avenue that relied onregression techniques, compared di�erent dataset characterizations under theregression scenario, and used the regression models not only to perform inducerselection but also inducer ranking.The formulation of the meta-learning space allows for a close examination ofthe factors that a�ect the relative performance of speci�c pairs of inducers. Theestablishment though of a number of pairwise meta-learning problems poses aproblem; an error of prediction in one of them could harm the �nal prediction.A possible solution could be a more intelligent way of combining the partialsolutions to provide the �nal answer. This can be achieved via a meta-learningschema like stacking or global cascade generalization, where the predictions fromthe individual pairwise meta-learning problems will constitute a new learningproblem in which the goal will be to predict the �nal classi�cation algorithm129



130 CHAPTER 9. OVERVIEW, LIMITATIONS AND FUTURE WORKbased on the patterns of predictions from the pairwise problems.The suggested formulation of the meta-learning space gave satisfactory re-sults when applied to the set of semiarti�cial datasets. The performance interms of the strict accuracy was, for the best meta-learner and the best datasetcharacterization, 51.16%, an improvement over the default strict accuracy of24.93%, while for the loose accuracy it was 76.74%. When tested only on realdatasets the performance was quite low, resulting in a strict accuracy of 15.38%and 20.00%, depending on which histogram based characterization was used,(corresponding improvements over the default accuracy 1.54% and 6.16%). Theloose accuracy was 52.31% and 47.69%. A possible explanation for the poorperformance in the real datasets is their limited number.In de�ning the pairwise meta-learning problems special care was given inthe appropriate de�nition of the datasets characterization. The idea of the his-tograms was introduced to describe in a �ner detail the distributions of variousproperties of datasets whose number depends on the number of attributes ofthe dataset. We compared the histogram based characterizations with di�er-ent dataset characterizations in varying meta-learning frameworks including onethat was using regression to perform inducer selection. The histogram basedapproaches took the top positions whether inducer selection was performed inthe pairwise meta-learning framework, the simple meta-learning framework, orvia regression. We should note here that a set of dataset characteristics consist-ing mainly of the histogram characteristics, histo-limited exhibited quite goodperformance, with respect to the others, providing evidence that it is the use ofhistograms that improves the performance. Although the histogram based char-acterizations systematically outperformed the other characterizations, in almostall of the applied frameworks, the performance di�erences were not statisticallysigni�cant. What was also disappointing was the fact that the di�erence betweenthe histograms and the default accuracy was not statistically signi�cant either.However the histogram based approaches were consistently better than the de-fault accuracy, for all the di�erent frameworks examined, even if the di�erencewas not statistically signi�cant. We cannot de�nitely support their superiorityover the other methods of characterization, however since they are the only onesthat systematically overpass the default accuracy and occupy the top positionswe can at least argue that their presence can only improve performance in theinducer selection problem.Before establishing the most appropriate histogram characterization we ex-amined two di�erent versions of feature sets with one of them trying also to cap-ture and describe the associations between discrete and continuous attributes,using ideas from analysis of variance. Unfortunately that extended version ofhistograms did not bring any improvement in the performance and even more inone case it harmed the performance (when IBL was used on the meta-level). Asa result we have chosen not to include these characteristics in the �nal set. Thisleaves a gap in the description of the datasets and of course obvious space forimprovement. New characteristics should be devised that are able to describein a satisfactory way the relations between continuous and discrete attributes.As a step to that we experimented with discretized versions of the datasets us-



131ing the Fayyad and Irani (1995) method of discretization; this results on newversions of the datasets where all the attributes are discrete and characteristicsthat are appropriate for discrete attributes can be applied without a problem,unfortunately the results were not encouraging and we did not further explorethat direction.We also have to note that the concept of histograms was not applied to allthe properties of the datasets that depend on the number of the attributes.For example histograms could be applied to describe the distribution of themutual information between the attributes and the class or to the entropy ofthe attributes. Instead for the suite of experiments presented here we usedonly the means of these properties, mainly because they do not have a boundedinterval of possible values, but an interval whose bounds depend on speci�cproperties of the attributes. However with the proper normalization histogramscould be also applied to describe the distributions of these characteristics too.Another promising direction which could help improving the quality of pre-dictions, although at the expense of loss of understandability of the producedmodels, is the application of principal components analysis on the set of datasetcharacteristics, so that the new set will contain uncorrelated features. Thiscould prove bene�cial especially for the case of the instance based learner onthe meta-level.We proceeded further in providing a characterization of the discriminatingpower of the individual characteristics by analyzing the models that the meta-learners produced. The characterization was based on how often a characteristicwas selected to become part of a meta-learning model. The more often this wasdone, the higher the discriminatory power of the characteristic. The �rst andmost important insight was the variation of the discriminatory power amongdi�erent pairs of inducers. This observation provided further experimental sup-port for the choice of the speci�c formulation of the meta-learning space. It isalso an indication that meta-learning frameworks that rely on a single meta-learning problem will have a more di�cult problem to solve. Although thepairwise meta-learning framework comes with the extra cost of the combinationof the individual predictions, which is not a trivial task, the fact that allowsfor a focused study of the di�erences between inducers make us think that itis more appropriate. Returning to the discriminating power of the individualcharacteristics we believe that this is best reected in the choices done by fsIBLon the set of 1075 datasets and in the similar choices done by c50boost in the65 datasets. According to this characterization the simple characteristics, theSTATLOG based ones, and the histograms describing the associations betweenthe attributes, along with the �rst half of the histogram that describes the as-sociation with the class attribute are the most often selected, thus the mostdiscriminating.Although the �nal performance of the system depends heavily on the qualityof the characteristics used to describe the datasets, we also tried to furtherimprove the performance by examining the use of various inducers on the meta-learning level. The use of di�erent inducers required some adaptation in therepresentation of their values due to the existence of the non-applicable values.



132 CHAPTER 9. OVERVIEW, LIMITATIONS AND FUTURE WORKThe best results were achieved by c50boost which was better than all the otherinducers on the meta-learning level at a statistically signi�cant level. The useof these inducers apart from being an e�ort to improve the performance, servedalso in the characterization of the discriminating power of the characteristics,as it was already described int the previous paragraph. It would be interestingto examine inducers that go beyond the propositional paradigm. The argumentfor that is the following: when we use a histogram to describe a property ofa dataset we actually introduce a number of new features that describe thisproperty; in some sense we place higher emphasis on that property since now it isdescribed by more than one feature. To overcome this unbalanced representationa solution could be the use of learning algorithms that are able to cope withattributes whose values are lists or sets. For example consider a version ofIBL where the attributes are lists or sets. What is needed in that case is ametric that can de�ne the distance between two sets or two lists. In the caseof lists, which is the one that better matches with the concept of histograms,the solution could be simply the euclidean distance between the two lists. Thecase of sets is not so straightforward because more elaborate metrics have tobe used to de�ne the distance between two sets, metrics that should of courserespect the semantics of the problem. Whether we are dealing with attributesthat are lists or sets the result of the comparison between two attributes willbe a single quantity that can be incorporated naturally in the distance metricof the IBL algorithm. Similar alterations could be done to decision trees, herethe splitting criterion should be altered so that it would be possible to de�nesplits on attributes whose values are lists or sets. Again the use of a metricde�ned on lists or sets is essential. The use of sets is more appropriate when wewould like to exploit the full set of characteristics corresponding to a dataset,without relying on the concept of histograms. For example for two datasets withk and l continuous attributes we would have two sets of (k2) and (l2) correlationcoe�cients respectively. If we were not to use histograms we should be ableto compare the two sets in terms of their similarity. The suggestion providedabove goes more into the direction of an inductive logic programming tool ora case based reasoning system, more generally a system that is able to handlemultiple relations. Nevertheless the proposed system would lie between the twoapproaches and would be closer to the propositional framework.A novel paradigm of representation that has risen in the statistical �eld canaddress successfully the representational issues set in the previous paragraph.Bock and Diday (2000) present the notion of symbolic data types. The main ideaof symbolic data types is that symbolic variables can be de�ned which do not takea single value as it is done in propositional approaches. Symbolic variables mayhave as values: sets, intervals, and frequency or probability distributions. Thetwo latter cases are identi�ed asmodal variables; a special case of modal variablesare the histogram variables, where the distribution is typically given in the formof a histogram. The authors present various metrics that can be used in order tode�ne distance between distributions, and extend that to vectors whose featuresare complete distributions. It should be noted here that although symbolic



133variables are typically multivalued, they are treated as a single entity, thusthey do not increase overwhelmingly the dimensions of the search space, whileon the same time they preserve a su�cient amount of the initial information.It is obvious that classi�cation algorithms which are able to handle symbolicobjects provide an ideal solution to the representational problem set forth bythe description of datasets and they should be explored in view of meta-learning.In a slightly di�erent meta-learning scenario we used regression algorithmsto perform inducer selection, and examined also di�erent ways of dataset char-acterization. Here also the top performance was exhibited by a histogram basedcharacterization. Compared to inducer selection via classi�cation we noticed aslight decrease in performance. However the decrease was not signi�cant andcannot provide clear evidence for the superiority of the classi�cation based ap-proach over regression for inducer selection.The regression models produced were also used to provide rankings of algo-rithms. We compared the ranking performance of the di�erent characterizationsand also compared the regression approach to ranking with zooming based rank-ing. There were two main outcomes of this empirical comparison. The �rst onewas that regression based ranking was found to perform better than zoomingbased one, even though the later is speci�cally designed with the problem ofranking in mind, the di�erence however was not statistically signi�cant. Thesecond one was the fact that while the landmarking set of characteristics pro-vided the most reliable error estimates, it failed miserably with respect to rank-ing. The explanation to that lay in the form of the regression models that wereconstructed from the landmarking characterization.Another point that is worth of further investigation is the population of theDSs set used to train the system. The approach that we have followed wasbased on the careful modi�cation of some of the characteristics of an initialset of datasets to various dimensions. An alternative approach could be theuse of completely arti�cial datasets, where the initial concepts described by theinstances of a dataset are known in advance. In that way not only we will knowthe optimal error for every arti�cial dataset, but we will also be able to computethe exact error of every classi�cation algorithm without having to rely on aresampling procedure, since we will have in our disposition as many instancesas we want. This will make meta-learning datasets more dense, and improvetheir quality. It is even possible to use real world datasets as the starting pointfor the arti�cial datasets. In order to achieve that we can produce a classi�cationmodel from a real world dataset and use that model as the starting point for theconstruction of arti�cial datasets that will populate the dataset space aroundthe initial real world dataset.The problem with which we tried to cope in this dissertation is the selectionof the most appropriate inducer for a speci�c dataset in the lack of any relevantinformation apart from the dataset itself. Within this framework we took specialcare in choosing an appropriate formulation for the meta-learning problem andgave special attention in the de�nition of an appropriate set of characteristics.The whole approach gave satisfactory results when it was tested on a pool ofsemiarti�cial datasets. The results were not satisfactory when the tests were



134 CHAPTER 9. OVERVIEW, LIMITATIONS AND FUTURE WORKrepeated on a limited number of real world datasets. However they providedevidence that the incorporation of histogram based descriptions of the propertiesof the dataset can help in solving the problem of inducer selection.We believe that the main focus of future work should be in the re�nementof the descriptions of the datasets, a quite di�cult problem as it is by nowobvious from the results achieved within this work. However we should keep inmind that all the information we need is there; a dataset is the ultimate{mostdetailed{ description of itself, what we are looking for is an intelligent way tocompress{describe it.
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Appendix A
Results on the 1075datasets
A.1 The 47 initial datasets
abalone, acetylation, ann-thyroid, australian, balance-scale, bupa, byzantine,car, char, clean1, clean2, ag language, ag religion, are c, are c er, are m,are m er, are x, are x er, german, glass, glass2, heart, ionosphere, iris, lenses,lymphography, monk1, monk2, monk3, new-thyroid, nursery, optdigits, page-blocks, parity5 5, pendigits, pima-indians-diabetes, sat, segmentation, sonar,soybean-small, titanic, vehicle, vote, waveform 21, wdbc, yeast.143



144 APPENDIX A. RESULTS ON THE 1075 DATASETSA.2 Characteristics Selected by fsIBL
Table A.1. Characteristics Selected by fsIBL on the 1075 datasets for the pairs : (c50rulesc50boost), (c50tree c50boost), (c50tree c50rules)Attribute c50rulesc50boost c50treec50boost c50treec50rules# classes 1 1 0# attributes 0 0 0# instances 1 1 1# attributes#instances 0 1 0# unknown values 0 0 0# unknown values# attributes * # instances 0 1 0# nominal attributes 1 0 1max,min,mean,stdv of nominalattribute values 1011 1110 10111..10 concentration histogram 0011011111 1010011000 1110000000non computable conc. histogram 1 0 01..10 concentration histogramwith class 0101000000 1101000000 1001000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 1 01..10 correlation histogram 1101010011 1110111101 1100001101non computable correlation his-togram 1 0 01..10 missing values histogram 0 0 0# continuous# attributes 1 0 0# nominal# attributes 1 0 0Binary Attributes 0 0 1Frac1 0 0 0First Canonical Correlation 0 1 0Mean Skew 0 1 0Mean Kurtosis 0 0 1Class Entropy 1 0 1Mean Attribute Entropy 0 1 1Mean Mutual Information 1 1 1Equivalent number of attributes 1 1 1Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 0 0SDratio 1 1 1



A.2. CHARACTERISTICS SELECTED BY FSIBL 145Table A.2. (Lindiscr c50boost), (Lindiscr c50rules), (Lindiscr c50tree)Attribute Lindiscrc50boost Lindiscrc50rules Lindiscrc50tree# classes 1 1 1# attributes 0 1 0# instances 1 0 0# attributes#instances 1 1 1# unknown values 0 0 0# unknown values# attributes * # instances 1 1 1# nominal attributes 1 1 0max,min,mean,stdv of nominalattribute values 1001 1000 00111..10 concentration histogram 1010000000 1011100000 0010100000non computable conc. histogram 0 0 01..10 concentration histogramwith class 0001000000 0001000000 1000000000non computable conc. histogramwith class 0 0 0# continuous attributes 0 0 01..10 correlation histogram 1000110000 0000111000 1111010000non computable correlation his-togram 0 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 0 0Binary Attributes 0 1 1Frac1 0 0 0First Canonical Correlation 1 0 0Mean Skew 0 0 0Mean Kurtosis 0 0 0Class Entropy 1 1 0Mean Attribute Entropy 1 1 0Mean Mutual Information 0 1 0Equivalent number of attributes 1 1 1Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 0 1SDratio 0 0 1



146 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.3. (Ltree c50boost), (Ltree c50rules), (Ltree c50tree)Attribute Ltreec50boost Ltreec50rules Ltree c50tree# classes 1 0 1# attributes 0 0 1# instances 0 1 1# attributes#instances 1 1 1# unknown values 0 1 0# unknown values# attributes * # instances 1 1 1# nominal attributes 0 1 0max,min,mean,stdv of nominalattribute values 1101 1111 10001..10 concentration histogram 1100111111 1111010000 0011100000non computable conc. histogram 1 0 01..10 concentration histogramwith class 0110100000 1001000000 0000000000non computable conc. histogramwith class 0 0 0# continuous attributes 0 1 11..10 correlation histogram 0101111111 1101110110 0111110000non computable correlation his-togram 0 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 0 0Binary Attributes 0 0 1Frac1 1 1 1First Canonical Correlation 1 0 1Mean Skew 0 1 1Mean Kurtosis 0 0 0Class Entropy 0 1 1Mean Attribute Entropy 1 1 1Mean Mutual Information 1 1 1Equivalent number of attributes 1 1 1Noise to Signal Ratio 1 0 1Mean Mult. Correl. Coef. 1 0 0SDratio 1 1 1



A.2. CHARACTERISTICS SELECTED BY FSIBL 147Table A.4. (Ltree Lindiscr), (IBL c50boost), (IBL c50rules)Attribute LtreeLindiscr IBLc50boost IBL c50rules# classes 1 0 0# attributes 1 1 0# instances 0 0 0# attributes#instances 1 1 1# unknown values 0 1 0# unknown values# attributes * # instances 0 0 0# nominal attributes 1 1 0max,min,mean,stdv of nominalattribute values 1001 0011 00001..10 concentration histogram 1101100000 1001100000 1000000000non computable conc. histogram 0 0 01..10 concentration histogramwith class 0001000000 0101000000 0000000000non computable conc. histogramwith class 0 0 0# continuous attributes 0 1 11..10 correlation histogram 0111001111 0111111000 1010010101non computable correlation his-togram 0 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 0 0Binary Attributes 0 0 0Frac1 0 1 0First Canonical Correlation 1 0 1Mean Skew 1 1 1Mean Kurtosis 0 1 0Class Entropy 0 0 1Mean Attribute Entropy 1 0 1Mean Mutual Information 1 0 1Equivalent number of attributes 1 0 1Noise to Signal Ratio 0 1 1Mean Mult. Correl. Coef. 1 0 0SDratio 1 0 1



148 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.5. (IBL c50tree), (IBL Lindiscr), (IBL Ltree)Attribute IBL c50tree IBL Lindiscr IBL Ltree# classes 1 1 1# attributes 1 1 0# instances 0 0 0# attributes#instances 1 1 1# unknown values 1 0 0# unknown values# attributes * # instances 0 1 1# nominal attributes 1 0 1max,min,mean,stdv of nominalattribute values 0011 0001 10111..10 concentration histogram 1000000000 1010100000 0000000000non computable conc. histogram 0 0 01..10 concentration histogramwith class 1100000000 0101000000 0101000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 0 01..10 correlation histogram 1110100101 0110101011 1111111101non computable correlation his-togram 0 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 0 0Binary Attributes 0 0 1Frac1 0 1 0First Canonical Correlation 1 1 1Mean Skew 1 1 1Mean Kurtosis 1 1 1Class Entropy 0 1 0Mean Attribute Entropy 1 1 1Mean Mutual Information 0 1 1Equivalent number of attributes 1 0 0Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 0 1SDratio 1 0 1



A.2. CHARACTERISTICS SELECTED BY FSIBL 149Table A.6. (NB c50boost), (NB c50rules), (NB c50tree)Attribute NB c50boost NB c50rules NB c50tree# classes 1 1 1# attributes 0 1 1# instances 1 1 0# attributes#instances 0 1 1# unknown values 0 0 0# unknown values# attributes * # instances 1 0 0# nominal attributes 1 0 1max,min,mean,stdv of nominalattribute values 1010 0011 00101..10 concentration histogram 1010111111 1100000000 1100000000non computable conc. histogram 1 0 01..10 concentration histogramwith class 1101000000 1000000000 1000000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 0 01..10 correlation histogram 11110111111 01000011100 01111110010non computable correlation his-togram 1 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 1 0 0Binary Attributes 1 1 0Frac1 0 0 0First Canonical Correlation 1 1 1Mean Skew 1 1 1Mean Kurtosis 1 0 1Class Entropy 1 1 0Mean Attribute Entropy 0 1 1Mean Mutual Information 1 1 1Equivalent number of attributes 1 1 1Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 1 1SDratio 0 1 1



150 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.7. (NB Lindiscr), (NB Ltree), (NB IBL)Attribute NB Lindiscr NB Ltree NB IBL# classes 1 1 1# attributes 1 1 1# instances 0 1 1# attributes#instances 1 1 1# unknown values 0 1 1# unknown values# attributes * # instances 1 0 1# nominal attributes 1 1 1max,min,mean,stdv of nominalattribute values 0100 0111 11011..10 concentration histogram 1111100000 0111111111 1101110000non computable conc. histogram 0 1 01..10 concentration histogramwith class 1101000000 1111111100 1001000000non computable conc. histogramwith class 0 0 0# continuous attributes 0 1 11..10 correlation histogram 0011000000 1110011110 1111111001non computable correlation his-togram 0 1 01..10 missing values histogram 0 0 0# continuous# attributes 0 1 0# nominal# attributes 0 1 0Binary Attributes 0 1 0Frac1 0 0 1First Canonical Correlation 1 1 1Mean Skew 0 1 1Mean Kurtosis 0 1 1Class Entropy 1 1 0Mean Attribute Entropy 1 1 1Mean Mutual Information 1 0 1Equivalent number of attributes 1 1 0Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 1 1SDratio 0 1 0



A.2. CHARACTERISTICS SELECTED BY FSIBL 151Table A.8. (ripper c50boost), (ripper c50rules), (ripper c50tree)Attribute ripperc50boost ripperc50rules ripperc50tree# classes 1 1 1# attributes 0 1 1# instances 0 0 0# attributes#instances 1 1 0# unknown values 1 0 0# unknown values# attributes * # instances 0 0 1# nominal attributes 0 1 1max,min,mean,stdv of nominalattribute values 1011 0010 10101..10 concentration histogram 1111000000 1101100000 0100000000non computable conc. histogram 0 0 01..10 concentration histogramwith class 1101000000 0101000000 1101000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 0 01..10 correlation histogram 0101101011 1100010000 1010110100non computable correlation his-togram 0 0 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 0 0Binary Attributes 0 0 0Frac1 1 0 0First Canonical Correlation 1 1 0Mean Skew 0 0 1Mean Kurtosis 0 1 1Class Entropy 1 0 0Mean Attribute Entropy 1 1 0Mean Mutual Information 0 1 1Equivalent number of attributes 1 0 1Noise to Signal Ratio 1 1 1Mean Mult. Correl. Coef. 1 1 1SDratio 0 1 1



152 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.9. (ripper Lindiscr), (ripper Ltree), (ripper IBL)Attribute ripperLindiscr ripper Ltree ripper IBL# classes 1 1 0# attributes 1 1 1# instances 1 1 0# attributes#instances 1 1 1# unknown values 1 0 0# unknown values# attributes * # instances 1 1 1# nominal attributes 1 1 1max,min,mean,stdv of nominalattribute values 1111 0000 00111..10 concentration histogram 1101111000 1100011111 1100000000non computable conc. histogram 0 1 01..10 concentration histogramwith class 0101000000 0101000000 1101000000non computable conc. histogramwith class 0 0 0# continuous attributes 1 1 11..10 correlation histogram 00101111000 11011111111 10100110010non computable correlation his-togram 0 1 01..10 missing values histogram 0 0 0# continuous# attributes 0 0 0# nominal# attributes 0 1 0Binary Attributes 0 1 0Frac1 1 0 0First Canonical Correlation 1 0 0Mean Skew 1 1 0Mean Kurtosis 1 1 1Class Entropy 1 0 0Mean Attribute Entropy 1 1 0Mean Mutual Information 0 1 1Equivalent number of attributes 1 1 0Noise to Signal Ratio 0 1 1Mean Mult. Correl. Coef. 0 1 1SDratio 0 1 0



A.2. CHARACTERISTICS SELECTED BY FSIBL 153Table A.10. (ripper NB)Attribute ripper NB# classes 1# attributes 1# instances 1# attributes#instances 1# unknown values 0# unknown values# attributes * # instances 1# nominal attributes 1max,min,mean,stdv of nominalattribute values 10111..10 concentration histogram 1100111111non computable conc. histogram 11..10 concentration histogramwith class 0001000000non computable conc. histogramwith class 0# continuous attributes 11..10 correlation histogram 10100110010non computable correlation his-togram 01..10 missing values histogram 0# continuous# attributes 0# nominal# attributes 0Binary Attributes 0Frac1 0First Canonical Correlation 0Mean Skew 1Mean Kurtosis 0Class Entropy 0Mean Attribute Entropy 1Mean Mutual Information 1Equivalent number of attributes 0Noise to Signal Ratio 1Mean Mult. Correl. Coef. 1SDratio 1



154 APPENDIX A. RESULTS ON THE 1075 DATASETSA.3 Selection Frequency by c50boost
Table A.11. Selection Frequency of characteristics by c50boost on the 1075 datasets, pair :c50rules c50boostAttribute# classes 0.0216# attributes 0.0266# instances 0.0305# attributes#instances 0.0241# unknown values 0.0355# unknown values# attributes * # instances 0.0355# nominal attributes 0.0114max, min, mean, stdv of nominal attribute values 0.0102 0.0063 0.0102 0.00891..5 concentration histogram 0.0102 0.0127 0.0102 0.0127 0.00766..10 concentration histogram 0.0038 0.0051 0.0000 0.0000 0.0076non computable conc. histogram 0.00761..5 concentration histogram with class 0.0254 0.0076 0.0038 0.0178 0.00516..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0013non computable conc. histogram with class 0.0013# continuous attributes 0.00761..5 correlation histogram 0.0279 0.0178 0.0203 0.0152 0.01276..10 correlation histogram 0.0076 0.0190 0.0152 0.0228 0.0190non computable correlation histogram 0.01141..5 missing values histogram 0.0000 0.0343 0.0343 0.0241 0.02666..10 missing values histogram 0.0254 0.0190 0.0013 0.0114 0.0000# continuous# attributes 0.0025# nominal# attributes 0.0013Binary Attributes 0.0063Frac1 0.0140First Canonical Correlation 0.0178Mean Skew 0.0165Mean Kurtosis 0.0178Class Entropy 0.0343Mean Attribute Entropy 0.0368Mean Mutual Information 0.0228Equivalent number of attributes 0.0343Noise to Signal Ratio 0.0368Mean Mult. Correl. Coef. 0.0152SDratio 0.0102



A.3. SELECTION FREQUENCY BY C50BOOST 155Table A.12. c50tree c50boostAttribute# classes 0.0300# attributes 0.0185# instances 0.0185# attributes#instances 0.0092# unknown values 0.0554# unknown values# attributes * # instances 0.0254# nominal attributes 0.0058max,min,mean,stdv of nominal attribute values 0.0104 0.0046 0.0150 0.00121..5 concentration histogram 0.0115 0.0161 0.0150 0.0069 0.00926..10 concentration histogram 0.0081 0.0058 0.0012 0.0000 0.0092non computable conc. histogram 0.0127hline 1..5 concentration histogram with class 0.0208 0.0046 0.0058 0.0231 0.00586..10 concentration histogram with class 0.0035 0.0012 0.0000 0.0000 0.0023non computable conc. histogram with class 0.0000# continuous attributes 0.01611..5 correlation histogram 0.0196 0.0185 0.0265 0.0242 0.01386..10 correlation histogram 0.0161 0.0081 0.0115 0.0173 0.0104non computable correlation histogram 0.01611..5 missing values histogram 0.0000 0.0300 0.0438 0.0381 0.02886..10 missing values histogram 0.0208 0.0208 0.0035 0.0208 0.0012# continuous# attributes 0.0023# nominal# attributes 0.0023Binary Attributes 0.0058Frac1 0.0173First Canonical Correlation 0.0161Mean Skew 0.0081Mean Kurtosis 0.0081Class Entropy 0.0450Mean Attribute Entropy 0.0473Mean Mutual Information 0.0208Equivalent number of attributes 0.0219Noise to Signal Ratio 0.0150Mean Mult. Correl. Coef. 0.0138SDratio 0.0138



156 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.13. c50tree c50rulesAttribute# classes 0.0375# attributes 0.0250# instances 0.0312# attributes#instances 0.0250# unknown values 0.0413# unknown values# attributes * # instances 0.0325# nominal attributes 0.0138max, min, mean, stdv of nominal attribute values 0.0138 0.0075 0.0037 0.00881..5 concentration histogram 0.0125 0.0138 0.0050 0.0063 0.00506..10 concentration histogram 0.0037 0.0013 0.0000 0.0000 0.0063non computable conc. histogram 0.01381..5 concentration histogram with class 0.0063 0.0112 0.0013 0.0175 0.01006..10 concentration histogram with class 0.0013 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01631..5 correlation histogram 0.0275 0.0163 0.0213 0.0187 0.01876..10 correlation histogram 0.0325 0.0100 0.0163 0.0187 0.0163non computable correlation histogram 0.01251..5 missing values histogram 0.0000 0.0300 0.0275 0.0312 0.02626..10 missing values histogram 0.0100 0.0163 0.0088 0.0088 0.0063# continuous# attributes 0.0013# nominal# attributes 0.0037Binary Attributes 0.0075Frac1 0.0213First Canonical Correlation 0.0300Mean Skew 0.0187Mean Kurtosis 0.0163Class Entropy 0.0362Mean Attribute Entropy 0.0262Mean Mutual Information 0.0150Equivalent number of attributes 0.0125Noise to Signal Ratio 0.0088Mean Mult. Correl. Coef. 0.0362SDratio 0.0213



A.3. SELECTION FREQUENCY BY C50BOOST 157Table A.14. Lindiscr c50boostAttribute# classes 0.0274# attributes 0.0192# instances 0.0535# attributes#instances 0.0178# unknown values 0.0549# unknown values# attributes * # instances 0.0261# nominal attributes 0.0069maxminmeanstdv of nominal attribute values 0.0123 0.0041 0.0123 0.00691..5 concentration histogram 0.0192 0.0055 0.0137 0.0082 0.00696..10 concentration histogram 0.0082 0.0041 0.0027 0.0000 0.0041non computable conc. histogram 0.00551..5 concentration histogram with class 0.0137 0.0027 0.0082 0.0123 0.01236..10 concentration histogram with class 0.0096 0.0000 0.0000 0.0000 0.0041non computable conc. histogram with class 0.0014# continuous attributes 0.00961..5 correlation histogram 0.0329 0.0178 0.0137 0.0082 0.02746..10 correlation histogram 0.0165 0.0192 0.0316 0.0014 0.0123non computable correlation histogram 0.01371..5 missing values histogram 0.0000 0.0165 0.0219 0.0302 0.02476..10 missing values histogram 0.0082 0.0206 0.0000 0.0096 0.0000# continuous# attributes 0.0014# nominal# attributes 0.0041Binary Attributes 0.0041Frac1 0.0343First Canonical Correlation 0.0412Mean Skew 0.0123Mean Kurtosis 0.0110Class Entropy 0.0439Mean Attribute Entropy 0.0233Mean Mutual Information 0.0192Equivalent number of attributes 0.0316Noise to Signal Ratio 0.0192Mean Mult. Correl. Coef. 0.0192SDratio 0.0151



158 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.15. Lindiscr c50rulesAttribute# classes 0.0212# attributes 0.0279# instances 0.0517# attributes#instances 0.0252# unknown values 0.0464# unknown values# attributes * # instances 0.0199# nominal attributes 0.0053maxminmeanstdv of nominal attribute values 0.0292 0.0066 0.0027 0.00131..5 concentration histogram 0.0133 0.0172 0.0146 0.0040 0.01866..10 concentration histogram 0.0080 0.0053 0.0000 0.0000 0.0080non computable conc. histogram 0.00801..5 concentration histogram with class 0.0027 0.0080 0.0093 0.0186 0.00406..10 concentration histogram with class 0.0027 0.0000 0.0000 0.0000 0.0013non computable conc. histogram with class 0.0013# continuous attributes 0.01061..5 correlation histogram 0.0172 0.0265 0.0093 0.0199 0.01866..10 correlation histogram 0.0133 0.0199 0.0133 0.0199 0.0186non computable correlation histogram 0.00801..5 missing values histogram 0.0000 0.0225 0.0199 0.0225 0.02396..10 missing values histogram 0.0186 0.0133 0.0013 0.0093 0.0080# continuous# attributes 0.0000# nominal# attributes 0.0027Binary Attributes 0.0040Frac1 0.0279First Canonical Correlation 0.0332Mean Skew 0.0239Mean Kurtosis 0.0066Class Entropy 0.0332Mean Attribute Entropy 0.0318Mean Mutual Information 0.0225Equivalent number of attributes 0.0265Noise to Signal Ratio 0.0199Mean Mult. Correl. Coef. 0.0265SDratio 0.0252



A.3. SELECTION FREQUENCY BY C50BOOST 159Table A.16. Lindiscr c50treeAttribute# classes 0.0295# attributes 0.0121# instances 0.0456# attributes#instances 0.0295# unknown values 0.0416# unknown values# attributes * # instances 0.0161# nominal attributes 0.0040maxminmeanstdv of nominal attribute values 0.0188 0.0067 0.0094 0.00671..5 concentration histogram 0.0094 0.0134 0.0067 0.0027 0.01216..10 concentration histogram 0.0027 0.0054 0.0027 0.0000 0.0121non computable conc. histogram 0.01741..5 concentration histogram with class 0.0080 0.0067 0.0054 0.0134 0.00676..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0013# continuous attributes 0.01881..5 correlation histogram 0.0268 0.0174 0.0241 0.0094 0.01346..10 correlation histogram 0.0161 0.0201 0.0228 0.0147 0.0188non computable correlation histogram 0.01611..5 missing values histogram 0.0000 0.0389 0.0295 0.0295 0.02556..10 missing values histogram 0.0282 0.0094 0.0013 0.0027 0.0054# continuous# attributes 0.0000# nominal# attributes 0.0013Binary Attributes 0.0000Frac1 0.0188First Canonical Correlation 0.0416Mean Skew 0.0174Mean Kurtosis 0.0161Class Entropy 0.0375Mean Attribute Entropy 0.0282Mean Mutual Information 0.0174Equivalent number of attributes 0.0349Noise to Signal Ratio 0.0094Mean Mult. Correl. Coef. 0.0241SDratio 0.0188



160 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.17. Ltree c50boostAttribute# classes 0.0355# attributes 0.0334# instances 0.0284# attributes#instances 0.0304# unknown values 0.0395# unknown values# attributes * # instances 0.0223# nominal attributes 0.0152max min mean stdv of nominal attribute values 0.0142 0.0101 0.0111 0.00911..5 concentration histogram 0.0172 0.0122 0.0203 0.0071 0.01226..10 concentration histogram 0.0041 0.0061 0.0000 0.0000 0.0122non computable conc. histogram 0.00411..5 concentration histogram with class 0.0162 0.0091 0.0091 0.0213 0.00616..10 concentration histogram with class 0.0010 0.0000 0.0000 0.0000 0.0020non computable conc. histogram with class 0.0000# continuous attributes 0.01721..5 correlation histogram 0.0152 0.0132 0.0142 0.0182 0.01426..10 correlation histogram 0.0172 0.0071 0.0111 0.0111 0.0152non computable correlation histogram 0.00511..5 missing values histogram 0.0000 0.0193 0.0344 0.0182 0.03246..10 missing values histogram 0.0253 0.0132 0.0000 0.0182 0.0000# continuous# attributes 0.0030# nominal# attributes 0.0020Binary Attributes 0.0030Frac1 0.0233First Canonical Correlation 0.0203Mean Skew 0.0122Mean Kurtosis 0.0263Class Entropy 0.0537Mean Attribute Entropy 0.0193Mean Mutual Information 0.0284Equivalent number of attributes 0.0233Noise to Signal Ratio 0.0152Mean Mult. Correl. Coef. 0.0233SDratio 0.0172



A.3. SELECTION FREQUENCY BY C50BOOST 161Table A.18. Ltree c50rulesAttribute# classes 0.0271# attributes 0.0188# instances 0.0329# attributes#instances 0.0212# unknown values 0.0588# unknown values# attributes * # instances 0.0212# nominal attributes 0.0141max, min, mean, stdv of nominal attribute values 0.0176 0.0094 0.0082 0.00351..5 concentration histogram 0.0059 0.0106 0.0118 0.0059 0.00596..10 concentration histogram 0.0012 0.0012 0.0000 0.0000 0.0059non computable conc. histogram 0.00941..5 concentration histogram with class 0.0165 0.0118 0.0047 0.0235 0.01186..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0012 0.0047non computable conc. histogram with class 0.0000# continuous attributes 0.02001..5 correlation histogram 0.0188 0.0188 0.0059 0.0176 0.01886..10 correlation histogram 0.0188 0.0200 0.0212 0.0082 0.0141non computable correlation histogram 0.01411..5 missing values histogram 0.0000 0.0318 0.0247 0.0282 0.02826..10 missing values histogram 0.0235 0.0129 0.0024 0.0129 0.0012# continuous# attributes 0.0000# nominal# attributes 0.0012Binary Attributes 0.0118Frac1 0.0224First Canonical Correlation 0.0400Mean Skew 0.0153Mean Kurtosis 0.0082Class Entropy 0.0294Mean Attribute Entropy 0.0235Mean Mutual Information 0.0235Equivalent number of attributes 0.0200Noise to Signal Ratio 0.0200Mean Mult. Correl. Coef. 0.0282SDratio 0.0294



162 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.19. Ltree c50treeAttribute# classes 0.0206# attributes 0.0137# instances 0.0297# attributes#instances 0.0297# unknown values 0.0503# unknown values# attributes * # instances 0.0206# nominal attributes 0.0183max, min, mean, stdv of nominal attribute values 0.0149 0.0069 0.0103 0.00921..5 concentration histogram 0.0126 0.0046 0.0183 0.0183 0.00466..10 concentration histogram 0.0023 0.0011 0.0000 0.0000 0.0046non computable conc. histogram 0.00001..10 concentration histogram with class 0.0172 0.0103 0.0046 0.0195 0.01031..10 concentration histogram with class 0.0011 0.0000 0.0000 0.0000 0.0011non computable conc. histogram with class 0.0011# continuous attributes 0.01141..5 correlation histogram 0.0229 0.0114 0.0149 0.0263 0.01146..10 correlation histogram 0.0149 0.0137 0.0069 0.0172 0.0160non computable correlation histogram 0.00921..5 missing values histogram 0.0000 0.0458 0.0206 0.0240 0.03786..10 missing values histogram 0.0240 0.0160 0.0011 0.0137 0.0046# continuous# attributes 0.0046# nominal# attributes 0.0034Binary Attributes 0.0080Frac1 0.0206First Canonical Correlation 0.0423Mean Skew 0.0217Mean Kurtosis 0.0160Class Entropy 0.0343Mean Attribute Entropy 0.0206Mean Mutual Information 0.0240Equivalent number of attributes 0.0172Noise to Signal Ratio 0.0240Mean Mult. Correl. Coef. 0.0217SDratio 0.0217



A.3. SELECTION FREQUENCY BY C50BOOST 163Table A.20. Ltree LindiscrAttribute# classes 0.0339# attributes 0.0230# instances 0.0411# attributes#instances 0.0230# unknown values 0.0351# unknown values# attributes * # instances 0.0254# nominal attributes 0.0097max, min, mean, stdv of nominal attribute values 0.0181 0.0097 0.0109 0.00481..5 concentration histogram 0.0169 0.0157 0.0145 0.0145 0.00246..10 concentration histogram 0.0060 0.0024 0.0000 0.0000 0.0121non computable conc. histogram 0.00481..5 concentration histogram with class 0.0060 0.0169 0.0060 0.0181 0.00606..10 concentration histogram with class 0.0024 0.0000 0.0000 0.0012 0.0036non computable conc. histogram with class 0.0000# continuous attributes 0.01451..5 correlation histogram 0.0181 0.0266 0.0133 0.0121 0.01936..10 correlation histogram 0.0157 0.0266 0.0230 0.0085 0.0145non computable correlation histogram 0.01571..5 missing values histogram 0.0000 0.0399 0.0206 0.0206 0.02786..10 missing values histogram 0.0230 0.0133 0.0012 0.0121 0.0073# continuous# attributes 0.0024# nominal# attributes 0.0024Binary Attributes 0.0024Frac1 0.0097First Canonical Correlation 0.0339Mean Skew 0.0242Mean Kurtosis 0.0060Class Entropy 0.0230Mean Attribute Entropy 0.0411Mean Mutual Information 0.0206Equivalent number of attributes 0.0145Noise to Signal Ratio 0.0181Mean Mult. Correl. Coef. 0.0193SDratio 0.0242



164 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.21. IBL c50boostAttribute# classes 0.0233# attributes 0.0233# instances 0.0480# attributes#instances 0.0262# unknown values 0.0408# unknown values# attributes * # instances 0.0189# nominal attributes 0.0087max, min, mean, stdv of nominal attribute values 0.0160 0.0102 0.0131 0.02331..5 concentration histogram 0.0247 0.0131 0.0146 0.0058 0.01896..10 concentration histogram 0.0044 0.0044 0.0000 0.0000 0.0058non computable conc. histogram 0.00581..5 concentration histogram with class 0.0116 0.0131 0.0000 0.0160 0.00586..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0015 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01021..5 correlation histogram 0.0175 0.0131 0.0189 0.0131 0.01026..10 correlation histogram 0.0146 0.0102 0.0160 0.0204 0.0131non computable correlation histogram 0.01751..5 missing values histogram 0.0000 0.0277 0.0408 0.0306 0.02626..10 missing values histogram 0.0175 0.0146 0.0029 0.0116 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0029Binary Attributes 0.0087Frac1 0.0073First Canonical Correlation 0.0146Mean Skew 0.0175Mean Kurtosis 0.0204Class Entropy 0.0408Mean Attribute Entropy 0.0291Mean Mutual Information 0.0335Equivalent number of attributes 0.0116Noise to Signal Ratio 0.0218Mean Mult. Correl. Coef. 0.0335SDratio 0.0146



A.3. SELECTION FREQUENCY BY C50BOOST 165Table A.22. IBL c50rulesAttribute# classes 0.0220# attributes 0.0220# instances 0.0356# attributes#instances 0.0251# unknown values 0.0460# unknown values# attributes * # instances 0.0157# nominal attributes 0.0052max, min, mean, stdv of nominal attribute values 0.0136 0.0073 0.0178 0.01461..5 concentration histogram 0.0115 0.0063 0.0073 0.0136 0.01266..10 concentration histogram 0.0073 0.0010 0.0031 0.0000 0.0073non computable conc. histogram 0.00941..5 concentration histogram with class 0.0042 0.0126 0.0073 0.0146 0.00526..10 concentration histogram with class 0.0021 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0010# continuous attributes 0.01671..5 correlation histogram 0.0220 0.0209 0.0146 0.0167 0.01466..10 correlation histogram 0.0178 0.0251 0.0157 0.0126 0.0115non computable correlation histogram 0.01461..5 missing values histogram 0.0000 0.0241 0.0272 0.0314 0.03776..10 missing values histogram 0.0262 0.0188 0.0010 0.0188 0.0000# continuous# attributes 0.0010# nominal# attributes 0.0031Binary Attributes 0.0105Frac1 0.0146First Canonical Correlation 0.0282Mean Skew 0.0126Mean Kurtosis 0.0105Class Entropy 0.0575Mean Attribute Entropy 0.0241Mean Mutual Information 0.0314Equivalent number of attributes 0.0188Noise to Signal Ratio 0.0126Mean Mult. Correl. Coef. 0.0167SDratio 0.0188



166 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.23. IBL c50treeAttribute# classes 0.0282# attributes 0.0282# instances 0.0248# attributes#instances 0.0248# unknown values 0.0508# unknown values# attributes * # instances 0.0169# nominal attributes 0.0045max, min, mean, stdv of nominal attribute values 0.0147 0.0147 0.0135 0.01351..5 concentration histogram 0.0090 0.0056 0.0011 0.0169 0.01246..10 concentration histogram 0.0056 0.0056 0.0011 0.0000 0.0068non computable conc. histogram 0.01471..5 concentration histogram with class 0.0113 0.0045 0.0034 0.0169 0.00796..10 concentration histogram with class 0.0068 0.0011 0.0000 0.0011 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01921..5 correlation histogram 0.0181 0.0169 0.0192 0.0203 0.01926..10 correlation histogram 0.0147 0.0158 0.0113 0.0113 0.0226non computable correlation histogram 0.01131..5 missing values histogram 0.0000 0.0271 0.0203 0.0316 0.01476..10 missing values histogram 0.0169 0.0203 0.0000 0.0158 0.0011# continuous# attributes 0.0034# nominal# attributes 0.0034Binary Attributes 0.0045Frac1 0.0169First Canonical Correlation 0.0361Mean Skew 0.0158Mean Kurtosis 0.0090Class Entropy 0.0632Mean Attribute Entropy 0.0226Mean Mutual Information 0.0260Equivalent number of attributes 0.0181Noise to Signal Ratio 0.0203Mean Mult. Correl. Coef. 0.0271SDratio 0.0192



A.3. SELECTION FREQUENCY BY C50BOOST 167Table A.24. IBL LindiscrAttribute Frequency# classes 0.0409# attributes 0.0227# instances 0.0329# attributes#instances 0.0341# unknown values 0.0443# unknown values# attributes * # instances 0.0216# nominal attributes 0.0045maxminmeanstdv of nominal attribute values 0.0136 0.0068 0.0136 0.01251..5 concentration histogram 0.0125 0.0079 0.0114 0.0102 0.01256..10 concentration histogram 0.0102 0.0045 0.0011 0.0000 0.0045non computable conc. histogram 0.01141..5 concentration histogram with class 0.0102 0.0057 0.0045 0.0125 0.00576..10 concentration histogram with class 0.0011 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01481..5 correlation histogram 0.0295 0.0159 0.0148 0.0238 0.01706..10 correlation histogram 0.0159 0.0204 0.0091 0.0125 0.0114non computable correlation histogram 0.01481..5 missing values histogram 0.0000 0.0261 0.0318 0.0295 0.01936..10 missing values histogram 0.0238 0.0148 0.0114 0.0148 0.0045# continuous# attributes 0.0000# nominal# attributes 0.0011Binary Attributes 0.0170Frac1 0.0079First Canonical Correlation 0.0159Mean Skew 0.0182Mean Kurtosis 0.0170Class Entropy 0.0477Mean Attribute Entropy 0.0250Mean Mutual Information 0.0204Equivalent number of attributes 0.0125Noise to Signal Ratio 0.0261Mean Mult. Correl. Coef. 0.0216SDratio 0.0204



168 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.25. IBL LtreeAttribute# classes 0.0212# attributes 0.0212# instances 0.0339# attributes#instances 0.0275# unknown values 0.0508# unknown values# attributes * # instances 0.0190# nominal attributes 0.0085maxminmeanstdv of nominal attribute values 0.0116 0.0042 0.0116 0.01691..5 concentration histogram 0.0095 0.0042 0.0063 0.0106 0.00746..10 concentration histogram 0.0116 0.0032 0.0000 0.0011 0.0063non computable conc. histogram 0.00741..5 concentration histogram with class 0.0085 0.0106 0.0042 0.0169 0.00746..10 concentration histogram with class 0.0042 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01271..5 correlation histogram 0.0180 0.0212 0.0243 0.0127 0.01166..10 correlation histogram 0.0169 0.0201 0.0169 0.0243 0.0085non computable correlation histogram 0.01061..5 missing values histogram 0.0000 0.0317 0.0455 0.0243 0.02016..10 missing values histogram 0.0180 0.0063 0.0011 0.0053 0.0011# continuous# attributes 0.0032# nominal# attributes 0.0032Binary Attributes 0.0063Frac1 0.0201First Canonical Correlation 0.0275Mean Skew 0.0127Mean Kurtosis 0.0243Class Entropy 0.0593Mean Attribute Entropy 0.0349Mean Mutual Information 0.0265Equivalent number of attributes 0.0148Noise to Signal Ratio 0.0254Mean Mult. Correl. Coef. 0.0254SDratio 0.0190



A.3. SELECTION FREQUENCY BY C50BOOST 169Table A.26. NB c50boostAttribute# classes 0.0249# attributes 0.0345# instances 0.0401# attributes#instances 0.0180# unknown values 0.0497# unknown values# attributes * # instances 0.0249# nominal attributes 0.0152maxminmeanstdv of nominal attribute values 0.0138 0.0124 0.0083 0.01521..5 concentration histogram 0.0180 0.0069 0.0193 0.0097 0.00696..10 concentration histogram 0.0041 0.0055 0.0014 0.0000 0.0083non computable conc. histogram 0.00971..10 concentration histogram with class 0.0207 0.0055 0.0097 0.0290 0.00551..10 concentration histogram with class 0.0014 0.0000 0.0000 0.0014 0.0055non computable conc. histogram with class 0.0014# continuous attributes 0.01101..5 correlation histogram 0.0166 0.0069 0.0138 0.0152 0.01246..10 correlation histogram 0.0041 0.0138 0.0193 0.0207 0.0180non computable correlation histogram 0.01101..5 missing values histogram 0.0000 0.0166 0.0235 0.0180 0.02216..10 missing values histogram 0.0207 0.0152 0.0000 0.0097 0.0055# continuous# attributes 0.0041# nominal# attributes 0.0041Binary Attributes 0.0055Frac1 0.0055First Canonical Correlation 0.0262Mean Skew 0.0041Mean Kurtosis 0.0138Class Entropy 0.0552Mean Attribute Entropy 0.0304Mean Mutual Information 0.0401Equivalent number of attributes 0.0331Noise to Signal Ratio 0.0221Mean Mult. Correl. Coef. 0.0138SDratio 0.0207



170 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.27. NB c50rulesAttribute# classes 0.0387# attributes 0.0193# instances 0.0335# attributes#instances 0.0271# unknown values 0.0593# unknown values# attributes * # instances 0.0258# nominal attributes 0.0103max, min, mean, stdv of nominal attribute values 0.0142 0.0116 0.0077 0.00771..5 concentration histogram 0.0052 0.0155 0.0129 0.0090 0.00266..10 concentration histogram 0.0000 0.0064 0.0000 0.0000 0.0077non computable conc. histogram 0.00261..5 concentration histogram with class 0.0193 0.0168 0.0103 0.0026 0.01296..10 concentration histogram with class 0.0026 0.0000 0.0000 0.0013 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01161..5 correlation histogram 0.0193 0.0142 0.0155 0.0103 0.01936..10 correlation histogram 0.0090 0.0155 0.0142 0.0180 0.0142non computable correlation histogram 0.01681..5 missing values histogram 0.0000 0.0258 0.0309 0.0374 0.03226..10 missing values histogram 0.0116 0.0052 0.0026 0.0142 0.0077# continuous# attributes 0.0000# nominal# attributes 0.0039Binary Attributes 0.0013Frac1 0.0284First Canonical Correlation 0.0245Mean Skew 0.0219Mean Kurtosis 0.0258Class Entropy 0.0309Mean Attribute Entropy 0.0193Mean Mutual Information 0.0361Equivalent number of attributes 0.0245Noise to Signal Ratio 0.0155Mean Mult. Correl. Coef. 0.0168SDratio 0.0232



A.3. SELECTION FREQUENCY BY C50BOOST 171Table A.28. NB c50treeAttribute# classes 0.0317# attributes 0.0238# instances 0.0450# attributes#instances 0.0079# unknown values 0.0516# unknown values# attributes * # instances 0.0225# nominal attributes 0.0093max, min, mean, stdv of nominal attribute values 0.0132 0.0119 0.0132 0.00401..5 concentration histogram 0.0093 0.0172 0.0040 0.0119 0.00666..10 concentration histogram 0.0053 0.0040 0.0000 0.0000 0.0106non computable conc. histogram 0.00791..5 concentration histogram with class 0.0198 0.0119 0.0119 0.0212 0.01066..10 concentration histogram with class 0.0040 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01061..5 correlation histogram 0.0251 0.0212 0.0185 0.0172 0.02126..10 correlation histogram 0.0132 0.0185 0.0198 0.0238 0.0172non computable correlation histogram 0.00791..5 missing values histogram 0.0000 0.0119 0.0172 0.0278 0.02786..10 missing values histogram 0.0146 0.0172 0.0026 0.0146 0.0093# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0026Frac1 0.0106First Canonical Correlation 0.0357Mean Skew 0.0198Mean Kurtosis 0.0212Class Entropy 0.0370Mean Attribute Entropy 0.0172Mean Mutual Information 0.0278Equivalent number of attributes 0.0198Noise to Signal Ratio 0.0238Mean Mult. Correl. Coef. 0.0225SDratio 0.0146



172 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.29. NB LindiscrAttribute# classes 0.0365# attributes 0.0166# instances 0.0476# attributes#instances 0.0188# unknown values 0.0465# unknown values# attributes * # instances 0.0310# nominal attributes 0.0122max, min, mean, stdv of nominal attribute values 0.0188 0.0066 0.0166 0.00661..5 concentration histogram 0.0177 0.0122 0.0100 0.0111 0.01666..10 concentration histogram 0.0077 0.0077 0.0011 0.0000 0.0122non computable conc. histogram 0.01331..5 concentration histogram with class 0.0022 0.0166 0.0077 0.0288 0.01336..10 concentration histogram with class 0.0077 0.0000 0.0000 0.0000 0.0011non computable conc. histogram with class 0.0000# continuous attributes 0.00771..5 correlation histogram 0.0144 0.0221 0.0188 0.0100 0.01006..10 correlation histogram 0.0088 0.0144 0.0122 0.0122 0.0144non computable correlation histogram 0.01221..5 missing values histogram 0.0000 0.0254 0.0221 0.0376 0.02886..10 missing values histogram 0.0188 0.0155 0.0000 0.0122 0.0044# continuous# attributes 0.0000# nominal# attributes 0.0011Binary Attributes 0.0088Frac1 0.0122First Canonical Correlation 0.0221Mean Skew 0.0077Mean Kurtosis 0.0100Class Entropy 0.0498Mean Attribute Entropy 0.0254Mean Mutual Information 0.0221Equivalent number of attributes 0.0155Noise to Signal Ratio 0.0265Mean Mult. Correl. Coef. 0.0077SDratio 0.0243



A.3. SELECTION FREQUENCY BY C50BOOST 173Table A.30. NB LtreeAttribute# classes 0.0411# attributes 0.0279# instances 0.0264# attributes#instances 0.0235# unknown values 0.0558# unknown values# attributes * # instances 0.0250# nominal attributes 0.0132max, min, mean, stdv of nominal attribute values 0.0382 0.0117 0.0088 0.01321..5 concentration histogram 0.0059 0.0059 0.0073 0.0117 0.00736..10 concentration histogram 0.0059 0.0044 0.0029 0.0015 0.0059non computable conc. histogram 0.01031..5 concentration histogram with class 0.0147 0.0191 0.0029 0.0103 0.00596..10 concentration histogram with class 0.0029 0.0015 0.0000 0.0000 0.0059non computable conc. histogram with class 0.0000# continuous attributes 0.01171..5 correlation histogram 0.0132 0.0147 0.0117 0.0088 0.01766..10 correlation histogram 0.0000 0.0294 0.0015 0.0117 0.0088non computable correlation histogram 0.02501..5 missing values histogram 0.0000 0.0132 0.0162 0.0235 0.03386..10 missing values histogram 0.0279 0.0206 0.0029 0.0132 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0059Binary Attributes 0.0088Frac1 0.0029First Canonical Correlation 0.0220Mean Skew 0.0162Mean Kurtosis 0.0132Class Entropy 0.0485Mean Attribute Entropy 0.0352Mean Mutual Information 0.0191Equivalent number of attributes 0.0294Noise to Signal Ratio 0.0206Mean Mult. Correl. Coef. 0.0206SDratio 0.0352



174 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.31. NB IBLAttribute# classes 0.0337# attributes 0.0180# instances 0.0416# attributes#instances 0.0427# unknown values 0.0551# unknown values# attributes * # instances 0.0202# nominal attributes 0.0101max, min, mean, stdv of nominal attribute values 0.0112 0.0034 0.0146 0.00671..5 concentration histogram 0.0135 0.0090 0.0135 0.0112 0.01246..10 concentration histogram 0.0034 0.0067 0.0000 0.0000 0.0022non computable conc. histogram 0.01011..5 concentration histogram with class 0.0191 0.0124 0.0112 0.0202 0.00796..10 concentration histogram with class 0.0056 0.0000 0.0011 0.0022 0.0011non computable conc. histogram with class 0.0000# continuous attributes 0.01011..5 correlation histogram 0.0202 0.0090 0.0180 0.0090 0.01576..10 correlation histogram 0.0124 0.0112 0.0112 0.0146 0.0079non computable correlation histogram 0.01011..5 missing values histogram 0.0000 0.0247 0.0270 0.0360 0.03376..10 missing values histogram 0.0180 0.0112 0.0000 0.0079 0.0022# continuous# attributes 0.0011# nominal# attributes 0.0000Binary Attributes 0.0101Frac1 0.0180First Canonical Correlation 0.0214Mean Skew 0.0180Mean Kurtosis 0.0169Class Entropy 0.0416Mean Attribute Entropy 0.0225Mean Mutual Information 0.0405Equivalent number of attributes 0.0214Noise to Signal Ratio 0.0202Mean Mult. Correl. Coef. 0.0202SDratio 0.0169



A.3. SELECTION FREQUENCY BY C50BOOST 175Table A.32. ripper c50boostAttribute# classes 0.0231# attributes 0.0272# instances 0.0340# attributes#instances 0.0190# unknown values 0.0367# unknown values# attributes * # instances 0.0286# nominal attributes 0.0068max, min, mean, stdv of nominal attribute values 0.0122 0.0095 0.0095 0.01501..5 concentration histogram 0.0122 0.0109 0.0136 0.0150 0.00686..10 concentration histogram 0.0041 0.0054 0.0000 0.0000 0.0041non computable conc. histogram 0.01091..5 concentration histogram with class 0.0136 0.0136 0.0068 0.0299 0.00686..10 concentration histogram with class 0.0041 0.0000 0.0000 0.0000 0.0014non computable conc. histogram with class 0.0000# continuous attributes 0.01501..5 correlation histogram 0.0122 0.0367 0.0122 0.0150 0.01636..10 correlation histogram 0.0177 0.0136 0.0204 0.0163 0.0204non computable correlation histogram 0.00681..5 missing values histogram 0.0000 0.0476 0.0313 0.0218 0.03546..10 missing values histogram 0.0095 0.0082 0.0014 0.0122 0.0068# continuous# attributes 0.0000# nominal# attributes 0.0027Binary Attributes 0.0163Frac1 0.0136First Canonical Correlation 0.0190Mean Skew 0.0163Mean Kurtosis 0.0082Class Entropy 0.0503Mean Attribute Entropy 0.0327Mean Mutual Information 0.0082Equivalent number of attributes 0.0245Noise to Signal Ratio 0.0150Mean Mult. Correl. Coef. 0.0136SDratio 0.0218



176 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.33. ripper c50rulesAttribute# classes 0.0226# attributes 0.0192# instances 0.0238# attributes#instances 0.0238# unknown values 0.0543# unknown values# attributes * # instances 0.0305# nominal attributes 0.0102max, min, mean, stdv of nominal attribute values 0.0170 0.0045 0.0057 0.01471..5 concentration histogram 0.0045 0.0147 0.0124 0.0057 0.01026..10 concentration histogram 0.0000 0.0057 0.0011 0.0011 0.0147non computable conc. histogram 0.01021..5 concentration histogram with class 0.0204 0.0124 0.0023 0.0147 0.01026..10 concentration histogram with class 0.0034 0.0000 0.0000 0.0000 0.0011non computable conc. histogram with class 0.0000# continuous attributes 0.01131..5 correlation histogram 0.0102 0.0136 0.0147 0.0079 0.01136..10 correlation histogram 0.0260 0.0192 0.0079 0.0170 0.0158non computable correlation histogram 0.01701..5 missing values histogram 0.0000 0.0260 0.0339 0.0192 0.02946..10 missing values histogram 0.0124 0.0226 0.0057 0.0079 0.0023# continuous# attributes 0.0011# nominal# attributes 0.0023Binary Attributes 0.0124Frac1 0.0192First Canonical Correlation 0.0192Mean Skew 0.0204Mean Kurtosis 0.0102Class Entropy 0.0554Mean Attribute Entropy 0.0204Mean Mutual Information 0.0351Equivalent number of attributes 0.0362Noise to Signal Ratio 0.0283Mean Mult. Correl. Coef. 0.0192SDratio 0.0181



A.3. SELECTION FREQUENCY BY C50BOOST 177Table A.34. ripper c50treeAttribute# classes 0.0221# attributes 0.0208# instances 0.0294# attributes#instances 0.0257# unknown values 0.0502# unknown values# attributes * # instances 0.0147# nominal attributes 0.0074max, min, mean, stdv of nominal attribute values 0.0123 0.0086 0.0135 0.01351..5 concentration histogram 0.0257 0.0025 0.0086 0.0061 0.00616..10 concentration histogram 0.0049 0.0061 0.0000 0.0000 0.0123non computable conc. histogram 0.01101..5 concentration histogram with class 0.0159 0.0110 0.0012 0.0221 0.00616..10 concentration histogram with class 0.0025 0.0012 0.0000 0.0000 0.0012non computable conc. histogram with class 0.0000# continuous attributes 0.01721..5 correlation histogram 0.0196 0.0110 0.0061 0.0135 0.01356..10 correlation histogram 0.0270 0.0159 0.0135 0.0159 0.0172non computable correlation histogram 0.00861..5 missing values histogram 0.0000 0.0294 0.0319 0.0270 0.02216..10 missing values histogram 0.0245 0.0159 0.0000 0.0172 0.0012# continuous# attributes 0.0000# nominal# attributes 0.0061Binary Attributes 0.0110Frac1 0.0159First Canonical Correlation 0.0098Mean Skew 0.0147Mean Kurtosis 0.0147Class Entropy 0.0613Mean Attribute Entropy 0.0233Mean Mutual Information 0.0306Equivalent number of attributes 0.0429Noise to Signal Ratio 0.0257Mean Mult. Correl. Coef. 0.0159SDratio 0.0172



178 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.35. ripper LindiscrAttribute# classes 0.0264# attributes 0.0242# instances 0.0562# attributes#instances 0.0132# unknown values 0.0628# unknown values# attributes * # instances 0.0242# nominal attributes 0.0099max, min, mean, stdv of nominal attribute values 0.0176 0.0066 0.0033 0.00551..5 concentration histogram 0.0077 0.0110 0.0044 0.0132 0.01106..10 concentration histogram 0.0077 0.0044 0.0000 0.0000 0.0055non computable conc. histogram 0.01871..5 concentration histogram with class 0.0110 0.0143 0.0110 0.0187 0.00446..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0044non computable conc. histogram with class 0.0000# continuous attributes 0.00991..6 correlation histogram 0.0176 0.0220 0.0143 0.0132 0.01986..10 correlation histogram 0.0121 0.0132 0.0165 0.0154 0.0143non computable correlation histogram 0.01101..5 missing values histogram 0.0000 0.0341 0.0452 0.0275 0.04416..10 missing values histogram 0.0176 0.0165 0.0011 0.0143 0.0000# continuous# attributes 0.0011# nominal# attributes 0.0000Binary Attributes 0.0066Frac1 0.0187First Canonical Correlation 0.0209Mean Skew 0.0187Mean Kurtosis 0.0099Class Entropy 0.0220Mean Attribute Entropy 0.0297Mean Mutual Information 0.0308Equivalent number of attributes 0.0154Noise to Signal Ratio 0.0121Mean Mult. Correl. Coef. 0.0154SDratio 0.0209



A.3. SELECTION FREQUENCY BY C50BOOST 179Table A.36. ripper LtreeAttribute# classes 0.0283# attributes 0.0215# instances 0.0351# attributes#instances 0.0261# unknown values 0.0431# unknown values# attributes * # instances 0.0136# nominal attributes 0.0091max, min, mean, stdv of nominal attribute values 0.0170 0.0125 0.0125 0.00791..5 concentration histogram 0.0136 0.0102 0.0079 0.0125 0.00456..10 concentration histogram 0.0045 0.0079 0.0011 0.0000 0.0102non computable conc. histogram 0.00571..5 concentration histogram with class 0.0102 0.0147 0.0034 0.0283 0.00236..10 concentration histogram with class 0.0023 0.0000 0.0000 0.0011 0.0057non computable conc. histogram with class 0.0011# continuous attributes 0.00451..10 correlation histogram 0.0125 0.0204 0.0159 0.0147 0.01256..10 correlation histogram 0.0136 0.0102 0.0079 0.0113 0.0057non computable correlation histogram 0.01131..5 missing values histogram 0.0000 0.0408 0.0272 0.0306 0.02956..10 missing values histogram 0.0261 0.0159 0.0034 0.0181 0.0023# continuous# attributes 0.0011# nominal# attributes 0.0011Binary Attributes 0.0159Frac1 0.0125First Canonical Correlation 0.0283Mean Skew 0.0215Mean Kurtosis 0.0147Class Entropy 0.0510Mean Attribute Entropy 0.0363Mean Mutual Information 0.0193Equivalent number of attributes 0.0283Noise to Signal Ratio 0.0159Mean Mult. Correl. Coef. 0.0215SDratio 0.0238



180 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.37. rippel IBLAttribute# classes 0.0324# attributes 0.0252# instances 0.0372# attributes#instances 0.0288# unknown values 0.0408# unknown values# attributes * # instances 0.0120# nominal attributes 0.0120max, min, mean, stdv of nominal attribute values 0.0096 0.0096 0.0096 0.00961..5 concentration histogram 0.0156 0.0120 0.0084 0.0072 0.01206..10 concentration histogram 0.0084 0.0024 0.0000 0.0000 0.0072non computable conc. histogram 0.01321..5 concentration histogram with class 0.0156 0.0072 0.0048 0.0168 0.00846..10 concentration histogram with class 0.0036 0.0000 0.0000 0.0000 0.0024non computable conc. histogram with class 0.0000# continuous attributes 0.02041..5 correlation histogram 0.0216 0.0240 0.0156 0.0108 0.01806..10 correlation histogram 0.0204 0.0120 0.0108 0.0096 0.0204non computable correlation histogram 0.01321..5 missing values histogram 0.0000 0.0300 0.0288 0.0204 0.01566..10 missing values histogram 0.0168 0.0204 0.0060 0.0168 0.0036# continuous# attributes 0.0036# nominal# attributes 0.0048Binary Attributes 0.0216Frac1 0.0072First Canonical Correlation 0.0276Mean Skew 0.0108Mean Kurtosis 0.0168Class Entropy 0.0552Mean Attribute Entropy 0.0300Mean Mutual Information 0.0216Equivalent number of attributes 0.0168Noise to Signal Ratio 0.0192Mean Mult. Correl. Coef. 0.0192SDratio 0.0192



A.3. SELECTION FREQUENCY BY C50BOOST 181Table A.38. ripper NBAttribute# classes 0.0363# attributes 0.0264# instances 0.0474# attributes#instances 0.0231# unknown values 0.0562# unknown values# attributes * # instances 0.0220# nominal attributes 0.0099maxminmeanstdv of nominal attribute values 0.0176 0.0088 0.0143 0.00881..5 concentration histogram 0.0077 0.0088 0.0132 0.0088 0.00666..10 concentration histogram 0.0022 0.0077 0.0000 0.0000 0.0110non computable conc. histogram 0.00221..5 concentration histogram with class 0.0110 0.0132 0.0066 0.0110 0.00336..10 concentration histogram with class 0.0088 0.0000 0.0000 0.0011 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00881..5 correlation histogram 0.0176 0.0143 0.0154 0.0099 0.01656..10 correlation histogram 0.0143 0.0143 0.0154 0.0088 0.0143non computable correlation histogram 0.01101..5 missing values histogram 0.0000 0.0242 0.0341 0.0253 0.03526..10 missing values histogram 0.0198 0.0055 0.0011 0.0154 0.0055# continuous# attributes 0.0033# nominal# attributes 0.0022Binary Attributes 0.0033Frac1 0.0077First Canonical Correlation 0.0242Mean Skew 0.0220Mean Kurtosis 0.0209Class Entropy 0.0540Mean Attribute Entropy 0.0253Mean Mutual Information 0.0275Equivalent number of attributes 0.0308Noise to Signal Ratio 0.0242Mean Mult. Correl. Coef. 0.0132SDratio 0.0198



182 APPENDIX A. RESULTS ON THE 1075 DATASETSA.4 Selection Frequency by c50tree
Table A.39. c50rules c50boostAttribute# classes 0.0395# attributes 0.0526# instances 0.0132# attributes#instances 0.0263# unknown values 0.0395# unknown values# attributes * # instances 0.0263# nominal attributes 0.0132max, min, mean, stdv of nominal attribute values 0.0263 0.0132 0.0263 0.01321..5 concentration histogram 0.0000 0.0263 0.0132 0.0132 0.01326..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0263 0.0000 0.0000 0.0132 0.01326..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0000 0.0395 0.0263 0.0000 0.00006..10 correlation histogram 0.0132 0.0132 0.0000 0.0132 0.0263non computable correlation histogram 0.02631..5 missing values histogram 0.0000 0.0263 0.0395 0.0263 0.03956..10 missing values histogram 0.0395 0.0263 0.0132 0.0132 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0132Frac1 0.0263First Canonical Correlation 0.0000Mean Skew 0.0132Mean Kurtosis 0.0132Class Entropy 0.0526Mean Attribute Entropy 0.0395Mean Mutual Information 0.0000Equivalent number of attributes 0.0526Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



A.4. SELECTION FREQUENCY BY C50TREE 183Table A.40. c50tree c50boostAttribute# classes 0.0471# attributes 0.0235# instances 0.0471# attributes#instances 0.0000# unknown values 0.0353# unknown values# attributes * # instances 0.0235# nominal attributes 0.0000maxminmeanstdv of nominal attribute values 0.0235 0.0000 0.0235 0.00001..5 concentration histogram 0.0118 0.0118 0.0000 0.0000 0.00006..10 concentration histogram 0.0118 0.0118 0.0000 0.0000 0.0000non computable conc. histogram 0.01181..5 concentration histogram with class 0.0235 0.0000 0.0000 0.0118 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0235non computable conc. histogram with class 0.0000# continuous attributes 0.02351..5 correlation histogram 0.0000 0.0000 0.0118 0.0471 0.01186..10 correlation histogram 0.0000 0.0118 0.0000 0.0353 0.0118non computable correlation histogram 0.02351..5 missing values histogram 0.0000 0.0588 0.0824 0.0235 0.03536..10 missing values histogram 0.0235 0.0235 0.0000 0.0353 0.0118# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0118First Canonical Correlation 0.0235Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0235Mean Attribute Entropy 0.0235Mean Mutual Information 0.0235Equivalent number of attributes 0.0471Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0235SDratio 0.0118



184 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.41. c50tree c50rulesAttribute# classes 0.0469# attributes 0.0312# instances 0.0312# attributes#instances 0.0312# unknown values 0.0469# unknown values# attributes * # instances 0.0156# nominal attributes 0.0000maxminmeanstdv of nominal attribute values 0.0312 0.0000 0.0000 0.00001..5 concentration histogram 0.0156 0.0156 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01561..5 concentration histogram with class 0.0000 0.0312 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01561..5 correlation histogram 0.0156 0.0000 0.0156 0.0000 0.01566..10 correlation histogram 0.0156 0.0156 0.0312 0.0469 0.0312non computable correlation histogram 0.01561..5 missing values histogram 0.0000 0.0469 0.0469 0.0625 0.03126..10 missing values histogram 0.0156 0.0156 0.0156 0.0000 0.0156# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0156Frac1 0.0469First Canonical Correlation 0.0312Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0625Mean Attribute Entropy 0.0000Mean Mutual Information 0.0000Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0156Mean Mult. Correl. Coef. 0.0312SDratio 0.0156



A.4. SELECTION FREQUENCY BY C50TREE 185Table A.42. Lindiscr c50boostAttribute# classes 0.0328# attributes 0.0328# instances 0.0656# attributes#instances 0.0000# unknown values 0.0656# unknown values# attributes * # instances 0.0492# nominal attributes 0.0000maxminmeanstdv of nominal attribute values 0.0164 0.0164 0.0492 0.00001..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01641..5 concentration histogram with class 0.0164 0.0000 0.0328 0.0164 0.01646..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0164non computable conc. histogram with class 0.0000# continuous attributes 0.01641..5 correlation histogram 0.0164 0.0164 0.0164 0.0000 0.01646..10 correlation histogram 0.0000 0.0328 0.0164 0.0000 0.0164non computable correlation histogram 0.01641..5 missing values histogram 0.0000 0.0000 0.0164 0.0328 0.03286..10 missing values histogram 0.0164 0.0164 0.0000 0.0164 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0164Frac1 0.0328First Canonical Correlation 0.0492Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0492Mean Attribute Entropy 0.0164Mean Mutual Information 0.0164Equivalent number of attributes 0.0820Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



186 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.43. Lindiscr c50rulesAttribute# classes 0.0159# attributes 0.0317# instances 0.0952# attributes#instances 0.0159# unknown values 0.0476# unknown values# attributes * # instances 0.0000# nominal attributes 0.0159max, min, mean, stdv of nominal attribute values 0.0317 0.0000 0.0000 0.00001..5 concentration histogram 0.0317 0.0159 0.0159 0.0159 0.01596..10 concentration histogram 0.0159 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01591..5 concentration histogram with class 0.0159 0.0000 0.0159 0.0159 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0317 0.0317 0.0317 0.0159 0.01596..10 correlation histogram 0.0159 0.0000 0.0000 0.0476 0.0317non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0159 0.0159 0.03176..10 missing values histogram 0.0159 0.0159 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0159Binary Attributes 0.0000Frac1 0.0635First Canonical Correlation 0.0476Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0317Mean Attribute Entropy 0.0159Mean Mutual Information 0.0317Equivalent number of attributes 0.0159Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0159SDratio 0.0159



A.4. SELECTION FREQUENCY BY C50TREE 187Table A.44. Lindiscr c50treeAttribute# classes 0.0484# attributes 0.0161# instances 0.0484# attributes#instances 0.0323# unknown values 0.0323# unknown values# attributes * # instances 0.0161# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0323 0.0000 0.0161 0.00001..5 concentration histogram 0.0484 0.0161 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0161 0.0000 0.0000non computable conc. histogram 0.03231..5 concentration histogram with class 0.0323 0.0000 0.0000 0.0323 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0323 0.0000 0.0161 0.0161 0.03236..10 correlation histogram 0.0161 0.0323 0.0161 0.0161 0.0323non computable correlation histogram 0.01611..5 missing values histogram 0.0000 0.0323 0.0000 0.0161 0.01616..10 missing values histogram 0.0484 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0323First Canonical Correlation 0.0645Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0645Mean Attribute Entropy 0.0161Mean Mutual Information 0.0161Equivalent number of attributes 0.0161Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0161SDratio 0.0161



188 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.45. Ltree c50boostAttribute# classes 0.0526# attributes 0.0316# instances 0.0421# attributes#instances 0.0000# unknown values 0.0316# unknown values# attributes * # instances 0.0000# nominal attributes 0.0526max, min, mean, stdv of nominal attribute values 0.0000 0.0211 0.0000 0.00001..5 concentration histogram 0.0211 0.0000 0.0211 0.0105 0.03166..10 concentration histogram 0.0000 0.0105 0.0000 0.0000 0.0211non computable conc. histogram 0.01051..5 concentration histogram with class 0.0105 0.0000 0.0211 0.0211 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02111..5 correlation histogram 0.0105 0.0000 0.0105 0.0211 0.02116..10 correlation histogram 0.0105 0.0105 0.0316 0.0000 0.0211non computable correlation histogram 0.02111..5 missing values histogram 0.0000 0.0211 0.0316 0.0211 0.04216..10 missing values histogram 0.0316 0.0211 0.0000 0.0105 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0211First Canonical Correlation 0.0105Mean Skew 0.0105Mean Kurtosis 0.0316Class Entropy 0.0737Mean Attribute Entropy 0.0105Mean Mutual Information 0.0211Equivalent number of attributes 0.0211Noise to Signal Ratio 0.0105Mean Mult. Correl. Coef. 0.0105SDratio 0.0105



A.4. SELECTION FREQUENCY BY C50TREE 189Table A.46. Ltree c50rulesAttribute# classes 0.0282# attributes 0.0282# instances 0.0704# attributes#instances 0.0141# unknown values 0.0563# unknown values# attributes * # instances 0.0282# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0282 0.0141 0.0141 0.00001..5 concentration histogram 0.0000 0.0282 0.0423 0.0000 0.02826..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0141non computable conc. histogram 0.01411..5 concentration histogram with class 0.0282 0.0141 0.0000 0.0282 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0141non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0141 0.0141 0.0141 0.0282 0.00006..10 correlation histogram 0.0423 0.0141 0.0141 0.0141 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0423 0.0000 0.0141 0.02826..10 missing values histogram 0.0282 0.0141 0.0000 0.0282 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0282First Canonical Correlation 0.0423Mean Skew 0.0141Mean Kurtosis 0.0000Class Entropy 0.0282Mean Attribute Entropy 0.0141Mean Mutual Information 0.0000Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0141Mean Mult. Correl. Coef. 0.0282SDratio 0.0282



190 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.47. Ltree c50treeAttribute# classes 0.0465# attributes 0.0000# instances 0.0349# attributes#instances 0.0233# unknown values 0.0698# unknown values# attributes * # instances 0.0349# nominal attributes 0.0233max, min, mean, stdv of nominal attribute values 0.0116 0.0233 0.0000 0.01161..5 concentration histogram 0.0349 0.0000 0.0116 0.0116 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0116non computable conc. histogram 0.00001..5 concentration histogram with class 0.0233 0.0233 0.0000 0.0116 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0116 0.0116 0.0116 0.0349 0.00006..10 correlation histogram 0.0000 0.0116 0.0116 0.0465 0.0233non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0581 0.0116 0.0116 0.03496..10 missing values histogram 0.0233 0.0233 0.0000 0.0116 0.0116# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0465First Canonical Correlation 0.0349Mean Skew 0.0233Mean Kurtosis 0.0116Class Entropy 0.0233Mean Attribute Entropy 0.0116Mean Mutual Information 0.0233Equivalent number of attributes 0.0116Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0116SDratio 0.0465



A.4. SELECTION FREQUENCY BY C50TREE 191Table A.48. Ltree LindiscrAttribute# classes 0.0571# attributes 0.0429# instances 0.0571# attributes#instances 0.0143# unknown values 0.0286# unknown values# attributes * # instances 0.0429# nominal attributes 0.0286max, min, mean, stdv of nominal attribute values 0.0286 0.0143 0.0000 0.00001..5 concentration histogram 0.0286 0.0143 0.0143 0.0000 0.00006..10 concentration histogram 0.0143 0.0000 0.0000 0.0000 0.0143non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0286 0.0143 0.0143 0.01436..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0143non computable conc. histogram with class 0.0000# continuous attributes 0.02861..5 correlation histogram 0.0000 0.0143 0.0000 0.0000 0.00006..10 correlation histogram 0.0286 0.0571 0.0429 0.0000 0.0143non computable correlation histogram 0.01431..5 missing values histogram 0.0000 0.0286 0.0143 0.0286 0.02866..10 missing values histogram 0.0143 0.0143 0.0000 0.0143 0.0143# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0429Mean Skew 0.0143Mean Kurtosis 0.0000Class Entropy 0.0143Mean Attribute Entropy 0.0000Mean Mutual Information 0.0143Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0143Mean Mult. Correl. Coef. 0.0286SDratio 0.0286



192 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.49. IBL c50boostAttribute# classes 0.0484# attributes 0.0323# instances 0.0806# attributes#instances 0.0161# unknown values 0.0323# unknown values# attributes * # instances 0.0645# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0323 0.0000 0.0161 0.01611..5 concentration histogram 0.0323 0.0323 0.0161 0.0000 0.03236..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0161non computable conc. histogram 0.00001..5 concentration histogram with class 0.0484 0.0161 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0000 0.0161 0.0161 0.0000 0.01616..10 correlation histogram 0.0000 0.0323 0.0161 0.0323 0.0161non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0161 0.0323 0.0484 0.04846..10 missing values histogram 0.0000 0.0161 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0161Frac1 0.0000First Canonical Correlation 0.0323Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0645Mean Attribute Entropy 0.0000Mean Mutual Information 0.0000Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0323SDratio 0.0161



A.4. SELECTION FREQUENCY BY C50TREE 193Table A.50. IBL c50rulesAttribute# classes 0.0112# attributes 0.0562# instances 0.0225# attributes#instances 0.0337# unknown values 0.0787# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0337 0.0112 0.0000 0.00001..5 concentration histogram 0.0112 0.0000 0.0000 0.0225 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0112non computable conc. histogram 0.01121..5 concentration histogram with class 0.0000 0.0112 0.0000 0.0112 0.01126..10 concentration histogram with class 0.0112 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01121..5 correlation histogram 0.0000 0.0112 0.0112 0.0225 0.01126..10 correlation histogram 0.0112 0.0225 0.0112 0.0000 0.0112non computable correlation histogram 0.03371..5 missing values histogram 0.0000 0.0449 0.0449 0.0449 0.02256..10 missing values histogram 0.0112 0.0337 0.0000 0.0112 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0112Frac1 0.0225First Canonical Correlation 0.0449Mean Skew 0.0225Mean Kurtosis 0.0112Class Entropy 0.0899Mean Attribute Entropy 0.0112Mean Mutual Information 0.0337Equivalent number of attributes 0.0225Noise to Signal Ratio 0.0112Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



194 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.51. IBL c50treeAttribute# classes 0.0581# attributes 0.0581# instances 0.0233# attributes#instances 0.0233# unknown values 0.0930# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0116 0.0116 0.0000 0.01161..5 concentration histogram 0.0116 0.0000 0.0000 0.0000 0.02336..10 concentration histogram 0.0000 0.0116 0.0000 0.0000 0.0000non computable conc. histogram 0.01161..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0116 0.00006..10 concentration histogram with class 0.0233 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02331..5 correlation histogram 0.0116 0.0116 0.0116 0.0116 0.01166..10 correlation histogram 0.0233 0.0233 0.0349 0.0116 0.0465non computable correlation histogram 0.01161..5 missing values histogram 0.0000 0.0116 0.0349 0.0233 0.03496..10 missing values histogram 0.0000 0.0349 0.0000 0.0233 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0233Mean Skew 0.0116Mean Kurtosis 0.0000Class Entropy 0.0581Mean Attribute Entropy 0.0465Mean Mutual Information 0.0000Equivalent number of attributes 0.0233Noise to Signal Ratio 0.0233Mean Mult. Correl. Coef. 0.0233SDratio 0.0116



A.4. SELECTION FREQUENCY BY C50TREE 195Table A.52. IBL LindiscrAttribute# classes 0.0700# attributes 0.0700# instances 0.0000# attributes#instances 0.0400# unknown values 0.0500# unknown values# attributes * # instances 0.0100# nominal attributes 0.0100max, min, mean, stdv of nominal attribute values 0.0200 0.0200 0.0200 0.00001..5 concentration histogram 0.0100 0.0000 0.0000 0.0100 0.02006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0100non computable conc. histogram 0.01001..5 concentration histogram with class 0.0200 0.0000 0.0000 0.0000 0.01006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02001..5 correlation histogram 0.0500 0.0400 0.0000 0.0000 0.01006..10 correlation histogram 0.0000 0.0500 0.0100 0.0100 0.0400non computable correlation histogram 0.01001..5 missing values histogram 0.0000 0.0600 0.0300 0.0400 0.01006..10 missing values histogram 0.0400 0.0000 0.0100 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0100Frac1 0.0100First Canonical Correlation 0.0100Mean Skew 0.0200Mean Kurtosis 0.0200Class Entropy 0.0600Mean Attribute Entropy 0.0100Mean Mutual Information 0.0100Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0100SDratio 0.0100



196 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.53. IBL LtreeAttribute# classes 0.0588# attributes 0.0471# instances 0.0588# attributes#instances 0.0471# unknown values 0.0824# unknown values# attributes * # instances 0.0118# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0118 0.0000 0.0353 0.02351..5 concentration histogram 0.0235 0.0118 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0118 0.0000 0.0000 0.0118non computable conc. histogram 0.01181..5 concentration histogram with class 0.0000 0.0118 0.0000 0.0118 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01181..5 correlation histogram 0.0000 0.0000 0.0235 0.0118 0.01186..10 correlation histogram 0.0118 0.0118 0.0118 0.0235 0.0118non computable correlation histogram 0.02351..5 missing values histogram 0.0000 0.0000 0.0588 0.0235 0.03536..10 missing values histogram 0.0235 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0235First Canonical Correlation 0.0471Mean Skew 0.0118Mean Kurtosis 0.0235Class Entropy 0.0353Mean Attribute Entropy 0.0353Mean Mutual Information 0.0118Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0353SDratio 0.0118



A.4. SELECTION FREQUENCY BY C50TREE 197Table A.54. NB c50boostAttribute# classes 0.0758# attributes 0.0606# instances 0.0455# attributes#instances 0.0000# unknown values 0.1212# unknown values# attributes * # instances 0.0303# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0152 0.0152 0.0000 0.00001..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.01526..10 concentration histogram 0.0000 0.0000 0.0152 0.0000 0.0152non computable conc. histogram 0.01521..5 concentration histogram with class 0.0303 0.0000 0.0152 0.0303 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0303non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0152 0.0000 0.0000 0.0303 0.01526..10 correlation histogram 0.0152 0.0152 0.0455 0.0152 0.0152non computable correlation histogram 0.01521..5 missing values histogram 0.0000 0.0152 0.0152 0.0000 0.01526..10 missing values histogram 0.0152 0.0152 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0152Frac1 0.0000First Canonical Correlation 0.0606Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0455Mean Attribute Entropy 0.0000Mean Mutual Information 0.0152Equivalent number of attributes 0.0455Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0303



198 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.55. NB c50rulesAttribute# classes 0.0513# attributes 0.0256# instances 0.0513# attributes#instances 0.0256# unknown values 0.0769# unknown values# attributes * # instances 0.0256# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0000 0.0000 0.0000 0.00001..5 concentration histogram 0.0256 0.0128 0.0128 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0385 0.0256 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02561..5 correlation histogram 0.0256 0.0128 0.0256 0.0128 0.02566..10 correlation histogram 0.0128 0.0000 0.0128 0.0256 0.0000non computable correlation histogram 0.02561..5 missing values histogram 0.0000 0.0128 0.0385 0.0769 0.06416..10 missing values histogram 0.0128 0.0000 0.0000 0.0256 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0256Binary Attributes 0.0000Frac1 0.0385First Canonical Correlation 0.0000Mean Skew 0.0385Mean Kurtosis 0.0256Class Entropy 0.0000Mean Attribute Entropy 0.0256Mean Mutual Information 0.0128Equivalent number of attributes 0.0128Noise to Signal Ratio 0.0128Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



A.4. SELECTION FREQUENCY BY C50TREE 199Table A.56. NB c50treeAttribute# classes 0.0405# attributes 0.0405# instances 0.0270# attributes#instances 0.0135# unknown values 0.0946# unknown values# attributes * # instances 0.0000# nominal attributes 0.0135max, min, mean, stdv of nominal attribute values 0.0270 0.0270 0.0135 0.00001..5 concentration histogram 0.0135 0.0000 0.0000 0.0000 0.00006..10 concentration histogram 0.0135 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01351..5 concentration histogram with class 0.0000 0.0405 0.0000 0.0135 0.01356..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02701..5 correlation histogram 0.0135 0.0135 0.0135 0.0000 0.02706..10 correlation histogram 0.0135 0.0270 0.0000 0.0270 0.0270non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0135 0.0135 0.0405 0.04056..10 missing values histogram 0.0270 0.0135 0.0000 0.0270 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0541Mean Skew 0.0270Mean Kurtosis 0.0135Class Entropy 0.0135Mean Attribute Entropy 0.0135Mean Mutual Information 0.0270Equivalent number of attributes 0.0135Noise to Signal Ratio 0.0270Mean Mult. Correl. Coef. 0.0270SDratio 0.0135



200 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.57. NB LindiscrAttribute# classes 0.0549# attributes 0.0220# instances 0.0330# attributes#instances 0.0000# unknown values 0.0879# unknown values# attributes * # instances 0.0220# nominal attributes 0.0220max, min, mean, stdv of nominal attribute values 0.0110 0.0220 0.0330 0.01101..5 concentration histogram 0.0330 0.0110 0.0000 0.0000 0.01106..10 concentration histogram 0.0110 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01101..5 concentration histogram with class 0.0000 0.0220 0.0220 0.0220 0.00006..10 concentration histogram with class 0.0110 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0220 0.0330 0.0220 0.0110 0.02206..10 correlation histogram 0.0220 0.0000 0.0110 0.0330 0.0110non computable correlation histogram 0.01101..5 missing values histogram 0.0000 0.0110 0.0220 0.0440 0.03306..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0220Frac1 0.0000First Canonical Correlation 0.0220Mean Skew 0.0769Mean Kurtosis 0.0220Class Entropy 0.0000Mean Attribute Entropy 0.0330Mean Mutual Information 0.0220Equivalent number of attributes 0.0110Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0110



A.4. SELECTION FREQUENCY BY C50TREE 201Table A.58. NB LtreeAttribute# classes 0.0541# attributes 0.0811# instances 0.0135# attributes#instances 0.0270# unknown values 0.1081# unknown values# attributes * # instances 0.0270# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0541 0.0135 0.0135 0.01351..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.01356..10 concentration histogram 0.0000 0.0000 0.0135 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0405 0.0000 0.0135 0.01356..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0135non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0135 0.0135 0.0270 0.0000 0.04056..10 correlation histogram 0.0000 0.0405 0.0000 0.0000 0.0000non computable correlation histogram 0.02701..5 missing values histogram 0.0000 0.0000 0.0270 0.0135 0.01356..10 missing values histogram 0.0000 0.0000 0.0000 0.0135 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0135Binary Attributes 0.0270Frac1 0.0000First Canonical Correlation 0.0405Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0541Mean Attribute Entropy 0.0270Mean Mutual Information 0.0135Equivalent number of attributes 0.0270Noise to Signal Ratio 0.0135Mean Mult. Correl. Coef. 0.0135SDratio 0.0270



202 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.59. NB IBLAttribute# classes 0.0444# attributes 0.0111# instances 0.0333# attributes#instances 0.0444# unknown values 0.0778# unknown values# attributes * # instances 0.0111# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0222 0.0111 0.0222 0.00001..5 concentration histogram 0.0000 0.0111 0.0000 0.0000 0.00006..10 concentration histogram 0.0111 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0333 0.0111 0.0111 0.0111 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0111non computable conc. histogram with class 0.0000# continuous attributes 0.01111..5 correlation histogram 0.0222 0.0000 0.0111 0.0000 0.01116..10 correlation histogram 0.0333 0.0444 0.0111 0.0111 0.0222non computable correlation histogram 0.01111..5 missing values histogram 0.0000 0.0111 0.0444 0.0667 0.04446..10 missing values histogram 0.0222 0.0111 0.0000 0.0111 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0111Frac1 0.0111First Canonical Correlation 0.0667Mean Skew 0.0111Mean Kurtosis 0.0111Class Entropy 0.0222Mean Attribute Entropy 0.0333Mean Mutual Information 0.0222Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0111SDratio 0.0222



A.4. SELECTION FREQUENCY BY C50TREE 203Table A.60. ripper c50boostAttribute# classes 0.0299# attributes 0.0299# instances 0.0597# attributes#instances 0.0000# unknown values 0.0746# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0149 0.0149 0.0000 0.00001..5 concentration histogram 0.0299 0.0149 0.0149 0.0149 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0149non computable conc. histogram 0.01491..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0299 0.01496..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02991..5 correlation histogram 0.0149 0.0448 0.0000 0.0000 0.01496..10 correlation histogram 0.0000 0.0448 0.0000 0.0149 0.0597non computable correlation histogram 0.01491..5 missing values histogram 0.0000 0.0448 0.0448 0.0299 0.02996..10 missing values histogram 0.0149 0.0000 0.0000 0.0149 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0149Frac1 0.0448First Canonical Correlation 0.0000Mean Skew 0.0299Mean Kurtosis 0.0149Class Entropy 0.0746Mean Attribute Entropy 0.0299Mean Mutual Information 0.0000Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



204 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.61. ripper c50rulesAttribute# classes 0.0361# attributes 0.0361# instances 0.0361# attributes#instances 0.0120# unknown values 0.0723# unknown values# attributes * # instances 0.0361# nominal attributes 0.0120max, min, mean, stdv of nominal attribute values 0.0241 0.0000 0.0120 0.02411..5 concentration histogram 0.0000 0.0120 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0120 0.0000 0.0000 0.0241non computable conc. histogram 0.01201..5 concentration histogram with class 0.0482 0.0241 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01201..5 correlation histogram 0.0120 0.0000 0.0120 0.0000 0.00006..10 correlation histogram 0.0241 0.0120 0.0120 0.0241 0.0241non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0361 0.0000 0.03616..10 missing values histogram 0.0120 0.0241 0.0120 0.0241 0.0120# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0120Mean Skew 0.0361Mean Kurtosis 0.0000Class Entropy 0.0482Mean Attribute Entropy 0.0602Mean Mutual Information 0.0482Equivalent number of attributes 0.0120Noise to Signal Ratio 0.0120Mean Mult. Correl. Coef. 0.0241SDratio 0.0241



A.4. SELECTION FREQUENCY BY C50TREE 205Table A.62. ripper c50treeAttribute# classes 0.0141# attributes 0.0704# instances 0.0282# attributes#instances 0.0282# unknown values 0.0563# unknown values# attributes * # instances 0.0282# nominal attributes 0.0141max, min, mean, stdv of nominal attribute values 0.0000 0.0141 0.0000 0.02821..5 concentration histogram 0.0141 0.0000 0.0141 0.0000 0.00006..10 concentration histogram 0.0000 0.0141 0.0000 0.0000 0.0141non computable conc. histogram 0.00001..5 concentration histogram with class 0.0282 0.0141 0.0000 0.0141 0.01416..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01411..5 correlation histogram 0.0000 0.0563 0.0000 0.0000 0.00006..10 correlation histogram 0.0282 0.0141 0.0282 0.0282 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0282 0.0423 0.0141 0.02826..10 missing values histogram 0.0282 0.0141 0.0000 0.0141 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0141Binary Attributes 0.0141Frac1 0.0141First Canonical Correlation 0.0141Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0845Mean Attribute Entropy 0.0423Mean Mutual Information 0.0423Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0141SDratio 0.0141



206 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.63. ripper LindiscrAttribute# classes 0.0230# attributes 0.0345# instances 0.0575# attributes#instances 0.0115# unknown values 0.0460# unknown values# attributes * # instances 0.0000# nominal attributes 0.0230max, min, mean, stdv of nominal attribute values 0.0575 0.0115 0.0000 0.00001..5 concentration histogram 0.0115 0.0115 0.0000 0.0230 0.01156..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0115non computable conc. histogram 0.01151..5 concentration histogram with class 0.0115 0.0115 0.0000 0.0115 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0115non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0000 0.0115 0.0230 0.0000 0.05756..10 correlation histogram 0.0000 0.0000 0.0345 0.0115 0.0230non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0805 0.0460 0.0575 0.03456..10 missing values histogram 0.0115 0.0115 0.0000 0.0115 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0115Frac1 0.0115First Canonical Correlation 0.0230Mean Skew 0.0345Mean Kurtosis 0.0115Class Entropy 0.0230Mean Attribute Entropy 0.0115Mean Mutual Information 0.0115Equivalent number of attributes 0.0115Noise to Signal Ratio 0.0115Mean Mult. Correl. Coef. 0.0115SDratio 0.0230



A.4. SELECTION FREQUENCY BY C50TREE 207Table A.64. ripper LtreeAttribute# classes 0.0370# attributes 0.0247# instances 0.0370# attributes#instances 0.0247# unknown values 0.0247# unknown values# attributes * # instances 0.0123# nominal attributes 0.0247max, min, mean, stdv of nominal attribute values 0.0000 0.0000 0.0247 0.00001..5 concentration histogram 0.0123 0.0247 0.0000 0.0123 0.00006..10 concentration histogram 0.0000 0.0123 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0123 0.0123 0.0123 0.0123 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0123non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0123 0.0247 0.0123 0.0370 0.01236..10 correlation histogram 0.0123 0.0123 0.0000 0.0123 0.0247non computable correlation histogram 0.02471..5 missing values histogram 0.0000 0.0494 0.0123 0.0494 0.01236..10 missing values histogram 0.0123 0.0123 0.0000 0.0247 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0247Frac1 0.0123First Canonical Correlation 0.0370Mean Skew 0.0000Mean Kurtosis 0.0247Class Entropy 0.0617Mean Attribute Entropy 0.0247Mean Mutual Information 0.0000Equivalent number of attributes 0.0494Noise to Signal Ratio 0.0247Mean Mult. Correl. Coef. 0.0000SDratio 0.0494



208 APPENDIX A. RESULTS ON THE 1075 DATASETSTable A.65. ripper IBLAttribute# classes 0.0727# attributes 0.0545# instances 0.0727# attributes#instances 0.0545# unknown values 0.0364# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0182 0.0182 0.0000 0.01821..5 concentration histogram 0.0182 0.0000 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.01821..5 concentration histogram with class 0.0182 0.0000 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.03641..5 correlation histogram 0.0000 0.0364 0.0000 0.0364 0.00006..10 correlation histogram 0.0545 0.0000 0.0000 0.0000 0.0182non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0364 0.0364 0.0182 0.00006..10 missing values histogram 0.0182 0.0182 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0364Frac1 0.0000First Canonical Correlation 0.0364Mean Skew 0.0182Mean Kurtosis 0.0182Class Entropy 0.1091Mean Attribute Entropy 0.0182Mean Mutual Information 0.0182Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0182SDratio 0.0182



A.5. ACCURACY RESULTS 209Table A.66. ripper NBAttribute# classes 0.0435# attributes 0.0217# instances 0.0652# attributes#instances 0.0217# unknown values 0.0761# unknown values# attributes * # instances 0.0109# nominal attributes 0.0326max, min, mean, stdv of nominal attribute values 0.0217 0.0217 0.0217 0.00001..5 concentration histogram 0.0000 0.0217 0.0217 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0109non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0109 0.0109 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0217 0.0109 0.0109 0.0109 0.01096..10 correlation histogram 0.0326 0.0217 0.0326 0.0000 0.0109non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0109 0.0435 0.0217 0.06526..10 missing values histogram 0.0217 0.0109 0.0000 0.0109 0.0109# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0109First Canonical Correlation 0.0217Mean Skew 0.0109Mean Kurtosis 0.0326Class Entropy 0.0652Mean Attribute Entropy 0.0217Mean Mutual Information 0.0217Equivalent number of attributes 0.0217Noise to Signal Ratio 0.0109Mean Mult. Correl. Coef. 0.0000SDratio 0.0109
A.5 Accuracy Results
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.RESULTSO
NTHE1075D

ATASETS Table A.67. Results on the histo set of characteristicsc50boost c50rules c50tree LtreeAcc. Impr. Acc. Impr. Acc. Impr. Acc. Impr.c50rules c50boost 84.74% 26.61% 82.23% 24.09% 82.51% 24.37% 80.84% 22.70%c50tree c50boost 82.88% 25.12% 79.26% 21.49% 79.35% 21.58% 79.16% 21.40%c50tree c50rules 86.23% 13.21% 82.79% 9.77% 84.00% 10.98% 82.42% 9.40%Lindiscr c50boost 87.72% 23.26% 86.60% 22.14% 87.35% 22.88% 84.74% 20.28%Lindiscr c50rules 87.07% 34.42% 86.14% 33.49% 85.95% 33.30% 82.70% 30.05%Lindiscr c50tree 87.26% 32.56% 85.86% 31.16% 86.23% 31.54% 84.09% 29.40%Ltree c50boost 81.58% 29.95% 77.67% 26.05% 76.74% 25.12% 77.49% 25.86%Ltree c50rules 84.09% 25.40% 82.60% 23.91% 81.67% 22.98% 79.91% 21.21%Ltree c50tree 81.77% 22.23% 79.53% 20.00% 78.51% 18.98% 77.95% 18.42%Ltree Lindiscr 84.56% 23.44% 81.95% 20.84% 81.95% 20.84% 80.84% 19.72%IBL c50boost 87.53% 22.88% 86.70% 22.05% 85.49% 20.84% 84.28% 19.63%IBL c50rules 81.02% 31.26% 79.16% 29.40% 78.42% 28.65% 79.26% 29.49%IBL c50tree 84.19% 32.19% 78.98% 26.98% 78.98% 26.98% 80.65% 28.65%IBL Lindiscr 85.30% 42.98% 80.28% 37.95% 79.72% 37.40% 81.12% 38.79%IBL Ltree 81.86% 25.21% 77.49% 20.84% 78.05% 21.40% 76.56% 19.91%NB c50boost 88.56% 27.72% 86.60% 25.77% 86.70% 25.86% 84.56% 23.72%NB c50rules 88.28% 36.84% 82.60% 31.16% 82.60% 31.16% 80.56% 29.12%NB c50tree 87.16% 34.23% 83.26% 30.33% 83.35% 30.42% 83.63% 30.70%NB Lindiscr 84.65% 43.54% 80.47% 39.35% 80.19% 39.07% 78.98% 37.86%NB Ltree 87.91% 29.67% 84.37% 26.14% 84.56% 26.33% 84.00% 25.77%NB IBL 86.79% 50.70% 84.00% 47.91% 84.37% 48.28% 81.67% 45.58%ripper c50boost 84.65% 33.68% 85.12% 34.14% 83.72% 32.74% 84.28% 33.30%ripper c50rules 85.21% 25.30% 81.12% 21.21% 81.02% 21.12% 81.58% 21.68%ripper c50tree 85.95% 25.86% 83.35% 23.26% 82.23% 22.14% 81.12% 21.02%ripper Lindiscr 82.42% 36.28% 80.00% 33.86% 79.26% 33.12% 77.12% 30.98%ripper Ltree 78.88% 25.67% 78.98% 25.77% 78.14% 24.93% 78.70% 25.49%ripper IBL 86.33% 40.19% 83.53% 37.40% 82.70% 36.56% 83.91% 37.77%ripper NB 84.28% 42.51% 81.40% 39.63% 82.42% 40.65% 80.84% 39.07%means 84.96% 30.82% 82.22% 28.07% 82.01% 27.86% 81.18% 27.03%
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Table A.68. Results on the +histo set of characteristicsc50boost c50rules c50tree LtreeAcc. Impr. Acc. Impr. Acc. Impr. Acc. Impr.c50rules c50boost 83.26% 25.12% 81.95% 23.81% 81.95% 23.81% 80.74% 22.61%c50tree c50boost 84.56% 26.79% 80.37% 22.61% 79.35% 21.58% 78.14% 20.37%c50tree c50rules 86.14% 13.12% 82.05% 9.02% 82.51% 9.49% 82.42% 9.40%Lindiscr c50boost 87.53% 23.07% 84.19% 19.72% 84.47% 20.00% 83.16% 18.70%Lindiscr c50rules 87.35% 34.70% 84.74% 32.09% 85.30% 32.65% 83.26% 30.60%Lindiscr c50tree 87.81% 33.12% 84.28% 29.58% 84.37% 29.68% 84.56% 29.86%Ltree c50boost 81.02% 29.40% 76.56% 24.93% 76.93% 25.30% 77.30% 25.68%Ltree c50rules 84.74% 26.05% 81.21% 22.51% 80.84% 22.14% 80.93% 22.23%Ltree c50tree 81.67% 22.14% 79.91% 20.37% 79.44% 19.91% 78.23% 18.70%Ltree Lindiscr 82.42% 21.30% 81.30% 20.19% 81.21% 20.09% 80.74% 19.63%IBL c50boost 85.67% 21.02% 85.86% 21.21% 85.40% 20.74% 83.26% 18.60%IBL c50rules 81.58% 31.81% 79.26% 29.49% 78.88% 29.12% 77.95% 28.19%IBL c50tree 83.16% 31.16% 79.53% 27.53% 78.79% 26.79% 80.74% 28.74%IBL Lindiscr 84.65% 42.33% 80.56% 38.23% 79.53% 37.21% 81.86% 39.54%IBL Ltree 80.56% 23.91% 76.74% 20.09% 77.30% 20.65% 75.53% 18.88%NB c50boost 88.00% 27.16% 86.60% 25.77% 85.95% 25.12% 84.28% 23.44%NB c50rules 86.51% 35.07% 81.30% 29.86% 81.77% 30.33% 81.77% 30.33%NB c50tree 86.14% 33.21% 83.07% 30.14% 82.79% 29.86% 83.26% 30.33%NB Lindiscr 83.81% 42.70% 80.65% 39.54% 80.37% 39.26% 80.09% 38.98%NB Ltree 86.98% 28.74% 84.37% 26.14% 84.19% 25.95% 82.51% 24.28%NB IBL 87.07% 50.98% 83.91% 47.81% 85.40% 49.30% 79.35% 43.26%ripper c50boost 86.05% 35.07% 85.30% 34.33% 84.28% 33.30% 85.02% 34.05%ripper c50rules 84.28% 24.37% 80.56% 20.65% 80.93% 21.02% 80.09% 20.19%ripper c50tree 85.95% 25.86% 82.14% 22.05% 82.33% 22.23% 83.81% 23.72%ripper Lindiscr 82.05% 35.91% 78.98% 32.84% 78.05% 31.91% 77.95% 31.81%ripper Ltree 77.86% 24.65% 78.33% 25.12% 76.74% 23.54% 77.58% 24.37%ripper IBL 86.33% 40.19% 83.81% 37.67% 83.26% 37.12% 84.28% 38.14%ripper NB 85.02% 43.26% 81.49% 39.72% 81.49% 39.72% 80.65% 38.88%means 84.58% 30.44% 81.75% 27.61% 81.56% 27.42% 81.05% 26.91%
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.RESULTSO
NTHE1075D

ATASETS Table A.69. Results of the McNemar test comparing the accuracies of histo and +histo, on the pairwise meta-learning problems, for each of the fourdecision treee based metalearners. (= no di�erence, + di�erence in favor of histo, - di�erence in favor of +histo.c50boost c50rules c50tree Ltree�an +an p� val sig �an +an p� val sig �an +an p� val sig �an +an p� val sigc50rules c50boost 46 30 0.085 = 43 40 0.826 = 46 40 0.589 = 48 47 1.000 =c50tree c50boost 35 53 0.069 = 53 65 0.311 = 65 65 0.930 = 65 54 0.359 =c50tree c50rules 29 28 1.000 = 45 37 0.439 = 46 30 0.085 = 46 46 0.916 =Lindiscr c50boost 29 27 0.893 = 67 41 0.016 + 65 34 0.002 + 82 65 0.186 =Lindiscr c50rules 32 35 0.806 = 55 40 0.150 = 50 43 0.533 = 64 70 0.665 =Lindiscr c50tree 34 40 0.561 = 53 36 0.089 = 50 30 0.033 + 55 60 0.709 =Ltree c50boost 42 36 0.571 = 62 50 0.298 = 56 58 0.995 = 54 52 0.922 =Ltree c50rules 33 40 0.482 = 60 45 0.171 = 59 50 0.443 = 47 58 0.329 =Ltree c50tree 48 47 1.000 = 66 70 0.796 = 57 67 0.418 = 78 81 0.873 =Ltree Lindiscr 66 43 0.035 + 63 56 0.582 = 58 50 0.500 = 66 65 1.000 =IBL c50boost 48 28 0.029 + 45 36 0.374 = 39 38 1.000 = 56 45 0.319 =IBL c50rules 38 44 0.580 = 51 52 1.000 = 48 53 0.690 = 71 57 0.250 =IBL c50tree 45 34 0.260 = 49 55 0.623 = 42 40 0.912 = 58 59 1.000 =IBL Lindiscr 41 34 0.488 = 52 55 0.846 = 50 48 0.919 = 48 56 0.492 =IBL Ltree 57 43 0.193 = 60 52 0.508 = 57 49 0.496 = 79 68 0.409 =NB c50boost 25 19 0.450 = 49 49 0.919 = 53 45 0.479 = 66 63 0.860 =NB c50rules 43 24 0.027 + 46 32 0.141 = 41 32 0.349 = 59 72 0.294 =NB c50tree 38 27 0.214 = 40 38 0.909 = 38 32 0.550 = 55 51 0.770 =NB Lindiscr 49 40 0.396 = 37 39 0.908 = 37 39 0.908 = 85 97 0.414 =NB Ltree 30 20 0.203 = 41 41 0.912 = 44 40 0.743 = 58 42 0.133 =NB IBL 37 40 0.819 = 62 61 1.000 = 51 62 0.346 = 94 69 0.060 =ripper c50boost 32 47 0.115 = 26 28 0.891 = 26 32 0.511 = 34 42 0.422 =ripper c50rules 43 33 0.301 = 35 29 0.531 = 30 29 1.000 = 61 45 0.145 =ripper c50tree 29 29 0.895 = 37 24 0.124 = 28 29 1.000 = 21 50 0.001 �ripper Lindiscr 54 50 0.768 = 68 57 0.371 = 76 63 0.308 = 68 77 0.506 =ripper Ltree 54 43 0.309 = 56 49 0.558 = 51 36 0.133 = 63 51 0.302 =ripper IBL 26 26 0.889 = 34 37 0.812 = 36 42 0.571 = 48 52 0.764 =ripper NB 34 42 0.422 = 59 60 1.000 = 57 47 0.377 = 71 69 0.932 =



Appendix BResults on the 65 datasetsB.1 The 65 datasetsabalone, acetylation, agaricus-lepiota, allbp, allhyper, allhypo, allrep, australian,balance-scale, bands, breast-cancer-wisc,breast-cancer-wisc nominal, bupa, car,contraceptive, crx, dermatology, dis, ecoli, ag language, ag religion, are c,are c er, are m, are m er, are x, are x er, uid, german, glass, glass2,heart, hepatitis, hypothyroid, ionosphere, iris, kp, led24, led7, lymphography,monk1, monk2, monk3-full, mushrooms, new-thyroid, parity5 5, pima-indians-diabetes, proc-cleveland-2, proc-cleveland-4, proc-hungarian-2, proc -hungarian-4, proc-switzerland-2, proc-switzerland-4, quisclas, sick-euthyroid, soybean-large,tic-tac-toe, titanic, tumor-LOI, vote, vowel, waveform40, wdbc, wpbc, yeast.

213



214 APPENDIX B. RESULTS ON THE 65 DATASETSB.2 C50boost on the di�erent characterizations

Table B.1. Results of c50boost on the dct characterization on the 65 datasetsPair Accuracy Improvementc50rules c50boost 72.31% -4.62%c50tree c50boost 60.00% -6.15%c50tree c50rules 73.85% -3.08%Lindiscr c50boost 64.62% 15.39%Lindiscr c50rules 55.38% 9.23%Lindiscr c50tree 49.23% 4.62%Ltree c50boost 61.54% 1.54%Ltree c50rules 72.31% 6.15%Ltree c50tree 63.08% 7.69%Ltree Lindiscr 64.62% 20.00%IBL c50boost 70.77% 12.31%IBL c50rules 64.62% 6.15%IBL c50tree 67.69% 10.77%IBL Lindiscr 41.54% 3.08%IBL Ltree 49.23% 6.15%NB c50boost 63.08% 9.23%NB c50rules 66.15% 16.92%NB c50tree 56.92% 7.69%NB Lindiscr 47.69% 4.62%NB Ltree 69.23% 18.46%NB IBL 43.08% -1.54%ripper c50boost 49.23% -13.85%ripper c50rules 66.15% -3.08%ripper c50tree 60.00% -6.15%ripper Lindiscr 60.00% 21.54%ripper Ltree 58.46% 3.08%ripper IBL 43.08% -10.77%ripper NB 53.85% 7.69%Average 59.56% 5.11%Strict Accuracy 6.15% -7.69%Loose Accuracy 43.08% %



B.2. C50BOOST ON THE DIFFERENT CHARACTERIZATIONS 215Table B.2. land Pair Accuracy Improvementc50rules c50boost 75.38% -1.54%c50tree c50boost 69.23% 3.08%c50tree c50rules 72.31% -4.62%Lindiscr c50boost 44.62% -4.61%Lindiscr c50rules 47.69% 1.54%Lindiscr c50tree 43.08% -1.54%Ltree c50boost 55.38% -4.62%Ltree c50rules 52.31% -13.85%Ltree c50tree 61.54% 6.15%Ltree Lindiscr 50.77% 6.15%IBL c50boost 52.31% -6.15%IBL c50rules 61.54% 3.08%IBL c50tree 44.62% -12.31%IBL Lindiscr 41.54% 3.08%IBL Ltree 47.69% 4.62%NB c50boost 55.38% 1.54%NB c50rules 53.85% 4.62%NB c50tree 46.15% -3.08%NB Lindiscr 47.69% 4.62%NB Ltree 60.00% 9.23%NB IBL 44.62% 0.00%ripper c50boost 56.92% -6.15%ripper c50rules 55.38% -13.85%ripper c50tree 52.31% -13.85%ripper Lindiscr 46.15% 7.69%ripper Ltree 52.31% -3.08%ripper IBL 43.08% -10.77%ripper NB 43.08% -3.08%Average 52.75% -1.70%Strict Accuracy 7.69% -6.15%Loose Accuracy 36.92% %



216 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.3. histo-limitedPair Accuracy Improvementc50rules c50boost 72.31% -4.62%c50tree c50boost 52.31% -13.85%c50tree c50rules 72.31% -4.62%Lindiscr c50boost 55.38% 6.15%Lindiscr c50rules 55.38% 9.23%Lindiscr c50tree 64.62% 20.00%Ltree c50boost 53.85% -6.15%Ltree c50rules 66.15% 0.00%Ltree c50tree 67.69% 12.31%Ltree Lindiscr 64.62% 20.00%IBL c50boost 73.85% 15.39%IBL c50rules 61.54% 3.08%IBL c50tree 55.38% -1.54%IBL Lindiscr 58.46% 20.00%IBL Ltree 40.00% -3.08%NB c50boost 72.31% 18.46%NB c50rules 49.23% 0.00%NB c50tree 49.23% 0.00%NB Lindiscr 43.08% 0.00%NB Ltree 67.69% 16.92%NB IBL 49.23% 4.62%ripper c50boost 46.15% -16.92%ripper c50rules 58.46% -10.77%ripper c50tree 56.92% -9.23%ripper Lindiscr 60.00% 21.54%ripper Ltree 46.15% -9.23%ripper IBL 47.69% -6.15%ripper NB 58.46% 12.31%Average 57.80% 3.35%Strict Accuracy 20.00% 6.16%%Loose Accuracy 47.69% %



B.2. C50BOOST ON THE DIFFERENT CHARACTERIZATIONS 217Table B.4. histo Pair Accuracy Improvementc50rules c50boost 76.92% 0.00%c50treec 50boost 53.85% -12.31%c50treec 50rules 69.23% -7.69%Lindiscr c50boost 58.46% 9.23%Lindiscr c50rules 61.54% 15.39%Lindiscr c50tree 64.62% 20.00%Ltree c50boost 52.31% -7.69%Ltree c50rules 66.15% 0.00%Ltree c50tree 66.15% 10.77%Ltree Lindiscr 61.54% 16.92%IBL c50boost 69.23% 10.77%IBL c50rules 64.62% 6.15%IBL c50tree 60.00% 3.08%IBL Lindiscr 64.62% 26.15%IBL Ltree 36.92% -6.15%NB c50boost 69.23% 15.38%NB c50rules 53.85% 4.62%NB c50tree 49.23% 0.00%NB Lindiscr 41.54% -1.54%NB Ltree 69.23% 18.46%NB IBL 58.46% 13.85%ripper c50boost 64.62% 1.54%ripper c50rules 55.38% -13.85%ripper c50tree 49.23% -16.92%ripper Lindiscr 64.62% 26.15%ripper Ltree 52.31% -3.08%ripper IBL 47.69% -6.15%ripper NB 55.38% 9.23%Average 59.18% 4.73%Strict Accuracy 15.38% 1.54%Loose Accuracy 52.31% %



218 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.5. statlog Pair Accuracy Improvementc50rules c50boost 73.85% -3.08%c50tree c50boost 55.38% -10.77%c50tree c50rules 73.85% -3.08%Lindiscr c50boost 53.85% 4.62%Lindiscr c50rules 56.92% 10.77%Lindiscr c50tree 53.85% 9.23%Ltree c50boost 60.00% 0.00%Ltree c50rules 64.62% -1.54%Ltree c50tree 61.54% 6.15%Ltree Lindiscr 61.54% 16.92%IBL c50boost 64.62% 6.15%IBL c50rules 69.23% 10.77%IBL c50tree 61.54% 4.62%IBL Lindiscr 43.08% 4.62%IBL Ltree 47.69% 4.62%NB c50boost 55.38% 1.54%NB c50rules 50.77% 1.54%NB c50tree 56.92% 7.69%NB Lindiscr 38.46% -4.61%NB Ltree 75.38% 24.62%NB IBL 49.23% 4.62%ripper c50boost 50.77% -12.31%ripper c50rules 66.15% -3.08%ripper c50tree 60.00% -6.15%ripper Lindiscr 53.85% 15.39%ripper Ltree 50.77% -4.61%ripper IBL 49.23% -4.62%ripper NB 41.54% -4.61%Average 57.14% 2.69%Strict Accuracy 7.69% -6.15%Loose Accuracy 41.54% %



B.3. KERNEL ON THE DIFFERENT CHARACTERIZATIONS 219B.3 Kernel on the di�erent characterizations

Table B.6. Results of kernel on the dct characterizations on the 65 datasetsPair Accuracy Improvementc50boost c50rules 70.77% 3.08%c50boost c50tree 70.77% -4.61%c50boost Lindiscr 61.54% -7.69%c50boost Ltree 64.62% 7.69%c50boost IBL 90.77% -1.54%c50boost NB 75.38% 1.54%c50boost ripper 76.92% -6.15%c50rules c50tree 73.85% 1.54%c50rules Lindiscr 69.23% 6.15%c50rules Ltree 63.08% 0.00%c50rules IBL 72.31% 1.54%c50rules NB 75.38% 7.69%c50rules ripper 75.38% -1.54%c50tree Lindiscr 66.15% 3.08%c50tree Ltree 63.08% 4.62%c50tree IBL 69.23% 0.00%c50tree NB 80.00% 12.31%c50tree ripper 55.38% -13.85%Lindiscr ltree 73.85% 1.54%Lindiscr IBL 66.15% 12.31%Lindiscr NB 73.85% 18.46%Lindiscr ripper 64.62% 9.23%Ltree IBL 69.23% -9.23%Ltree NB 67.69% -6.15%Ltree ripper 81.54% 9.23%IBL NB 69.23% 12.31%IBL ripper 60.00% 7.69%NB ripper 70.77% 15.39%Average 70.38% 3.02%Final suggestion 40.00% 7.70%



220 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.7. land Pair Accuracy Improvementc50boost c50rules 64.62% -3.08%c50boost c50tree 73.85% -1.54%c50boost Lindiscr 63.08% -6.15%c50boost Ltree 52.31% -4.62%c50boost IBL 90.77% -1.54%c50boost IBL 70.77% -3.08%c50boost ripper 70.77% -12.31%c50rules c50tree 52.31% -20.00%c50rules Lindiscr 58.46% -4.61%c50rules Ltree 43.08% -20.00%c50rules IBL 61.54% -9.23%c50rules NB 60.00% -7.69%c50rules ripper 73.85% -3.08%c50tree Lindiscr 56.92% -6.15%c50tree Ltree 44.62% -13.85%c50tree IBL 61.54% -7.69%c50tree NB 55.38% -12.31%c50tree ripper 60.00% -9.23%Lindiscr Ltree 61.54% -10.77%Lindiscr IBL 44.62% -9.23%Lindiscr NB 64.62% 9.23%Lindiscr ripper 55.38% 0.00%Ltree IBL 61.54% -16.92%Ltree NB 76.92% 3.08%Ltree ripper 64.62% -7.69%IBL NB 60.00% 3.08%IBL ripper 49.23% -3.08%NB ripper 58.46% 3.08%Average 61.10% -6.26%Final Suggestion 20.00% -12.30%



B.3. KERNEL ON THE DIFFERENT CHARACTERIZATIONS 221Table B.8. histo-limitedPair Accuracy Improvementc50boost c50rules 69.23% 1.54%c50boost c50tree 73.85% -1.54%c50boost Lindiscr 64.62% -4.61%c50boost Ltree 70.77% 13.85%c50boost IBL 89.23% -3.08%c50boost NB 76.92% 3.08%c50boost ripper 80.00% -3.08%c50rules c50tree 73.85% 1.54%c50rules Lindiscr 61.54% -1.54%c50rules Ltree 66.15% 3.08%c50rules IBL 73.85% 3.08%c50rules NB 70.77% 3.08%c50rules ripper 72.31% -4.62%c50tree Lindiscr 67.69% 4.62%c50tree Ltree 64.62% 6.15%c50tree IBL 70.77% 1.54%c50tree NB 67.69% 0.00%c50tree ripper 63.08% -6.15%Lindiscr Ltree 78.46% 6.15%Lindiscr IBL 64.62% 10.77%Lindiscr NB 76.92% 21.54%Lindiscr ripper 61.54% 6.15%Ltree IBL 60.00% -18.46%Ltree NB 75.38% 1.54%Ltree ripper 69.23% -3.08%IBL NB 61.54% 4.62%IBL ripper 55.38% 3.08%NB ripper 64.62% 9.23%Average 69.45% 2.09%Final Suggestion 36.92% 4.62%



222 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.9. histo Pair Accuracy Improvementc50boost c50rules 78.46% 10.77%c50boost c50tree 72.31% -3.08%c50boost Lindiscr 66.15% -3.08%c50boost Ltree 67.69% 10.77%c50boost IBL 89.23% -3.08%c50boost NB 80.00% 6.15%c50boost ripper 81.54% -1.54%c50rules c50tree 75.38% 3.08%c50rules Lindiscr 66.15% 3.08%c50rules Ltree 63.08% 0.00%c50rules IBL 61.54% -9.23%c50rules NB 70.77% 3.08%c50rules ripper 72.31% -4.62%c50tree Lindiscr 69.23% 6.15%c50tree Ltree 60.00% 1.54%c50tree IBL 66.15% -3.08%c50tree NB 67.69% 0.00%c50tree ripper 61.54% -7.69%Lindiscr Ltree 80.00% 7.69%Lindiscr IBL 67.69% 13.85%Lindiscr NB 76.92% 21.54%Lindiscr ripper 60.00% 4.62%Ltree IBL 56.92% -21.54%Ltree NB 75.38% 1.54%Ltree ripper 67.69% -4.61%IBL NB 66.15% 9.23%IBL ripper 58.46% 6.15%NB ripper 61.54% 6.15%Average 69.29% 1.92%Final Suggestion 47.69% 15.30%



B.3. KERNEL ON THE DIFFERENT CHARACTERIZATIONS 223Table B.10. statlog Pair Accuracy Improvementc50boost c50rules 67.69% 0.00%c50boost c50tree 69.23% -6.15%c50boost Lindiscr 53.85% -15.38%c50boost Ltree 61.54% 4.62%c50boost IBL 90.77% -1.54%c50boost NB 76.92% 3.08%c50boost ripper 81.54% -1.54%c50rules c50tree 73.85% 1.54%c50rules Lindiscr 58.46% -4.61%c50rules Ltree 61.54% -1.54%c50rules IBL 63.08% -7.69%c50rules NB 73.85% 6.15%c50rules ripper 76.92% 0.00%c50tree Lindiscr 64.62% 1.54%c50tree Ltree 66.15% 7.69%c50tree IBL 69.23% 0.00%c50tree NB 70.77% 3.08%c50tree ripper 63.08% -6.15%Lindiscr Ltree 72.31% 0.00%Lindiscr IBL 58.46% 4.62%Lindiscr NB 67.69% 12.31%Lindiscr ripper 61.54% 6.15%Ltree IBL 63.08% -15.38%Ltree NB 75.38% 1.54%Ltree ripper 67.69% -4.61%IBL NB 67.69% 10.77%IBL ripper 61.54% 9.23%NB ripper 70.77% 15.39%Average 68.19% 0.82%Final Suggestion 27.69% -4.61%



224 APPENDIX B. RESULTS ON THE 65 DATASETSB.4 Selection Frequency by c50boostTable B.11. Selection Frequency of Characteristics by c50boost on the 65 datasets, pair :c50rules c50boostAttribute# classes 0.0000# attributes 0.0517# instances 0.0517# attributes#instances 0.0517# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0517 0.0000 0.0172 0.00001..5 concentration histogram 0.0000 0.0000 0.0172 0.0000 0.01726..10 concentration histogram 0.0690 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.1379 0.0000 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01721..5 correlation histogram 0.0000 0.0345 0.0000 0.0000 0.01726..10 correlation histogram 0.0172 0.0345 0.0345 0.0345 0.0172non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0172 0.0000 0.0345 0.03456..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0345First Canonical Correlation 0.0000Mean Skew 0.0000Mean Kurtosis 0.0172Class Entropy 0.0345Mean Attribute Entropy 0.0000Mean Mutual Information 0.0345Equivalent number of attributes 0.0690Noise to Signal Ratio 0.0517Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 225Table B.12. c50tree c50boostAttribute# classes 0.0250# attributes 0.0875# instances 0.0125# attributes#instances 0.0125# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0125max, min, mean, stdv of nominal attribute values 0.0125 0.0375 0.0000 0.01251..5 concentration histogram 0.0000 0.0000 0.0125 0.0375 0.00006..10 concentration histogram 0.0500 0.0000 0.0000 0.0250 0.0125non computable conc. histogram 0.00001..5 concentration histogram with class 0.1000 0.0000 0.0000 0.0375 0.00006..10 concentration histogram with class 0.0125 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0125 0.0000 0.0000 0.0000 0.02506..10 correlation histogram 0.0000 0.0375 0.0250 0.0125 0.0250non computable correlation histogram 0.02501..5 missing values histogram 0.0000 0.0000 0.0000 0.0125 0.01256..10 missing values histogram 0.0000 0.0000 0.0125 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0500First Canonical Correlation 0.0125Mean Skew 0.0250Mean Kurtosis 0.0250Class Entropy 0.0125Mean Attribute Entropy 0.0125Mean Mutual Information 0.0125Equivalent number of attributes 0.0750Noise to Signal Ratio 0.0750Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



226 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.13. c50tree c50rulesAttribute# classes 0.0000# attributes 0.0926# instances 0.0185# attributes#instances 0.0185# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0185 0.0370 0.0000 0.01851..5 concentration histogram 0.0185 0.0000 0.0000 0.0185 0.00006..10 concentration histogram 0.0741 0.0000 0.0556 0.0556 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0370 0.0556 0.0000 0.0370 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0556 0.0370 0.0000 0.0000 0.01856..10 correlation histogram 0.0185 0.0741 0.0000 0.0185 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0000 0.0185 0.05566..10 missing values histogram 0.0000 0.0000 0.0185 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0000Mean Skew 0.0185Mean Kurtosis 0.0000Class Entropy 0.1111Mean Attribute Entropy 0.0000Mean Mutual Information 0.0000Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 227Table B.14. Lindiscr c50boostAttribute# classes 0.0303# attributes 0.0202# instances 0.0404# attributes#instances 0.0303# unknown values 0.0202# unknown values# attributes * # instances 0.0000# nominal attributes 0.0101max, min, mean, stdv of nominal attribute values 0.0202 0.0505 0.0101 0.00001..5 concentration histogram 0.0505 0.0000 0.0404 0.0202 0.01016..10 concentration histogram 0.0000 0.0303 0.0303 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0000 0.0404 0.0000 0.02026..10 concentration histogram with class 0.0202 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02021..5 correlation histogram 0.0303 0.0101 0.0000 0.0101 0.01016..10 correlation histogram 0.0202 0.0101 0.0000 0.0202 0.0909non computable correlation histogram 0.01011..5 missing values histogram 0.0000 0.0101 0.0303 0.0101 0.00006..10 missing values histogram 0.0404 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0202First Canonical Correlation 0.0101Mean Skew 0.0404Mean Kurtosis 0.0202Class Entropy 0.0000Mean Attribute Entropy 0.0101Mean Mutual Information 0.0000Equivalent number of attributes 0.0606Noise to Signal Ratio 0.0202Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



228 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.15. Lindiscr c50rulesAttribute# classes 0.0125# attributes 0.0250# instances 0.0375# attributes#instances 0.0000# unknown values 0.0125# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0000 0.0000 0.0000 0.01251..5 concentration histogram 0.0375 0.0125 0.0250 0.0000 0.01256..10 concentration histogram 0.0125 0.0375 0.0000 0.0000 0.0250non computable conc. histogram 0.03751..5 concentration histogram with class 0.0000 0.0250 0.0000 0.0375 0.01256..10 concentration histogram with class 0.0250 0.0125 0.0000 0.0125 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.03751..5 correlation histogram 0.0500 0.0250 0.0000 0.0375 0.00006..10 correlation histogram 0.0125 0.0250 0.0000 0.0875 0.0250non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0125 0.0125 0.00006..10 missing values histogram 0.0250 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0125First Canonical Correlation 0.0375Mean Skew 0.0375Mean Kurtosis 0.0625Class Entropy 0.0375Mean Attribute Entropy 0.0125Mean Mutual Information 0.0000Equivalent number of attributes 0.0250Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 229Table B.16. Lindiscr c50treeAttribute# classes 0.0519# attributes 0.0000# instances 0.0519# attributes#instances 0.0519# unknown values 0.0260# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0000 0.0390 0.0000 0.01301..5 concentration histogram 0.0260 0.0000 0.0000 0.0000 0.01306..10 concentration histogram 0.0000 0.0260 0.0000 0.0000 0.0000non computable conc. histogram 0.01301..5 concentration histogram with class 0.0130 0.0130 0.0260 0.0390 0.01306..10 concentration histogram with class 0.0130 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02601..5 correlation histogram 0.0130 0.0000 0.0260 0.0000 0.02606..10 correlation histogram 0.0909 0.0000 0.0000 0.0260 0.0260non computable correlation histogram 0.03901..5 missing values histogram 0.0000 0.0000 0.0390 0.0260 0.00006..10 missing values histogram 0.0260 0.0000 0.0130 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0130First Canonical Correlation 0.0519Mean Skew 0.0130Mean Kurtosis 0.0390Class Entropy 0.0390Mean Attribute Entropy 0.0130Mean Mutual Information 0.0000Equivalent number of attributes 0.0260Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



230 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.17. Ltree c50boostAttribute# classes 0.0222# attributes 0.0222# instances 0.0111# attributes#instances 0.0444# unknown values 0.0222# unknown values# attributes * # instances 0.0000# nominal attributes 0.0444max, min, mean, stdv of nominal attribute values 0.0222 0.0222 0.0000 0.00001..5 concentration histogram 0.0111 0.0444 0.0000 0.0333 0.02226..10 concentration histogram 0.0111 0.0000 0.0444 0.0000 0.0111non computable conc. histogram 0.00001..5 concentration histogram with class 0.0333 0.0222 0.0000 0.0333 0.00006..10 concentration histogram with class 0.0000 0.0111 0.0000 0.0111 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.03331..5 correlation histogram 0.0333 0.0000 0.0000 0.0000 0.02226..10 correlation histogram 0.0111 0.0111 0.0111 0.0000 0.0667non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0111 0.0111 0.0111 0.01116..10 missing values histogram 0.0444 0.0000 0.0111 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0000Mean Skew 0.0111Mean Kurtosis 0.0222Class Entropy 0.0000Mean Attribute Entropy 0.0000Mean Mutual Information 0.0778Equivalent number of attributes 0.0556Noise to Signal Ratio 0.0444Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 231Table B.18. Ltree c50rulesAttribute# classes 0.095# attributes 0.015# instances 0.000# attributes#instances 0.0159# unknown values 0.031# unknown values# attributes * # instances 0.0159# nominal attributes 0.0317max, min, mean, stdv of nominal attribute values 0.0000 0.0000 0.0000 0.03171..5 concentration histogram 0.0794 0.0159 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0159 0.0476 0.0159 0.0000non computable conc. histogram 0.01591..5 concentration histogram with class 0.0635 0.0000 0.0159 0.0317 0.00006..10 concentration histogram with class 0.0000 0.0476 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01591..5 correlation histogram 0.0000 0.0317 0.0159 0.0000 0.01596..10 correlation histogram 0.0000 0.0159 0.0000 0.0159 0.0159non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0000 0.0476 0.01596..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0794Mean Skew 0.0159Mean Kurtosis 0.0159Class Entropy 0.0317Mean Attribute Entropy 0.0000Mean Mutual Information 0.0635Equivalent number of attributes 0.0159Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



232 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.19. Ltree c50treeAttribute# classes 0.1481# attributes 0.0247# instances 0.0000# attributes#instances 0.0617# unknown values 0.0247# unknown values# attributes * # instances 0.0000# nominal attributes 0.0370max, min, mean, stdv of nominal attribute values 0.0123 0.0494 0.0000 0.02471..5 concentration histogram 0.0247 0.0000 0.0000 0.0247 0.00006..10 concentration histogram 0.0123 0.0000 0.0247 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0370 0.0000 0.0370 0.0247 0.00006..10 concentration histogram with class 0.0123 0.0123 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01231..5 correlation histogram 0.0370 0.0247 0.0000 0.0247 0.02476..10 correlation histogram 0.0494 0.0370 0.0000 0.0000 0.0000non computable correlation histogram 0.01231..5 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.01236..10 missing values histogram 0.0000 0.0000 0.0123 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0247Mean Skew 0.0247Mean Kurtosis 0.0000Class Entropy 0.0494Mean Attribute Entropy 0.0247Mean Mutual Information 0.0247Equivalent number of attributes 0.0123Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 233Table B.20. Ltree LindiscrAttribute# classes 0.0230# attributes 0.0115# instances 0.0575# attributes#instances 0.0230# unknown values 0.0345# unknown values# attributes * # instances 0.0000# nominal attributes 0.0230max, min, mean, stdv of nominal attribute values 0.0000 0.0115 0.0000 0.01151..5 concentration histogram 0.0115 0.0000 0.0230 0.0345 0.00006..10 concentration histogram 0.0000 0.0115 0.0000 0.0000 0.0230non computable conc. histogram 0.01151..5 concentration histogram with class 0.0115 0.0345 0.0460 0.0115 0.00006..10 concentration histogram with class 0.0115 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01151..5 correlation histogram 0.1264 0.0230 0.0000 0.0230 0.00006..10 correlation histogram 0.0000 0.0115 0.0000 0.0000 0.0805non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0460 0.0230 0.00006..10 missing values histogram 0.0230 0.0000 0.0115 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0230First Canonical Correlation 0.0230Mean Skew 0.0345Mean Kurtosis 0.0230Class Entropy 0.0345Mean Attribute Entropy 0.0000Mean Mutual Information 0.0230Equivalent number of attributes 0.0345Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



234 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.21. IBL c50boostAttribute# classes 0.0323# attributes 0.0323# instances 0.1129# attributes#instances 0.0161# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0161 0.0968 0.0161 0.01611..5 concentration histogram 0.0161 0.0484 0.0000 0.0000 0.01616..10 concentration histogram 0.0000 0.0323 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.00006..10 concentration histogram with class 0.0161 0.0000 0.0000 0.0161 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01611..5 correlation histogram 0.0645 0.0000 0.0000 0.0000 0.01616..10 correlation histogram 0.0323 0.0000 0.0161 0.0000 0.0323non computable correlation histogram 0.03231..5 missing values histogram 0.0000 0.0000 0.0161 0.0161 0.00006..10 missing values histogram 0.0000 0.0000 0.0323 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0323First Canonical Correlation 0.0484Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0000Mean Attribute Entropy 0.0323Mean Mutual Information 0.0323Equivalent number of attributes 0.0968Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 235Table B.22. IBL c50rulesAttribute# classes 0.0972# attributes 0.0417# instances 0.0417# attributes#instances 0.0417# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0139 0.0139 0.0000 0.00001..5 concentration histogram 0.0000 0.0139 0.0139 0.0139 0.01396..10 concentration histogram 0.0000 0.0139 0.0833 0.0139 0.0139non computable conc. histogram 0.00001..5 concentration histogram with class 0.0139 0.0000 0.0000 0.0278 0.02786..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0278 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0417 0.0000 0.0000 0.0278 0.00006..10 correlation histogram 0.0139 0.0000 0.0139 0.0139 0.0417non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0000 0.0139 0.06946..10 missing values histogram 0.0139 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0139First Canonical Correlation 0.0556Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0278Mean Attribute Entropy 0.0000Mean Mutual Information 0.0694Equivalent number of attributes 0.0278Noise to Signal Ratio 0.0278Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



236 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.23. IBL c50treeAttribute# classes 0.0380# attributes 0.0127# instances 0.0253# attributes#instances 0.0506# unknown values 0.0000# unknown values# attributes * # instances 0.0127# nominal attributes 0.0127max, min, mean, stdv of nominal attribute values 0.0127 0.0253 0.0253 0.00001..5 concentration histogram 0.0127 0.0127 0.0000 0.0000 0.01276..10 concentration histogram 0.0000 0.0000 0.0000 0.0253 0.0380non computable conc. histogram 0.05061..5 concentration histogram with class 0.0380 0.0000 0.0000 0.0127 0.01276..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0380 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01271..5 correlation histogram 0.0759 0.0000 0.0127 0.0127 0.00006..10 correlation histogram 0.0127 0.0253 0.0127 0.0127 0.0127non computable correlation histogram 0.01271..5 missing values histogram 0.0000 0.0000 0.0000 0.0127 0.01276..10 missing values histogram 0.0127 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0127First Canonical Correlation 0.0253Mean Skew 0.0127Mean Kurtosis 0.0380Class Entropy 0.0127Mean Attribute Entropy 0.0127Mean Mutual Information 0.0127Equivalent number of attributes 0.0633Noise to Signal Ratio 0.1013Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 237Table B.24. IBL LindiscrAttribute# classes 0.0595# attributes 0.0595# instances 0.0238# attributes#instances 0.0833# unknown values 0.0357# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0119 0.0000 0.0000 0.01191..5 concentration histogram 0.0357 0.0119 0.0476 0.0000 0.01196..10 concentration histogram 0.0119 0.0000 0.0238 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0238 0.0119 0.0000 0.0238 0.01196..10 concentration histogram with class 0.0119 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02381..5 correlation histogram 0.0952 0.0238 0.0000 0.0238 0.00006..10 correlation histogram 0.0595 0.0119 0.0119 0.0119 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0119 0.0238 0.0238 0.02386..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0000Mean Skew 0.0238Mean Kurtosis 0.0238Class Entropy 0.0000Mean Attribute Entropy 0.0119Mean Mutual Information 0.0119Equivalent number of attributes 0.0476Noise to Signal Ratio 0.0238Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



238 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.25. IBL LtreeAttribute# classes 0.0612# attributes 0.0204# instances 0.0306# attributes#instances 0.0102# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0000 0.0612 0.0000 0.00001..5 concentration histogram 0.0408 0.0000 0.0102 0.0102 0.01026..10 concentration histogram 0.0000 0.0000 0.0510 0.0204 0.0000non computable conc. histogram 0.02041..5 concentration histogram with class 0.0306 0.0102 0.0408 0.0816 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01021..5 correlation histogram 0.0102 0.0102 0.0102 0.0000 0.02046..10 correlation histogram 0.0000 0.0204 0.0102 0.0612 0.0510non computable correlation histogram 0.01021..5 missing values histogram 0.0000 0.0000 0.0102 0.0102 0.01026..10 missing values histogram 0.0510 0.0000 0.0204 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0000Mean Skew 0.0000Mean Kurtosis 0.0204Class Entropy 0.0306Mean Attribute Entropy 0.0204Mean Mutual Information 0.0204Equivalent number of attributes 0.0102Noise to Signal Ratio 0.0714Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 239Table B.26. NB c50boostAttribute# classes 0.0145# attributes 0.0145# instances 0.0435# attributes#instances 0.0145# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0145 0.0000 0.0145 0.01451..5 concentration histogram 0.0580 0.0290 0.0435 0.0000 0.00006..10 concentration histogram 0.0000 0.0725 0.0000 0.0000 0.0580non computable conc. histogram 0.00001..5 concentration histogram with class 0.0580 0.0145 0.0290 0.0435 0.00006..10 concentration histogram with class 0.0145 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0145# continuous attributes 0.01451..5 correlation histogram 0.0290 0.0435 0.0000 0.0435 0.02906..10 correlation histogram 0.0290 0.0000 0.0000 0.0145 0.0000non computable correlation histogram 0.02901..5 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.00006..10 missing values histogram 0.0000 0.0000 0.0435 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0145First Canonical Correlation 0.0145Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0145Mean Attribute Entropy 0.0145Mean Mutual Information 0.0290Equivalent number of attributes 0.0435Noise to Signal Ratio 0.0290Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



240 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.27. NB c50rulesAttribute# classes 0.0220# attributes 0.0220# instances 0.0110# attributes#instances 0.0000# unknown values 0.0110# unknown values# attributes * # instances 0.0330# nominal attributes 0.0110max, min, mean, stdv of nominal attribute values 0.0110 0.0110 0.0000 0.00001..5 concentration histogram 0.0330 0.0110 0.0000 0.0000 0.02206..10 concentration histogram 0.0110 0.0220 0.0000 0.0220 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0110 0.0000 0.0549 0.0549 0.01106..10 concentration histogram with class 0.0440 0.0549 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02201..5 correlation histogram 0.0549 0.0330 0.0000 0.0110 0.03306..10 correlation histogram 0.0110 0.0220 0.0000 0.0000 0.0110non computable correlation histogram 0.02201..5 missing values histogram 0.0000 0.0330 0.0110 0.0330 0.01106..10 missing values histogram 0.0110 0.0000 0.0440 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0110First Canonical Correlation 0.0330Mean Skew 0.0110Mean Kurtosis 0.0220Class Entropy 0.0440Mean Attribute Entropy 0.0000Mean Mutual Information 0.0110Equivalent number of attributes 0.0220Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 241Table B.28. NB c50treeAttribute# classes 0.0588# attributes 0.0353# instances 0.0588# attributes#instances 0.0000# unknown values 0.0118# unknown values# attributes * # instances 0.0118# nominal attributes 0.0353max, min, mean, stdv of nominal attribute values 0.0235 0.0235 0.0000 0.01181..5 concentration histogram 0.0118 0.0471 0.0118 0.0000 0.02356..10 concentration histogram 0.0588 0.0353 0.0000 0.0235 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0118 0.0000 0.0353 0.0235 0.00006..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01181..5 correlation histogram 0.0235 0.0235 0.0000 0.0353 0.02356..10 correlation histogram 0.0235 0.0000 0.0235 0.0000 0.0118non computable correlation histogram 0.01181..5 missing values histogram 0.0000 0.0118 0.0000 0.0235 0.01186..10 missing values histogram 0.0471 0.0000 0.0118 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0235Mean Skew 0.0235Mean Kurtosis 0.0118Class Entropy 0.0706Mean Attribute Entropy 0.0118Mean Mutual Information 0.0118Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



242 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.29. NB LindiscrAttribute# classes 0.0404# attributes 0.0404# instances 0.0101# attributes#instances 0.0101# unknown values 0.0101# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0202 0.0202 0.0000 0.00001..5 concentration histogram 0.0101 0.0000 0.0000 0.0101 0.01016..10 concentration histogram 0.0101 0.0303 0.0404 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0404 0.0101 0.0000 0.0404 0.04046..10 concentration histogram with class 0.0202 0.0000 0.0000 0.0101 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02021..5 correlation histogram 0.0000 0.0101 0.0202 0.0101 0.02026..10 correlation histogram 0.0404 0.0202 0.0202 0.0101 0.0404non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0404 0.0404 0.01016..10 missing values histogram 0.0303 0.0000 0.0202 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0101First Canonical Correlation 0.0303Mean Skew 0.0000Mean Kurtosis 0.0707Class Entropy 0.0303Mean Attribute Entropy 0.0101Mean Mutual Information 0.0303Equivalent number of attributes 0.0101Noise to Signal Ratio 0.0303Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 243Table B.30. NB LtreeAttribute# classes 0.0156# attributes 0.0625# instances 0.0156# attributes#instances 0.0000# unknown values 0.0625# unknown values# attributes * # instances 0.0312# nominal attributes 0.0312max, min, mean, stdv of nominal attribute values 0.0156 0.0156 0.0000 0.00001..5 concentration histogram 0.0312 0.0000 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0156 0.0156 0.0156non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0000 0.0000 0.1094 0.01566..10 concentration histogram with class 0.0156 0.0000 0.0000 0.0000 0.0156non computable conc. histogram with class 0.0000# continuous attributes 0.01561..5 correlation histogram 0.0156 0.0469 0.0625 0.0000 0.03126..10 correlation histogram 0.0000 0.0000 0.0156 0.0312 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0469 0.0000 0.01566..10 missing values histogram 0.0156 0.0000 0.0469 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0312First Canonical Correlation 0.0000Mean Skew 0.0156Mean Kurtosis 0.0156Class Entropy 0.0156Mean Attribute Entropy 0.0156Mean Mutual Information 0.0312Equivalent number of attributes 0.0156Noise to Signal Ratio 0.0312Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



244 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.31. NB IBLAttribute# classes 0.0659# attributes 0.0440# instances 0.0000# attributes#instances 0.0220# unknown values 0.0220# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0549 0.0000 0.0110 0.01101..5 concentration histogram 0.0549 0.0330 0.0110 0.0000 0.00006..10 concentration histogram 0.0000 0.0769 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0000 0.0000 0.0110 0.0110 0.02206..10 concentration histogram with class 0.0110 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.02201..5 correlation histogram 0.0549 0.0330 0.0000 0.0000 0.01106..10 correlation histogram 0.0220 0.0330 0.0000 0.0110 0.0220non computable correlation histogram 0.01101..5 missing values histogram 0.0000 0.0000 0.0440 0.0440 0.00006..10 missing values histogram 0.0110 0.0000 0.0220 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0110First Canonical Correlation 0.0659Mean Skew 0.0000Mean Kurtosis 0.0000Class Entropy 0.0440Mean Attribute Entropy 0.0000Mean Mutual Information 0.0110Equivalent number of attributes 0.0659Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 245Table B.32. ripper c50boostAttribute# classes 0.0119# attributes 0.0238# instances 0.0357# attributes#instances 0.0119# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0119 0.0000 0.0000 0.00001..5 concentration histogram 0.0238 0.0119 0.0476 0.0357 0.03576..10 concentration histogram 0.0119 0.0000 0.0595 0.0000 0.0357non computable conc. histogram 0.02381..5 concentration histogram with class 0.0357 0.0119 0.0119 0.0238 0.03576..10 concentration histogram with class 0.0119 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0119# continuous attributes 0.00001..5 correlation histogram 0.0000 0.0000 0.0000 0.0000 0.01196..10 correlation histogram 0.0000 0.0357 0.0119 0.0000 0.0357non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0357 0.0238 0.0000 0.07146..10 missing values histogram 0.0119 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0357Mean Skew 0.0833Mean Kurtosis 0.0119Class Entropy 0.0476Mean Attribute Entropy 0.0119Mean Mutual Information 0.0119Equivalent number of attributes 0.0119Noise to Signal Ratio 0.0238Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



246 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.33. ripper c50rulesAttribute# classes 0.0132# attributes 0.0263# instances 0.0000# attributes#instances 0.0789# unknown values 0.0000# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0132 0.0395 0.0000 0.01321..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.05266..10 concentration histogram 0.0132 0.0000 0.0132 0.0000 0.0132non computable conc. histogram 0.01321..5 concentration histogram with class 0.0395 0.0263 0.0658 0.0000 0.02636..10 concentration histogram with class 0.0395 0.0000 0.0000 0.0000 0.0132non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0132 0.0000 0.0395 0.0000 0.00006..10 correlation histogram 0.0000 0.0132 0.0658 0.0000 0.0263non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0132 0.0000 0.0395 0.02636..10 missing values histogram 0.0263 0.0000 0.0263 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0395Mean Skew 0.0263Mean Kurtosis 0.0000Class Entropy 0.0789Mean Attribute Entropy 0.0000Mean Mutual Information 0.0132Equivalent number of attributes 0.0263Noise to Signal Ratio 0.0263Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 247Table B.34. ripper c50treeAttribute# classes 0.0563# attributes 0.0000# instances 0.0704# attributes#instances 0.0704# unknown values 0.0282# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0563 0.0141 0.0141 0.00001..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.00006..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0282 0.0423 0.0563 0.0141 0.01416..10 concentration histogram with class 0.0141 0.0000 0.0000 0.0423 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.01411..5 correlation histogram 0.0000 0.0141 0.0282 0.0423 0.00006..10 correlation histogram 0.0000 0.0282 0.0141 0.0141 0.0423non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0282 0.0141 0.0141 0.00006..10 missing values histogram 0.0423 0.0000 0.0141 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0282Mean Skew 0.0563Mean Kurtosis 0.0000Class Entropy 0.0423Mean Attribute Entropy 0.0000Mean Mutual Information 0.0141Equivalent number of attributes 0.0000Noise to Signal Ratio 0.0282Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



248 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.35. ripper LindiscrAttribute# classes 0.0000# attributes 0.0000# instances 0.0685# attributes#instances 0.0548# unknown values 0.0274# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0000 0.0000 0.0000 0.00001..5 concentration histogram 0.0137 0.0000 0.0685 0.0548 0.02746..10 concentration histogram 0.0137 0.0000 0.0000 0.0137 0.0000non computable conc. histogram 0.01371..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0274 0.00006..10 concentration histogram with class 0.0274 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0137 0.0548 0.0548 0.0137 0.00006..10 correlation histogram 0.0411 0.0000 0.0000 0.0548 0.0274non computable correlation histogram 0.06851..5 missing values histogram 0.0000 0.0000 0.0000 0.0137 0.01376..10 missing values histogram 0.0000 0.0000 0.0137 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0137First Canonical Correlation 0.0137Mean Skew 0.0685Mean Kurtosis 0.0000Class Entropy 0.0548Mean Attribute Entropy 0.0137Mean Mutual Information 0.0411Equivalent number of attributes 0.0137Noise to Signal Ratio 0.0000Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 249Table B.36. ripper LtreeAttribute# classes 0.0575# attributes 0.0345# instances 0.0000# attributes#instances 0.0115# unknown values 0.0230# unknown values# attributes * # instances 0.0000# nominal attributes 0.0345max, min, mean, stdv of nominal attribute values 0.0230 0.0345 0.0000 0.02301..5 concentration histogram 0.0115 0.0000 0.0000 0.0000 0.02306..10 concentration histogram 0.0000 0.0000 0.0460 0.0000 0.0000non computable conc. histogram 0.00001..5 concentration histogram with class 0.0115 0.0690 0.0000 0.0115 0.02306..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0115 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0230 0.0000 0.0000 0.0115 0.00006..10 correlation histogram 0.0115 0.0115 0.0230 0.0000 0.0000non computable correlation histogram 0.01151..5 missing values histogram 0.0000 0.0000 0.0345 0.0345 0.01156..10 missing values histogram 0.0000 0.0000 0.0230 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0230Mean Skew 0.0575Mean Kurtosis 0.0460Class Entropy 0.0460Mean Attribute Entropy 0.0575Mean Mutual Information 0.0345Equivalent number of attributes 0.0575Noise to Signal Ratio 0.0345Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



250 APPENDIX B. RESULTS ON THE 65 DATASETSTable B.37. ripper IBLAttribute# classes 0.0323# attributes 0.0108# instances 0.0215# attributes#instances 0.0000# unknown values 0.0108# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0323 0.0645 0.0108 0.02151..5 concentration histogram 0.0215 0.0000 0.0430 0.0000 0.03236..10 concentration histogram 0.0108 0.0108 0.0108 0.0215 0.0108non computable conc. histogram 0.00001..5 concentration histogram with class 0.0215 0.0000 0.0108 0.0215 0.02156..10 concentration histogram with class 0.0108 0.0000 0.0000 0.0430 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.00001..5 correlation histogram 0.0645 0.0108 0.0215 0.0000 0.00006..10 correlation histogram 0.0215 0.0108 0.0323 0.0215 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0000 0.0215 0.02156..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0215Mean Skew 0.0860Mean Kurtosis 0.0215Class Entropy 0.0323Mean Attribute Entropy 0.0323Mean Mutual Information 0.0000Equivalent number of attributes 0.0753Noise to Signal Ratio 0.0108Mean Mult. Correl. Coef. 0.0000SDratio 0.0000



B.4. SELECTION FREQUENCY BY C50BOOST 251Table B.38. ripper NBAttribute# classes 0.0238# attributes 0.0357# instances 0.0238# attributes#instances 0.0000# unknown values 0.0238# unknown values# attributes * # instances 0.0000# nominal attributes 0.0000max, min, mean, stdv of nominal attribute values 0.0238 0.0476 0.0000 0.00001..5 concentration histogram 0.0119 0.0119 0.0357 0.0000 0.02386..10 concentration histogram 0.0119 0.0119 0.0000 0.0000 0.0119non computable conc. histogram 0.01191..5 concentration histogram with class 0.0119 0.0119 0.0119 0.0476 0.01196..10 concentration histogram with class 0.0238 0.0000 0.0000 0.0000 0.0000non computable conc. histogram with class 0.0000# continuous attributes 0.04761..5 correlation histogram 0.0000 0.0238 0.0476 0.0000 0.01196..10 correlation histogram 0.0476 0.0119 0.0000 0.0000 0.0000non computable correlation histogram 0.00001..5 missing values histogram 0.0000 0.0000 0.0238 0.0000 0.00006..10 missing values histogram 0.0238 0.0000 0.0476 0.0000 0.0000# continuous# attributes 0.0000# nominal# attributes 0.0000Binary Attributes 0.0000Frac1 0.0000First Canonical Correlation 0.0119Mean Skew 0.0357Mean Kurtosis 0.0476Class Entropy 0.1190Mean Attribute Entropy 0.0000Mean Mutual Information 0.0119Equivalent number of attributes 0.0238Noise to Signal Ratio 0.0357Mean Mult. Correl. Coef. 0.0000SDratio 0.0000


