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To my parents Gianni and Stamati
and my sister Pagona






Hope your road is a long one.

May there be many summer mornings when,
with what pleasure, what joy,

you enter harbours you're seeing for the first time;
may you stop at Phoenician trading stations
to buy fine things,

mother of pearl and coral, amber and ebony,
sensual perfume of every kind -

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to learn and go on learning from their scholars.

Keep Ithaca always in your mind.

Arriving there is what you're destined for.
But don’t hurry the journey at all.

Better if it lasts for years,

so you’re old by the time you reach the island,
wealthy with all you’ve gained on the way,
not expecting Ithaca to make you rich.

Ithaca - K.Kavafis
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Abstract

The goal of this thesis is to provide support to the analyst in selecting the appro-
priate classification algorithm for a specific problem, taking into consideration
the nature of the problem. We make no distinction between an algorithm and
the representational model of the algorithm, we consider the learning algorithm
as the entity to be selected. We tackle the problem of inducer selection as a typ-
ical classification problem, although at a meta-level. In a classification problem
a learner is given a dataset of training instances and is required to construct
an inductive model in order to predict the classes of new unseen instances. In
our meta-learning framework training instances are the descriptions of datasets,
and the meta-classification or else meta-learning task is the prediction of the
learning algorithm that is more appropriate for a specific dataset.

We provide a novel formulation of the meta-learning space in terms of pair-
wise comparisons of learning algorithms. The meta-learning space simulates
closely the typical process that an analyst adopts, when he has to select among
different inducers. The increased flexibility that the meta-learning space offers.
The incorporation of the pairwise meta-learning problems allows for a closer
study of the factors affecting the relative performance of different inducers.

We proceeded to a systematic search for features that can adequately de-
scribe a dataset, with the main emphasis placed on the description of attribute
interelationships. These features will constitute the predictive features of the
pairwise meta-learning problems. An effort to find an appropriate way to bridge
the gap between features that describe properties of continuous attributes and
features that describe properties of discrete attributes. In that context we also
introduced the notion of non-appl values, for these features whose computation
does not make sense for discrete attributes and vice versa. A new representation
of the features used to describe the properties of each attribute of a dataset or
combinations of attributes, via the use of histograms, in an effort to depict as
close as possible their distribution, without loss of discriminating information.

We undertook extensive comparisons of different ways of characterizing data-
sets as well as performing inducer ranking, these included: an empirical com-
parison of different ways of characterizing datasets in order to perform inducer
selection, under two different meta-learning frameworks; an empirical compari-
son of different ways of characterizing datasets under a regression approach to
meta-learning; the exploitation of the regression approach to predict rankings
of inducers, and a comparison of different ranking methods.

Xix



XX ABSTRACT

The emprical evaluation of the system has shown that it can provide success-
ful suggestions as to which learning algorithm is more appropriate for a specific
dataset. The meta-learning models constructed by the inducers applied on the
meta-learning problems allow us to have a better understanding of the dataset
chatacteristics that affect the performance of the learning algorithms.



Sélection d’Algorithme via
Meta-apprentissage

I Introduction

Le domaine de 'apprentissage automatique est en constante évolution et produit
une multitude de modeles et d’algorithmes pour effectuer des taches de classi-
fication, tels que les arbres de décision, les réseaux de neurones, les inducteurs
de regles, le plus proche voisin, etc.

L’analyste doit sélectionner, parmi ces modeles et algorithmes, ceux qui
correspondent le mieux a la morphologie et aux caractéristiques spéciales d’un
probleme donné.

Cette sélection est un probléme extrémement fastidieux étant donné qu’il
n’existe pas de modele ou d’algorithme qui ait une meilleure performance que
d’autres indépendamment des caractéristiques spécifiques du probleme, comme
cela a été observé dans différentes comparaisons empiriques, (Aha, 1992; Salzberg,
1991; Shavlik et al., 1991; Weis & Kapouleas, 1989).

Par la suite, les résultats empiriques ont été confirmés par différents théoremes
du type "no free lunch”, (Schaffer, 1994; Wolpert, 1996b; Wolpert, 1996a). En-
tre autres, ils établissent le fait que pour deux algorithmes d’ apprentissage
quelconques, leur performance moyenne sur tous les problemes d” apprentissage
définis sur un ensemble d’entrainement spécifique, sera exactement la méme.
Pour un groupe quelconque de problemes ot un algorithme d’ apprentissage
surpasse ’autre, il existe un domaine ou 'inverse est vrai.

Chaque algorithme a une ”supériorité sélective”, (Brodley, 1995), cad qu'il
est meilleur que les autres pour un type de problémes particulier. Ceci est du
au fait que chaque algorithme a ce que ’on appelle un ”biais inductif” engendré
par les hypotheses faites afin de généraliser d’'une donnée d’entrainement & des
exemples jamais vus auparavant.

Selon Mitchell (1997), ”le biais inductif d’un algorithme d’ apprentissage est
I’ensemble de toutes les hypotheses requises pour justifier ses inférences induc-
tives comme étant des inférences déductives”. Donc, ’analyste doit posséder
beaucoup d’expérience pour pouvoir identifier 'algorithme le plus approprié
a la morphologie du probleme posé. Le processus de sélection de modeles et
d’algorithmes adéquats est décrit en détail par Brodley and Smyth (1997).

xxi
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Le modele d’un algorithme définit en fait I’ ”espace de recherche” ou 1’ "es-
pace d’hypotheses”, qui définit aussi le ” biais représentationnel”, de I’algorithme,
comme par exemple k-FND (forme normale disjonctive), ou k-FNC (forme nor-
male conjonctive), les fonctions linéaires discriminantes, les régles, etc. L’ algo-
rithme ”fouille” cet espace pour rechercher la bonne hypothese, cad 'hypothese
qui correspond le mieux aux données. L’algorithme détermine ainsi 'ordre de
visite des états de cet espace, cet ordre est aussi appelé le ”biais de recherche”
de ’algorithme. Par exemple, entre deux algorithmes qui recherchent dans un
espace FND, l'un pourrait commencer la recherche par les formes FND qui
contiennent un ensemble complet de variables, tandis que "autre pourrait com-
mencer par des ensembles ne contenant qu’une seule variable. Par conséquent,
le mauvais choix d’algorithme pourrait entrainer une convergence lente vers la
bonne hypothese, ou pourrait méme ne pas aboutir a la solution optimale a
cause d’un minimum local. Un mauvais choix de modéle pourrait avoir un im-
pact plus grave encore: une hypothese appropriée a notre probléme risquerait
d’étre ignorée si elle n’est pas contenue dans ’espace de recherche du modeéle.

Une formalisation des espaces de biais est donnée par Gordon and desJardin
(1995), ot sont décrits divers niveaux de biais. Au plus bas niveau nous trouvons
un espace d’hypotheses spécifique et une méthode pour le fouiller. Au dessus,
nous avons l’espace représentationnel qui a comme états les différentes représen-
tations et divers espaces de recherche définis pour chacun des états de ’espace
représentationnel. Le probleme du biais approprié devient alors un probleme de
recherche dans ces espaces.

La tache de classification est une tache itérative. L’analyste doit tout d’abord
sélectionner un model / une classe d’algorithmes, par exemple sélectionner entre
la classe d’algorithme d’arbres de décision ou la classe d’algorithme des réseaux
de neurones. A I’étape suivante on sélectionne un algorithme particulier im-
plémentant une méthode spécifique pour chercher a travers I’espace représenta-
tionnel associé au modele choisi. L’algorithme est ensuite appliqué et la qualité
de ses prédictions est évaluée. Si les résultats d’évaluation sont médiocres, le
processus est répété a partir du stade antérieur avec de nouvelles sélections. La
procédure d’évaluation est ainsi assez couteuse en temps et devient probléma-
tique lorsque le volume de données est important.

L’impact du travail et de 'expérience de 'expert dans cette procédure de
”trial-and- error” est évident. Une pléiade de systemes contenant une variété de
modeles et d’algorithmes existent et sont & la disposition de 'analyste. Cepen-
dant, la sélection parmi ceux-ci reste de la responsabilité de 1’analyste et a ce
jour il n’existe aucun systeme qui pourrait fournir des suggestions ou un sup-
port pour déterminer laquelle des sélections serait la plus appropriée pour un
probleme donné.

I Contributions

Le but de cette theése est de fournir un support a ’analyste pour sélectionner
I’algorithme de classification approprié pour un probleme spécifique en prenant
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en considération la nature du probleme. Nous ne ferons pas ici une distinction
entre un algorithme et le modele représentationnel de I’algorithme. En revanche,
nous considérerons que ’algorithme d’ apprentissage est I'entité a sélectionner.

Nous traiterons le probleme de la sélection d’ inducteur comme un probleme
typique de classification, mais & un meta-niveau. Dans un probleme de clas-
sification on donne a un algorithme d’ apprentissage un ensemble d’instances
d’entrainement et il doit construire un modéle inductif afin de prédire les classes
de nouvelles instances inconnues. Dans notre base de travail de meta- apprentis-
sage les instances d’entrainement seront les descriptions des ensembles de don-
nées individuels, et 1a meta-classification ou bien la tache de meta-apprentissage
sera de prédire quel algorithme d’ apprentissage est le plus approprié pour un
ensemble de données particulier.

Nous énumérons ci-dessous les principales contributions de ce travail.

1. Sur l'espace du meta-apprentissage

e Une formulation originale de I'espace de meta-apprentissage en terme
de comparaisons par paire d’algorithmes d’ apprentissage. L’espace
de meta- apprentissage simule d’'une maniere réaliste le processus
qu’un analyste adopte lorsqu’il doit sélectionner parmi différents in-
ducteurs.

e La grande flexibilité que l’espace du meta-apprentissage offre. L’
incorporation des problemes par paire de meta-apprentissage permet
une étude plus approfondie des facteurs qui affectent les performances
relatives de différents inducteurs.

2. Sur la définition des caractéristiques

e Une recherche systématique pour des caractéristiques qui peuvent
décrire un ensemble de données d’une maniere adéquate, avec I’accent,
principalement mis sur la description des relations qu’il y a entre
les attributs. Ces caractéristiques deviendront les caractéristiques
prédictives des problemes par paire de meta- apprentissage.

e Un effort pour trouver une maniére appropriée pour faire la jonc-
tion entre des caractéristiques des propriétés d’attributs continus et
des caractéristiques qui décrivent des propriétés d’attributs discrets.
Dans ce contexte nous avons aussi introduit la notion de valeur non-
applicable, pour ces caractéristiques dont le calcul n’a pas de sens
pour des attributs discrets et vice-versa.

e Une nouvelle représentation des caractéristiques utilisées pour décrire
les propriétés de chaque attribut d’un ensemble de données ou com-
binaisons d’attributs, a travers 1'utilisation d’histogrammes, dans
I'optique de décrire le plus fidelement possible leur distribution, sans
perte d’informations discriminantes.

3. Des comparaisons étendues des différentes manieres de caractériser les
ensembles de données ainsi que ’établissement d’une classification d’ in-
ducteurs.
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e Une comparaison empirique des différentes fagons de caractériser les
ensembles de données afin d’effectuer une sélection d’ inducteurs dans
deux bases de travail de meta-apprentissage différentes.

e Une comparaison empirique des différentes facons de caractériser les
sets de données avec une approche de régression au meta- apprentis-
sage.

e L’exploitation de I'approche de régression pour prédire ’ordre des in-
ducteurs et la comparaison de différentes méthodes d’ordonnancement.

L’évaluation empirique du systéme a montré qu’elle pouvait fournir des sug-
gestions exactes quant a savoir quel algorithme d’ apprentissage est le plus
approprié pour un ensemble de données spécifique. De plus, les modeles de
meta- apprentissage, construits par les inducteurs, appliqués sur les problemes
de meta- apprentissage nous permettront d’avoir une meilleure compréhension
des caractéristiques des ensembles de données qui affectent la performance des
algorithmes d’ apprentissage.

III Sommaire des chapitres

Ci-apres nous donnons une breve description de chacun des chapitres de ce
mémoire de these.

Chapitre 2. Meéthodes de sélection d’algorithmes. Dans ce chapitre
nous donnons une vue d’ensemble des différentes approches existantes pour la
sélection d’algorithme. Nous présentons les méthodes utilisées pour évaluer
les algorithmes d’ apprentissage, estimons leurs erreurs et comment estimer la
pertinence des résultats a ’aide de tests de nature statistique. Nous contin-
uerons avec une présentation du travail effectué sur la sélection automatique
d’algorithmes et nous le décrirons selon trois dimensions. Premiérement la
facon dont les ensembles de données peuvent étre caractérisés, deuxiemement les
dispositions d’évaluation utilisées par les méthodes automatiques de sélections
d’algorithmes et finalement la maniére dont ces systeémes fournissent des sugges-
tions a I'analyste. A la fin de ce chapitre nous présentons quelques travaux qui
ne sont pas directement associés avec la sélection automatique d’algorithmes.

Chapitre 3. La base de travail du meta-apprentissage. Dans ce chapitre
nous présentons ’architecture du systéme. Nous donnons une description de
I’espace du meta-apprentissage et des problemes par paire de meta-apprentissage
formant cet espace. Les problemes par paire de meta-apprentissage correspon-
dent & toutes les paires possibles de n algorithmes, qui donne n(n-1)/2 paires.
Les instances de chacune des paires sont des descriptions des ensembles de don-
nées accompagnées d’une étiquette de classe indiquant quel algorithme de la
paire montre la meilleure performance pour 'ensemble de données correspon-
dant. Nous montrons comment en combinant les meta-modeles construits a
partir des problemes par paire, nous arrivons a avoir une prédiction quant a
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savoir quel(s) inducteur(s) est (sont) les plus adapté(s) pour un nouvel en-
semble de données qui ne faisait pas partie de ’ensemble d’entrainement. De
plus, nous présentons I’ensemble des ensembles de données que nous utilisons
pour entrainer et évaluer le systeme, ainsi que la série d’ inducteurs a partir
desquels nous allons effectuer la sélection d’algorithmes. Pour finir ce chapitre,
nous présentons comment 1’évaluation du systeme sera effectue sous deux an-
gles. Le premier, que nous appellerons la précision stricte, est le pourcentage
de fois que le systeme donne la bonne prédiction, cad. le nombre de fois que
le systeme prédit correctement les algorithmes qui constituent le groupe des
meilleurs algorithmes. Le deuxieme, que 'on appelle la précision libre, corre-
spond au pourcentage de fois que le systéme a donné comme résultat un en-
semble d’algorithmes d’ apprentissage qui était un sous-ensemble des meilleurs
algorithmes.

Chapitre 4. La description des ensembles de données. La bonne sélec-
tion des caractéristiques qui seront utilisées pour décrire les ensembles de don-
nées est cruciale pour la performance du systeme. Ceux-ci devraient décrire
des caract éristiques morphologiques des ensembles de données qui affectent la
performance des algorithmes de classification. Différents inducteurs montrent
différentes sensibilit és aux morphologies spécifiques des ensembles de données.
Ce que nous voulons faire c’est de montrer comment ces morphologies affectent
la performance relative des diff érents inducteurs. Par exemple, des inducteurs
présentent différents degrés de sensibilité a la présence d’attributs incongrus.
Les approches du plus proche voisin y sont tres sensibles, tandis que les algo-
rithmes d’arbres de décisions et de r éseaux de neurones sont assez robustes, car
ils possedent des mécanismes internes qui effectuent des sélections d’attributs.
Un autre exemple est la distinction entre les approches numériques, comme
les réseaux de neurones, ou les discriminants linéaires, et ceux basés sur une
représentation symbolique tels que les arbres de décision ou les inducteurs de
regles. Le premier est plus adapté aux ensembles de données ou les attributs
sont en majorité numériques et le second plus adapté pour les ensembles de don-
nées ou les attributs sont majoritairement symboliques. Nous nous efforcerons
de trouver un ensemble de caractéristiques qui décrive le mieux possible ces
facteurs.

Dans ce chapitre nous établissons I’ensemble de caractéristiques qui sera util-
isé pour décrire les ensembles de données et construire les problemes par paire de
meta-apprentissage apres avoir passé en revue les méthodes existantes de carac-
térisation d’ensembles de données. Une des principales limitations de ces méth-
odes est la facon dont ils traitent les caractéristiques qui peuvent étre définies
sur la base d’un attribut ou d’une paire d’attributs. Les méthodes existantes
comptent sur I'utilisation de moyennes des caractéristiques qui sont définies pour
un ensemble d’attributs. Par exemple dans le cas de concentration de coefficient
pour k attributs il y aura k(k-1) coefficients distincts dont chacun est associé
a une paire spécifique. Les méthodes existantes remplacent ces ensembles de
valeurs par leur moyenne, ce qui résulte en une perte d’information précieuse
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sur la distribution des coefficients. Nous proposons l'utilisation d’histogrammes
pour décrire d’une maniere plus fine cette distribution. Nous subdivisons les car-
actéristiques des ensembles de données en cing catégories différentes selon quelle
propriété de I’ensemble de données elles décrivent et nous donnons les caractéris-
tiques qui appartiennent a chaque catégorie. La premiere de ces catégories con-
tient les caractéristiques qui donnent une information sur le type des attributs
qui apparaissent dans I’ensemble de données, par exemple le nombre d’attributs
continus ou discrets. La seconde décrit les attributs individuels, un exemple
en est ’entropie des attributs. La troisieme donne des moyens d’association
d’attributs comme les coefficients de corrélation et de concentration. Dans la
quatrieme catégorie nous placons les moyens d’association des attributs avec
la classe, et dans la derniere catégorie nous mettons les caractéristiques qui ne
peuvent pas étre classées dans aucune des catégories précédentes.

A la fin nous évaluons le cott en terme de calcul de ces caractéristiques
et nous comparerons avec le colit d’'une validation croisée pour sélectionner le
meilleur algorithme d’ apprentissage.

Chapitre 5. Meta-apprentissage a partir d’instances. La sélection de
I’ inducteur adéquat qui sera utilisé au niveau du meta-apprentissage affectera
d’une maniere critique la performance du systeme. Pour commencer, nous util-
isons un simple algorithme d’ apprentissage a partir d’instances. Les algorithmes
d’ apprentissage a partir d’instances n’ induisent pas de modeles a partir des
données d’entrainement, ils se basent uniquement sur des mesures de distance
des instances qui doivent étre classifiées a partir des données utilisées pour
I’entrainement. Il y a deux raisons principales pour la sélection d’un algorithme
d’ apprentissage & partir d’instances au meta-niveau. Premierement et le plus
important, est que nous nous attendons a ce que les algorithmes d’ apprentissage
montrent des performances similaires sur des ensembles de données avec des car-
actéristiques similaires, pour que I’on puisse exploiter la performance antérieure
d’algorithmes pour prédire la performance sur des ensembles de données incon-
nus. Deuxiemement, il est facile d’adapter la mesure de distance utilisée par un
algorithme a partir des instances afin qu’il integre la valeur "non-applicable”
dans ses calculs. Nous définissons la similarité entre les ensembles de données
en terme de proximité géométrique dans ’espace de morphologie, dont les di-
mensions sont définies par les caractéristiques de I’ensemble de données, et nous
observons l’espace de morphologie comme un espace euclidien conventionnel,
étendu par "non-applicable”. Nous avons modifié la définition de distance de
I’algorithme du plus proche voisin pour prendre en compte des attributs dont
le domaine est R U non-applicable. Les caractéristiques morphologiques sont
toutes normalisées a l'intervalle [0,1] avant 'application de I'algorithme.

Nous présentons les résultats de I’évaluation du systeme lorsque I’ inducteur
a partir d’instances est utilisé sur le meta-niveau. Deux variantes de I’ensemble
des ensembles de données de caractéristiques sont comparées par rapport a leur
performance prédictive, histo et +histo. La différence entre la seconde et la pre-
miere est qu’elle a été étendue pour inclure les distributions d’une mesure basée
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ANOVA dans l'optique de décrire les associations entre des attributs discrets et
continus. Les résultats ont montré, en ce qui concerne I’algorithme d’ appren-
tissage a partir d’instances, que I'incorporation de ces caractéristiques réduit le
pouvoir de discrimination de la caractérisation.

Une question qui a recueilli peu d’attention, pour ne pas dire aucune, dans
le domaine du meta-apprentissage, est l’explication et la compréhension des
facteurs qui affectent la performance des inducteurs. Tous les efforts précé-
dents avaient pour but de maximiser les capacités prédictives du meta-apprenti
sans pour autant éclaircir les facteurs (cad les propriétés des ensembles de don-
nées) qui affectent la performance des algorithmes. En appliquant la sélection
de variables au meta-niveau on pourrait combler cette lacune et par la-méme
améliorer la performance du meta- apprentissage. En utilisant la sélection de
variables, nous pouvons avoir une meilleure idée sur les facteurs qui affectent la
performance des algorithmes d’ apprentissage. Ceci est encore plus vrai lorsque
I’algorithme de meta-apprentissage utilisé est un algorithme d’ apprentissage a
partir d’instances, qui ne donne aucune suggestion dans la pertinence des at-
tributs utilisés. C’est pourquoi dans le méme chapitre nous avons aussi examiné
I'utilisation d’un algorithme d’ apprentissage & partir d’instances en association
avec un mécanisme de sélection de variables. Pour chacun des probléemes par
paire de meta-apprentissage nous examinons les attributs sélectionnés par le
mécanisme de sélection d’attributs et a la fin nous caractérisons chaque attribut
a laide de son pouvoir de discrimination total, cad & quelle fréquence apparait
cette variable sur la totalité des problemes de meta- apprentissage. Les résul-
tats montrent que l'utilisation de sélection de variables peut en effet améliorer
la performance du systeme en terme de son pouvoir prédictif.

Chapitre 6. Comparaison des algorithmes d’ apprentissage au meta-
niveau. Dans ce chapitre nous explorons 'utilisation d’algorithmes d’ appren-
tissage plus élaborés sur le plan du meta-apprentissage : les algorithmes a base
d’arbre de décisions. Le but principal est d’améliorer encore la performance du
systeme. Nous analysons aussi les modeles produits, afin d’évaluer le pouvoir
prédictif des caractéristiques des ensembles de données, ceci de la méme maniere
que nous avions analysé les caractéristiques qui étaient sélectionnées par le mé-
canisme de sélection de variables du chapitre précédent. Ce chapitre est organ-
isé comme suit. Premierement, nous examinons la performance des nouveaux
meta-apprentis avec les deux ensembles distincts des ensembles de données de
caractéristiques, cad +histo et histo, afin de voir avec lequel nous obtenons la
meilleure performance. Les résultats sont néanmoins différents des compara-
isons analogues du chapitre précédent. Avec les inducteurs basés sur les arbres
de décision la différence de performance entre les deux caractérisations n’est
pas statistiquement significative. Ensuite, nous comparons les performances
des meta-apprentis, y compris celui de fsSIBL sur ’ensemble de données histo.
Cbh0boost se trouve étre le meilleur meta-apprenti, celui dont les prédictions
sont les plus précises.

Et finalement les modeles inductifs construits par deux des meta-apprentis
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sont analysés afin d’examiner le pouvoir discriminatoire des caractéristiques et
les caractériser a nouveau en terme de leur pouvoir discriminatoire total.

Chapitre 7. Comparaison de datasets de caractérisations. En com-
mencant par le projet STATLOG en 1994, et jusqu’a aujourd’hui avec le projet
METAL, une grande variété de mesures est utilisée pour décrire et caractériser
les ensembles de données dans le but de prédire les performances d’algorithmes
d’ apprentissage. A notre connaissance, il n’existe pas de comparaisons systé-
matiques des différentes approches de caractérisation d’ensemble de données. A
la seule exception pres, celle du travail de Bensusan et Giraud-Carrier (2000),
ou ils comparent la performance de ”landmarking” avec celle d’une caractéri-
sation des ensembles de données basée sur 'information dans le méme esprit
que STATLOG. Les ensembles de données utilisés dans cette étude sont ar-
tificiels. La description basée sur l'information consistait en une entropie de
classe, nombre équivalent a d’attributs, entropie moyenne d’attributs, moyenne
d’information réciproque, moyenne entropie jointe et rapport signal sur bruit ;
ce qui représente un ensemble limité de caractéristiques qui est en fait un sous-
ensemble de celles utilisées dans STATLOG. Les découvertes expérimentales ont
montré que le "landmarking” devance la description basée sur l'information,
cependant les résultats doivent étre pris avec précaution, vu que I’'étude a été
menée seulement sur des ensembles de données artificiels, I’ensemble des carac-
téristiques basé sur 'information était plutot limité et de plus il n’y avait pas
de controle sur la pertinence statistique des résultats.

Le but de ce chapitre est d’effectuer une comparaison controlée et systéma-
tique des différents ensembles de données de caractérisations, sur des ensembles
de données réels. Nous examinons cinq ensembles différents de caractéristiques.
Quatre d’entre eux suivent 'approche basée statistique/information présentée
dans STATLOG et la cinquieme est 'approche ”landmarking” pour caractériser
un ensemble de données. Plus précisément nous examinons les ensembles suiv-
ants :

e statlog, 'ensemble de caractéristiques utilisé dans le projet STATLOG.

e dct, un ensemble des ensembles de données de caractéristiques plus riche
extrait de I'outil DCT qui a été développé a la suite du projet METAL.

e histo, I'ensemble de caractéristiques que nous avons établi.
e histo-limited, une version réduite de histo.

e land, une caractérisation des ensembles de données en terme de perfor-
mance prédictive de simples algorithmes d’ apprentissage.

La comparaison implique 65 ensembles de données réels, principalement du
dépot de 'UCT et du projet METAL. Le nombre des ensembles de données aurait
du étre plus élevé si l'outil de ”landmarking” n’avait pas échoué en caractérisant
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un nombre trop important des ensembles de données. Nous utilisons deux struc-
tures de meta-apprentissage différentes pour effectuer les comparaisons. La pre-
miere est la structure par paire que nous avons introduit au chapitre 3, la seconde
est une approche plus simple du meta-apprentissage et son but principal étant
la prédiction de l'algorithme d’ apprentissage qui atteindra la plus haute pré-
cision. Ici nous n’utilisons pas de comparaisons par paire, nous avons juste un
probleme de meta- apprentissage simple dont le but est de prédire ’algorithme
qui accomplit la plus grande exactitude pour un ensemble de données donné.
Les instances de I'’ensemble de données du meta-apprentissage sont les descrip-
tions des ensembles de données accompagnées d’une étiquette de classe donnant
I’algorithme qui a la plus grande précision sur l’ensemble de données, ceci est
déterminé par la méthode de validation croisée stratifiée. Aucun type de test
d’une pertinence statistique n’est utilisé pour sélectionner le meilleur algorithme,
seule la valeur absolue de la précision estimée par la validation croisée est prise
en considération.

Cbh0boost a été utilisé dans les deux structures comme étant le meta- ap-
prenti. La stratégie d’évaluation pour la deuxieme structure de meta- appren-
tissage sera la précision de c50boost estimée par validation croisée stratifiée.

En ce qui concerne la premiere structure de meta-apprentissage et la perfor-
mance sur les problemes par paire, les résultats n’ont pas été concluants. Deux
des cing caractérisations, statlog et land n’ont pas pu devancer la précision de
base & un niveau statistiquement significatif dans aucun des 28 problemes par
paire. En fait, land a eu une précision moyenne qui était encore pire que la
moyenne de précision de base. Les trois caractérisations restantes ont surpassé
la précision de base pour deux ou trois problemes par paire. En ce qui concerne
la performance par rapport a la suggestion finale, seule les approches basées
sur I’histogramme ont pu dépasser la précision de base en terme d’exactitude
stricte. Les trois approches restantes ont été encore pires que la précision de base
correspondante. Malheureusement, les différences avec les approches basées sur
I’histogramme quant a la précision de base n’étaient pas statistiquement perti-
nentes.

Les résultats sur la structure simple du meta-apprentissage sont légerement
différents. Ici, quatre des cinq caractérisations dépassent la précision de base:
histo, histo-limited, dct et statlog; la seule qui ait montré une précision inférieure
a celle de base était le set land, probablement du au fait que nous avons utilisé
un ensemble plus limité que les landmarkers initiaux. Le set histo réalise la
meilleure performance avec une amélioration considérable par rapport a la base,
mais encore une fois cette amélioration n’est pas statistiquement significative.

Chapitre 8. Meta-apprentissage basé sur la régression. Dans tous les
chapitres précédents, nous avons considéré le probleme de meta-apprentissage
comme une tache de classification. Dans ce chapitre nous explorons une autre
alternative ou nous approchons le probleme comme étant un probleme de ré-
gression. Nous abordons les taches de meta-apprentissage comme des taches de
régression ou nous cherchons des rapports entre les propriétés d’un ensemble de
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données et la performance du classifieur. Cette approche directe est plus flexible
que le meta-apprentissage pour la sélection de modeles puisque les estimations
ne sont pas relatives & un ensemble spécifique de classifieurs. Avec ce scénario de
régression, nous pouvons utiliser les modeles construits pour effectuer des sélec-
tions d’ inducteurs, cad sélectionner les inducteurs les plus appropriés pour un
ensemble de données, ainsi qu'un ordonnancement d’ inducteurs, cad ordonner
les inducteurs par leur performance prévisionnelle sur un ensemble de données.
Nous évaluons l'approche de régression pour les deux taches et nous examinons
la performance des modeles de régression construits a partir des cinq ensembles
de caractéristiques utilisés dans I’étude comparative du chapitre 7. L’algorithme
de régression utilisé est un algorithme de régression-noyau. En fin, nous inclu-
ons dans notre étude la classification basée sur le ”zooming” introduite dans
(Soares & Brazdil, 2000). Le land accomplit de loin la meilleure performance
en terme d’estimation d’erreurs des inducteurs individuels. Mais lorsque ces
estimations ont été utilisées afin d’ordonner les algorithmes par rapport a leur
performance prévue, le résultat fut tres médiocre, méme considérablement plus
mauvais que 'ordre de base. Les meilleurs résultats d’ordonnancement ont été
obtenus par la combinaison de Kernel et dct, suivi par celle de Kernel et histo-
limited et histo. L’ordre basé sur la régression a dépassé en général ’ordre basé
sur le ”zooming” , néanmoins la différence entre les méthodes et entre les méth-
odes et la performance de 'ordre de base n’ont pas été significatifs au niveau
statistique. Lorsque les prédictions de régression ont été utilisées pour effectuer
une sélection d’ inducteur, seules trois méthodes arrivent a dépasser la préci-
sion de base, mais pas & un niveau statistiquement significatif. En premiere
position nous trouvons Kernel et histo, le méme ensemble qui avait montré la
meilleure performance lorsque nous avions abordé le probleme de sélection d’
inducteur a travers la classification. Suivi de Kernel avec dct et histo-limited.
Le reste des méthodes a eu une performance plus mauvaise que celle de la pré-
cision de base. En général I'approche basée sur la régression semble avoir une
performance légerement moindre a celle de ’approche de type ”classification”.



Chapter 1

Introduction

The machine learning field has been evolving for a long time and has given us
a variety of models and algorithms to perform the task of classification, e.g.
decision trees, neural nets, rule inducers, nearest neighbor etc. The analyst
must select among them the ones that better match the morphology and the
special characteristics of the problem at hand. This selection is one of the most
difficult problems since there is no model or algorithm that performs better than
all others independently of the particular problem characteristics, as it has been
observed in various empirical comparisons, (Aha, 1992; Salzberg, 1991; Shavlik
et al., 1991; Weis & Kapouleas, 1989).

Later the empirical results have been confirmed by the various “no free lunch
theorems”, (Schaffer, 1994; Wolpert, 1996b; Wolpert, 1996a). Among others
they state that for any two learners, their performance averaged over all the
possible learning problems defined over a specific training set, will be exactly
the same. For any class of problems where one learner outperforms the other
there will be another area in which the opposite situation holds.

Each algorithm has a “selective superiority”,(Brodley, 1995), i.e. it is better
than the rest for specific types of problems. This happens because each algo-
rithm has a so-called “inductive bias” caused by the assumptions it makes in
order to generalize from the training data to unseen examples. According to
Mitchell (1997), “the inductive bias of a learning algorithm is the set of all the
assumptions which are required in order to justify its inductive inferences as
deductive inferences”. Hence, the analyst must posses a lot of experience to be
able to identify the most appropriate algorithm for the morphology of the prob-
lem at hand. The process of selecting the appropriate models and algorithms is
described thoroughly by Brodley and Smyth (1997).

The model of an algorithm actually defines the “search space” or “hypoth-
esis space”, which also determine the “representational bias” of the algorithm,
such as k-DNF (disjunctive normal form), or k-CNF (conjunctive normal form),
linear discriminant functions, rules etc. The algorithm searches this space for
the right hypothesis, i.e. for the hypothesis that better fits the data. The algo-
rithm determines the order of visiting the states in this space, this order is also
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called the “search bias” of the algorithm. For example, between two algorithms
that both search in DNF space, one might start the search from DNF forms
that contain the complete set of features, while the other might start from sets
consisting of only one feature. Hence, the wrong choice of algorithm may result
in slow convergence towards the right hypothesis, or may even end at a subop-
timal solution due to a local minimum. A wrong choice of model can have a
more severe impact: A hypothesis appropriate for the problem at hand might
be ignored because it is not contained in the model’s search space.

A third source of bias comes from the method used to evaluate the learning
algorithms, this form of bias is usually identified as “validation bias”. As Bailey
and Elkan (1993) note, the best choice of error estimation procedure depends
on which learning algorithm is been evaluated.

A formalization of the bias spaces is given by Gordon and desJardin (1995),
where various levels of bias are described. At the lower level we have a specific
hypothesis space and a way to search it. Above it we have the representational
space having as states the different representations, and various search spaces
defined for each of the states of the representational space. The problem of the
appropriate bias then becomes a problem of searching those spaces.

The classification task is an iterative task. The analyst must first select a
model/class of algorithms, for example select between the class of decision tree
algorithms or the class of neural network algorithms. On a next step a particular
algorithm implementing a specific way to search through the representational
space associated with the chosen model, is selected. The algorithm is then
invoked and the quality of its predictions is evaluated. If the evaluation results
are poor, the process is repeated from a previous stage with new selections. The
evaluation procedure is quite time consuming, and becomes problematic when
the volume of data is high.

The human effort and experience in this trial-and-error procedure is appar-
ent. A plethora of systems with a variety of models and algorithms exist at the
analyst’s disposal. However, the selection among them is left to the analyst and
so far there is no system that can provide support or suggestions as to which
selections are more appropriate for a specific problem.

1.1 Contributions

The goal of this thesis is to provide support to the analyst in selecting the
appropriate classification algorithm for a specific problem, taking into consid-
eration the nature of the problem. We will not make a distinction between
an algorithm and the representational model of the algorithm. We will rather
consider the learning algorithm as the entity to be selected. We will tackle the
problem of inducer selection as a typical classification problem, although at a
meta-level. In a typical classification problem a learner is given a dataset of
training instances and is required to construct an inductive model in order to
predict the classes of new unseen instances. In our meta-learning framework
the training instances will be the descriptions of individual datasets, and the
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meta-classification or else meta-learning task will be to predict which learning
algorithm is more appropriate for a specific dataset.

We will now give, a list of what we think that are the main contributions of
this work.

1. On the meta-learning space

(a) A novel formulation of the meta-learning space in terms of pairwise
comparisons of learning algorithms. The meta-learning space simu-
lates closely the typical process that an analyst adopts, when he has
to select among different inducers.

(b) The increased flexibility that the meta-learning space offers. The in-
corporation of the pairwise meta-learning problems allows for a closer
study of the factors affecting the relative performance of different in-
ducers.

2. On the definition of features

(a) A systematic search for features that can adequately describe a dataset,
with the main emphasis placed on the description of attribute intere-
lationships. These features will become the predictive features of the
pairwise meta-learning problems.

(b) An effort to find an appropriate way to bridge the gap between fea-
tures that describe properties of continuous attributes and features
that describe properties of discrete attributes. In that context we also
introduced the notion of non-appl values, for these features whose
computation does not make sense for discrete attributes and vice
versa.

(c) A new representation of the features used to describe the properties
of each attribute of a dataset or combinations of attributes, via the
use of histograms, in an effort to depict as close as possible their
distribution, without loss of discriminating information.

3. Extensive comparisons of different ways of characterizing datasets as well
as performing inducer ranking

(a) An empirical comparison of different ways of characterizing datasets
in order to perform inducer selection, under two different meta-
learning frameworks.

(b) An empirical comparison of different ways of characterizing datasets
under a regression approach to meta-learning.

(c) The exploitation of the regression approach to predict rankings of
inducers, and a comparison of different ranking methods.

The empirical evaluation of the system has shown that it can provide success-
ful suggestions as to which learning algorithm is more appropriate for a specific
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dataset. Furthermore the meta-learning models constructed by the inducers ap-
plied on the meta-learning problems will allow us to have a better understanding
of those dataset characteristics that affect the performance of the learning al-
gorithms.

1.2 A guide to the chapters

The remainder of this dissertation is organized as follows. In chapter 2 we give
an overview of the existing approaches to algorithm selection. In chapter 3
we present the architecture of the system. That is, we give a description of
the meta-learning space and the pairwise meta-learning problems constituting
that space. We show how from combining the meta-models constructed from
the pairwise problems, we can get a prediction as to which inducer(s) is(are)
more appropriate for a dataset. Furthermore, we present the set of datasets
we use in order to train and evaluate the system, as well as the pool of in-
ducers from which we are going to perform the algorithm selection. Finally,
we present how the evaluation of the system will be done. In chapter 4 we
establish the set of features that will be used to describe the datasets, and
to construct the pairwise meta-learning problems, after reviewing the existing
work in characterizing datasets. The idea of histograms is also presented, and
various issues are discussed concerning the quality of the characteristics and
the problems that they set. Finally, an estimation of the computational cost
of the dataset characteristics is provided. In chapter 5 we present the results
of the evaluation of the system when an instance based inducer is used on the
meta-level. Two variations of the set of dataset characteristics are compared
with respect to their predictive performance. In the same chapter we examine
the use of feature selection in order to improve the performance of the instance
based inducer. One clear result is the fact that the features finally selected are
different for each pairwise problem. Chapter 6 provides a comparison of four
different learners on the meta-learning level, in order to establish which is the
most suitable inducer. The meta-models of two of the inducers are analyzed in
order to characterize the discriminatory power of the datasets characteristics.
In chapter 7 we perform a comparative study of different ways of characteriz-
ing datasets, using only real world datasets. The comparison is done under two
different meta-learning frameworks, and the results show an advantage of the
histogram based characterizations, over the other characterizations. In chap-
ter 8 we deviate from the approach that we followed in the previous chapters,
where we handled the problem of algorithm selection as a classification prob-
lem. Here instead, we explore the use of a regression algorithm to predict the
relative errors of pairs of algorithms, but also to predict the absolute error of
every algorithm. The predictions are used to perform algorithm selection and
to provide rankings of algorithms. We examine the performances of different
strategies of characterizing datasets, under the regression scenario and we com-
pare the regression based ranking with a well established method of ranking. In
the last chapter we give an overview of the work, along with the problems that
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we faced, the remaining open issues and possible ways to address them.



CHAPTER 1. INTRODUCTION



Chapter 2

Methods of Algorithm
Selection

Formulating and solving a classification problem is a time intensive task consist-
ing of many phases, which requires a considerable amount of diverse knowledge
from the analyst. Before anything else, there is the definition of the classifica-
tion problem and the collection of the appropriate data for solving the problem.
In this stage it is the domain expert who has to formulate the problem, deter-
mine the features that provide relevant information for solving it, and of course
provide them. It can be a quite time consuming process and since usually the
data do not come for free, the amount of relevant information at the end can be
limited. The quality of the available data is one of the most crucial factors in
achieving a high performance solution. However, we will not go into the details
of data collection and of the quality of the available data. The analysts’s main
task will be to select the most appropriate learning algorithm, according to some
performance measures and within the constraints imposed by the application.

In figure 2.1, we give an overview of the analysis process. The analyst
has at his disposal a pool of classification algorithms, from which he initially
selects some for evaluation on the specific problem. The initial selection can
be based on knowledge of the problem, that is select those algorithms whose
characteristics better match the characteristics of the dataset, or even on the
analyst’s preferences for specific learning algorithms. The evaluation usually
requires extensive experimentation, which consists in repetitive execution of the
selected algorithms. The form of evaluation depends on constraints imposed by
the application and the volume of the data; sometimes it is possible to perform
computational intensive evaluation, while other times this is prohibitive. It can
be that the results of the evaluation are poor for all the algorithms evaluated,
this can be due to a bad choice of inducers, or even worse an indication that
the quality of data is poor. Whichever the cause, the result is a reiteration of
the process. After completing successfully the evaluation, the next step is the
comparison of the achieved performances in order to select the most appropriate
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Fig. 2.1. Model and task selection for knowledge discovery

classification algorithm. The selected algorithm will be the one used to construct
the final classification model from the available data.

The goal of all algorithm selection systems is to relieve the analyst of the
intensive evaluation phase, using information about the problem and the dataset
in order to directly suggest the more appropriate inducer.

In the forthcoming sections, we will first give an overview of the evaluation
phase, the issues involved and the methods used in order to perform it, followed
by an overview of the existing systems for algorithm selection.

2.1 Algorithm Evaluation and Selection

The typical process in selecting which inducer will be applied to a dataset in
order to construct a classification model, depends on the goal of the analysis. For
example, if the target is to acquire an understanding of the data, the analyst
can choose from the beginning to eliminate from the pool of algorithms that
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he is considering to use, the ones that do not produce understandable and
interpretable models. Examples of which are nearest neighbors methods that
do not produce any kind of models, or neural nets that produce models difficult
to interpret. If time is a critical concern, this can lead to a different set of
possible candidates, from which the computationally intensive algorithms are
excluded. In a different scenario, which will be also our working hypothesis,
the analyst is interested in selecting the classification algorithm that can better
fit the data, that is, he is interested in the inducer that will exhibit the lowest
generalization error. To determine the appropriate inducer, he first uses some
error evaluation method, in order to get an estimate of the errors of the initially
selected ones. In a next step he compares the error estimates, usually via some
kind of statistical hypothesis test, in order to determine which is the best for
the dataset under examination.

Before proceeding to a more thorough description of the evaluation and
comparison methods, we will give a description of the basic constituents of the
learning process, and of the notion of generalization error.

e Consider a generator G of random vectors X, which are drawn according
to an unknown, but fixed, probability distribution, P(X).

e A supervisor S that assigns output values, class labels, Y = S(X), to the
X random vectors, according to an unknown, but also fixed, conditional
probability distribution P(Y|X).

e The pairs (X,Y), drawn from the probability distribution P(X,Y) =
P(Y|X)P(X), constitute the learning space.

e The goal of an inducer I, is to construct a hypothesis H(X) that best
approximates the response of the supervisor, S(X).

In the real world the inducer has access to a dataset D with a limited number
of examples, drawn from the distribution P(X,Y). The inducer will be trained
on this dataset in order to construct the approximation of S(X).

The generalization error of the H(X) hypothesis, constructed by I on the
dataset D, is the probability that H will misclassify an example drawn at ran-
dom from P(X). That is :

generalization error = Pycpx)(H(z) # S(z))

Since we can not draw an infinite number of new examples from P(X), on which
we could compute the exact generalization error, we have to rely on estimations
of it using the available data, D, by some error estimation procedure. It is these
error estimates which will be later used in order to select the best inducer, by
means of some statistical test.

2.1.1 Error Estimation

The general idea underlying all error estimation procedures, is the division of
the available set of examples in two disjoint sets. One is used for training,
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and the other is used for testing/evaluating the generated model. The test set
should not contain examples that have been used in the training set, as this
would provide optimistically biased estimates of the error. Various methods are
used for obtaining the division to train/test sets and estimating the error. We
will briefly present some of them.

The simplest method and the one with the lowest computational require-
ments is the holdout method, where the available set of examples is partitioned
in two disjoint sets. Usually 2/3 of the initial examples are used for training
the inducer and the remaining 1/3, called the holdout set, is used for testing
the produced model. The method is used when the volume of the data is quite
high, and the repetitive execution of training and testing phases, required by
other methods, is prohibitive. It makes poor use of the examples for training,
since 1/3 of them is never used. Nevertheless, when the number of examples is
high it gives reliable estimates.

In k-fold cross validation method the available set is split into k& disjoint
sets. The inducer is then trained on the union of £ — 1 sets and tested on the
remaining set. The whole process is repeated k times, each time a different set
from the k is used as a test set. The estimation of the error is simply the average
of the observed errors over the k folds. When k equals the number of examples
then the method is called leave-one-out. A variant of cross validation is stratified
cross validation, where the partitions are constructed in such a way, that the
distribution of the classes, as it appears in the initial dataset, is preserved.

In the bootstrap method the initial set of examples is sampled with replace-
ment, so that a new set of the same size is established. The instances not chosen
in the sampling process will form the testing set. The whole process is repeated
a number of times, k, usually between 50 and 200, each time using a different
sample of the examples. The estimation of the error is given by the following
formula :

err =

k
> (0.632€1c41, + 0.368¢17ain)
b=1

=

where €051, is the error of the model on the b test set, and €srqin the error of
the model on the complete initial set.

Leave-one-out produces almost unbiased estimates of the true error, but with
high variance. The variance is reduced when we move to k-fold cross validation,
with k£ in the area of five to ten, and it is further reduced when we are using
stratified cross validation, still being relatively high. One method to reduce the
variance of cross validation is to repeat the whole procedure for a number of
times. For both cross validation and stratified cross validation the estimates
of the mean are almost unbiased. In bootstrap the error estimates are highly
biased, but they have a very low variance. Bootstrap’s bias is high especially
when algorithms that fit perfectly the training data are evaluated, e.g. a nearest
neighbor algorithm. In that case €syqin is zero, leading to optimistic estimation
of the error. Efron and Tibshirani (1995), propose a bootstrap version which
they call the 632+ rule, which is designed to provide less biased estimates of the
error. A comparative study of cross validation, stratified cross validation and
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bootstrap can be found in (Kohavi, 1995). The author concludes that the use of
ten fold stratified cross validation is appropriate for algorithm selection, even if
the computational power available is sufficient for more computational intensive
methods of error evaluation. In a similar study, Bailey and Elkan (1993), com-
pared the performance of bootstrap and leave-one-out cross validation; they also
concluded that the use of cross validation is preferable, since it exhibits much
smaller bias than bootstrap. They noted though that the best choice of error
estimation method depends on which algorithm is evaluated.

The simple comparison of the estimated errors of a number of inducers is
not sufficient to determine which is the best for a specific dataset. The observed
differences in the error estimates might not be significant in a statistical context.
The estimates of the errors are sample estimates of the true error. It is obvious
that two inducers can have the same true error, but different sample estimates.
In order to establish whether the differences in the sample estimates reflect a
difference in the true error or are simply the result of random fluctuations of
the sample estimates around the same mean, the use of statistical significance
tests is essential.

2.1.2 Algorithm Selection based on Significance Testing

Statistical significance tests are used to control whether some hypothesis holds
or not. In what concerns the comparison of learning algorithms, usually the
hypothesis examined is whether two inducers have the same true error. The
statistical test used should depend on the way that the evaluation of the error
has been done.

When the evaluation of the error is done using a single split of the dataset,
there are two main options. The McNemar test is a test that checks for the
difference of two proportions. It is based on the number of times that the two
algorithms disagree in their predictions. The number of times that the two al-
gorithms are both correct or both wrong are not considered by the test. The
second option is to consider the errors of the inducers as coming from a bino-
mial distribution, which can in turn be approximated by a normal distribution,
and use a simple test of the differences of the two means based on the normal
distribution assumption.

In the case of cross validation one can use the paired t-test and test whether
the difference of errors of the inducers between the folds of the cross validation
is zero. Another option is to use the McNemar test again, but now the number
of times that the two algorithms disagree will be computed from the union of
the test sets. Another possibility is the sign test, that tests for the sign of the
error differences between the folds. It assumes a binomial distribution, if the
two inducers have no significant difference, then the number of + for each one
of them should be approximately equal.

Special care should be to the assumptions of the statistical tests by the error
estimation procedure. For example the paired t-test requires that the test sets
are independent, that is they should not overlap. The same requirement is
also imposed for the training sets. In the case of k-fold cross-validation this
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requirement is not violated for the test sets, since they are always disjoint, but
it is violated for the training sets. Obviously, if we use repeated k-fold cross-
validation then even the assumption of the independence of the test sets does
not hold. For a thorough description and a comparative study of some of the
aforementioned statistical tests in combination with error evaluation procedures
see (Dietterich, 1998).

When the number of learning algorithms compared is limited to two, the
application of the statistical tests is straight forward. But if the number of
algorithms compared is higher than two, there is one more factor that should be
considered, which is known as the multiplicity effect. Every statistical test has
what is called a Type I error, which is actually the probability of rejecting the
hypothesis examined when actually it holds. This type of error is controlled by
the significance level, a, set by the analyst for the test. When n comparisons
take place, the probability of committing a Type I error in one of them, is no
longer «, but rather 1 — (1 — )", the quantity (1 —«)™ is the probability that we
get all the comparisons correct. In order for the complete results to be significant
at a desired significance level, o', we have to adjust the significance levels, «;,
of each of the pairwise comparisons according to o’ = 1 — (1 — a)”. For a
detailed discussion on issues concerning the comparisons of learning algorithms
see (Salzberg, 1997; Feelders & Verkooijen, 1995).

It is obvious that the selection of the most appropriate inducer, the one that
achieves the lowest error, is not a trivial task. Apart from extensive experimen-
tation in order to evaluate the algorithms, a sound knowledge of the weaknesses
and strengths of the evaluation strategies and a good understanding of statistics
is required, in order to select the appropriate combination of statistical test and
evaluation procedure.

2.2 Automatic Algorithm Selection

As it is apparent, the task of algorithm selection is quite intensive and time
consuming, since most of the evaluation procedures require repetitive applica-
tion of the learning algorithms. The goal of systems that provide suggestions
as to which algorithm should be used is to avoid the time demanding process
of evaluation. Such systems usually rely on some kind of mapping between a
description of the datasets and performance measures of the algorithms. The
existing approaches can be characterized along the following dimensions :

e Dataset descriptions : the properties used to describe the datasets.

e FEvaluation measures : the performance measures with respect to which
the suggestion is provided, e.g. error, time performance.

e Form of suggestion : the form in which the suggestion of the system comes,
e.g. whether it proposes a single algorithm, or a list of algorithms.
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e Method used to construct the suggestion : how the mapping from the prop-
erties of the datasets to the performance measures is done.

We will shortly review the work done along these dimensions, for some of them
a more thorough description will be given in the forthcoming chapters, where
this is appropriate.

2.2.1 Datasets Description

There are two main directions used so far in order to characterize a dataset for
providing suggestion as to which classification algorithm(s) is(are) more appro-
priate for a specific dataset. In the first one, measures that describe statistical
and information based properties of the datasets are used. In the second one
a dataset is described using the performance of very simple learners. In a very
successful metaphor the first category of measures is described as the genotype
of the datasets, i.e. the inner structure of the dataset, and the second category
as the phenotype of the datasets, i.e. the visible properties of the dataset pro-
duced by the interaction of its genotype with the environment in our case the
simple learners.

The description of a dataset in terms of its information/statistical proper-
ties, in order to provide recommendation as to which algorithm to use, appeared
for the first time within the framework of the STATLOG project (Michie et al.,
1994). The authors used a set of 15 characteristics, spanning from simple ones
like the number of attributes or the number of examples, to more complex
ones, like the first canonical correlation between the attributes and the class at-
tribute, or the mean mutual information between attributes and the class. The
set of characteristics introduced there was later used in various studies, aimed
at solving the problem of algorithm selection, (Brazdil et al., 1994; Todorovski
& Dzeroski, 1999; Sohn, 1999). Lindner and Studer (1999), continue in the
same way, providing an exhaustive list of information and statistical measures
of a dataset computed for each attribute or pairs of attributes. They provide
a tool for the automatic computation of these characteristics which they call
DCT. Nevertheless, they point out that only a limited set of these measures is
relevant in providing recommendation. Set that in fact, was very similar to the
one defined in STATLOG. Sohn (1999) also uses the STATLOG set as a start-
ing point, but she proceeds with a careful evaluation of their properties in a
statistical framework. As a result, she discovers that some of the characteristics
are highly correlated, and she omits the redundant ones from her study. Fur-
thermore she introduces new features that are transformations or combinations
of the existing ones, like ratios or seconds powers, with the goal of providing
more successful predictions.

Todorovski et al. (2000) relied on the set of characteristics produced by
DCT. In order to overcome the limitations of the use of the average values
for the characteristics which are computed per attribute, or per attribute pair,
they included in their set of characteristics the minimum and maximum values
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of these. They also include new characteristics which are ratios of the already
existing.

In the second approach as already mentioned above a dataset is described
in terms of accuracy performance that simple learners achieve on the partic-
ular dataset. This approach is called landmarking and it was introduced in
(Pfahringer et al., 2000). A more thorough description of the related work will
be given in section 4.1 of chapter 4, where we will introduce the set of charac-
teristics used in the present study.

2.2.2 Evaluation measures

In order to provide suggestions as to which inducer should be applied on a
particular dataset, performance measures should be used, according to which a
preference order among the inducers will be established.

An obvious performance measure is that of the accuracy that the algorithms
achieve. So the goal of a system providing recommendations would be to sug-
gest the algorithm that achieves the highest accuracy. However, there can be
cases where other performance dimensions are also of interest. For example the
amount of training time (i.e. the amount required by the algorithm to construct
a model), the amount of test time (i.e. time required to classify an example)
or the memory requirements of the algorithm. There can be more, less easy to
quantify, performance measures, like the simplicity or the understandability of
the models that the learning algorithms produce. Each one of these could pro-
vide a basis for algorithm suggestion. When multiply criteria should be taken
into account the problem of algorithm selection can be considered as a multi-
objective optimization problem. Nevertheless in practice and in what concerns
meta-learning endeavors, accuracy is the one most often used. Examples of
studies where the selection criteria was based on accuracy, include the STAT-
LOG project, (Michie et al., 1994), the work on landmarking, (Pfahringer et al.,
2000), and the work of Sohn (1999).

The only case in which the goal of prediction was performance of the inducers
in terms of time was in VBMS,(Rendell et al., 1987). VBMS was actually
the first effort to predict which algorithm from a set of available algorithms
will perform better for a given classification problem, by associating simple
characteristics of the datasets like the number of training examples and the
number of attributes, with the performance in terms of execution time. VBMS
is trained in an incremental way, i.e. it acquires experience as new classification
tasks are presented to it.

There are cases in which the goal is to evaluate the learning algorithms,
taking into account more than one performance dimension. For example the user
might be interested in a tradeoff between training time and accuracy, willing to
sacrifice some level of accuracy if he can have an algorithm that can construct
the learned model much faster. In such cases there is a need for a mapping of
the multidimensional performance measures onto a single scalar value, which
will then be used to define the preference order among the available algorithms.

The work done by Soares (2000) provides a way to combine two performance
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measures of classification algorithms, namely accuracy and total execution time
(i.e. the sum of the time required to construct an inductive model and the time
required to test that model). The user can adjust the importance of accuracy
over time via a tunable parameter. The method used to define a preference
order among the inducers is called the adjusted ratio of ratios,(ARR). ARR
gives a measure of the advantage of a learning algorithm A over another learning
algorithm B, in terms of the accuracy they achieve and the execution time for
a specific dataset. When it comes to ranking n inducers, the ARR of each
inducer is computed, with respect to every one of the n — 1 other inducers,
resulting in a total number of n(n — 1) ARRs. The next step is to provide
a summary of these ARRs for every inducer, and this is done by the overall
mean adjusted ratio of ratios,(OMARR), which is actually the average of all
the n — 1 ARRs associated with a specific inducer. The higher the value of
the OMARR, the higher the advantage of an inducer for the specific dataset.
The preference order is defined using the OMARR values. The method can also
provide a ranking of the inducers considering their performance in m datasets.
In this case the n(n — 1) ARRs are computed for each dataset. Then for every
inducer its advantage over each one of the n — 1 inducers is computed, via the
pairwise mean adjusted ratio of ratios, PMARR, which is the average of the
related ARRs over the m datasets. Finally for each inducer the OMARR is
calculated, but now the average is taken over the PMARR values. The ranking
is done the same way as before, based on the value of OMARR.

One limitation of the ranking schema proposed by Soares is that it can only
accommodate accuracy and time as performance measures. A more flexible
schema is proposed in (Nakhaeizadeh & Schnabl, 1997), based on Data Envel-
opment Analysis, (DEA). The proposed method can incorporate any number
of performance criteria. Two types of performance measures are considered,
those that measure positive properties of the algorithms, i.e. more is better,
for example accuracy, and those that measure negative properties, i.e. less is
better, like training time. In DEA the positive properties are called output
components and the negative input components. They define the efficiency of a
learning algorithm as a weighted sum of the output components over the input
components. The weights of the input and output components are computed
for each learning algorithm, so that its efficiency is as close as possible to one,
under the constraint that there is no other inducer for which the same set of
weights would give an efficiency of more than one. The method is objective,
in the sense that the weights are computed in such a way that they maximize
the efficiency of each inducer. Algorithms that achieve an efficiency of one, are
efficient algorithms. The set of efficient algorithms forms the efficiency frontier.
The efficiency of an algorithm can only provide a partial ranking, since all the
efficient algorithms have the same efficiency of one. In order to provide a com-
plete ranking they introduce the notion of the AP-value. The AP-value is the
amount by which the efficient algorithms can increase their input components
while still remaining efficient. For the algorithms that are not efficient the AP-
value is equal to their efficiency value. The final ranking of the algorithms is
based on the AP-value.
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In section 2.2.4, we will see how the various performance measures, simple or
complex, have been used in a number of meta-learning efforts in order to support
the user in selecting the most appropriate classification algorithm, according to
the performance measure under consideration.

2.2.3 Form of Suggestion

The various approaches in providing recommendation to the user, when he has
to perform a classification task on a dataset, give suggestions in one of the
following forms :

1. A list of applicable algorithms

2. The best algorithm

3. A ranking of the algorithms

In the first category we have the work done in STATLOG, which was also
adopted in (Brazdil et al., 1994; Lindner & Studer, 1999; Todorovski & Dze-
roski, 1999). In this framework the pool of available classifiers is divided in
two distinct sets: the applicable inducers and the the non-applicable inducers.
Applicable inducers are expected to achieve a fair performance on the dataset
under examination, while non-applicable ones are expected to have a poor per-
formance. All the mentioned methods used the accuracy of the inducers as a
performance criterion.

In the second category we classify all the approaches where the suggestion
consists of a single algorithm, that is, the algorithm which is expected to perform
best on the dataset under examination, according to the performance criterion
that it is used. In this category we find the work of Bensusan and Giraud-
Carrier (2000) where landmarkers are used in order to predict the inducer that
will achieve the lowest error, and the work of Koepf et al. (2000), who use a
set of statistical and information based measures to predict again the algorithm
with the lowest error.

In the third category the recommendation consists in providing a complete
ranking of the available inducers. This order can be based on a simple perfor-
mance measure like accuracy, as it was done in (Sohn, 1999) and (Bensusan
& Kalousis, 2001). Or it can be based on a more complex performance mea-
sure that incorporates simpler ones. Examples are zoomed ranking, (Soares &
Brazdil, 2000), which provides rankings of the inducers based on the adjusted
ratio of ratios and the work by Paterson et al. (2001), where the suggested

ranking is based on the efficiency score defined by Data Envelopment Analysis.
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2.2.4 Constructing Recommendations from Dataset Char-
acterizations

Having presented the possible ways to characterize a dataset, and the perfor-
mance criteria which can be used, what remains is to give an overview of how
dataset, characterizations can be associated with the measures of performance.
There are two main possibilities; the first one uses classification techniques to
tackle the problem, while the second one uses regression.

In both approaches a collection of Meta-Learning problems is established,
with the number of problems depending on the number of classification algo-
rithms among which the recommendation is to be provided. We character-
ize these problems as meta-learning problems, since their purpose is to learn
something about the performance of learning algorithms. The collection of the
meta-learning problems will constitute the Meta-Learning Space. Usually it is
the combined solution of the meta-learning problems that will provide the basis
for the recommendation. By solution, we mean here a number of Meta-Models
that will be constructed from the application of a learning algorithm on these
problems. In the classification approach the meta-learning problems are for-
mulated as classification problems, while in the regression approach they are
formulated as regression problems. We will continue by first reviewing the var-
ious efforts that have adopted the classification approach, and then the ones
that follow the regression approach. In what follows, unless otherwise specified,
the performance criterion used is accuracy.

In STATLOG, for a pool of n inducers among which the selection will be
performed, the Meta-Learning Space consists of n classification problems, each
one associated with one of the n inducers. The instances of these classification
problems consist of datasets descriptions and the class label. The class label
can take one of the values, appl, non-appl, depending on whether the algorithm
is considered to be applicable or not to the corresponding dataset, i.e. whether
it exhibits high or low performance on the specific dataset. For each of the
meta-learning problems, a meta-model is constructed, that can predict whether
an algorithm is applicable or not to a specific dataset. The algorithm used
to construct the meta-models was the rule system of c4.5, (Quinlan, 1992a).
The approach is described in finer detail in (Brazdil et al., 1994). Exactly the
same formulation of the meta-learning space was adopted in (Lindner & Studer,
1999; Todorovski & Dzeroski, 1999). Lindner and Studer advocate the use of
a case based reasoning system to represent the meta-learning problems and
perform the inductive process, but they did not implement that. At the end
the meta-learning models that they induce are created via the c4.5 decision tree
algorithm. Todorovski and Dzeroski, explore the use of first order inductive
algorithms in order to make full use of the dataset characteristics which are
computed on an attribute basis. Meta-learning approaches mentioned so far rely
on propositional learners on the meta-level, which have limited representational
powers. Normally one had to rely on the means of characteristics that were
computed for each attribute so that they can be represented in a propositional
framework. First order inducers overcome this limitation and are able to make
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full use of the information contained in the dataset characteristics.

Another formulation of the Meta-Learning Space is to create (%) meta-
learning problems that correspond to all the pairwise comparisons of learners
from a given pool. The instances of the meta-learning problems will be also
composed by the description of a dataset and a class label. But this time the
class label will indicate which algorithm of the pair is more appropriate for the
specific dataset. Here the goal of meta-learning will be to construct meta-models
that will describe the conditions under which one inducer is preferable over an-
other. The meta-models can then be combined in order to determine from the
partial ordering, which inducer is the most appropriate, or even provide a rank-
ing of them. This formulation was followed in (Pfahringer et al., 2000), but
they stopped in the construction of the meta-models, without proceeding in
their combination in order to select the most appropriate inducer. To construct
the metal-models they used Ripper, a rule inducer (Cohen, 1995).

Finally in the simplest formulation of the Meta-Learning space, there is only
one meta-learning problem. In this case the class label is simply the inducer that
is most appropriate for the corresponding dataset. The meta-model, a global
one that gives directly the conditions under which one inducer is preferable
over all the others. This approach was adopted in (Bensusan & Giraud-Carrier,
2000). In what concerns the inducer used on the meta-level, they examined the
performance of ten different learners.

In the regression approach, the goal usually is the direct prediction of the er-
ror or of the accuracy of an inducer from the characteristics of the dataset. Here
the Meta-Learning Space consists of one regression problem for each inducer.
The meta-models are established via the application of a regression algorithm.
The predictions of the meta-models, can then be used to perform either algo-
rithm selection, i.e. suggest the learning algorithm with the lowest predicted
error, or algorithm ranking, return a ranking of the available inducers according
to their predicted errors.

Regression methods were first used to predict the error of inducers by Gama
and Brazdil (1995). They tested three different regression methods: simple lin-
ear regression, instance based regression and a piecewise linear method. They
did not however use the produced regression models in order to perform algo-
rithm selection or algorithm ranking. Sohn (1999) uses simple linear regression
to predict the errors of inducers and then proceeds to rank the inducers ac-
cording to their predicted errors with quite promising results. Finally Koepf
et al. (2000), used regression in order to perform algorithm selection and they
compared that with algorithm selection via classification, their results favored
regression based algorithm selection over classification based. The datasets on
which they worked were artificial datasets. A more detailed description of re-
gression based approaches will be given in section 8.1.

There is a third approach in constructing suggestions which cannot be clas-
sified in classification or regression approaches, and consists of methods that
produce rankings of inducers. Two methods fall in this category; they both
use a combination of ranking schemas with variations of the nearest neighbor
method. The use of the nearest neighbor method is essential in both systems,
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because in order to provide a ranking of the inducers for a specific dataset, they
need the establishment of a set of similar datasets, i.e. sets with similar charac-
teristics. In order to construct the ranking for the new dataset the performances
of the inducers on the set of similar datasets will be considered.

The first method is that of zoomed ranking introduced in (Soares & Brazdil,
2000). They use a three nearest neighbor method in order to establish a similar
set of datasets with the one for which a ranking should be constructed. After
establishing the set of similar datasets they apply the ranking method based on
the adjusted ratio of ratios, already described in section 2.2.2, in order to de-
termine the ranking. In a similar way Paterson et al. (2001) use a combination
of three nearest neighbors and the efficiency score defined by DEA (Data Enve-
lope Analysis), in order to provide a ranking of the inducers. Since the efficiency
score cannot directly accommodate the performance of inducers among different
datasets, as the adjusted ratio of ratios does, they use a weighted average of
the efficiency scores of every inducer among the three nearest neighbors. The
weights are determined according to the distance of each of the three nearest
neighbors from the dataset under examination. The ranking of the inducers
is then based on the weighted average. As performance measures from which
the efficiency score is computed they used, accuracy, train time, test time and
hypothesis size. Hypothesis size is the model size that an inducer produces for
a specific dataset.

2.2.5 Related Work

In this section, we will present work that is related to the problem of algorithm
selection but could not be characterized along the dimensions that we have
established, in the previous sections.

In a similar line of research that also involves dataset characterization, Aha
(1992), proposes a methodology for constructing rules that describe the rel-
ative performance of inducers starting from a specific dataset for which they
exhibit significant difference in performance. One of the key assumptions of the
proposed method is the availability of information concerning the inner struc-
ture of the dataset. This information includes characteristics like the number
of instances, number of classes, the number of prototypes per class and the
number of relevant and irrelevant attributes and will be used to construct a
number of, hopefully similar, artificial datasets that will populate the space
around the initial dataset. The construction of the artificial datasets is done
by slight perturbations of the parameters that describe the initial dataset. The
characteristics used on the construction of the artificial datasets along with the
performance of the inducers on them will constitute a series of meta-learning
problems, from which rules will be induced by the application of a classification
algorithm. The rules will describe how the relative performance of the inducers
is determined by the characteristics of the datasets.

Sleeman et al. (1995), present an expert system called Consultant. The
system is built to support the use of a Machine Learning Toolbox, an integrated
architecture of ten machine learning tools. It relies heavily on close interaction
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with the user; it asks several questions trying to determine the nature of the
application and the nature of the data. It does not examine the data. At the
end of the interaction a list of possible algorithms is presented and the user may
select one of them. The system is not expandable (i.e. it can not incorporate new
algorithms) and in the end relies heavily on the user for selecting the appropriate
algorithm.

Constructive induction systems face a number of problems similar to those
involved in algorithm selection. These systems view learning as a dual search
process. They perform a search both for an appropriate representation in the
space of representational spaces and for an appropriate hypothesis in a spe-
cific representational space. The traversal of the representational space is done
with the use of constructive and destructive operators. Constructive operators
expand the representation space using attribute generation methods, e.g. nu-
merical or logical combinations of the existing attributes. Destructive operators
contract the representational space through attribute selection and attribute
abstraction,(Bloedorn & Michalski, 1998). Again similar questions arise, i.e.
which operators should one apply, in which order they should be applied, and
on which attributes,(Bloedorn et al., 1994). The order of application of opera-
tors critically affects the quality of the final outcome. Bloedorn et al. (1993),
built meta-rules, from meta-data characterizing datasets, to guide the selec-
tion of operators. According to the information source used to select operators
and attributes, constructive induction methods are classified in three categories:
data driven, hypothesis driven and knowledge driven methods. In data driven
constructive induction, information from the training examples is used. For ex-
ample in order to select attributes from which new ones will be derived one may
use the information gain metric of the attributes,(Bloedorn & Michalski, 1998;
Bloedorn et al., 1993). In hypothesis driven constructive induction, results from
the analysis of the form of intermediate hypothesis are used. For example one
may use patterns appearing in the intermediate hypothesis, in order to con-
struct new attributes,(Wnek & Michalski, 1994). Finally in knowledge driven
constructive induction, domain knowledge which is provided by experts is used.

2.3 Model Combination

A line of research parallel to algorithm selection is that of model combination.
There, unlike algorithm selection where the goal is to select the single best
performing algorithm for a particular dataset, the goal is to combine different
classification models in order to improve accuracy.

There are many different ways to combine classification models, the simplest
combination strategy is wvoting. There a number of classification models are
constructed from the training data; when a new instance has to be classified
each one of the models produces a prediction. The class most often predicted is
considered as the class to which the instance belongs to. More elaborate voting
strategies have been proposed, where the prediction of each model is weighted,
usually by a quantity associated with the quality of prediction of the model.
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A more elaborate combination schema, is stacked generalization, (Wolpert,
1992). In stacking each of the base inducers, referred to as level-0 inducers,
produces a prediction for each instance of the training set, usually by an inner
cross-validation procedure. These predictions along with the class labels will
constitute a new training set which will be given as input to another inducer,
called level-1 inducer. The goal is to construct a classification model that will be
able to describe how the predictions of the level-0 inducers relate to each other,
when they fail or succeed, and how they related to the class label. We have
described a two level process, the one most often employed, but in theory there
can be many levels of combinations. In order to classify a new instance, each one
of the level-0 inducers produces its prediction, which are then given to the level-
1 inducer in order to determine the class label. Note here that voting can be
considered as a simple variant of stacking. Another variant of stacking is to use,
instead of the class labels, the probability distribution of the class labels as they
are calculated by the level-0 inducers. This variant has been found to produce
better results than using only the predicted class label, (Ting & Witten, 1997).
Another variant of stacked generalization is cascade generalization, proposed by
Gama and Brazdil (2000). There the set of initial attributes is extended by the
probability distributions of the class labels, produced by the level-0 inducers,
and then passed as input to the level-1 inducer.

So far, all the model combination methods mentioned use the predictions of
all the classification models to produce the final class label. There is another line
of research in model combination, where at the end the prediction of only one of
the base inducers is used to assign the class label to a new instance; this approach
can be referred to as dynamic model selection. The goal in dynamic model
selection, is to choose the most appropriate classification model for a region
of the instance space. The assumption underlying this approach is that every
classification model has a different region of competence within the instance
space on which it was constructed. That is, one of the classification models might
provide better predictions than the others for specific regions of the instance
space, and vice versa. When a new instance has to be classified, one must
identify which is the best performing model for the region in which the instance
falls, and then use that model to produce the final prediction.

We must note here the similarity of this approach with the problem of al-
gorithm selection. In algorithm selection the instance space consists of all the
possible datasets, and the goal is to find for each instance, i.e. dataset, the
best performing classification algorithm. In dynamic model selection the goal
is, for each instance within a particular dataset, to find the classification model
exhibiting the best performance, the one that has the highest probability of
correctly classifying it.

The key component in dynamic model selection is the characterization of the
different areas of the instance space according to the competence of each model.
One simple way to achieve that is by using cross-validation within the training
set and select the algorithm that exhibits the highest accuracy, to construct the
final classification model, as proposed in (Schaffer, 1993). This is a rather crude
approach, since it considers the whole training set to perform the selection and
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characterize the instance space. A more elaborate approach is to use a meta-
learner to characterize the various regions of the instance space according to
the performance that the classifier exhibits. Usually this characterization is
done within the training set via a cross-validation procedure. Then when a new
instance is to be classified the model or models constructed by the meta-learner
is(are) used in order to determine in which region of the instance space it falls,
and select accordingly the appropriate model. For example Woods (1997), uses
a nearest neighbor approach in order to determine the region in which a new
instance falls, the set of nearest neighbors is then used to get a local accuracy
estimate of the base level classifiers, and the one with the highest accuracy is
selected to provide the class label. Koppel and Engelson (1996), use a decision
tree to characterize the accuracy of the classification models for the different
regions of the instance space. Whenever a new instance has to be classified
a decision tree is used for each of the available classification models, in order
to determine the area of the instance space in which the instance belongs to,
and the accuracy of the corresponding model for that area. The model with
the highest performance is then chosen to classify the instance. Todorovski and
Dzeroski (2000), also use a decision tree in order to select which model should
be applied to a specific instance. Here the leaves of the decision tree, which they
call meta-decision tree, use properties of the predictions of the base classifiers
in order to select which base model should be selected. These properties are
based on the probability distribution of the class labels that each base model
produces.

In a slightly different approach which can still be characterized as dynamic
model selection, the instance space is characterized based on the predictions
that the base classifiers produce. Whenever a new instance is to be classified
all the models are applied to it and their predictions are used in order to locate
in a look-up table all the instances that exhibit the same pattern of predictions
in the training set. Merz (1995) then uses an estimate of the performance of
the models in that set of instances in order to select the best performing model
to produce the classification, while Huang and Suen (1995) simply return the
majority class that corresponds to that set of instances. This is not a majority
vote, since the predictions of the models are used in order to define an area in
the instance space and do not vote to classify the instance. Ting (1997) uses
inducer specific measures to characterize the instances of the instance space
according to their typicality. The more typical an instance is for a specific
learning algorithm, the higher our confidence is in the prediction assigned to
it by that learning algorithm. When a new instance has to be classified its
typicality is computed for each inducer, then the inducer for which the instance
has the highest typicality is chosen to provide the prediction for the specific
instance.

Another approach to model combination are hybrid classification algorithms.
This category of classification algorithms includes inducers that integrate differ-
ent learning paradigms within a single structure without relying on individual
application of base inducers. For example Tcheng et al. (1989) present the
CRL/ISO, a system that uses optimization in order to search in the inductive
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bias space. The CRL component is a learning system that manages a set of
diverse inductive biases, including multiple decomposition strategies, multiple
function approximation strategies and multiple decomposition evaluation strate-
gies, and produces hybrid concept representations. The ISO component is the
optimization component that searches in the inductive bias space for an opti-
mum bias. Ting (1994) produced a system that combines decision trees with
instance based learning in order to improve the performance of decision trees
for the problem of small disjuncts. However the two algorithms are not tightly
coupled, since they are trained independently. The decision as to which one
of the two should be used in order to classify an instance is based on whether
that instance belongs to a small disjunct; if this is the case the instance based
classifier is used, if not the decision tree model will be used. Domingos (1996)
presents RISE, a system that tightly integrates rule and instance based induc-
tion. In this system instances are considered as rules of maximal specificity so
there is no distinction between rules and instances. Brodley (1995) integrates
three different learning approaches, univariate tests, linear discriminants and
instance based, under a decision tree structure. At each node of the decision
tree if-then rules are used to guide the selection of the appropriate learner based
on data characteristics and the performance of the learners. Kohavi (1996) de-
scribes NBtree, a combination of decision tree and Naive Bayes inducer, where
the leaves of the decision tree are replaced by a Naive Bayes classifier. Gama
and Brazdil (2000) under the framework of cascade generalization describe local
cascade generalization, where they combine a decision tree structure with Naive
Bayes and linear discriminants. At each node of the decision tree the current
set of attributes is extended by the probability distributions of the class labels
that the base inducers provide, trained only on the examples that belong to
that decision node. The new attributes are propagated in the tree structure
and they are treated as normal attributes.

Another way to perform model combination is via the use of models con-
structed from the same inducer but on different versions of the training set,
usually created by same kind of resampling. The two main representatives of
this category of algorithms are bagging and boosting. The first one was intro-
duced by Breiman (1996) and creates replications of the initial training set of
equal size by sampling with replacement. From each replicate set a classifier
is constructed and the final prediction is given by the voting of the individ-
ual classifiers. Boosting was first introduced by Schapire (1990) as a method
for boosting the performance of a weak learning algorithm. AdaBoost was in-
troduced in (Freund & Schapire, 1996). The category of boosting algorithms
uses a weighted voting schema among classification models constructed by the
same inducer, where the weights are determined on the basis of the performance
of the classification models on the training set. The classification models are
constructed sequentially starting from the initial set of training instances. The
main idea of boosting is that it gives more importance to the training examples
which are misclassified; this is done by the incorporation of a weighting mecha-
nism where each example is assigned a weight. At each iteration of the training
phase the weights of the training instances which are misclassified is increased
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by a quantity which is inversely proportional to the total error on the training
set. The instance weights can then be used by a classification algorithm that is
able to directly incorporate weights of instances in the learning process, or used
in order to resample the training set. The process continues for a fixed number
of iterations.

2.4 Summary

The process of algorithm selection is a complicated and time intensive task as
it was already exhibited in section 2.1. In order to relieve the analyst from
the evaluation effort, various approaches have been proposed that directly uti-
lize information drawn from the dataset, without having to perform extensive
experimentation.

Our work falls within that framework, i.e. the automatic selection of clas-
sification algorithms based on dataset characteristics, and it covers a variety of
topics within it. We took special care in the construction of a modular meta-
learning space and the definition of the meta-learning problems that populate
it. The dataset characteristics were chosen carefully in an effort to provide a set
that can best discriminate among the performance of different inducers; further-
more we proceeded to a systematic experimentation to characterize their dis-
crimination power. We also undertook a systematic experimentation in order to
determine the most appropriate inducer for meta-level learning, and compared
our set of features with various different approaches to dataset characterization.
Finally we also explored the use of regression in order to select the most ap-
propriate algorithm or provide a ranking of algorithms, and compared it with a
well established method of ranking. Where our work differs from and where it
resembles existing approaches will be clarified in the forthcoming chapters.



Chapter 3

The Meta-Learning
Framework

The goal of this work is to provide a system which will act as an assistant for al-
gorithm selection in the context of the classification task. The task of algorithm
selection is viewed as a meta-learning task. The system builds its knowledge
from a number of specific training episodes, applications of classification algo-
rithms to a set of classification problems. The system keeps a set of registered
classification algorithms, among which algorithm selection will be performed in
the future.

During an initialization phase, every registered inducer is applied to each
one of the available classification problems and its performance is evaluated.
The morphological characteristics of these classification problems/datasets are
recorded and constitute a morphology space. For a new dataset the system will
suggest the most appropriate inducer, deciding on the basis of morphological
similarity between the new dataset and the existing collection of datasets.

The morphological characteristics along with the performance measures of
the inducers will be the building elements of a meta-learning space. Any inducer
can then be applied on this meta-learning space, in order to construct inductive
models, on which the system will rely to suggest the most appropriate inducer
for a new unseen dataset. The construction of the meta-learning space follows
closely the process of evaluation and comparison of a number of classification
algorithms to a specific dataset.

3.1 Conceptual Description

The overall architecture of the system is depicted in figure 3.1. The algorithm
suggestions are provided by Selector, which uses for that the Knowledge Base,
(KB), available to the system. The knowledge base is simply a collection of
inductive models describing the areas of competence of each of the registered
inducers, and it is built during the initialization phase of the system. Whenever

25
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a new dataset is presented to the system, Selector will combine the models of the
knowledge base and use them, together with the morphological characteristics
extracted from the new dataset, in order to provide a suggestion.

Collection of Regis_tgred
DataSets (DSs) Classifiers

Performance -
m Meta L earning Space Manager |

Meta Learning
Meta-Learning I:l """ I:l Problems
/e i
Meta-Learner
Knowledge Base
(KB)
Suggested Classifier

New . Selector
DataSet

Fig. 3.1. Architecture of the system

The establishment of the knowledge base is performed by the Meta-Learner,
which can be any classification algorithm. The Meta-Learner constructs Meta-
Models, which are actually classification models, that associate morphological
characteristics of datasets with the performance behavior of the registered in-
ducers, performance which is measured in terms of the predictive accuracy.

Data on the performance behavior of the registered classification algorithms
on the repository of datasets, are retained and managed by the Meta-Learning-
Space-Manager. These performance data, along with the morphological char-
acteristics that describe the datasets of DSs, give raise to a collection of Meta-
Learning problems, a collection that constitutes the Meta-Learning-Space. It
is from these meta-learning problems that the Meta-Learner, will construct the
meta-models which are going to be stored in the knowledge base.

The appropriate construction of the Meta-Learning-Space is crucial, since
the quality of the information contained there, will determine to a great extent
the future performance of the system. This quality depends on two factors. First
and most important is the set of morphological characteristics used to describe a
dataset. Second the procedure via which these characteristics are mapped to the
performance behavior of the inducers in order to formulated the meta-learning
problems, this procedure will be described in detail in section 3.2.1.

We define morphological characteristics or dataset characteristics, as a set of
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structural characteristics that jointly determine the performance of a classifier
on a dataset. The problem of specifying the appropriate dataset characteristics
that adequately characterize the performance of a classifier can be regarded as
a feature extraction problem. We need the set of features with the highest dis-
criminatory power. It is desirable to keep this set as small as possible. However,
it must be large enough to ensure that no two datasets with the same morphol-
ogy have similar performance values for the same classifier. So special care must
be taken in defining the right set of characteristics. The establishment of an
appropriate set of data characteristics will be the subject of chapter 4. There is
another alternative in establishing the most discriminatory set of features. In
this we do not place any constraints in the mumber and type of the features
that we use for meta-learning, but prior to using them for meta-learning we
apply principal component analysis in order to get a smaller set of uncorrelated
features. The main drawback of the principal component analysis is that the
new features are linear combinations of the base features and the produced clas-
sification models do not directly use the initial features, being thus harder to
analyze and explain.

In the remaining sections of the chapter we will give a detailed description
of the various components of the system, that is how the Meta-Learning-Space
is constructed and how a suggestion is provided for a new unseen dataset. We
will present the process via which we populated the DSs set of datasets and the
set of registered inducers among which the selection is performed. Finally we
will give the evaluation measures that will be used in the forthcoming chapters
to measure the quality of suggestions that the system provides.

3.2 Meta-Learning-Space

Once the morphology characteristics that will be used have been established,
along with the performance measures, the construction of the Meta-Learning-
Space, can take place. In this section we will give a description of the Meta-
Learning-Space, after presenting the related work.

In (Michie et al., 1994; Brazdil et al., 1994; Lindner & Studer, 1999; Todor-
ovski & Dzeroski, 1999), the methodology followed was to define for each al-
gorithm a separate meta-learning problem. In this approach each instance of
the meta-learning problem is composed of the morphological characteristics of a
specific data set and one of the class labels applicable, non-applicable, describing
whether the algorithm is applicable for the data set or not. In order to decide
which class label should be assigned to an instance, the accuracies of all the
algorithms for the specific data set are needed. Then the best accuracy is used
as a basis for determining the class label of all the algorithms for that data set.
If an algorithm’s accuracy is found to be “much worse” than the accuracy of
the best algorithm then the instance is assigned the class label non-applicable,
otherwise it is assigned the label applicable.

We see two problems in this methodology, first we do not get the truly best
algorithm(s), only a division of the set of algorithms to applicable and non-
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applicable. By truly best, we mean here that set of inducers that achieve the
highest performance, and whose performance differences are not statistically sig-
nificant different. Second and more important, is the way that the meta-learning
problems are constructed. As mentioned above, in this framework, the accuracy
is used for the assignment of class labels. The accuracy was computed by cross
validation. Nevertheless, cross-validation, and in general all error estimation
procedures, give only an estimate of the true accuracy, along with a confidence
interval which might be quite wide if the data set on which the accuracy is mea-
sured is small. Under this framework, the assignment of classes is based on a
simple comparison of the estimated accuracies, not involving any kind of test of
statistical significance of the estimated differences in performance. This results
in class assignments which can be erroneous, causing the meta-learning problems
to be distorted by noise, thus reducing the quality of the Meta-Learning-Space
and making the induction process more difficult. For a thorough description of
the methodological issues involved in comparing classifiers see (Dietterich, 1998;
Feelders & Verkooijen, 1995; Salzberg, 1997).

The problem of getting the best algorithm can be addressed by the various
ranking systems, like ranking with zooming, (Soares & Brazdil, 2000), or DEA
based ranking, (Paterson et al., 2001). The main limitation of both of the
aforementioned methods is that they rely on a single global meta-model, that is
based on a k-nearest neighbor approach, since in order to produce the rankings
a set of similar datasets to the one under examination should be established.
Moreover the single meta-model requires also the use of a unique and uniform
way of describing the datasets, independently of the inducers that are involved in
the selection. Nevertheless, it is quite probable that the factors that determine
the relative performance of a specific pair of classifiers vary among different
pairs. With a single meta-model we lose in flexibility. The same limitation
of the single meta-model appears also in (Bensusan & Giraud-Carrier, 2000),
where a single classification meta-model is produced.

A more flexible approach is regression based ranking as it is used in (Sohn,
1999; Bensusan & Kalousis, 2001), or regression based algorithm selection,
(Koepf et al., 2000). Under the regression scenario the constraint for a single
meta-model is lifted. The meta-learning-space will consist of one meta-learning
problem for each inducer, thus giving rise to a distinct meta-model for each
inducer. Under this scenario, it is possible to use a different set of dataset char-
acteristics for each algorithm, i.e. that set that best describes its performance.

The way we construct the Meta-Learning-Space, closely simulates the eval-
uation and comparison process, followed by an analyst, when he has to select
among a set of inducers the one that achieves the best accuracy. We construct
meta-learning problems that correspond to pairwise comparisons of inducers.
We control the class assignments on the meta-learning problems via a test of
statistical significance, as it is done in a regular analysis scenario. The statisti-
cally controlled assignment of class labels results in well defined meta-learning
problems, thus increasing their quality. Furthermore the formulation of the
Meta-Learning-Space, based on the pairwise meta-learning problems, allows for
great flexibility since different meta-models can be used to describe the rela-
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tive performance of different pairs of inducers. By different meta-models we
mean either models that have been constructed by a different set of dataset
characteristics, or even by a different meta-learner.

3.2.1 Establishing the Meta-Learning-Space

Let us now give a description of the Meta-Learning-Space. Suppose we have a
pool of n classification algorithms, from which we want to perform the selection.
We create a Meta-Learning-Space containing (3) meta-learning problems. Each
one of these problems corresponds to a specific pair of classification algorithms.
Each instance of a meta-learning problem corresponds to one data set from the
collection of the initial datasets, DSs, and consists of the dataset’s morphological
characteristics and the class label. The class label is determined by a significance
test on the accuracy that the two algorithms achieve and is one of (algorithm-
z, algorithm-y, tie), depending on whether there was a statistically significant
difference in favor of the first (algorithm-z) or second algorithm (algorithm-y),
or no difference (tie).

To summarize, all the possible pairs of n inducers define a Meta-Learning-
Space containing (g) meta-learning problems. Each instance of these meta-
learning problems maps the characteristics of a given dataset to a label describ-
ing a relative ranking within each inducer pair. Below we give a description of
the process in pseudocode.

D : the number of datasets, IV : the number of algorithms
Establish Metalearning Space
fordb=1to D
Characteristics[db] = get_characteristics(db)
for algol =1 to N
for algo2 = algol +1 to N
Metalearning_Dataset[algol, al go2]=Create Metalearning Dataset(algol, algo2)

Create_Metalearning Dataset(algo_z, algo_y)
set significance_level = 0.05
fordb=1to D
label=McNemarTest(algo_r, algo_y, db,significance_level)
Metalearning_DataSet[algo_z, algo_y][db]=(Characteristics[db],label)

To decide which of the three possible classes should be assigned to a specific
instance of a meta-learning problem (i.e. a data set), we use stratified 10-fold
cross-validation! and we test the significance of the difference with the binomial
test. The procedure is the following:

1. Split the data set into &k = 10 non-overlapping stratified folds

!The choice of 10-fold stratified cross-validation was based on the conclusions of (Kohavi,
1995), were it was stated that it is the most appropriate method for model selection
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2. let n = ngy = ny, =0,
Ngy @ the number of times that algorithm-z is right while algorithm-y is
wrong
Ny, @ the number of times that algorithm-y is right while algorithm-z is
wrong
N = Ngy + Ny, the number of times that the two algorithms produced
different results

3. let the significance level & = 0.05

4. fori=1to k do

e train algorithm-z , algorithm-y on the k — 1 folds

e test on the remaining fold and increase ngy, ny,,n appropriately

5. if ngy < ny, then
if P(ny,,n) < a then assign label algorithm-y
else assign label tie
else if ny, < ng,y then
if P(nay,n) < a then assign label algorithm-xz
else assign label tie
else assign label tie

The fifth step of the above procedure is a binomial hypothesis test?. It is used
to compare two algorithms in terms of their accuracy on the same data set,
since it does not assume independence of the sets (Salzberg, 1997). Assuming
that the test cases are independent then under the null hypothesis:

Ny Nyx
H(]: y =¥

we have:

1

Nyg ~ B(n7 5)

B(n,p) is the binomial distribution with n number of experiments and p the
probability of success. P(ngy,,n) and P(n,,,n) are the probabilities of having

Mgy, Nyg OF more successes under the null hypothesis. Success in this context

2Depending on the context, the binomial test can be found under the names of Sign test or
McNemar test. The difference between the two is that the former is used to test for a difference
between continuous variables, while the later to test for the difference between dichotomous
variables. At the end both rely on the binomial distribution, or on an approximation to it
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is the number of times that one algorithm predicted correctly while the other
wrongly. So for example the P(ng,,n) is given by the formula:

n

P(ngy,n) = P(s > ngy|p(success) = %) = Z m

n!

(0.5)"

S=Ngy
s!(%is)!(O.S)” is the probability of observing exactly s successes. Using
directly the binomial distribution becomes problematic when the values of n, s
become large, due to the presence of the factorials. The binomial distribution
can be approximated, when n > 10, by the x? distribution with 1 degree of
freedom and the continuity correction term of —1 in the numerator (Yates’
correction), to account for the fact that the statistic is discrete while the x? is
continuous, (Dietterich, 1998).

where

V2= (Iney — nay| — 1)?

Ny + Nyg

Strictly speaking, we are using the McNemar test of significance, since the vari-
ables that we are testing are dichotomous (correct prediction, false prediction).

The probability of falsely rejecting the null hypothesis (TYPE I error) is
a. This means that in @100% of the cases we falsely assign the class label TIE
resulting in a100% noise in the class labels. It is obvious that we can control
that source of error by appropriately setting the value of a. Unfortunately in the
case of TYPE II error (i.e. accept the null hypothesis when actually it does
not hold), which is the type of error that we would like to control the most?,
we cannot have an estimate of the actual error since that requires knowledge of
the true difference in the algorithms’ performance.

The McNemar test is a non-parametric statistical test. The only assumption
that it makes is the independence of the test cases (assumption which is valid
when the test set is a random sample of the population). The disadvantage of
the non-parametric statistical tests, when compared to tests that make use of the
assumption of normality, is the fact that they are more likely to do a TYPE 11
error. However in (Dietterich, 1998), the McNemar test is compared with four
other statistical tests. It is shown to have a very low Type I error (i.e. reject
the null hypothesis when it is actually true, find a difference in accuracies when
actually there is no difference). It is also shown to have a low Type II error,
(i.e. accept the null hypothesis when it is actually false, do not spot a difference
when there is one), although not the best one among the five tests examined.
Taking into account the results of these study, plus the weak assumptions that
the McNemar test requires, we have decided to use it in order to check the
statistical significance of the differences of the algorithms.

One problem that appears due to the multiple comparisons is the multiplicity
effect. We can control it by appropriately adjusting the significance level, «, as
it is described in section 2.1.2.

30ur main goal is to spot differences when they actually exist
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Meta-Learning-Space-Manager establishes the Meta-Learning-Space by ap-
plying each registered inducer on each dataset of the DSs collection, thus cre-
ating a meta-learning problem for each pair of algorithms.

Assessments on the performance of an inducer for an unknown dataset are
based on the performance of the inducer for known datasets in the Meta-
Learning-Space. The operability depends therefore on the density of the mor-
phology space. Despite the number of publicly available datasets, the morphol-
ogy space is very large and its density grows very slowly. In an effort to populate
the space of datasets included in DSs we constructed semi-artificial datasets, us-
ing real ones as a starting point; the procedure will be given with more detail
in section 3.4.

3.3 Meta-Learner and Selector: Provision of Sug-
gestion

Meta-Learner is responsible for extracting inductive models from the Meta-
Learning-Space and incorporating them into the Knowledge Base. Then, for
each new dataset given to the system, the Selector module consults the Knowl-
edge Base, triggers the inductive models and suggests the most appropriate
classifier(s).

3.3.1 Establishing the Inductive Models of the KB with
Meta-Learner

For the knowledge base to be created, an inductive process must be applied
on every meta-learning problem of the Meta-Learning-Space. Meta-Learner

applies a classification algorithm to every one of the (g) meta-learning problem,

resulting in (g) inductive models. The produced models are stored in the KB
and are later combined by the Selector to rank the algorithms, for a new data
set.

BuildMetaModels
for algol =1 to N
for algo2 = algol +1 to N
MetaModel[algol, algo2]=
CreateMetaModel(Metalearning Dataset[algol, algo2])

One may easily see that we are facing again the dilemma of which classifi-
cation algorithm should be used, on the problems of the Meta-Learning-Space.
We could even choose to have a different classification algorithm for every meta-
learning problem. As a starting point we decided to use a version of a Near-
est Neighbor classification algorithm; the details of the specific implementation
along with the results will be given in chapter 5. Furthermore we examined
more complicated inducers, whose results will be given in chapter 6.
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3.3.2 Combining the Inductive Models with Selector

Whenever a new dataset is input to the system, Selector extracts its morpho-
logical characteristics, in a preprocessing step, and feeds them to the inductive
models in the KB. Each model proposes one of the two algorithms (associated
with the meta-learning problem from which it was produced) or indicates a
tie. The suggestions of the inductive models are then combined to impose an
order on the registered algorithms. The final suggestion of the system is the
classifier or the group of classifiers that get the highest rank score. A schematic
description of the process is given below.

Produce a Ranking of Algorithms for a new Dataset

characteristics=get _characteristics(new_db)

rank[1..N]=0

for algol =1 to N

for algo2 = algol +1 to N

if algol = MetaModellalgol, algo2](characteristics)
rank[algol]++
else if algo2 = MetaModel[algol, algo2](characteristics)
rank[algo2]++

3.4 Populating the DSs

One of the problems that we faced was the limited number of datasets that
we could use in order to populate the Meta-Learning-Space. The quality of
the suggestions that the system provides, depends on the density of the Meta-
Learning-Space, the more populated the space is, the higher the quality of the
predictions.

In order to populate the Meta-Learning-Space we used a combination of real
datasets and modifications of them. As a starting point we used 47 datasets?,
mainly from the UCI repository (Blake et al., 1998). The additional datasets
were produced in the context of two big scale studies designed to explore the
behavior of learning method in response to two additional dataset deficiencies,
namely missing values and irrelevant attributes.

As a part of the missing values study two suites of datasets were generated.
The first suite contains data that are missing completely at random (MCAR)
while the second contains data that are missing at random (MAR). Data are
said to be missing completely at random when their pattern of missingness is
independent of the values of any features in the dataset, whether observed or
incomplete. They are missing at random when the fact that they are missing
depends on the values of other, completely observed, attributes. (For a more
formal definition of MCAR and MAR values; the interested reader is referred
to Schafer (1997).) From each original dataset, new datasets with 1%, 5%,

4The list of the 47 datasets can be found in section A.1 of the appendix
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10%, 15%, 20%, 25%, 30%, and 40% of missing values were generated. MCAR
data were produced by randomly deleting a given percentage of attribute values,
whereas MAR data were produced by deleting a given percentage of values from
certain features, contingent on the values of other features which are themselves
completely observed. Thus the initial 47 datasets gave rise to 2*8*47=753 new
ones. For a complete description of the results and the experimental design see
(Kalousis & Hilario, 2000a).

To explore the impact of irrelevant attributes on the different learning algo-
rithms, we corrupted the initial datasets by creating new attributes whose values
were generated in a purely random fashion, thus ensuring their irrelevance to
the class variable. This procedure was followed to produce variants with 5%,
10%, 20%, 30%, 40% and 50% of irrelevant attributes, yielding 6*¥47=282 new
datasets. For a complete description of the results and the experimental studies
see (Hilario & Kalousis, 2000).

Finally the total number of datasets used to train and test the system was
47 + 753 + 282 = 1082, of them 7 had to be excluded from the DSs because for
various reasons (either failure of some classification algorithms, or unavailability
of their morphology characteristics), the full set of information required by the
system was not available.

One could argue that the new datasets are morphologically close to the
initial ones, so the estimation of the performance of the system is optimistic.
Nevertheless it should be noted here that the performance of the inducers with
respect to the new datasets differs from the performance that they exhibit in
the base datasets; this makes the problem even harder since in datasets with
similar features the algorithms exhibit completely different performance.

3.5 Pool of registered classifiers

The pool of registered classification algorithms, among which the selection is
performed, incorporates a broad variety of learning algorithms: an orthogonal
decision tree inducer from Quinlan’s C5.0 (c50tree), an oblique decision tree
inducer Ltree (Gama & Brazdil, 1999), two rule inducers, Ripper (Cohen, 1995)
and the rule version of C5.0 (c50rules), a linear discriminant (Lindiscr), a boost-
ing algorithm from C5.0 (¢50boost), an instance-based learner (IBL), and Naive
Bayes (NB) (the last two from the MLC++ library (Kohavi et al., 1996)). The
choice of algorithms included in the pool was done so that they will represent
a wide and diverse variety of classification algorithms with different areas of

competence each.

By including eight classification algorithms, a total number of (g) = 28 meta-
learning problems is created, with the application of the procedure described
in section 3.2.1. Table 3.1 gives the distribution of classes algo-x, algo-y, tie
for each of these problems. The last column specifies the percentage of the
majority class; this will serve as the baseline or default accuracy against which to
evaluate the accuracies estimated by the learned meta-models. Any reasonable
model should have an accuracy that is higher than this default accuracy. If their
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Table 3.1. Class Distributions for each of the meta-learning problems.

(algo—x, algo-y) pairs | algo-x | algo—y tie | Default Accuracy
c50rules c50boost 4.47% | 37.40% | 58.14% 58.14%
c50tree c50boost 3.91% | 38.33% | 57.77% 57.77%
c50tree ch0rules 13.02% | 13.95% | 73.02% 73.02%
Lindiscr cb0boost 3.63% 64.47% 31.91% 64.47%
Lindiscr ¢50rules 12.09% | 52.65% | 35.26% 52.65%
Lindiscr c50tree 10.98% 54.70% 34.33% 54.70%
Ltree c50boost 13.21% | 35.16% | 51.63% 51.63%
Ltree c50rules 27.07% | 14.23% | 58.70% 58.70%
Ltree c50tree 25.21% | 15.26% | 59.53% 59.53%
Ltree Lindiscr 61.12% 6.51% 32.37% 61.12%
IBL. c50boost 1.02% 64.65% 34.33% 64.65%
IBL c50rules 10.79% 49.77% 39.44% 49.77%
IBL c50tree 7.91% 52.00% 40.09% 52.00%
IBL Lindiscr 42.33% 21.21% 36.47% 42.33%
IBL Ltree 9.30% 56.65% 34.05% 56.65%
NB c¢50boost 2.70% 60.84% 36.47% 60.84%
NB c50rules 14.33% 51.44% 34.23% 51.44%
NB ch0tree 12.09% 52.93% 34.98% 52.93%
NB Lindiscr 37.30% 21.58% 41.12% 41.12%
NB Ltree 5.58% 58.23% 36.19% 58.23%
NB IBL 29.12% 34.79% 36.09% 36.09%
ripper c50boost 1.58% 50.98% 47.44% 50.98%
ripper c50rules 8.09% | 32.00% | 59.91% 59.91%
ripper ch0tree 2.70% 37.21% 60.09% 60.09%
ripper Lindiscr 46.14% | 17.02% | 36.84% 46.14%
ripper Ltree 3.44% | 43.35% | 53.21% 53.21%
ripper IBL 34.42% | 19.44% | 46.14% 46.14%
ripper NB 41.30% 16.93% 41.77% 41.77%
average 54.14%

performance is deemed acceptable, these models can then be used to provide a
ranking of inducers for new datasets.

Concerning the final suggestion of the system, (i.e. the classifier or classifiers
that take the first position), theoretically we can have any of the 28 — 1 = 255
possible subsets of the initial set of the eight classification algorithms. Using the
results of the McNemar tests we can get the true ranking of the classification
algorithms for each dataset of the DSs. At the top position we observe only 80
of the 255 possible subsets of inducers. In Table 3.2 we give the distribution of
classifier(s) that get the top ranking in more than 1% of the total number of the
datasets. For example we can see from this table, that c50boost is the single
best algorithm in 26.23% of the 1075 datasets registered in the system. Since
c¢50boost is the classifier that most often takes the first place we will use as the
default accuracy for the final suggestion of the system the percent of c50boost.
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Table 3.2. Groups of inducers that were ranked at the top for more than 1% of the datasets

Group # Datasets | Percent
ch0boost 282 26.23
Ltree 140 13.02
ch0rules ch0tree Ltree 54 5.02
ch0rules c50boost c50tree 47 4.37
ch0rules ch0boost ¢h0tree Lindiscr Ltree IBL NB ripper | 47 4.37
Lindiscr 41 3.81
NB 30 2.79
ch0rules ch0boost ch0tree Ltree ripper 29 2.7
cb0boost Ltree 29 2.7
ch0rules ch0boost ¢h0tree Ltree IBL ripper 27 2.51
IBL 27 2.51
ch0rules ch0boost c¢h0tree Ltree 25 2.33
ch0rules c50boost 23 2.14
ch0rules c50tree 22 2.05
ch0rules 20 1.86
Ltree NB 14 1.3
ch0boost IBL 14 1.3
cb0boost cb0tree 13 1.21
Lindiscr Ltree 12 1.12
cb0tree 11 1.02
ch0rules ch0boost ¢h0tree Lindiscr Ltree NB ripper 11 1.02

3.6 Evaluation Method

Since the main goal of the system is to predict which inducer(s) to use, we
measure the performance of the system in terms of its predictive accuracy. The
predictive accuracy we estimate is always associated with the classifier that we
have chosen to apply on the meta-learning problems and the dataset character-
istics that we use.

As it is described in the previous sections, the system works on two levels.
The first level consists of the meta-learning models that describe the relative
performance of specific pairs of learners. The second level is the combination
of these models in order to provide the final suggestion (i.e. which classifier
or classifiers are the best for a specific dataset). We evaluate the performance
for both levels using 10-fold cross validation. In the case of the pairwise meta-
learning problems the procedure is straight forward.

In the case of the final suggestion the estimation is more complicated. The
meta-datasets associated with each pair of classification algorithms are split
into exactly the same ten folds. That is, the ¢ fold of all the meta-datasets
will contain exactly the same datasets (i.e. the characteristics of the datasets
along with their labels), with exactly the same order. In every step of the cross
validation the nine folds will be used to construct the meta-learning models.
The characteristics of the datasets contained in the remaining fold will be given
to each of the produced meta-models and each one will output a prediction.
These predictions will be combined, as described in section 3.3.2, to produce
the final suggestion of the system, which will be compared with the truly best
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set of classification algorithms to determine whether the suggestion is successful
or not.

We will use two different ways to characterize the suggestions of the system
as successful or not. In the first, we consider a suggestion successful only if it
matches exactly the correct class, i.e. the algorithm(s) that the system suggests
is (are) exactly the one(s) that really take the first place. In this case we have
a typical 0/1 loss function, and the evaluation measure that we compute is the
typical accuracy, for clarity reasons we will refer to it as strict accuracy.

In the second the main idea is: when in the first place we have two or more
algorithms whose performance is not statistically significant different, we are
not that much concerned with finding all the algorithms involved in it. Instead
we are satisfied if the suggested one(s) constitute a subset of the true set. With
this approach we get an estimate of the percentage of cases in which the system
gives an acceptable suggestion i.e. a suggestion that is a subset of the true
top classifiers(s). We will call the evaluation measure that corresponds to this
scenario loose accuracy.

3.7 Operationalization and Incrementality

If the described system is to be placed in an operational environment it should
be adaptable and able to update its knowledge in an incremental way. It should
be possible to incorporate new inducers whenever they become available and
improve its performance incrementally as it faces new learning episodes.

The incorporation of a new inducer requires the application and evaluation
of the new inducer on all the datasets of the DSs used to construct the initial
KB of the system. In a next step all the pairwise meta-learning problems asso-
ciated with the new inducer will be constructed and the respective meta-models
will be produced. The steps involved in the incorporation phase of a new algo-
rithm are not different from the initialization phase of the system. They have
extensive computational cost which mainly comes from the extensive evaluation
phase of the new inducer on all the available datasets of the DSs, but they are
indispensable if we want to have an initial knowledge that will guide the use of
the new algorithm.

The system should be able to benefit, and improve its knowledge, from new
learning episodes. That is whenever the user asks for a suggestion on a new
dataset, and finally evaluates a set of inducers on the new dataset, the system
should be able to exploit the evaluation results to improve the quality of its
KB. This is not straightforward since the complete results will not be available
for all the inducers of the initial pool of inducers on every new dataset. The
users typically evaluate only a limited number of inducers on a new dataset.
Two options exist here, the first one leads to an incomplete but still operational
KB, and the second one to a complete KB with the cost of extra computational
requirements.

In the first option the system updates only these pairwise meta-models that
correspond to the pairs of those algorithms that the user has evaluated on
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the new dataset. The result of this partial update is that some of the meta-
models will be more complete and will better discriminate among the algorithms
involved in the corresponding pairs, i.e. they will provide predictions of better
quality. Apart from that there is no other implication, since the predictions of
the meta-models are combined independently, and the way and the data from
which each meta-model was constructed is not relevant.

In the second option the system performs a complete evaluation of all the
available algorithms in the new dataset, probably in a batch mode, guarantying
thus that all the meta-models have the same quality and are constructed using
the full amount of available information. Both options should be available and
it will be left to the analyst to decide which one he prefers every time. In any
case if the system is able to meta-learn from new learning episodes it will not
only improve the quality of its KB but on the same time reflect in a much more
precise way the morphologies of the datasets that the user most often deals
with, thus being able to provide more accurate suggestions.



Chapter 4

Description of Datasets

What is crucial for the performance of the system is the appropriate selection of
the characteristics that will be used to describe the datasets. These should de-
scribe morphological characteristics of the datasets that affect the performance
of classification algorithms. Different inducers exhibit different sensitivity to
specific idiosyncrasies of the datasets. What we want to do is model how these
idiosyncrasies affect the relative performance of the different inducers. For ex-
ample inducers exhibit varying degrees of sensitivity to the presence of irrelevant
attributes. Nearest Neighbor approaches are very sensitive to them, while de-
cision tree and neural network algorithms are quite robust since they posses
internal mechanisms that perform attribute selection. Another example is the
distinction between numerically oriented approaches, like neural networks, or
linear discriminants and symbolic based ones like decision trees or rule induc-
ers. With the former being more appropriate to datasets where the attributes
are mainly numeric and the later more appropriate for datasets where the at-
tributes are mainly symbolic. We will strive for a set of characteristics that
describe as completely as possible these factors. Before continuing to the de-
scription of the characteristics that we used let us shortly examine the related
work in characterizing datasets.

4.1 Related Work

The first attempt to characterize datasets in order to predict the performance of
classification algorithms was done by Rendell et al. (1987). The approach was
very simple and so were the characteristics that they used, namely the number
of features and the number of examples. The goal was to predict the execution
time of the classification algorithms.

In STATLOG, Michie et al. (1994), studied the performance of twenty three
different learning algorithms on more than twenty different datasets. As a
byproduct of STATLOG an effort was done to predict the error of classifica-
tion algorithms using the datasets characteristics. This approach was further

39
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examined in (Brazdil et al., 1994; Gama & Brazdil, 1995), mainly in terms of
using different meta-learners but the set of dataset characteristics was always
the same and no effort has been done to improve it. Here we will give a brief
presentation of the dataset characteristics that were used. They distinguish
three categories of dataset characteristics, namely, simple, statistical and in-
formation theory based. Statistical characteristics are mainly appropriate for
continuous attributes, while information theory based are more appropriate for
discrete attributes. The full list of characteristics established in the framework
of STATLOG is the following;:

e simple characteristics

— Number of examples, (n)

— Number of attributes, (attr)

Number of classes, (cl)

— Number of binary attributes, (bin)
e Statistical Characteristics

— Standard deviation ratio, (SD.ratio)

— Mean absolute correlation of attributes, (|p|)
— First canonical correlation, (pmaz)
— Fraction separability due to first canonical correlation, (fracl)

Mean Skewness of Attributes, (%)

Mean Kurtosis of Attributes, (3)

e Information theory characteristics

Entropy of class, (H(C))
— Mean Entropy of Attributes, (H/(}())

—

— Mean Mutual Information of class and attributes, (M (C, X))
Equivalent number of attributes, (EN.attr)

— Noise-signal ratio, (N S.ratio)

Since we are also going to include all these characteristics in our characterization,
their complete and detailed description can be found in section 4.2.

One of the main conceptual limitations of the STATLOG approach was the
fact that most of the characteristics that they used to describe the datasets were
averages over the number of attributes. For example to describe the correlation
between continuous attributes they used the correlation coefficient and at the
end they reported only the average of all the correlation coefficients. Clearly
this results in a great loss of discriminating power, since completely different
distributions of the correlation coefficients could result in the same mean. This
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was done for any characteristic that was computed on an attribute basis. Fur-
thermore they did not examine associations between discrete attributes, and
between continuous and discrete attributes.

Lindner and Studer (1999), keep the same meta-learning framework as the
one introduced in STATLOG and extend the set of dataset characteristics. They
introduce a variety of new dataset characteristics:

e new measures that are more appropriate for testing the assumption of
normal distribution based on the BHEP-test

e measurements about the location and dispersion of numeric attributes
like the minimum,maximum, mean, median, a trimmed mean, empiri-
cal quantiles,standard deviation, interquartile range and median absolute
deviation

e measures that describe attribute-class associations: joint entropy, condi-
tional entropy, information gain ratio, gini-index, relevance measure and
the g-function

e finally as a measure of class differences they used Wilks-Lambda which
examines the differences of the centers of the classes.

The main goal of the study is the identification from the set of characteristics
that they have used of the ones that affect the performance of classifiers, always
in the meta-learning framework of STATLOG. They finally came up with a
set of characteristics that does not include any of the dispersion and location
measures, and from the ones that describe the association between attributes
and class, the only discriminating one was mutual information. A possible
reason for the rejection of most of the measures they introduced, might be the
fact that in order to use them for meta-learning they had to rely on their means,
losing again valuable information about the distribution of the measures.

A completely different approach to characterizing datasets called landmark-
ing appeared in (Pfahringer et al., 2000; Bensusan & Giraud-Carrier, 2000).
They use the performance of simple learners which they call landmarkers to
describe a dataset. The intuitive idea behind landmarking is to associate the
performance of specific learners with the performance of landmarkers. That is,
if landmarker A outperforms landmarker B on a specific task then learner X will
also outperform learner Y on this task. A crucial issue in landmarking is the
appropriate choice of the simple learners. It has to be ensured that the chosen
landmarkers have quite distinct learning biases. In order to describe a dataset
they use the following landmarkers :

e Decision node : A single decision node based on the attribute that maxi-
mizes the information gain ratio.

e Worst node : Same as above but now based on the attribute that minimizes
the gain ratio.
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e Randomly chosen node : Same as above, but now the attribute is randomly
selected.

e Naive Bayes : The classical Naive Bayes learner.
e 1-Nearest Neighbor : The classical nearest neighbor learner.

e Elite 1-Nearest Neighbor : A nearest neighbor where the attributes that
are taken into account for classification are limited to the subset of the
most informative attributes, as they are determined by the information
gain ratio.

e Linear Discriminant : A classical linear discriminant algorithm.

The performance of landmarkers is estimated through the use of ten fold cross-
validation, resulting in an elevated computational cost, especially in the case
where landmarkers are full fledged learners like Naive Bayes, Linear Discrimi-
nants and the different versions of nearest neighbors.

4.2 Dataset Characteristics

In this section we will present the characteristics that we will use to describe a
dataset. We can cluster them in the following categories:

e characteristics that describe the nature of attributes
e characteristics that describe attributes
e characteristics that describe associations between attributes

e characteristics that describe associations between attributes and the target
variable

e others

In general we use characteristics that are appropriate either for nominal or
for continuous attributes. To describe nominal attributes and their associations
we use mainly information based measures, while for the continuous we use
statistical measures. This results in a non-unified treatment of the attributes of a
dataset. Furthermore this causes a problem with the description of associations
between nominal and continuous attributes. In an effort to describe associations
between discrete and continuous attributes we will use characteristics that are
used in analysis of variance. Table 4.1 gives the full set of dataset characteristics
that we will use to describe a dataset. Their complete definition will be given in
the forthcoming sections. Whenever a characteristic is introduced that will be
a part of the dataset characteristics its entry number in Table 4.1 will be also
provided.
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Table 4.1. Dataset Characteristics, the superscript ® is used to indicate the characteristics
that where used in STATLOG.

No Characteristics Notation
18 number of classes cl
2% number of attributes attr
3° number of instances n
4 dimensionality of the dataset dim = Ln”
5 number of missing values muvals
6 percentage of missing values Y%omuals = aﬁ”ﬁ)ﬁi
7 # nominal attributes nom
8..11 max, min, mean, stdv mazx.val, min.val
of nominal attributes distinct values mean.val, stdv.val
12..21 | concentration histogram [T1..710]
of discrete attributes
22 non computable concentration TNaN
23..32 | concentration histogram [Tcy --TCy0]
of discrete attributes and class
33 non computable concentration TONaN
34 # continuous attributes con
35..44 | correlation histogram [p1..p10]
45 non computable correlation PNaN
46..55 | missing values histogram [mwalsi..mvalsio]
56 percent of continuous attributes Y%con = con/attr
57 percent of discrete attributes %nom = nom/attr
585 Binary Attributes bin
598 Variation from fracl = M1
Zi N
first linear discriminant
605 First Canonical Correlation Pmaz = 1_?‘_;1
DD
61 Mean Skew §j ===
625 Mean Kurtosis 8= %
63° Class Entropy H(C)
) — " HXG)
64° Mean Attribute Entropy H(X) = &==——

. —— i’"“"" MI(C,X;)
65° Mean Mutual Information MI(C,X) = &=l
66° Equivalent number of attributes EN.attr = —2&)

MIC.X)
67° Noise to signal ratio NS.ratio = 2L _MIC.X)
: MI(C,X)

: . : o DR
685 Mean Multiple Attribute Correlation | R = &=L —
695 SD.ratio SD.ratio = exp(—=2M—)

con Zi:l (n; —1)
70..79 | p — value histogram [p — wvaly..p — valio]
of continuous attributes
80..89 | p — value histogram [p —walc, ..p — valcy,]
of continuous attributes and class
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4.2.1 Attribute Type

The balance between numerical and nominal attributes is important since some
algorithms are better suited for numerical domains and others for symbolical.
To describe the nature of the attributes of a dataset we used various measures.
These include the number of continuous, con, (No 84), and nominal attributes,
nom, (No 7), their percentages with respect to the total number of attributes,
%con, %onom, (No 56,57). Another measure falling in this category is the num-
ber of binary attributes, bin, (No 58), that is the number of binary attributes
that we get when all nominal attributes are presented using local binary encod-
ing. This measure is crucial especially in the case of numerical based classifi-
cation algorithms since they make use of local binary encoding when they deal
with discrete attributes, a fact that gives them a disadvantage since it increases
the dimensionality of the problem, while keeping the same number of training
examples. Similarly to the bin characteristic, we determine for each nominal
attribute the number of distinct values that it has. Then from all the nominal
attributes we compute the maximum, minimum, mean and standard deviation
of the number of distinct values, maz.val, min.val, mean.val, stdv.val, (No 8-
11).

4.2.2 Attribute Description

Let us introduce some notation that will be used to describe the measures
that we are going to use. Consider two nominal attributes X,Y with I, J dis-
tinct values respectively. We display their joint distribution with a contingency
table having I rows for variable X and J columns for variable Y. The prob-
ability distribution {m;;} is the joint distribution of X and Y. The marginal
distributions of X and Y are given by the row and column totals obtained
by summing the joint probabilities, and they are denoted with {m;1} (for row
variable X, mip = p(X = 2;) = >, mj;) and {my;} (for column variable V',
my; = p(Y = y;) = >, mj;). The marginal distributions are single variable
distributions and do not contain any information for the association between
the two variables. The conditional distribution of Y given X is {m;;} where
mi = P(Y = y;]X = x;).

If X is a continuous variable we denote by px,0x,0xx, its mean, standard
deviation, and variance. The sample mean, standard deviation and variance
are denoted by fix,0x,5xx. The covariance and sample covariance of two
continuous attributes X,Y are denoted by oxy and sxy.

The entropy, H(X), of a discrete attribute X is a measure of randomness or
dispersion of the attribute and is given by

H(X) = —ZP(X = z;)loga(p(X = z;))
= *Zm+log2(7ﬁ+)

The entropy takes its highest value of —logs(miy) = log2(I) when all the I
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distinct values of X have an equal probability of appearing. In the extreme case
where one attribute takes only one value then its entropy is 0, this attribute
brings no useful information. So the entropy of an attribute X lies in the interval
[0,10g2(I)], and the length of the interval depends on the number of distinct
values of the attribute. The more uniform the distribution of an attribute is,
the higher the value of its entropy; the less uniform the lower the value of the
entropy.

To characterize continuous attributes two measures from descriptive statis-
tics are used, skewness and kurtosis. Both are measures of departure of a given
distribution from normality. The assumption of normality is made by various
learning algorithms, e.g. linear discriminants, Naive Bayes.

Skewness is the lack of symmetry in a probability distribution. Positive
skewness indicates a distribution with an asymmetric tail extending towards
more positive values. Negative skewness indicates a distribution with an asym-
metric tail extending towards more negative values. For example, a normal or a
uniform distribution have zero skewness because they are symmetric about their
mean. An exponential distribution has positive skewness equal to 2. Skewness
is defined as the third moment of the distribution divided by the third power of

the standard deviation:
_B(X —px)?
Y= ———"">=3
Ox

Kurtosis is a measure of how ”fat” a probability distribution’s tails are,
measured relative to a normal distribution having the same standard deviation.
A distribution is said to be leptokurtic if its tails are fatter than those of a
corresponding normal distribution, and platykurtic if its tails are thinner than
those of a normal distribution. The normal distribution has a kurtosis of 3, the
uniform % and the exponential 9. The kurtosis of a distribution is defined as
the ratio of the fourth moment of the distribution to the fourth power of the

standard deviation
_B(X - px)!
=T
Ox
Since the learning algorithms that make the assumption of normality do
that on a class basis, i.e. attributes are assumed to follow a normal distribution
within each class, we compute both the kurtosis and skewness of an attribute
on a class basis.

4.2.3 Attribute Associations

Classification algorithms are affected by the degree of redundancy within a
dataset. The redundancy comes from the fact that the attributes of a dataset
are not always independent. The following metrics provide a way to measure
it, to some extent, since they quantify the strength of the relationships between
attributes. The list of metrics given below is in no way exhaustive, there are lot
more measures that can describe attribute relations. Furthermore we restrict to
metrics for linear relationships between continuous attributes, and metrics that
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describe associations only between pairs of discrete attributes. Higher order
correlations are not examined, nor associations involving more than just two
discrete attributes.

To measure the association between nominal attributes we used Goodman
and Kruskal’s T otherwise known as the concentration coefficient (Agresti, 1990).
Using the notation given in 4.2.2 the concentration coefficient between two nom-
inal attributes, X,Y, with I,.J, distinct values is defined as :

I J
Z Z 7r+j
Ty = 1 = (4.1)

2
1= Z T+i
i=1

Here X is considered to be the independent attribute and Y the dependent. The
interpretation given to 7, in (Agresti, 1990) is that it describes ”the propor-
tional reduction in the probability of an incorrect guess predicting Y using X.”
Tzy takes values in the interval [0,1]. The higher the value of 7, the stronger
the association is, in the sense that we can guess Y much better when we know
X than when we don’t. We have to note here that the concentration coefficient
is not symmetric i.e. T,y # T,,. So it is not enough to compute the (mﬁm)
coefficients, corresponding to all pairs of nominal attributes, but for each pair
we have to compute both coefficients.

We measure the association between two continuous variables, X, Y, using
the correlation coefficient pyy. psy is a measure of the linear relationship between
the two variables. The correlation coefficient takes values in the interval [—1, 1]
and it is symmetric, i.e. pgy = py,. A value of 1 indicates a perfect positive
linear relationship, a value of —1 a perfect negative linear relationship and a
value of 0 the complete absence of a relationship. The correlation coefficient is
given by the following formula:

2 J

Cov(X,Y)
Var(X)Var(Y)
oxXy

VIXXOYY

For the continuous attributes we do not only examine correlations between
pairs of attributes but we also examine the correlation between each attribute
and the linear combination of the rest. This is done with the use of the multiple
correlation coefficient (Engels & Theusinger, 1998). Given continuous attributes
X1,X5,...Xcon, the multiple correlation coefficient, R;, between attribute X;
and the multivariate variable Z; = (Xy, ..., X;_ 1,XZ+1 coes Xcon) 18 the maximal
correlation coefficient between X; and some linear function Z;a of Z;, (the
maximum is taken over all possible nonzero vectors a). R; is given by :

Cov(X;, Z;ia)
VVar(X;)Var(Z;a)

Pzy =

R, = argmaz,zo
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UXiZia
- argmafﬂa;ﬁ[)—
UX; X,' UZ;QZ,‘O(
!
« ZXiZi
= argmaz,-o

\/O'Xixialzzizia

! —1
_ \/EX,Z;EZ;Z;ZX;Z;

OX; X;

Where
e a is a column vector of dimensions (p — 1) x 1,
e Y. 7., is the covariance matrix of Z; with dimensions (p — 1) x (p — 1),

e ¥x,z isa (p—1)x1 vector that contains the covariances of X;, with each
of the p — 1 attributes of Z;.

The maximum value of R; is attained for o = ZZZ Y x,z,- Let E be the random
vector consisting of the attributes Xi, Xy, ..., X¢on. Then the sample multiple
correlation coefficient, R; between attribute X; and Z; is defined as

i —1 S
5 X, 2:°7, 2,9 XiZ;
R =
SXiX;

If Sk is the unbiased sample covariance matrix! of the attributes of E then
Sz,z, is the submatrix that we get from Sgg, when we remove column and
line ¢, which corresponds to the sample covariance matrix of the Z; attributes.
Sx.z is the (p — 1) x 1 vector constructed from the " column of the Sp
table, removing the element of the it” line, and contains the sample covariances
between attribute X; and each of the p — 1 attributes of Z;. The multiple
correlation coefficient takes values in the interval [0, 1]. A value of 1 means that
X; is a linear combination of the attributes of Z;. A value of 0 indicates that
X is linearly independent of Z;.

Having described the associations between discrete attributes, and then the
associations between continuous, there is still a gap. Namely we need a way to
describe associations between continuous and discrete attributes. In order to
do that we are going to use the F-distribution the same way as in Analysis of
Variance (ANOVA), but we will not proceed to a significance test but rather
report the p—value, as a measure of the association. With ANOVA we examine
whether one independent categorical variable affects a dependent quantitative
one. We can only examine one way associations, that is whether the values of
a continuous variable depend on the values of a discrete variable, but not the
other way around, i.e. how a continuous variable affects a discrete one. Let
X be a discrete variable with I distinct values and Y a continuous one. We
want to examine whether the values of X affect the values of Y. The I different
values of X define I groups on Y. ANOVA examines whether the means of the

Spp = 25 S (Bi — i) (Ei — i)’
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I groups defined on Y are different, based on a comparison of the between group
variance with the within group variance. The between group variation, SS(B)?,
measures the variation of the group means, py,, of the variable Y, around the
global mean, uy, and it is given by :

SS(B) = an’(/w; - py)® (4.2)

where n; is the number of observations of Y that belong to the i group. We
could consider the between group variation, as the variation we get when all the
members of a group are identical to the mean of the group. Since we have [
distinct groups and we get one data value for each group (i.e. the sample mean of
the group, py, ), the degrees of freedom of SS(B) are I —1, so the between group
variance, or else denoted Mean Square between groups, is MS(B) = Sfflf).
The within group variation, SS(W), is the sum of the groups variations around

their corresponding means. Each group variation is given by :

SSi =Y (y—nv.)’ (4.3)

yei

so the within group variation is given by :

SS(W) =>_SS; (4.4)

The degrees of freedom of SS(W) is the sum of the degrees of freedom of all
the SS;. Since its one of them has n; — 1 degrees of freedom, SS(W) has n — I.

And the within group variance is MS(W) = % ANOVA examines the
ratio of between group variance to within group variance. When the variance

between groups is much larger compared to the variance within the groups,
S
the F-distribution with I — 1 and n — I degrees of freedom. From the value of
the ratio we retrieve the corresponding probability (p-value) of observing the
specific value, under the assumption that the group means are equal. A p-value
close to zero indicates that the initial assumption of means equality should be
rejected, consequently the different values of the X variable define groups on Y
that are different. A p-value close to one indicates that the assumption is true,
so the values of X do not define different groups on Y. Although p-value is by
no means a measure of association, however it gives an indication of whether
the X variable affects Y and also an indication of the level of the association.
Since the quantity is a probability its values are in the interval [0, 1].

follows

then the means of the groups probably are different. The ratio

4.2.4 Attribute-Class Associations

A very important aspect, probably the most important one, in classification
problems, is the amount of information that attributes bring about the class.

28S stands for Sum of Squares
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It is obvious that the higher the information content of the attributes about
the class, the easier the task of classification is. The information content of
attributes with respect to the class varies for different attributes. Irrelevant at-
tributes do not contain any useful information about the class. Different learning
algorithms exhibit different degrees of resilience to irrelevant attributes (Hilario
& Kalousis, 2000). Decision trees or neural networks for example are consid-
ered quite robust with respect to irrelevant attributes, due to their internal
mechanisms, (feature selection and weight adjustment respectively), although
this behavior was not confirmed for the neural networks in the aforementioned
study. On the other hand simpler algorithms like nearest neighbors are sen-
sitive to irrelevant attributes. Datasets with attributes that individually have
low information content about the class are a challenge to most classification
algorithms. Usually low information content indicates the need for new higher
order attributes. If this is the case feature construction algorithms have a better
chance of achieving higher performance than simple ones.

One of the most common measures of the information that one attribute
X conveys about another attribute Y is the mutual information MI(Y,X).
Mutual information describes the reduction in the uncertainty of Y due to the
knowledge of X, and it is given by:

MI(Y,X)=H() - H(Y|X)

where H(Y|X) is the conditional entropy of ¥ given X and it is defined as :

HYIX) = SOp(X = 2 HY|X = 2,)

= - ZP(X = ;) Yy p(Y = y|X = 2)log(p(Y = y;| X = z;))

j=1
I J

= - Z i+ Zﬂj\z‘ll’g(ﬂju)
i=1 j=1

Mutual information is symmetric, that is, MI(X,Y) = MI(Y, X). It is one of
the most common measures used in decision trees to perform the selection of
the attributes on which a test will take place. The attribute with the highest
mutual information with the class, is selected for the split.In the machine learn-
ing literature it usually appears as information gain (Quinlan, 1992a; Cohen,
1995). The values of mutual information of two attributes X,Y fall in the in-
terval [0, min(H (X), H(Y))]. A mutual information of zero means that the two
attributes are independent. The maximum value of mutual information appears
when one of the two attributes completely determines the other. That is when
one of H(X|Y),H(Y|X) is zero. We compute the mutual information of each
attribute X; with the class attribute C, that is MI(C, X;) = H(C) — H(C|X;).

Another metric of association between nominal attributes, based on the mu-
tual information, is the uncertainty coefficient (Agresti, 1990). The uncertainty
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coefficient is the mutual information normalized by the entropy of the dependent
attribute, i.e.:
MI(Y,X) H(Y)-HY|X) H(Y|X)

VX =gy T ay L TED

This measure is also very popular in the machine learning community usually
it is described as the information gain ratio, (Quinlan, 1992a; Gama & Brazdil,
1999), and it is used extensively in decision tree algorithms, in the same way
as the mutual information. In the case of classification problems the dependent
attribute is obviously the class attribute, so one would expect the normalization
to be done with the class entropy. However instead of normalizing by the class
entropy, they normalize with the entropy of the independent attribute, which
in essence is the U(X, C) concentration coefficient. So what actually the infor-
mation gain ratio measures is the proportional reduction in the variation of the
attribute X when C' is known, and not the other way around as it would have
been expected. In other words the information gain ratio selects as a splitting
attribute the one for which the class attribute contains the most information!
The advantage of the uncertainty coefficient over the mutual information is
that since it is normalized its values fall in the interval [0,1]. The uncertainty
coefficient is not symmetric, however there is the following extension which is
symmetric with respect to the two attributes, and its values still fall in the [0, 1]
interval :
2MI(Y, X)

H(X)+H(Y)

The uncertainty coefficient and the concentration coefficient presented in sec-
tion 4.2.3 have the same semasiology. They both describe the proportional
reduction in the variation of the dependent attribute with the knowledge of
the independent attribute. Because of that we limit ourselves only to the con-
centration coefficient in order to describe the associations between the discrete
attributes and the class. So for each discrete attribute X; we compute the 7x,¢.

The above measures are not always adequate, because they are only able
to capture interactions between only two attributes. Higher order relationships
involving more than two attributes are not captured. For example if our concept
is the parity problem the mutual information of every attribute with the class is
always zero, a fact that is logical since by looking only one attribute we cannot
have any information about the class, here all attributes have to be examined
on the same time.

In an effort to describe the association between the continuous attributes
and the class attribute we can use the p-value of the F-distribution as it was
described previously in section 4.2.3. Note again, that what we are examining is
whether the class attribute defines different groups in the continuous attributes,
and not how the continuous attributes affects the class attribute. However if the
values of the class attribute are associated with distinct groups of a continuous
variable, then these variables can be used to discriminate between different
classes. This is why we use again the same measure to describe the association
between the continuous attributes and the class attribute.

Usymmetrical (Y; X) =
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Describing the associations between the continuous attributes and the class
attribute requires some knowledge of discriminant and canonical correlation
analysis. Canonical correlation analysis examines the correlations between two
sets of variables (Anderson, 1984). Unlike traditional correlation analysis it
looks for correlations in new transformed spaces where the correlations between
the new variables are maximal. A new coordinate system is established for each
set of variables in such a way that the new coordinates display clearly the sys-
tem of correlation. This is done by finding the linear combinations of variables
in each set that have the maximum correlation; these linear combinations are
now the first coordinates in the new system. Then a second linear combination
in each set is sought such that the correlation between these is the maximum
of correlations between such linear combinations as are uncorrelated with the
first linear combinations. The procedure is continued until the two new coordi-
nate systems are completely specified. The new variables that are produced by
the linear combinations are called canonical variates. Here we are interested in
the maximal canonical correlation or the first canonical correlation which corre-
sponds to the correlation of the first canonical variates on the new transformed
system. Consider two multivariate random vectors, X, Y, and the two column
vectors, w,, Wy, then the first canonical correlation is given by:

Cov(Xw,,Yw,)
VVar(Xw,)Var(Yw,)

(4.5)

Pmaz = ATGMAT ), ,Wy

When computing the first canonical correlation between the continuous at-
tributes and the class attribute we consider as X, the random vector E consist-
ing of the X7, Xo, ..., X(on continuous attributes, and as Y the class attribute
represented in local binary encoding, i.e. Y is a ¢l dimensional vector. We are
looking for the column vectors, w,,w,, that maximize the correlation between
the attributes and the class. There are different ways to solve that problem,
i.e. find the linear combinations and the maximal correlation coefficient. One
of them makes use of discriminant analysis, which is closely related to canonical
correlation analysis.

Let us consider again the multivariate random vector E consisting of the
continuous attributes. FEach observation e of the random vector belongs to
class ¢;; 1 < i < cl. In discriminant analysis the goal is the computation of
a set of linear transformations Y; = Fw;,1 < i < ¢l — 1 of the initial set of
variables that project the initial con dimensional space to a ¢l — 1 dimensional
space. If we consider as W, the con x (¢l — 1) matrix, that has as columns the w;
vectors, then we can write the linear transformation as a single matrix equation,
Y = EW. The linear transformations are chosen in such a way that in the new
space the projected samples are well separated. There are different criteria
of class separability based on within-class, between-class and mixture scatter
matrices, (Fukunaga, 1990). The within class scatter matrix gives a measure of
the variation of the instances of each class around the class mean, the between-
class scatter matrix a measure of the difference of the means of the different
classes, and the mixture scatter matrix a measure of the variation of the whole
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dataset. The separability criterion that is of interest to us is the one suggested
by Fisher (1936) for two class problems and extended by Rao (1948), to handle
multiclass ones. The reason is that the maximization of the proposed criterion
is directly associated with the canonical correlation coefficients, between the E
variable and the class variable.

Let pc,,p be the con dimensional vectors giving the means of the ¢; class
and the total mean respectively,

1
He; = E €
Ne;
ecc;

1 1
Ho= Hze = ﬁ;nc,ﬂc,
then the total scatter matriz of the dataset is given by
Sr=> (e—w'(e—p) (4.6)
e
the scatter matrix of the class ¢; is given by
Se, =Y (e~ pe,) (e — pe,) (4.7)
e€e;

the within class scatter matriz by

Sw =S, (4.8)

and the between class scatter matriz by

Sp=> e (pe; — 1) (He, — ) (4.9)

Applying the W transformation on the E random vector results in the following
within class and between class scatter matrices, on the new transformed space,

Sw = W'Sww

Sp = W'Sgw
Intuitively, to improve class separability in the new space, we can maximize the
distances of the classes in the new space while minimizing the variation of the

instances of each class, by appropriately selecting W. One way to do that is to
maximize the ratio of the determinants of the two matrices, i.e.

argmax @ = argmax M
g W‘g; 9 W|W’SWW|

The columns of the matrix W that maximize the ratio are the generalized eigen-
vectors that correspond to the largest eigenvalues of
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with the eigenvectors given by
(SB - )\iSW)wi =0 (4.11)

If Sy is non-singular then the generalized eigenvalue problem given by equa-
tion 4.10 can be converted to a conventional eigenvalue problem of finding the
eigenvalues A; of Sv},lSB. Since Sv},lSB is positive semidefinite its eigenvalues
are non-negative. The number of positive eigenvalues of S‘fvl Sp is equal to its
rank. And the rank of S;;' Sg is bounded by

rank(S,,' Sg) < min(rank(S,;'),rank(Sg)) = min(cl — 1, con)

Sp is the sum of ¢l matrices with the rank of each one being at most one. This
follows from the fact that each one of them is the result of the outer product
of two vectors, i.e. (e, — p) (e, — p). Furthermore since the ¢l class means
satisfy u = % 261 e, at most cl-1 of these matrices are linear independent. As
a result of these rank(Sp) < min(cl — 1, con).

It can be shown (Ripley, 1996), that the vector, w,, that maximizes equa-
tion 4.5, is the eigenvector associated with the largest eigenvalue computed by
equation 4.10. The resulting variable is called the first linear discriminant, and
it is the first canonical variate. In the same way the vector that gives the sec-
ond highest canonical correlation is the eigenvector associated with the second
largest eigenvalue of equation 4.10, and gives the second linear discriminant or
the second canonical variate, etc. Furthermore the canonical correlation coeffi-

cient of the i canonical variate with the class variable is given by p; = 14):3\ .

Consequently if \; is the largest eigenvalue then the first canonical correlation
coefficient is

— Al

Because the eigenvalues are non-negative, we have 0 < p; < 1.

The w; eigenvectors that correspond to the largest eigenvalues of equa-
tion 4.10 are the ones that have the highest discrimination power. \; measures
the ratio of the between to within group variances on the i*" linear discriminant.
The total variation of the linear discriminants is just the sum of the eigenvalues.
The proportion of variation explained by the first linear discriminant is denoted
as fracl and it is computed as

A

ZiAi’

this quantity can be also seen as the discriminating power of the first linear
discriminant.

Note here the very close relation of the ANOVA based procedure described in
section 4.2.3, used to measure the degree of association between a continuous and
a discrete attribute, with discriminant analysis. The classes’ scatter matrices
(equation 4.7), the within class scatter matrix (equation 4.8) and the between

fracl =

(No 59)
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class scatter matrix (equation 4.9) used by the discriminant analysis are the
straightforward extensions of the groups’ variation (equation 4.3), the within
group variation (equation 4.4) and the between group variation (equation 4.2),
from one dimensional variable to multivariate variable. While the ANOVA based
procedure just measures the degree of association, discriminant analysis seeks
for these linear transformations that maximize the associations.

The information required to specify the class of an instance is H(C). The
information that all the attributes provide about the class is MI(C, F). It can
be very easily seen that this quantity can be greater than the sum of the mutual
information of the individual attributes with the class; a typical example of that
is the parity problem. In a simplistic case all attributes are independent so the
mutual information of the full vector of attributes with the class equals the sum
of the mutual information of individual attributes with the class, i.e.

MI(C,E) = ng(chi)

i=1

under that scenario each attribute contributes information independently of the
rest. We could then consider that the mutual information of each attribute with
the class attribute equals the average of the individual mutual information,

attr
— —, MI(C,X;
MI(C,X) = 2z MIC, Z), (No 65)
attr
By taking the ratio
H(C
EN.attr = %7 (No 66)
MI(C, X)

we can have a rough estimate of the number of attributes on average required
to describe the class, this quantity is called the equivalent number of attributes.

Finally in an effort to estimate the amount of non-useful information of a
dataset we use the noise to signal ratio. Which is given by :

NS.ratio = H(X) _/A{I(QX), (No 67)
MI(C, X)

— —

H/(}() is the average information of the attributes. Then H(X) — MI(C, X)
is the mean non-useful information of the attributes. So the ratio gives the
percentage of non-useful information within the dataset.

4.2.5 Other dataset characteristics

Here we will give a description of these dataset characteristics that cannot be
classified to any of the previous categories.

One factor that affects the difficulty of a classification problem is the dimen-
sionality problem. It is known that increasing the number of features beyond
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a certain point is likely to be counterproductive (Duda & Hart, 1973). The
number of examples required for learning grows exponentially with the number
of features. But since we cannot always increase the number of examples, the
learning space becomes sparsely populated and generalization becomes more dif-
ficult. As a rough measure of the dimensionality we use the ratio of the number
of attributes to the number of instances, dim, (No 4).

The distribution of training examples among the different classes could also
affect the performance of learners. One way to describe this distribution is
the entropy of class, H(C), (No 63). The lower its value is, the more skewed
the distribution of instances among classes is. The higher the value the more
balanced the distribution is.

Missing values also affect the performance of the learning algorithms, and
different learning algorithms have different ways to handle them. For example
¢5.0 has a specific mechanism for them, while IBL uses a very naive strategy.
So the result is that they exhibit different degrees of tolerance to presence of
missing values. We used two simple measures to describe them, namely the total
number of missing values, mvals, (No §5), and their proportion with respect to
the product of the number of attributes with the number of instances, %muvals,
(No 6). Apart from that, we record the number of missing values for each
attribute, in a later section (section 4.4) we will describe how these will be
represented so that they can be handled by a propositional learner.

When one is using discriminant functions for classification the relation be-
tween the covariance matrices of the different classes determines whether linear
or quadratic discriminants should be used. In the case where covariance matri-
ces are equal then linear discriminants are used, when they are not equal then
quadratic discriminant functions are used. A measure characterizing the equal-
ity or not of the covariance matrices could be predictive for the performance of
linear discriminants. Box’s M-statistic is a measure that can be used to test the
equality of covariances. It is given by

cl
S
M=y E (n; — l)log|S—'|
i=1 ’

where
cl

- 2con? + 3con — 1 Z 1 1
6(con + 1)(cl — 1)

)

7= . ni—lin—cl
i=1

S is the pooled covariance matrix

cl
1
S = E S..
n—cl P !

S; is the ¢ class covariance matrix
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and S, is the i class scatter matrix.

The M-statistic can be reexpressed as the geometric means ratio of the pooled
standard deviations to the classes’ standard deviations via the standard devia-
tion ratio, SD.ratio,

M
con Zflzl (n; — 1)

SD.ratio is strictly greater than one if the covariances differ and is equal to
one if and only if the M-statistic is zero, that is when all individual covariance
matrices are equal to the pooled covariance matrix.

SD.ratio = exp(

), (No 69)

4.3 A discussion on characteristics

Here we will discuss some practical problems associated with the use of dataset
characteristics.

In many of the characteristics used to describe a dataset, the range of their
possible value varies depending on the specific attributes of the dataset on which
they are measured. Examples of characteristics like that are the entropy of the
attributes, the mutual information between an attribute and the entropy of the
class attribute. This fact causes problems when it comes to the comparison of
the values of a specific characteristic for different datasets, although we have the
same characteristic the range of values is different. In order to be more concrete
let us examine the case of the class entropy. We want to compare the class
entropy of two different datasets, in order to determine how similar these two
datasets are in that dimension. This is not straightforward since, as we have
seen, the possible range of values of the class entropy depends on the number
of different classes that each dataset has, and it is bounded by [0, log(cl)]. One
possible solution, in order to alleviate the problem is to normalize these char-
acteristics so that they will all fall in the same value interval. Note that here
by normalizing we mean, in the case of the class entropy, the division with the
maximum theoretical entropy, i.e. log(cl). When extending the set of charac-
teristics provided in STATLOG we took special care in selecting ones that had
always the same range independently of the dataset attributes on which they
are computed.

Another problem arises with the use of measures which can be computed
only for discrete, or only for continuous attributes. There might be datasets
for which it makes no sense to compute some characteristics. For example in a
data set in which all the attributes are continuous, none of the characteristics
for discrete attributes applies (e.g. entropy, concentration coefficient etc) and
vice versa. The typical way to handle those cases so far was to consider these
values as missing values but this alters the semantics of the problem, since they
are not missing values but they deliver useful information about the nature
of the dataset. They are rather a distinct value. To handle those cases we
assign the label non-appl to the corresponding characteristics. This results in
characteristics that have either continuous values or the value non-appl. In
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order to perform learning in the meta-level, we need inductive algorithms that
can handle features of that nature.

A last problem with dataset characteristics is associated with specific patho-
logical cases that may appear when computing the value of a characteristic,
resulting in a non-numerical value for that characteristic. For example the con-
centration coefficient between two attributes can take the value of co when the
distinct values of an attribute are not properly defined. This situation can ap-
pear when one of the different values of one of the two attributes never appears
in the dataset (although defined in the dataset schema), resulting in a m;y of
zero, in formula 4.1, giving the concentration coefficient. Again one solution to
handle the specific problem, would be to encode these cases as missing values,
but that would again alter the semantics of the problem, so we have decided to
handle them as another distinct value of the characteristics.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 4.1. Example of distributions of the correlation coefficients of two different datasets with the
same mean, but completely different form

4.4 Staying Propositional

One of the weak points of the STATLOG approach, as well of the subsequent
efforts in the spirit of STATLOG (i.e. (Brazdil et al., 1994; Lindner & Studer,
1999; Sohn, 1999; Soares & Brazdil, 2000)), was the management of the datasets
characteristics which are computed for each attribute or for pairs of attributes.
Let us take as example the case of the correlation coefficient. The specific
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characteristic is computed for all the pairs of continuous attributes, resulting
in O(C%n) coefficients. The use of propositional learners on the meta-learning
level requires that training instances should be described by exactly the same
predictors. It is obvious that in the case of the correlation coefficients their
number depends on the number of continuous attributes. So there is a need for
a mapping of this varying length set of numbers to a constant representation
which is independent of the number of attributes of a dataset. What was done in
STATLOG and also in the subsequent similar approaches was to map every such
set of characteristics to its mean value, so that finally every dataset is described
by the same and fixed number of attributes. The limitations of this approach
are obvious and we will exhibit them with a small example. In figure 4.1 we can
see the distribution of the correlation coefficients for two different hypothetical
datasets. In the distribution given by the solid line there is a strong correlation
among the attributes. The values of the correlation coefficients are concentrated
to the extremes of the [—1, 1] interval. Consequently there is a high degree of
pleonasm in the dataset. On the other side we have the dataset whose correlation
coefficients distribution is given by the dotted line. Here the values of the
correlation coefficients are concentrated around zero, so the dataset has a low
level of pleonasm (at least when we are examining it, in terms of simple linear
relationships). So what we finally have are two completely different datasets,
which however when they are described by their mean, have exactly the same
description, (since both distributions share the same mean of zero).

Todorovski et al. (2000) tried to attack the problem including also the
minimum and maximum value for each characteristic that is computed on an
attribute basis. In a more interesting approach Todorovski and Dzeroski (1999)
use inductive logic programming to overcome the representational restrictions
posed by the use of propositional learners on the meta-level. Inductive logic
learners have richer representation power since they rely on relational represen-
tations of the instances. Like that, it is possible to maintain the full information
contained in the initial characteristics without having to map them to a fixed
representation. A similar approach is proposed in (Hilario & Kalousis, 2001),
where they make use of a case based reasoning system. Case based systems
also make use of relational representations of the instances thus overcoming the
restrictions of propositional learners, however most of the available systems, in-
cluding the one used in the (Hilario & Kalousis, 2001), do not induce first order
rules.

Since in this work we restricted ourselves to the use of propositional learners
we have to find a way to overcome their representational limitations by keeping
as much information as possible from the initially available in the full set of
the dataset characteristics. In order to achieve this, we use for each set of
values associated with a specific characteristic, the histogram of the values in
that set, instead of just its mean. More precisely for every characteristic of
this type we compute its theoretical range of values, for example in the case
of the concentration coefficient this is the interval [0,1]. This interval is then
divided in ten equal length bins. For each bin we compute the percentage of
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the pairs of attributes that have a concentration coefficient that belongs to that
bin. Furthermore we also create one more bin which is associated with those
pathological cases for which a characteristic is non-computable, as for example
in the cases of concentration coefficient in which we take oo as a value.

The histograms where applied to all the dataset characteristics with which
we have extended the STATLOG set of characteristics, plus the correlation co-
efficients that were used in STATLOG. More precisely we used the histogram
representation for the following characteristics: the concentration coefficients
between discrete attributes, [11..710], (No 12-21), and between the class vari-
able and the discrete attributes, [7¢,..7cy,], (No 23-32); the correlation coef-
ficient between continuous attributes, [p;1..p10], (No 35-44); the p-value of the
F-distribution used to describe the associations between continuous and discrete
attributes, [p —wvali..p —valyg], (No 70-79), and also between the continuous at-
tributes and the class variable, [p —valc, ..p —vale,,], (No 80-89). The patterns
of missing values among the attributes were also described using histograms, in
the following paragraph we describe how this was done.

For a particular dataset, the percentage of the missing values alone gives al-
most no information on their structure. It is typical to have datasets which have
exactly the same total percentage of missing values but a completely different
distribution among the attributes; in that case the proportion of missing values
has no discriminatory power. In (Kalousis & Hilario, 2000a) we have also shown
that the way the missing values are distributed among the different attributes
of a dataset critically affects the performance of the learning algorithms. To
describe the way missing values are distributed among attributes, we compute
the percentage of missing values for each attribute and then create a histogram
of missing values, [mwvals;..mvalsip], (No 46-55), i.e. the first bin contains the
proportion of attributes that have between 0% and 10% missing values, the sec-
ond between 10% and 20%, etc. In this way we are able to describe patterns of
missing values in a finer detail.

For the rest of characteristics, whose number of values depend on the num-
ber of attributes, used in STATLOG, (i.e. attributes entropy, mutual informa-
tion, skew, kurtosis) and the multiple correlation coefficient, we did not use the
histogram representation but just their means, H(X),MI(C,X),@,B,R, (No
64,65,61,62,68), as it was done in STATLOG.

Using the histograms for the multiple correlation coefficient is straightfor-
ward since it takes values from a constant interval. For the entropy of the
attributes and the mutual information the procedure is not straightforward,
since their maximum theoretical value depends on the number of distinct val-
ues of the attributes on which the characteristics are computed, meaning that
different attributes or different pairs of attributes will have different theoretical
bounds. Consequently we can not describe their global distribution, since there
is no common interval of values, on which to define the bins of the histogram.
The problem could be solved with the normalization procedure described in
section 4.3. Unfortunately for the kurtosis and skew values there is no way to
normalize them in order to have common bounds.
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Table 4.2. Computational Cost. n is the number of examples in the training set, and m the
number of examples in the test set.

Algorithm Train Cost Test Cost 10CYV cost
c50boost O(10 X n X con X logn) O(m) 0O(100 X n X con x logn)
ch0rules Oo(n?) O(m) 0(10 x n3)
ch0tree O(n X con x logn) O(m) 0O(10 X n X con x logn)
Ltree O(n x con x logn) O(m) O(10 X n X con x logn)
Lindiscr O(n) O(m) 0(10 x n)

TBL o(1) O(m x n) 0(10 x n?)

NB O(n) O(m) 0(10 x n)

ripper O(n x log%n) O(m) 0(10 x n x log?n)

4.5 Computational Complexity

One of the critical factors concerning the operational performance of the system
is the computational requirements of the characteristics used to describe the
datasets. If these require more computational time than the evaluation of the
available learning algorithms, then clearly the system would have been useless.
Concerning the characteristics that are computed for the discrete attributes
the main computational requirements stem from the construction of the con-
tingency tables. This can be done in only one pass of the dataset, thus having
a computational complexity of O(n). For the characteristics that involve only
one discrete attribute with I distinct values, their computation cost for all the
nominal attributes is O(nom x I). The computational cost of characteristics
that involve two nominal attributes with I, .J distinct values, for all the pairs of
nominal attributes is O(("%2") x I x .J) = O(nom? x I x .J). So the total compu-
tational cost for the characteristics that are applied on the nominal attributes
is O(n+mnom? x I x J +mnom x I), which is dominated by O(n) when nom < n.
When it comes to the characteristics that are computed for the continuous
attributes the main computational requirements stem from the construction of
the covariance matrices, the computational complexity of which is O(n). The
computation of some of the characteristics is based on the eigenvalues of a
con X con matrix, which in order to be computed require the inverse of a matrix
with the same dimensions. Inversing a matrix of con x con dimensions has a cost
of O(con?), the same a the computation of the eigenvalues of a matrix with the
same dimensions. So the total computational cost of the characteristics used to
describe continuous attributes is O(n + con®) which again is dominated by O(n)
when con < n.
To conclude the total computational cost of the dataset characteristics is
O(n) when attr < n, otherwise it is O(n +nom? x I x J +nom x I + con?).
Let us now examine briefly the computational cost of estimating the accura-
cies through cross validation in order to select the best algorithm from the pool
of eight learning algorithms that we are using here. In a typical application of
cross validation one would use ten repetitions of train and test phases, using 90%
of the available data as a training set, and the rest 10% as a test set. The com-
putational cost of that heavily depends on the algorithm that one is currently
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evaluating and it will be : 10 X (TrainCosta4,(90%n) + TestCostyy,(10%n)).
In order to simplify things we will consider that attr < n. Based on that as-
sumption the computational cost of the test phase only depends on the number
of instances in the test set.

Cohen (1995) computes the computational cost of ripper and they compare
it with that of c4.5rules. Since ¢5.0rules is an evolution of c4.5rules, and there
is no documentation of it, we will consider that it has a similar cost to that
of c4.5rules. He computes the cost of ripper to be on the order of O(nlog*n)
and that of c4.5rules to be O(n?), which is also confirmed by their experimen-
tal findings. In (Ruggieri, 2002) the computational complexity of c4.5tree is
calculated to be on the order of O(n x (con x logn + nom)) which is roughly
equal to O(n x con x logn). For the same reasons with c¢5.0rules, we consider
the cost of ¢50tree to be equivalent to that of c4.5tree. Ltree follows the same
divide and conquer strategy with c50tree so they share the same computational
cost. In the case of c50boost the computational cost is determined by the mul-
tiple executions of c50tree, ten in our experiments. So the cost of c50boost is
simply O(10 x n X con X logn). In the case of Lindiscr the cost of training is
O(n + attr®), since the algorithm consists of computing the covariance matrices
and solving an eigenvalue problem, with respective cost of O(n) and O(attr?).
And under the initial assumption of attr < n, this gives a computational cost
of O(n). Naive Bayes requires just one pass of the data to build the model, and
IBL does not even require a pass since it does not construct a model, however
IBL is much more expensive in the testing phase, where its computational cost
is O(n x m) = O(n?).

The main cost of cross validation for all the algorithms except from IBL,
comes from the application of the training phase for ten times. So roughly the
cost of cross validation is ten times the cost of the training phase. In the case of
IBL the main cost of cross validation comes from the application for ten times
of the test phase. In table 4.2, we summarize the computational costs of the
eight algorithms, for the train, test and the cross validation. It is obvious that
the cost of using ten fold cross validation to find the best learning algorithm in a
given dataset, is by far greater of that of computing the dataset characteristics.

The cost of cross-validation mentioned so far it is the worst case scenario.
It is possible to develop special versions of classification algorithms that in-
corporate in the model construction phase the cross-validation cycle. This is
straightforward for simple classification algorithms like Naive Bayes and Near-
est Neighbors and results in cross validation costs similar to that of a single
application of the algorithm. It is less trivial for more complex algorithms like
decision trees and neural networks where the speedup of the cross validation ver-
sion of the algorithm depends on the form of the concept, (Blockeel & Struyf,
2001), and it lies between the cost of a single application of the algorithm and
the cost of normal cross validation.
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Chapter 5

Instance Based
Meta-Learning

The selection of the appropriate inducer which will be used at the meta-learning
level will critically affect the performance of the system. As a starting point
we use a simple instance based learning algorithm. Instance based learning al-
gorithms induce no model from the training data, they only rely on distance
measures of the instances that have to be classified from the data used for train-
ing. There were two main reasons for the selection of an instance based learner
on the meta-level. First and more important is that we expect learning algo-
rithms to exhibit similar performance on datasets with similar characteristics,
so we can exploit past algorithm performance to predict performance on un-
seen datasets. Second, the fact that it is straightforward to adapt the distance
measure of an instance based learner so that it can handle the non-appl values
mentioned in section 4.3.

We define similarity between datasets in terms of geometrical proximity in
the morphology space, whose dimensions are defined by the dataset character-
istics, and observe the morphology space as a conventional Euclidean space, ex-
tended by non-appl. We modified the distance definition of the Nearest Neighbor
algorithm to handle attributes whose domain is ® U non — appl. The morpho-
logical characteristics are all normalized to the interval [0, 1], prior to applying
the algorithm.

Definition 5.0.1 Let M, ..., M, denote the characteristics constituting a dataset
morphology. The distance d between two datasets D, D' with respective mor-
phologies < my,...,m, > and < mi,...,m, > is:

n
_ 2
d= E d;;
i=1
where :
_ I ]
dii = m; —m; zfmi,mi €§R
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1 if one of m;, m} is non-appl

= 0 if both of m;,m} are non-appl

O

We experimented with two different sets of datasets characteristics. In the
first one, which we will call histo, we excluded all the ANOV A based measures,
used to describe the associations between discrete and continuous attributes,
that is we did not include characteristics after the 70th position of table 4.1.
In the second, which we identify as +histo, we used all the characteristics of
the given table. This was done in order to examine whether the extension
of the dataset characteristics with the ANOV A based measures, improves the
discriminating power of the characterization.

5.1 Results with simple IBL

For the training and evaluation of the system we used the 1075 datasets de-
scribed in section 3.4 and the evaluation method described in section 3.6. In
effect we have two levels on which we evaluate the performance of a specific
combination of dataset characterization and meta-learning algorithm. The first
level is the performance in terms of accuracy for the pairwise meta-learning
problems. The second level concerns the final suggestion of the system and we
use both normal accuracy and the loose accuracy as it was defined in section 3.6.

5.1.1 Results on the histo set of characteristics

Using IBL on the histo set of dataset characteristics, gives quite good results
both in terms of the accuracy of prediction on the pairwise meta-learning prob-
lems, as well as in the final suggestion of algorithm.

Results on the Pairwise Meta-Learning Problems In table 5.1, we give
the achieved accuracies for all the pairwise meta-learning problems and the
improvement over the default accuracy. For all of them the improvement is quite
significant, moreover it is always significant in statistical terms. The complete
class distributions for each of the pairwise meta-learning problems was already
given in table 3.1.

In the most remarkable case, the pair of IBL and Naive Bayes, the default ac-
curacy is 36.09% and the predictive accuracy is 85.02%, that is, an improvement
of 48.93% over the default. It is obvious that the current set of characteristics
is quite discriminating for the specific pair. This can be explained by the fact
that the characteristics used give quite an emphasis on the description of in-
terelations between the attributes, as well as between the attributes and the
class, giving an implicit measure of the redundancy and the level of irrelevant
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information present in a dataset. In what concerns the level of irrelevant in-
formation in a dataset, we could state that Naive Bayes and simple instance
based learners have a completely different region of expertise, with the former
being able to cope far better on datasets with irrelevant attributes than the
later. The reason is that Naive Bayes uses the class conditional probabilities of
the attributes in order to classify an instance; with this mechanism the effect
of the irrelevant attributes is reduced. When one attribute is irrelevant with
respect to the class attribute we expect that its distribution will not change over
the different classes, that is the class conditional probabilities of the irrelevant
attributes do not change among the classes. When an instance is to be classified
the irrelevant attributes will have exactly the same effect when computing the
class posterior probabilities. On the other hand the instance based inducer used
here gives equal importance to all attributes, independently of whether they are
relevant or not, thus its performance is hampered by the presence of irrelevant
attributes.

Overall the average improvement over the default accuracy is 27.24%, rela-
tively high especially if one considers the difficult nature of the problem.

The achieved accuracy and the improvement over the default differ from pair
to pair, implying the obvious, i.e. that the best set of discriminating character-
istics is different from pair to pair.

Results on the Final Suggestion The results concerning the accuracy of the
final suggestion, given in table 5.2, of the system are less satisfactory, especially
if we consider the high level of accuracy that is achieved on the pairwise meta-
learning problems. Here the accuracy falls down to 47.72%, nevertheless there
is still a significant improvement, over the default accuracy that corresponds to
the final suggestion, of 21.49%. The explanation to that is that the errors we
get on the pairwise meta-learning problems do not occur on the same instances,
in our case datasets. This is more easily demonstrated with an example. Let us
suppose a simple scenario with three inducers on the base level. This would give
rise to three different pairwise meta-learning problems. If the accuracy on all
three hypothetical meta-learning problems was 90%, then in the worst case the
accuracy of the final suggestion' would be 100% — 3 x 10% = 70%. This scenario
would happen when the produced meta-learning models make errors in disjoint
sets of datasets and these errors affect the decision as to which algorithms are
ranked in the top position. There could be errors in the individual pairwise
meta-learning models that do not affect the correctness of the final suggestion.
Thus the error of the final suggestion can be in the worst case the cumulation
of the individual errors, of the pairwise meta-learning models.

Examining the performance of the system in terms of loose accuracy, i.e. the
percentage of times that the system fails to find the correct set of algorithms
that together occupy the top position but instead finds a subset of that set the

I Remember here that the final suggestion is the result of the combination of the individual
suggestions of the pairwise meta-learning problems
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Table 5.1. Accuracies of IBL on the histo feature set.

pair Accuracy | Improvement
c50rules c50boost 82.42% 24.28%
c50tree ch0boost 80.00% 22.23%
c50tree ch0rules 78.14% 5.12%
Lindiscr c¢50boost 84.84% 20.37%
Lindiscr ¢50rules 85.12% 32.47%
Lindiscr c50tree 85.58% 30.88%
Ltree c50boost 78.60% 26.98%
Ltree c50rules 82.14% 23.44%
Ltree c50tree 78.79% 19.26%
Ltree Lindiscr 81.21% 20.09%
IBL. c50boost 85.40% 20.74%
IBL c50rules 74.88% 25.12%
IBL c¢50tree 79.53% 27.53%
IBL Lindiscr 81.49% 39.16%
IBL Ltree 74.60% 17.95%
NB c50boost 85.02% 24.19%
NB c50rules 84.74% 33.30%
NB c50tree 84.47% 31.54%
NB Lindiscr 77.95% 36.84%
NB Ltree 84.37% 26.14%
NB IBL 85.02% 48.93%
ripper c50boost 85.02% 34.05%
ripper c50rules 77.86% 17.95%
ripper ch0tree 84.09% 24.00%
ripper Lindiscr 78.70% 32.56%
ripper Ltree 75.81% 22.60%
ripper IBL 81.30% 35.16%
ripper NB 81.67% 39.91%
average 81.39% 27.24%

Table 5.2. Final suggestion results of IBL on histo

Strict Accuracy Improvement TLoose Accuracy
47.72% 21.49% 69.67%

situation is better. The results are correct in 69.67% of the cases (table 5.2).

5.1.2 Results on the +histo set of characteristics

The addition of the p-values histograms derived from the ANOV A based proce-
dure was done in order to capture to some extend the interelations that exist be-
tween discrete and continuous attributes and between the continuous attributes
and the class. Hopefully this would increase the discriminating power of the
dataset characteristics, thus resulting in a better predictive performance. Nev-
ertheless the results indicate that the incorporation of the p-values histograms
do not improve the performance, but rather harm it.
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Table 5.3. Accuracies of IBL on +histo feature set.

pair Accuracy | Improvement
c50rules c50boost 80.56% 22.46%
c50tree c50boost 79.26% 21.53%
c50tree ch0rules 77.96% 4.98%
Lindiscr c¢50boost 82.05% 17.63%
Lindiscr c50rules 81.68% 29.05%
Lindiscr c50tree 81.31% 26.70%
Ltree c¢50boost 76.38% 24.77%
Ltree c50rules 78.42% 19.80%
Ltree c50tree 75.73% 16.27%
Ltree Lindiscr 78.70% 17.58%
IBL c¢50boost 85.31% 20.75%
IBL c50rules 75.63% 25.93%
IBL c¢50tree 78.70% 26.70%
IBL Lindiscr 77.12% 34.87%
IBL Ltree 73.96% 17.35%
NB c¢50boost 81.49% 20.66%
NB c50rules 80.38% 28.96%
NB c50tree 81.87% 28.97%
NB Lindiscr 74.24% 33.18%
NB Ltree 82.24% 23.97%
NB IBL 78.52% 42.51%
ripper c50boost 82.14% 31.32%
ripper ch0rules 76.38% 16.49%
ripper ch0tree 82.14% 22.11%
ripper Lindiscr 75.73% 29.66%
ripper Ltree 73.49% 20.29%
ripper IBL 79.73% 33.66%
ripper NB 79.35% 37.63%
average 78.94% 24.85%

Results on the Pairwise Meta-Learning Problems The results on the
+histo set of characteristics are given in table 5.3. The average accuracy over all
the pairwise meta-learning problems is 78.94% a reduction of 2.45% compared
to the average performance on the histo set of characteristics. In all the pairwise
meta-learning problems but one, the accuracy on the +histo set of character-
istics is lower than the corresponding on the histo set. In section 5.1.3 we will
examine in more detail the statistical significance of the observed differences
among the two sets of characteristics.

Results on the Final Suggestion Evaluating the quality of the final sug-
gestion we can see that in terms of the accuracy of the final suggestion the
+histo set of characteristics achieves almost the same accuracy with the histo
with a slight decrease of 0.65%. If we move now to the loose accuracy there the
reduction in performance is higher, 2.97%. The performance of the +histo is
summarized in table 5.4.
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Table 5.4. Final suggestion results of IBL on +histo

Strict Accuracy Improvement TLoose Accuracy
47.07% 20.84% 66.70%

5.1.3 Comparing the discriminating power of +histo, histo

In this section we will proceed to the comparison of the two different ways
of dataset characterization to determine whether the observed differences are
statistically significant or not. In order to do that we will apply the McNemar
test of statistical significance both in the pairwise metalearning problems and
in the final suggestion. We set the « level of statistical significance at 0.05.

Results on the Pairwise Meta-Learning Problems In table 5.5 we give
the results of the McNemar test on each of the individual pairwise meta-learning
problems. The columns labeled histo Correct, +histo Correct give the number
of cases where the histo set of characteristics gave a correct prediction while the
+histo set gave a wrong prediction, and vice-versa. By examining the outcome
of the McNemar test we can see that there is a statistical significance in favor of
the histo set in 18 out of the 28 meta-learned models. In all the other cases there
is no significant difference. There is no pairwise meta-learning problem where
the +histo outperforms the histo, thus providing strong evidence for the supe-
riority of the histo set over the +histo at least for the pairwise meta-learning
problems.

Results on the Final Suggestion Examining the results of the statistical
significance test on the final suggestion, table 5.6, we see that the two sets have
the same performance when it comes to strict accuracy, i.e. their difference is not
statistically significant. In the case of loose accuracy histo outperforms +histo
and now the difference is statistical significant. The columns histo Correct,
+histo Correct give the number of cases where the histo set of characteristics
gave a correct prediction while the +histo set gave a wrong prediction, and
vice-versa.

The overall picture from the preceding tests of statistical significance is that,
at least when IBL is the meta-learner chosen, histo outperforms +histo. We
see two possible explanations for this somehow counterintuitive phenomenon.
One possible reason could be the fact that the extra features of +histo simply
do not bring any useful information about the problem. As we have stated in
the description of these extra features, they provide a crude way to describe
the interelations between continuous and discrete attributes lacking another
characteristic better adapted to that kind of need. The reason for that is their
underlying assumption, i.e. the independent variable is the discrete variable and
the dependent is the continuous, in that way they can only describe unidirec-
tional dependencies. One other explanation could be the fact that the addition
of new dataset characteristics increases the dimensionality of the problem thus
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Table 5.5. Results of McNemar test comparing the accuracies of histo and +histo, on the

pairwise meta-learning problems. = indicates no statistical difference, + indicates statistical
difference.
pair histo +histo
Correct | Correct | p — value

ch0rules c50boost 70 50 0.083
c¢50tree cb0boost 60 52 0.509 | =
c50tree ch0rules 49 47 0.919 | =
Lindiscr c50boost 69 39 0.006 | +
Lindiscr ¢50rules 75 38 0.001 | +
Lindiscr c50tree 74 28 0.001 | +
Ltree ch0boost 81 57 0.051 | =
Ltree ch0rules 74 34 0.001 | +
Ltree ch0tree 76 43 0.004 | +
Ltree Lindiscr 76 49 0.021 | +
IBL ch0boost 46 45 1.000 | =
IBL ch0rules 65 73 0.552 | =
IBL c50tree 66 57 0471 | =
IBL Lindiscr 74 27 0.00 | +
IBL Ltree 74 67 0.614 | =
NB c¢50boost 69 31 0.001 | +
NB ch0rules 84 37 0.001 | +
NB c50tree 74 46 0.014 | +
NB Lindiscr 93 53 0.002 | +
NB Ltree 60 36 0.019 | +
NB IBL 100 30 0.00 | +
ripper c50boost 73 43 0.008 | +
ripper c¢h0rules 58 42 0.134 | =
ripper c50tree 60 39 0.045 | +
ripper Lindiscr 77 45 0.006 | +
ripper Ltree 73 48 0.030 | +
ripper IBL. 61 44 0.119 | =
ripper NB 70 45 0.026 | +

making learning more difficult. It still remains to be seen whether the same
observation holds when more elaborate inducers are used on the meta-learning.

5.2 Meta-Feature Selection

An issue that has received little attention, if any, in the meta-learning field, is
the explanation and the understanding of the factors that affect inducer perfor-
mance. All previous efforts have aimed at maximizing the predictive capabili-
ties of the meta-learner without shedding light on the factors (i.e. properties of
the datasets) that affect the performance of the algorithms. Applying feature
selection to the meta-level can cover this gap and at the same time improve
meta-learning performance. Using feature selection we can have a better idea
of the factors that affect the performance of the learners. This is especially true
when the meta-learning algorithm used is an instance based learner, which gives
no insight into the relevance of the attributes used for learning.

The first attempt at meta-feature selection appeared in the meta-learning
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Table 5.6. Results of the McNemar test comparing the accuracies of histo and +histo, on the
final suggestion, both in terms of strict and loose accuracy.

histo +histo
Correct  Correct p — wvalue
strict Accuracy 76 69 0.6183 =
loose Accuracy 90 58 0.0119 +

framework of zooming-ranking (Todorovski et al., 2000). As it was mentioned
previously the main limitation of this framework is the mandatory use of a sin-
gle and global meta-learning model (an instance based model), independently
of the pool of algorithms from which the selection is to be performed. However
the factors that determine the relative performance of a group of algorithms,
may be quite different from the factors that determine the relative performance
of another group of algorithms. Moreover even within a specific group of learn-
ing algorithms the factors that determine the relative performance of a pair of
algorithms from the group, can be quite different from the factors that affect
the relative performance of the algorithms of an another pair. It is exactly this
case that calls for use and combination of different meta-learning models. Here
the diversity of the meta-models comes from the use of different sets of meta-
features (i.e. dataset characteristics). This is where we can make full use of the
flexibility of our meta-learning framework. By applying feature selection to the
pairwise meta-learning problems we get different sets of meta-features which
will give rise to different meta-learned models.

5.2.1 Feature Selection

Two are the main ways that feature selection is performed in machine learning,
the filter and the wrapper approach (Liu & Motoda, 1998).

In the filter approach, only properties of the datasets are used in order to
perform the selection of the features. These properties could be measures of
association between features, measures of distance or dependence.

In the wrapper approach (Kohavi & John, 1997), the driving force is the
accuracy of the learning algorithm that is going to be applied on the dataset. An
extensive and systematic search is performed in the state space of all the possible
feature subsets using heuristic search methods, like hill climbing, simulated
annealing or best first. The search can begin either from the full set of features
(backward elimination) or from the empty set (forward selection). The feature
selection algorithm conducts the search using the estimated accuracy of the
induction algorithm as the evaluation function. At the end, the feature set
achieving the highest accuracy is selected.

Here we have chosen to use the wrapper approach to perform the feature
selection on the meta-level. Although it requires a substantial amount of compu-
tational time, in the case of meta-learning this factor is not so important, since
it will only be performed once. To perform feature selection we used MLC++
feature selection capabilities. The search strategy used is best first search. In
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table 5.7 we give in pseudo code the algorithm for performing the search on the
state space of the feature sets. We start the search from the full set of features,
thus using backward elimination. At each execution of the repeat loop the best
feature set, which is not yet expanded, is chosen and all its children sets are
computed by the application of the Expand function. A child set is created by
the removal or addition of a feature from the parent set. The best set is defined
as the one that achieves the maximum accuracy, as this is estimated by ten
fold cross validation?. If it is better than the best set so far by more than € it
becomes the new best set. The value of € was set to 0.001, and the value of
k was set to 10. So if there is no improvement in accuracy after ten loops the
search terminates, and the best set of features found so far is returned.

Table 5.7. Wrapper approach with best first search strategy

NotExpanded < InitialSet
Expanded «— 0
BestSet < InitialSet
repeat
CurSet — ArgMATsete Not Expanded Acc(set)

NotExpanded <+ NotExpanded — CurSet
FEzpanded < Exzpanded U CurSet
if Acc(CurSet) —e > Acc(BestSet) then
BestSet < CurSet
Children < Exzpand(CurSet)
foreach s € Children, s ¢ (Expanded U NotExpanded) do
NotExpanded < NotExpanded U s
until no change in BestSet for k loops
Return BestSet

5.2.2 Results on the Meta-Learning problems

Feature selection was applied to all of the 28 pairwise meta-learning problems
resulting in a new set of features for each one of them. As a starting feature set
we used the histo, since the wrapper feature selection process is time consum-
ing?, and the histo set exhibited superior performance compared to +histo. So
the initial set of characteristics consisted of 69 features.

In table 5.8 we can see the accuracy results for all the meta-learning prob-
lems, along with the improvement over the simple IBL inducer, of IBL coupled
with feature selection*. Feature selection gives a systematic improvement of ac-
curacy, in all but two pairwise meta-learning problems (the pairs of IBL, c50tree
and IBL, Lindiscr). Nevertheless the observed differences are statistically signif-
icant, under a McNemar test of significance, in only six out of the twenty eight
pairwise problems. The average improvement, when compared to standard IBL,

2Note here that the ten fold cross validation, takes place only in the training set

3The whole evaluation procedure for the feature selection took twenty days, in a SUN
Blade 100 workstation with 512 MB of main memory

4hereafter noted as fsIBL
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over all the 28 meta-learning problems, is 1.21%, and the average improvement
over the default accuracy is 28.45%. Apart from the improvement in perfor-
mance, feature selection also reduces the number of dataset characteristics used
for inducer selection from 69 to an average of 25.25 features per pairwise prob-
lem. In order to determine the final set of dataset characteristics we applied
again fsIBL on each pairwise problem, but this time we used the complete data
i.e. all 1075 instances of the meta-learning problems, since the goal was not the
evaluation of fsIBL, but the establishment of the most discriminating set of fea-
tures for every pair of inducer. These feature sets were not used for evaluating
fsIBL.

Table 5.11 shows which characteristics were selected for some of the meta-
learning problems. It is clear that the set of discriminating characteristics
changes for different pairs of algorithms. Examining the selected character-
istics for each pair of inducers we can only draw conclusions as to which factors
impact their relative performance. The features selected by fSIBL for each meta-
learning problem can be found in appendix, section A.2. However we cannot
explain how these factors determine that relationship, i.e. what are the values
of the characteristics for which it is better to use one inducer instead of another.
If for example we examine the pair (IBL, Ltree) we see that all the elements
of the correlation coefficients histogram have been selected, whereas the ele-
ments of the concentration coefficients histogram (both between attributes and
attributes and class) have very low selectivity. Based on that we can argue
that for the specific pair of inducers the correlation coefficients between pairs
of continuous attributes play an important role in determining which inducer
is better, whereas the concentration coefficients between the discrete attributes
play only a marginal role. The presence of correlated features can affect the per-
formance of IBL in different ways depending on whether the correlated features
are relevant, in which case IBL can exhibit good performance, or irrelevant in
which case the performance of IBL would deteriorate. On the other hand Ltree
can exhibit a high degree of resilience to correlated attributes due to the incor-
poration of linear discriminant that allows the mapping of correlated features
to a new uncorrelated space. An indication of the relevance of the features is
given by the First Canonical Correlation, characteristic which is selected for
this pair of algorithms, together with the correlation histogram they give an
indication of the level of correlation among attributes and the relevance of the
attributes for the classification problem. If we have a high level of correlation
among attributes and a high First Canonical Correlation then we expect IBL
to perform fairly. In the case that the First Canonical Correlation is low IBL
should perform bad, but Ltree will be unaffected since it will reduce the effect
of irrelevant redundancy through the use of linear discriminants. In another
example, examining the pair (NB, c50boost) we observe that the correlation co-
efficients histogram has again full selectivity; but this time we get full selectivity
also in the upper half of the concentration coefficients histogram, which delivers
information on discrete attributes that exhibit a high degree of association, (a
dataset characteristic known to affect the performance of Naive Bayes). To get
a quantitative description of how the dataset characteristics determine inducers’
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superiority we plan to use a different meta-learning algorithm. Possible selec-
tions are inducers that produce a model of the classification, e.g decision trees
or rule inducers.

Another way to examine the results is to explore the ’total’ discriminating
power of each dataset characteristic, that is how often it gets selected over all
the meta-learning problems. Table 5.12 shows the relative frequency with which
each feature is selected. The most often selected attribute is the noise to signal
ratio, present in 25 of the 28 meta-learning problems. Although a rough approx-
imation, since it is based on the mean attribute entropy and the mean mutual
information between the attributes and the class, it is quite useful in determin-
ing the relative performance of the algorithms. The correlation histogram is
another noteworthy characteristic: one of its bins shares the noise-signal ratio’s
extremely high selection rate, and eight of the others are above the 50% level.
This seems to indicate the non negligible influence of correlated attributes on
learning, due to varying degrees of sensitivity exhibited by the learners. The
next characteristic in terms of ’total’ discriminating power is the ratio of the
number of attributes to the number of instances. It is known that increasing
the number of features beyond a certain point is likely to be counterproductive
(Duda & Hart, 1973). The number of classes is also selected very often as one of
the features, providing an indication that inducers react differently to variations
in the number of classes. Information theoretical measures such as mean mutual
information and mean attribute entropy also appear to be discriminating fea-
tures considering their high selection rate. The only characteristic that seems
to be completely useless is the histogram of missing values, none of its elements
is ever selected. This characteristic describes the distribution of percentages
of missing values of the attributes. Overall the discriminating power of each
characteristic is quite different, and with the notable exception of the missing
values histogram, all of them are used at least in one pair of base-inducers.

5.2.3 Results on the final suggestions

In Table 5.9 we see the accuracy that the instance-based inducer, enhanced with
feature selection, achieves on the final suggestion of base level inducers. For the
strict accuracy, feature selection does not really affect the performance of the
meta-learning, since IBL achieves a strict accuracy of 47.45%, (Table 5.2), and
fsIBl a strict accuracy of 47.44%. The difference is obviously not significant
with a p-value of 0.858, table 5.10. The loose accuracy without feature selection
is 69.67% and increases to 74.98% with feature selection. The p-value of the
test of significance for the loose accuracy is zero, which means the difference is
significant at any level of significance.

5.3 Conclusions

In this chapter we tested the performance of an instance-based inducer, as the
inducer to be used on the meta-learning level. The results were encouraging,
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Table 5.8. Results with feature selection, fsSIBL, on the histo feature set.

Improvement
pair Accuracy over IBL p-value #features
ch0rules c50boost 82.60% 0.18% 0.908 (=) 32
c50tree c50boost 81.12% 1.12% 0.224 (=) 30
c50tree c50rules 82.79% 4.65% 0.000 (+) 23
Lindiscr c¢50boost 85.67% 0.83% 0.297 (=) 19
Lindiscr ¢50rules 86.23% 1.11% 0.182 (=) 20
Lindiscr c50tree 86.98% 1.40% 0.091 (=) 18
Ltree c50boost 80.00% 1.40% 0.105 (=) 34
Ltree c¢50rules 82.70% 0.56% 0.561 (=) 31
Ltree c50tree 79.63% 0.84% 0.342 (=) 25
Ltree Lindiscr 82.33% 1.12% 0.256 (=) 25
IBL c50boost 85.86% 0.46% 0.602 (=) 22
IBL c50rules 79.07% 4.19% 0.000 (+) 16
IBL c50tree 79.07% -0.46% 0.644 (=) 25
IBL Lindiscr 81.40% -0.09% 1.000 (=) 24
IBL Ltree 76.84% 2.24% 0.028 (+) 27
NB c¢50boost 85.67% 0.65% 0.400 (=) 39
NB c¢50rules 86.70% 1.96% 0.038 (+) 23
NB c¢50tree 86.98% 2.51% 0.002 (+) 24
NB Lindiscr 79.16% 1.21% 0.227 (=) 23
NB Ltree 85.02% 0.65% 0.409 (=) 48
NB IBL 85.49% 0.47% 0.614 (=) 34
ripper c50boost 85.12% 0.10% 1.000 (=) 27
ripper ch0rules 81.30% 3.44% 0.001 (+) 21
ripper ch0tree 84.56% 0.47% 0.614 (=) 22
ripper Lindiscr 79.16% 0.46% 0.582 (=) 32
ripper Ltree 76.84% 1.03% 0.278 (=) 37
ripper IBL 81.95% 0.65% 0.482 (=) 22
ripper NB 82.42% 0.75% 0.388 (=) 31
Average 82.59% 1.21% 25.25
Improvement
over default 28.54%

Table 5.9. Final suggestion results with feature selection, fsIBL, on the histo feature set.

Strict Accuracy Improvement TLoose Accuracy
47.44% 21.21% 74.98%
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Table 5.10. Results of the McNemar test comparing the accuracies of IBL with feature selection
and no feature selection, on the final suggestion, both in terms of strict and loose accuracy.

Feature Selection = No Feature Selection

Correct Correct p-value
strict Accuracy 61 64 0.858 =
loose Accuracy 84 27 0.000 +
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Fig. 5.1. Frequency with which every characteristic is selected among all the pairwise problems,
fsIBL

the achieved performance significantly outperforms the default accuracy in all
the cases. Furthermore we examined the performance of IBL with two different
characterizations of the datasets. We found out that the addition of features
that try to capture associations between discrete and continuous attributes,
+histo dataset, instead of enhancing, harms the performance of the system,
whether this is considered on the level of the pairwise metalearning problems or
for the final suggestion. Nevertheless this should not be interpreted as a definite
indication that the same will be true for more elaborate classifiers. Actually this
hypothesis will be examined in the next chapter, where more elaborate inducers
will be used in an effort to further improve the performance.

One of the observations made on the results of these experiments was the
fact that the discriminatory power of the sets of characteristics seemed to be
different for different pairs of algorithms. It was quite logical to assume that
the factors that affect the relative performance of pairs of algorithms differ
depending on the algorithms involved. In order to verify this hypothesis we
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Table 5.11. Characteristics selected for three of the meta-learning problems, 1 indicates se-
lection of the corresponding characteristic, 0 elimination.

Attribute IBL NB IBL Ltree NB c50boost

# classes 1 1 1

# attributes 1 0 0

# instances 1 0 1
attributes

##insrm ! ! 0

# unknown values 1 0 0

# unknown values 1 1 1

# attributes * # instances

# nominal attributes 1 1 1

max,min,mean,stdv of nominal | 1101 1010 1010

attribute values

1..10 concentration histogram 1101110000 0101000000 1010111111

non computable conc. histogram | 0 0 1

1..10 concentration histogram | 1001000000 0000000000 1101000000

with class

non computable conc. histogram | 0 0 0

with class

# continuous attributes 1 0 0

1..10 correlation histogram 1111111001 1111111111 1111111111

non computable correlation his- | 0 0 1

togram

1..10 missing values histogram 0000000000 0000000000 0000000000
continuous

@amw 0 0 0

# norpinal 0 0 1

# attributes

Binary Attributes 0 1 1

Fracl 1 0 0

First Canonical Correlation 1 1 1

Mean Skew 1 1 1

Mean Kurtosis 1 1 1

Class Entropy 0 0 1

Mean Attribute Entropy 1 1 0

Mean Mutual Information 1 1 1

Equivalent number of attributes | 0 0 1

Noise to Signal Ratio 1 1 1

Mean Mult. Correl. Coef. 1 1 1

SDratio 0 1 0
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Table 5.12. Frequency with which attributes are selected, by fsIBL

Attribute frequency
# classes 82.21
# attributes 64.28
# instances 42.85
# attributes 85.71
#instances :
# unknown values 25.00
# unknown values 60.71
# attributes * # instances ’
# nominal attributes 67.85

max,min,mean,stdv of nominal attribute values
1..5 concentration histogram

6..10 concentration histogram

non computable conc. histogram

1..5 concentration histogram with class
6..10 concentration histogram with class
non computable conc. histogram with class
# continuous attributes

1..5 correlation histogram

6..10 correlation histogram

non computable correlation histogram
1..10 missing values histogram

# continuous

# attributes
# nominal

# attributes

Binary Attributes

Fracl

First Canonical Correlation
Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

57.14, 25.00, 64.28, 64.28
78.57, 60.71, 46.42, 50.00, 50.00
35.71, 28.57, 21.42, 21.41, 21.42
21.42

53.57, 53.57, 3.57, 75.00, 3.57
3.57, 3.57, 3.57, 0, 0

3.57

50.00

60.71, 75.00, 64.28, 50.00, 64.28
75.00, 60.71, 53.57, 39.28, 53.57
10.71

0,0,0,0,0,0,0,0,0,0

7.14

14.28

32.14
28.57
64.28
53.57
60.71
50.00
75.00
78.57
71.42
89.28
67.85
64.28

77
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performed feature selection on the pairwise meta-learning problems. Examining
the meta-models created for each pair of inducers we saw that indeed the factors
determining the relative performance of inducers vary from pair to pair. The
use of feature selection not only improves the performance, but also provides a
better understanding of what is relevant and what is not.

One of the main limitations of the IBL inducer used, is that it treats all fea-
tures in the same way independently of the nature of the problem. For example
when there is a dataset with 90% of continuous attributes and 10% of discrete
attributes the same importance is given to all dataset characteristics indepen-
dently of whether they describe properties of continuous or discrete attributes.
One solution to that could be to use a weighted version of IBL, where the weights
are not constant but depend on the proportion of continuous and discrete at-
tributes in the dataset for which a suggestion is asked. This in effect would
alter the euclidean distance putting each time the emphasis on the appropriate
dimensions of the morphological space. Yet, another solution could be again
the use of decision tree based algorithms. The tree based models that decision
trees produce could hopefully capture this balance, for example by generating
decision nodes that branch according to the percent of continuous attributes
and then on the subsequent subtrees use different characteristics to perform the
inducer selection.



Chapter 6

Comparing Metalearners

In this chapter we are going to explore the use of more elaborate learners on
the meta-learning level, namely decision tree based learners. The main goal is
to further improve the performance of the system. We also analyze the models
produced, in order to characterize the dataset characteristics in terms of their
predictive power, in a similar way that we analyzed the characteristics that were
selected by fsIBL in the previous chapter.The rest of the chapter is organized
as follows. First we examine the performance of the new meta-learners on the
two distinct sets of datasets characteristics, i.e. +histo and histo, in order
to see with which one we get better performance. Then we compare the per-
formances of the meta-learners, including that of fsIBL. Finally the inductive
models constructed by two of the meta-learners are analyzed.

6.1 The Meta-Learners

We are going to examine the performance of four new learners on the meta-
learning level. The ¢5.0 decision tree inducer (c50tree), a descendant of the c4.5
decision tree inducer that constructs decision trees where the splits on the deci-
sion nodes are orthogonal to the axes defined by attributes of the classification
problem. The rule inducer of ¢5.0 (c50rules), also a descendant of the c4.5 rule
inducer. c50rules starts with a decision tree constructed by c50tree and con-
verts it to a set of rules. The Ltree inducer, which is also a decision tree inducer,
however the splits here are not only orthogonal to the axes but they can also
be oblique. Ltree constructs new attributes which are linear combinations of
the initial attributes. The construction of the new attributes is done with the
use of linear discriminant algorithm. We also applied ¢5.0 boost (c50boost), a
boosting algorithm that combines multiple decision trees built by the repetitive
application of c¢50tree on a dataset.

A problem that we have to deal with, when we apply the above inducers on
the meta-learning level is the fact that they can handle only attributes which are
either continuous or nominal. As mentioned already in section 4.3 the attributes
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that we use in order to describe the datasets can have, either a continuous value
when the corresponding characteristic can be computed from a dataset, or the
value non-appl when the computation of that feature does not make sense.
Since the new learners cannot handle attributes of that type, we had to adopt
a representation that would respect the semantics of the non-appl value. One
possible solution could be their representation as missing values, however this
would alter their semantics because the algorithms do not handle missing values
as a distinct value, which is what we need. In order to achieve that we have
chosen to recode the non-appl values to new numeric values which are always
outside the definition domain of a given characteristic. This way a decision tree
can create splits that on one side can have that special numeric value which
corresponds to the non computable cases, and on the other side the normal
values that correspond to the computable cases. This kind of recoding keeps
the initial semantics of the non-appl values unchanged.

6.2 Comparing +histo and histo

We will examine the performance of the four new meta-learners on the two
different sets of datasets characteristics. The results we get here are different
from the ones that we obtained with IBL as the meta-learner. There we saw
that the performance of the system was harmed by the incorporation of the
ANOV A based characteristics, both in terms of the accuracies on the pairwise
meta-learning problems and on the final suggestion of algorithm(s). In what
concerns the inducers examined here, we will see in the two forthcoming sections,
that the incorporation of the ANOV A based characteristics does not harm
the performance. One reason for that could be the internal feature selection
mechanism that all these inducers possess, allowing them to select the most
discriminative set of characteristics on each case.

6.2.1 Results on the Pairwise Meta-learning Problems

In table 6.1 we see the mean accuracies that the four inducers achieve on the
+histo and histo sets, over the 28 meta-learning problems. As it is obvious
the performance on the two sets is quite similar, the differences are very small
for every one of the four inducers'. This is more apparent when we examine
the results of the McNemar test of significance to compare the performance of
each meta-learner on +histo and histo for each pairwise meta-learning prob-
lem (Table 6.2)2. For example in the case of c50boost there is a statistically
significant difference in favor of the histo set in only 3 out of the 28 pairwise
problems, for the remaining 25 problems the differences are not statistically sig-
nificant. A similar situation holds for the rest of the meta-learners where there

IThe complete results of the four meta-learners in each one of the 28 pairwise problems
can be found in the appendix, Table A.67 for the histo characterization and in Table A.68 for
the +histo

2The complete results of the McNemar test for each pairwise problem are given in the
appendix, Table A.69
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Table 6.1. Mean accuracies and improvement over the mean default accuracies, that the
four meta-learners achieve over the 28 meta-learning problems, for the histo,+histo sets of
characteristics.

Meta-Learner histo +histo
Accuracy Improvement Accuracy Improvement
c¢50boost 84.96% 30.82% 84.58% 30.44%
cH0rules 82.22% 28.07% 81.75% 27.61%
cH0tree 82.01% 27.86% 81.56% 27.42%
Ltree 81.18% 27.03% 81.05% 26.91%

Table 6.2. Summary of significant wins for the histo, +histo datasets for each of the four
meta-learners over the 28 meta-learning problems.

Meta-Learner  +histo wins  Ties  histo wins

ch0boost 0 25 3
ch0rules 0 27 1
cb0tree 0 26 2
Ltree 1 27 0

is no statistically significant difference for almost all the pairwise meta-learning
problems.

6.2.2 Results on the Final Suggestion

Here also the performance of the four learners does not differ significantly among
the two sets, both in terms of the strict and loose accuracy, (Tables 6.3,6.4).
When performing the McNemar test to compare the performances on the histo
and +histo we see that for all the learners there is no significant difference be-
tween the two sets with respect to the two ways of evaluating the final suggestion
(Table 6.5).

Since the results show that there is no significant difference between the
two ways of characterizing a dataset, in what follows and for the performance
comparison of the meta-learners we will restrict ourselves only to the histo set
of characteristics.

Table 6.3. Results on the final suggestion for all the four meta-learners on histo.

Meta-Learner  Strict Accuracy Improvement  Loose Accuracy

c50boost 51.16% 24.93% 76.74%
c50rules 45.58% 19.35% 75.07%
cH0tree 45.58% 19.35% 76.93%

Ltree 43.07% 16.84% 73.02%
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Table 6.4. Results on the final suggestion for all the four meta-learners on +histo.

Meta-Learner  Strict Accuracy Improvement Toose Accuracy

ch0boost 50.98% 24.75% 76.47%
c50rules 46.98% 20.75% 76.19%
ch0tree 45.77% 19.54% 76.84%
Ltree 42.60% 16.37% 73.58%

Table 6.5. Results of McNemar’s test comparing the accuracies of histo, +histo, on the final
suggestion, for each of the four meta-learners.

histo +histo
Correct  Correct  p-value

ch0boost  strict Accuracy 61 59 0.927 =
loose Accuracy 54 51 0.846 =
cH0rules strict Accuracy 73 88 0.269 =
loose Accuracy 61 73 0.342 =
ch0tree strict Accuracy 70 72 0.933 =
loose Accuracy 61 60 1.00 =
Ltree strict Accuracy 91 86 0.763 =
loose Accuracy 73 79 0.686 =

6.3 Looking for the best Meta-Learner

In this section we compare the performance of the inducers used in the meta-
learning level in order to establish whether the differences observed are statis-
tically significant, and identify the top performing one(s). The comparison will
take place among five inducers, (c50boost, c50rules, c50tree, fsSIBL, Ltree), on
the histo set of characteristics. They will be compared on three levels, i.e. their
performance on the individual pairwise problems, strict and loose accuracy of
the final suggestion. Since we have multiply comparisons we must take into
account the number of different comparisons and appropriately adjust the sig-
nificance level according to the Bonferroni adjustment. The number of pairwise
comparisons among five different algorithms is ten and the Bonferroni adjust-
ment gives a significance level of 0.005 for every pair, so that results will be
significant on the 0.05 level for all the comparisons.

6.3.1 Results on the Pairwise Meta-Learning Problems

Examining the mean accuracies that the five inducers achieve on the meta-
learning level, table 6.6, we can see clearly that c50boost has the highest average
accuracy, 84.96%), over all the other inducers. The remaining four exhibit similar
performance, with an average accuracy ranging from 81.2% to 82.6%, with Ltree
being the worst of the four, and fsIBL the best. The differences between the
four are quite small though.

When we examine closely the performances on the individual problems, (ta-
ble 6.7), in terms of the statistical significance the advantage of c50boost over

the rest is further confirmed. Compared to any of the other inducers it is never
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significantly overtaken and more over it significantly outperforms them for the
majority of the pairwise problems. The number of its significant wins ranges
from 10 to 23 depending on which inducer it is compared with. One interesting
observation here is that c50boost and fsIBL have a similar performance, i.e. not
significantly different, on 18 out of the 28 pairwise meta-learning problems. The
comparison between the remaining four inducers shows that their performance
is quite similar, and there is no significant difference for the big majority of prob-
lems. One explanation for the relatively poor performance of Ltree, in terms of
the average accuracy, is the way that we have chosen to encode the non-appl
values. Since the new values are also numerical values, Ltree uses them like any
other numerical value when it constructs new attributes from linear combina-
tions of the existing ones. A fact that does not match with the semasiology of
the non-appl values. These values should be handled as different-distinct val-
ues and the use of simple orthogonal splits on the space defined by the initial
features satisfies this requirement. On the other hand, the clear advantage of
c50boost, over the rest of the inducers, can be explained by the fact that it is a
boosting algorithm, while the others are single model algorithms.

6.3.2 Results on the final suggestion

Continuing the evaluation of the performances of inducers with respect to their
final suggestion we observe a similar situation in what concerns the comparison
along the strict accuracy, table 6.8. c50boost achieves by far the highest strict
accuracy, and Ltree is again the worst. fsIBL, c50tree and c50rules have a
similar performance, with fsIBL having a small advantage. When we examine
the statistical significance of the results, table 6.9, the superiority of c50boost
is confirmed. Its performance with respect to the strict accuracy is significantly
better than the performance of any other classifier. Between c50tree, c50rules,
fsIBL and Ltree the differences are not significant, with the exception of the
(fsIBL, Ltree) pair where fsIBL is significantly better than Ltree.

In terms of loose accuracy the results are slightly different, table 6.8. The
worse performing inducer is still Ltree, but now c50tree very close to c50boost,
is on the top position. C50rules and fsIBL have a similar performance. In
terms of the statistical significance of the differences, there is no clear winner,
i.e. an inducer that is significantly better than all the others. Only two pair-
wise comparisons revealed significant differences; the full results are given in
table 6.10.

6.4 Discriminating Power of Characteristics

To perform the splits on the nodes of the tree, decision tree based algorithms
possess internal feature selection mechanisms, for choosing the features that
convey the highest amount of information about the class variable. All the
algorithms used in this chapter use the same criterion for selecting an attribute
as a split node, that of information gain.
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Table 6.6. Mean accuracies and improvement over the mean default accuracies, that the five
meta-learners achieve over the 28 meta-learning problems, for the histo sets of characteristics.

Meta-learner ~ Accuracy Improvement

c50boost 84.96% 30.82%
ch0rules 82.22% 28.07%
c50tree 82.01% 27.86%
fsIBL 82.59% 28.45%
Ltree 81.18% 27.03%

Table 6.7. Distribution of significant wins, based on McNemar’s test, over the 28 pairwise
meta-learning problems, on the histo set of characteristics. In a triplet AA/BB/CC, AA is
the number of significant wins of the row inducer, CC is the number of significant wins of the
column inducer and BB is the number of ties.

ch0rules c50tree fs-IBL Ltree
c¢b0boost  15/13/0  14/14/0 10/18/0  23/5/0

c50rules 0/28/0  0/26/2  1/27/0
ch0tree 0/26/2  0/28/0
fs IBL 3/25/0

Table 6.8. Results on the final suggestion of the five meta-learners on histo.

Meta-Learner  Strict Accuracy Improvement TLoose Accuracy

c50boost 51.16% 24.93% 76.74%
c50rules 45.58% 19.35% 75.71%
c50tree 45.58% 19.35% 76.93%
fs-IBL 47.44% 21.21% 74.98%
Ltree 43.07% 16.84% 73.02%

Table 6.9. Results of the McNemar test comparing the accuracies of the five meta-learners,
in terms of the strict accuracy on histo. + indicates a significant win for the row inducer, - a
significant win for the column inducer, and = a tie.

c50rules cH50tree fs-1BL Ltree
c50boost  +(0.000)  +(0.000)  +(0.004)  +(0.000)
c50rules =(0.912) =(0.210) =(0.070)
c50tree =(0.198)  =(0.078)
fs-1BL +(0.000)

Table 6.10. Results of the McNemar test comparing the performances of the five meta-learners,
in terms of the loose accuracy on histo. + indicates a significant win for the row inducer, - a
significant win for the column inducer, and = a tie.

c50rules c50tree fs-IBL Ltree
ch0boost  =(0.171) =(0.934) =(0.149) +(0.005)
c50rules =(0.030) =(1.000) =(0.122)
ch0tree =(0.159)  +(0.004)
fs-TIBL =(0.193)
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We will analyze the models produced by c50tree and c50boost in order to
characterize the discriminatory power of the different characteristics, in the
same way we did with the analysis of the feature sets selected by fsIBL. The
models analyzed are the results of the application of the two algorithms to the
full set of training examples, that is to training sets of 1075 instances. For each
model® we compute the number of times that a characteristic is selected as a
split node. At the end we compute for each characteristic the percent of models
in which it is selected at least once as a split node, (for c50tree see table 6.14, for
c50boost see table 6.16). Since in decision tree models, a feature can be selected
more than once, we also compute the frequency with which a characteristic is
selected to become a decision node among all the decision trees. This avenue of
analysis will provide a better insight in the case of c50boost, since there almost
every characteristic is used at least once in every pairwise problem, resulting in
a selectivity of 100%, going to a finer detail will provide a more clear picture of
the discriminatory power of the characteristics, (Tables 6.15, 6.17)%. We make
the assumption that the more often a characteristic is selected the higher its
discriminatory power is.

It should be noted that the method which we used to determine the discrim-
inatory power of the dataset characteristics based on the decision tree models is
approximate and rather rough. More precisely when measuring the percentage
of times that a feature appears in a decision tree we do not take into account the
level of the decision tree at which the specific feature appears. As it is known
features that are selected at nodes near the root of the tree have higher discrim-
inatory power than features that are selected near the leaves. We would have
a more precise picture of the discriminatory power of the features if we were
weighting their appearance by the level at which they appear. A further source
of imprecision, in the case of the c50boost models, comes from the aggregation
of the percentages of appearances of the features among the different decision
trees of a boosting model. In boosting the different decision trees are weighted
by their error on the training. Consequently the importance of features that
appear in different trees of a boosting model is different and depends on the
weight of the corresponding tree. A more precise way to measure the discrimi-
natory power of the features would be to weight them taking into account the
weight of the decision tree in which they appear.

Examining the produced models we can see that at least for c¢50tree the set
of discriminating characteristics differs between pairs, as it was also the case
with fsSIBL. When we examine the characteristics selected by c50boost, we see
that it consistently uses almost all the available features. Nevertheless if we look
more closely to the selection frequencies of the different characteristics, we see
that these can change significantly between different pairwise problems, which is
an indication that the discriminatory power of the characteristics varies among
different pairs of inducers. To support these we will examine more closely the
selection frequencies of the characteristics for the pairs (NB, IBL) and (NB,

3Remember here that a model is associated with a specific pairwise problem
4The frequency of selection of the characteristics for each pairwise problem are given in
the appendix, section A.3 for c50boost, and section A.4 for c50tree.
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Ltree). In what concerns the models produced by c50tree we will only give the
bar graph that presents the selection rates of the characteristics for the two
problems, figure 6.1. From the graph it is obvious that not only the selection
rate of the characteristics is different, but also there are characteristics which
are never selected in one pair and are selected in the other. In what concerns
¢50boost the situation is similar, although here we will not find often charac-
teristics which are selected in one problem and not in the other, however the
frequency of selection differs among the problems, figure 6.2. In the case of the
NB-IBL pair we can see a relatively high selection rate for the higher bins of the
correlation coefficient, (bins five to ten). These bins describe the percentage of
attributes that exhibit medium to strong correlation, both IBL and Naive Bayes
are sensitive to correlated attributes. If we examine the concentration coefficient
histogram, between the attributes and the class, the selection rate is higher for
the lower bins. These bins give the percentages of attributes that exhibit weak
association with the class attribute. The higher their number the more difficult
the classification problem is. If we now turn to the IBL-Ltree pair we observe
a different pattern. In what concerns the correlation coefficient histogram all
of its bins exhibit now a relatively high selection rate. For the concentration
coefficient histogram, between the attributes and the class, the pattern is also
slightly different, with the higher four bins never selected and the lower ones
exhibiting lower selectivity with respect to the one that they exhibited on the
NB-IBL pair.

¢50tree and c50boost use a higher number of features in their models, com-
pared to fsIBL. For c50tree the average number of selected features overall the
pairwise problems is 38.92, while for c50boost it goes up to 61.53 here almost
every characteristic is selected at least once, (Table 6.13). c¢50tree and c50boost
select attributes that describe the patterns of missing values with a quite high
frequency, (e.g number of unknown values, histogram of missing values). This
is different from what we saw with fsIBL, (Table 5.12), where the selectivity of
those characteristics was quite low, and in the case of the histogram of missing
values it never used even one of its elements. Nevertheless the performance of
fsIBL is very similar to that of cb0tree, if not better. It would be interesting
to examine whether ¢50tree and c50boost could achieve the same performance
if we remove the missing values histogram for the set of characteristics. Simple
features that describe the number of classes or the number of attributes have
also a high selectivity rate for both c50tree and c50boost. The same also holds
for STATLOG characteristics like class entropy, first canonical correlation, at-
tribute entropy etc. They are selected frequently among the different pairwise
problems and they have a high selection rate as decision nodes.

Concerning the remaining characteristics described via histograms, the cor-
relation coefficient histogram also exhibits high selectivity rates for all of its
elements. The same holds for the first five bins of the concentration coefficient
histograms (both between attributes, and between attributes and the class).
The upper five bins of these histograms, have quite low selectivity rate which
in some cases approaches zero. In general the observations for these three types
of histograms agree with the ones made with fsIBL, there also the correlation
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Table 6.11. Frequency with which characteristics are selected for the NB-IBL pair by
c¢50boost.
Attribute frequency
# classes 3.37%
# attributes 1.80%
# instances 4.16%
# a}ttrlbutes 4.97%
#instances
# unknown values 5.51%
# unknown values
# attributes * # instances 2.02%
# nominal attributes 1.01%

max,min,mean,stdv of nominal attribute values
1..5 concentration histogram

6..10 concentration histogram

non computable conc. histogram

1..5 concentration histogram with class
6..10 concentration histogram with class
non computable conc. histogram with class
# continuous attributes

1..5 correlation histogram

6..10 correlation histogram

non computable correlation histogram

1..5 missing values histogram

6..10 missing values histogram

# continuous

attributes
nominal

# attributes

Binary Attributes

Fracl

First Canonical Correlation
Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

1.12%, 0.034, 1.46%, 0.67%

1.35%, 0.90%, 1.35%, 1.12%, 1.24%
0.34%, 0.67%, 0.00%, 0.00%, 0.22%
1.01%

1.91%, 1.24%, 1.12%, 2.02%, 0.79%
0.56%, 0.00%, 0.11%, 0.22%, 0.11%
0.00%

1.01%

2.02%, 0.90%, 1.80%, 0.90%, 1.57%
1.24%, 1.12%, 1.12%, 1.46%, 0.79%
1.01%

0.00%, 2.47%, 2.70%, 3.60%, 3.37%
1.80%, 1.12%, 0.00%, 0.79%, 0.22%

0.11%

0.00%

1.01%
1.80%
2.14%
1.80%
1.69%
4.16%
2.25%
4.05%
2.14%
2.02%
2.02%
1.69%
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Table 6.12. Frequency with which characteristics are selected for the IBL-Ltree pair by
ch0tree.

Attribute frequency
# classes 2.12%
# attributes 2.12%
# instances 3.39%

# a}ttrlbutes 2.75%

#instances
# unknown values 5.08%

# unknown values

# attributes * # instances 1.90%

# nominal attributes 0.85%
max,min,mean,stdv of nominal attribute values | 1.16%, 0.42%, 1.16%, 1.69%

1..5 concentration histogram 0.95%, 0.42%, 0.63%, 1.06%, 0.74%
6..10 concentration histogram 1.16%, 0.32%, 0.00%, 0.11%, 0.63%
non computable conc. histogram 0.74%

1..5 concentration histogram with class 0.85%, 1.06%, 0.42%, 1.69%, 0.74%
6..10 concentration histogram with class 0.42%, 0.00%, 0.00%, 0.00%, 0.00%
non computable conc. histogram with class 0.00%

# continuous attributes 1.27%

1..5 correlation histogram 1.80%, 2.12%, 2.43%, 1.27%, 1.16%
6..10 correlation histogram 1.69%, 2.01%, 1.69%, 2.43%, 0.85%
non computable correlation histogram 1.06%

1..5 missing values histogram 0.00%, 3.17%, 4.55%, 2.43%, 2.01%
6..10 missing values histogram 1.80%, 0.63%, 0.11%, 0.53%, 0.11%

continuous
?% attri.bu‘ies 0.32%
nomina

# attributes 0.32%

Binary Attributes 0.63%

Fracl 2.01%

First Canonical Correlation 2.75%

Mean Skew 1.27%

Mean Kurtosis 2.43%

Class Entropy 5.93%

Mean Attribute Entropy 3.49%

Mean Mutual Information 2.65%

Equivalent number of attributes 1.48%

Noise to Signal Ratio 2.54%

Mean Mult. Correl. Coef. 2.54%

SDratio 1.90%
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Fig. 6.1. Frequency with which characteristics are selected as decision nodes for the pairs (NB,
IBL) and (IBL, Ltree) by c50tree

histogram had a high selectivity rate for all of its bins. The concentration coeffi-
cient histogram between the class and the attributes had high selectivity rate for
the first few bins and quite low, even zero, for the remaining bins. In what con-
cerns though the concentration coefficient histogram between attributes there is
a slight difference from the pattern observed in ¢50tree and c50boost. The five
first bins have high selectivity rate by fsIBL too, but in the case of the upper
five, the selectivity is average and not zero, as it is the case with c50boost and
co0tree.

To summarize, simple and STATLOG characteristics tend to have high se-
lectivity rates among the three different meta-learners examined. fsIBL tends
to ignore the characteristics that describe the patterns of missing values, (it
never uses the histogram of missing values), while for c50tree and c50boost
they are among the most often selected. However the performance of fsIBL is
very similar to that of c50tree. The elements of the correlation histogram have
high selectivity rates by all the three inducers. In the case of the concentration
coefficient histograms, high selectivity rates are observed for their five first bins,
while for the upper five the selectivity approaches zero. The only exception to
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Fig. 6.2. Frequency with which characteristics are selected as decision nodes for the pairs (NB,

IBL) and (IBL, Ltree) by c50boost

that is fsSIBL, where for the upper five bins of the concentration coefficient be-
tween attributes the selectivity is average. We have to note here that the study
and the models were produced from a set of datasets that included datasets
whose characteristics were manipulated in order to increase the number of our
training examples. In a following chapter we will further control the validity of
our observations on the discriminatory power of the dataset characteristics, in
models which are created only from real world datasets.

6.5 Summary and Conclusions

In this chapter we examined the performance of four different meta-learners on
the two different ways of characterizing a dataset, histo and +histo. There was
no performance variation among the two different versions. The reader may
remember that the performance of the instance based inducer was deteriorating
on the +histo set of characteristics. The performance of the four meta-learners
presented here, remained unaffected due to the feature selection mechanism
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Table 6.13. Number of features used for each pairwise problem.

pair fsIBL | cb0tree | c50boost
ch0rules ch0boost 32 40 61
ch0tree c50boost 30 39 64
ch0tree ch0rules 23 36 61
Lindiscr c50boost 19 36 62
Lindiscr c¢50rules 20 39 62
Lindiscr c50tree 18 36 60
Ltree ch0boost 34 44 60
Ltree ch0rules 31 40 61
Ltree ch0tree 25 42 62
Ltree Lindiscr 25 41 63
IBL c5h0boost 22 33 58
IBL c50rules 16 42 62
IBL c50tree 25 40 63
IBL Lindiscr 24 41 61
IBL Ltree 27 39 62
NB c50boost 39 35 64
NB c50rules 23 35 60
NB ch0tree 24 41 59
NB Lindiscr 23 41 61
NB Ltree 48 36 62
NB IBL 34 43 62
ripper cb0boost 27 34 61
ripper ch0rules 21 40 63
ripper cb0tree 22 39 61
ripper Lindiscr 32 43 59
ripper Ltree 37 43 65
ripper IBL 22 30 62
ripper NB 31 42 62
Average 25.25 38.92 61.53

that all of them posses. Moving to the comparison of the performances of the
meta-learners, there were clear evidence for the superiority of ¢50boost both
in terms of the quality of predictions on the individual pairwise problems and
the final suggestion. In what concerns the discriminatory power of the dataset
characteristics as this is determined by their selection rate this was similar
among the three meta-learners. There was however one notable exception. The
fact that fsIBL was ignoring the characteristics which are describing the pattern
of missing values, while for c50tree and c50boost are among the ones most often
selected, and still achieving similar performance to that of ¢50tree. A section
of the following chapter will be devoted to the analysis of the models produced
by ¢50boost on real world datasets, in order to cross check them with the ones
produced here.
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Table 6.14. Frequency with which characteristics are selected among the different pairwise
problems, c50tree.

Attribute frequency
# classes 100%
# attributes 96.42%
# instances 96.42%
attributes
##instances 78.57%
# unknown values 100%
# unknown values
# attributes * # instances 71.42%
# nominal attributes 46.42%
max,min,mean,stdv of nominal attribute values | 85.71% 67.85% 53.57% 35.71%
1..5 concentration histogram 71.42% 60.71% 39.28% 32.14% 39.28%
6..10 concentration histogram 21.42% 25.00% 10.71% 0.00% 50.00%
non computable conc. histogram 64.28%
1..5 concentration histogram with class 64.28% 60.71% 32.14% 75.00% 32.14%
6..10 concentration histogram with class 10.71% 0.00% 0.00% 0.00% 32.14%
non computable conc. histogram with class 0.00%
# continuous attributes 57.14%
1..5 correlation histogram 67.85% 71.42% 78.57% 53.57% 75.00%
6..10 correlation histogram 71.42% 82.14% 71.42% 75.00% 85.71%
non computable correlation histogram 64.28%
1..5 missing values histogram 0.00% 81.14% 92.85% 92.85% 96.42%
6..10 missing values histogram 85.71% 75.00% 14.28% 67.85% 21.42%
continuous
i% attri.bu‘fes 0.00%
nomina
# attributes 14.28%
Binary Attributes 53.57%
Fracl 67.85%
First Canonical Correlation 89.28%
Mean Skew 64.28%
Mean Kurtosis 50.00%
Class Entropy 96.42%
Mean Attribute Entropy 85.71%
Mean Mutual Information 75.00%
Equivalent number of attributes 64.28%
Noise to Signal Ratio 46.42%
Mean Mult. Correl. Coef. 67.85%
SDratio 82.14%
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Table 6.15. Frequency with which characteristics are selected as decision nodes, c50tree.

1..5 concentration histogram
6..10 concentration histogram
non computable conc. histogram
1..5 concentration histogram with class
6..10 concentration histogram with class
non computable conc. histogram with class
# continuous attributes
1..5 correlation histogram
6..10 correlation histogram
non computable correlation histogram
1..5 missing values histogram
6..10 missing values histogram

# continuous

# attributes

# nominal

# attributes
Binary Attributes
Fracl
First Canonical Correlation
Mean Skew
Mean Kurtosis
Class Entropy
Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

max,min,mean,stdv of nominal attribute values

Attribute frequency
# classes 4.43%
# attributes 3.78%
# instances 4.29%

# attributes

#instances 2.07%
# unknown values 6.28%

# unknown values

# attributes * # instances 1.80%

# nominal attributes 1.10%

2.12% 1.15%
1.52% 1.01%
0.27% 0.32%
0.87%
1.61% 1.24%
0.18% 0.00%
0.00%
1.15%
1.34% 1.61%
1.52% 2.03%
1.24%
0.00% 2.77%
1.89% 1.38%

0.00%

0.23%

0.87%
1.75%
3.09%
1.38%
1.01%
4.99%
2.17%
1.66%
1.75%
0.73%
1.34%
1.66%

1.24%
0.69%
0.13%

0.55%
0.00%
1.34%

1.57%

3.23%
0.18%

0.60%
0.50%
0.00%

1.24%
0.00%
1.24%

1.75%

3.14%
1.24%

0.78%
0.73%

0.41%
0.50%
1.47%

2.03%

3.23%
0.27%
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Table 6.16. Frequency with which characteristics are selected among the different pairwise
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problems, c50boost.

Attribute frequency
# classes 100%
# attributes 100%
# instances 100%

# attributes

#instances 100%
# unknown values 100%

# unknown values

# attributes * # instances 100%

# nominal attributes 100%

max,min,mean,stdv of nominal attribute values
1..5 concentration histogram

6..10 concentration histogram

non computable conc. histogram

1..5 concentration histogram with class
6..10 concentration histogram with class
non computable conc. histogram with class
# continuous attributes

1..5 correlation histogram

6..10 correlation histogram

non computable correlation histogram

1..5 missing values histogram

6..10 missing values histogram

# continuous

# attributes
# nominal

# attributes
Binary Attributes

Fracl

First Canonical Correlation
Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

100% 100% 100% 100%

100% 100% 100% 100% 100%
92.85% 100% 39.28% 10.71% 100%
96.42%

100% 100% 96.42% 100% 100%
82.14% 14.28% 3.57% 32.14 64.28%
28.57%

100%

100% 100% 100% 100% 100%
96.42% 100% 100% 100% 100%
100%

0.0% 100% 100% 100% 100%
100% 100% 75% 100% 75%

60.71%

89.28%

96.42%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
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Table 6.17. Frequency with which characteristics are selected as decision nodes, c50boost.
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1..5 concentration histogram
6..10 concentration histogram
non computable conc. histogram
1..5 concentration histogram with class
6..10 concentration histogram with class
non computable conc. histogram with class
# continuous attributes
1..5 correlation histogram
6..10 correlation histogram
non computable correlation histogram
1..5 missing values histogram
6..10 missing values histogram

# continuous

# attributes

# nominal

# attributes
Binary Attributes
Fracl
First Canonical Correlation
Mean Skew
Mean Kurtosis
Class Entropy
Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

max,min,mean,stdv of nominal attribute values

Attribute frequency
# classes 2.93%
# attributes 2.26%
# instances 3.67%

# attributes

#instances 2.41%
# unknown values 4.84%

# unknown values

#t attributes * # instances 2.24%

# nominal attributes 0.95%

1.55% 0.82% 1.08% 0.95%

1.25% 1.04% 1.09% 0.99% 0.92%
0.52% 0.46% 0.006% 0.001% 0.80
0.91%

1.31% 1.08% 0.60% 1.84% 0.73%
0.30% 0.001% 0.000% 0.004% 0.01
0.0003%

1.31%

1.96% 1.79% 1.59% 1.48% 1.58%
1.54% 1.61% 1.45% 1.47% 1.45
1.24%

0.0% 2.85% 2.92% 2.74% 2.83%
1.96% 1.49% 0.22% 1.29% 0.31%

0.15%

0.25%

0.8%

1.61%
2.63%
1.63%
1.46%
4.49%
2.77%
2.55%
2.30%
2.00%
2.03%
2.41%
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Chapter 7

Comparing Dataset
Characterizations

Starting with the STATLOG project in 1994, and continuing until nowadays
with the METAL project a variety of measures is used to describe and charac-
terize datasets in order to predict the performance of learning algorithms. To
our knowledge there is no systematic comparison of the different approaches of
dataset, characterization. The only exception to that is the work by Bensusan
and Giraud-Carrier (2000), where they compare the performance of landmark-
ing with that of an information based characterization of datasets in the spirit
of STATLOG. The datasets used in this study were artificial datasets. The
information-based description was consisting of, class entropy, equivalent num-
ber of attributes, average entropy of attributes, average mutual information,
average joint entropy and signal-to-noise ratio, a rather limited set of character-
istics which is actually a subset of the ones used in STATLOG. The experimental
findings showed that landmarking outperforms the information-based descrip-
tion, however the results should be accepted with caution, since the study was
done only on artificial datasets, the set of information based characteristics was
rather limited and moreover there was no control on the statistical significance
of the results.

The goal of this chapter is to perform a systematic and controlled com-
parison of different dataset characterizations, on real world datasets. We will
examine five different sets of characteristics. Four of them follow the statisti-
cal/ information-based approach first presented in STATLOG and the fifth is
the landmarking approach of characterizing a dataset. More specifically we will
examine the following sets:

e statlog, the set of characteristics used in the STATLOG project, whose
description was already given in section 4.1.

e dct, a richer set of dataset characteristics extracted from the DCT tool,
which was developed as a result of the METAL project.

99
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e histo, the set of characteristics that we have established.
e histo-limited, a smaller version of histo.
e land, the set of landmarkers given in section 4.1.

In section 7.1 we will give a more detailed description of the dct and of the
histo-limited sets of characteristics. In a later section, 7.4, we will also explore
the combined use of some of these sets of characteristics in order to improve
predictive performance.

The comparison will involve 65 real world datasets mainly from the UCI
repository and the METAL project!. The number of datasets should have been
higher if the landmarking tool had not failed in characterizing a considerable
number of datasets. We will use two different meta-learning frameworks to
perform the comparison. The first one is the pairwise framework that we have
developed in chapter 3. The second one is a simpler approach to meta-learning
and the main goal is the prediction of the learner that will achieve the highest
accuracy. Here we do not use pairwise comparisons, we have just one simple
meta-learning problem where the goal is to predict the algorithm that achieves
the highest accuracy for a given dataset. The instances of the meta-learning
dataset are the descriptions of the datasets along with a class label which gives
the algorithm with the highest accuracy on the dataset, as this is determined
by 10 fold stratified cross validation. No kind of test of statistical significance is
used in order to select the best algorithm, just the absolute value of the accuracy
as it is estimated by the cross validation.

We will use c¢50boost in both frameworks as a metalearner. The evalua-
tion strategy for the second meta-learning framework will be the accuracy of
c50boost, as it is estimated by 10 fold stratified cross validation.

7.1 Description of the dataset characterizations
being compared

We will describe only the dct and histo-limited sets of characteristics since the
descriptions of land, histo and statlog were already given in previous chapters.
The dct set of characteristics is an extension of the statlog based set of char-
acteristics, that includes 33 features. The additional characteristics include the
following descriptions of missing values: the total number of missing values, the
percentage of missing values, the number of instances with missing values and
the percentage of instances with missing values. A new characteristic that gives
the number of linear discriminant functions produced when a linear discrimi-
nant algorithm is applied to the dataset. The number of outliers in the dataset.
A number of characteristics that describe attribute class associations; these
are the gini index, (Breiman et al., 1984), attribute relevance and g-function,
(Cooper & Herskovits, 1992), and finally the multiple correlation coefficient of

IThe complete list of the 65 datasets, can be found in section B.1 of the appendix
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each attribute with the other attributes. Since the last four characteristics are
computed for every attribute of a dataset, apart from their mean value we also
include their minimum and maximum values.

The histo-limited set, is just the set we obtain from histo, when we remove
the characteristics already used in STATLOG. The set consists of the charac-
teristics numbered 1 to 55 given in table 4.1. We decided to add this set of
characteristics in the comparative study in order to get an indication of the dis-
criminatory power of the histogram based characteristics, from which this set
mainly consists.

7.2 Pairwise Framework

Before proceeding on giving the results of the comparative study we will give
the details of the meta-learning problems defined by the 65 datasets used in the
comparative study. In what concerns the pairwise meta-learning problems we
give in table 7.1 the class distribution for each one of them, along with the default
accuracy. The average default accuracy over all the 28 meta-learning problems
is 54.45%. For any set of characteristics to be satisfactory, its mean accuracy
over all the meta-learning problems should be better than the average default
accuracy. Moreover it should outperform the default accuracy on the individual
problems. It is for this reason that apart from comparing the different sets of
characteristics between them, we also compare them with the default accuracy.

In what concerns the final suggestion we give in table 7.2 the frequencies
of groups of inducers that are ranked in the top position. Again for any char-
acterization strategy to be successful, it should give better results than just
predicting the group that most often takes the first position. This corresponds
to the default accuracy of the final suggestion and it is with this quantity that
we will be comparing the strict accuracy (here the inducer taking most often the
top position is Lindiscr with a frequency of 13.84%). Again we will compare all
characterizations not only between them, but also with that default accuracy.

The number of comparisons involved is 15, four different ways of charac-
terizing a dataset and the default accuracy. So we have to take into account
the multiplicity effect and apply the Bonferroni adjustment. The new level of
significance will be now 0.0034. For any result to be significant it has to achieve
a significance level less than that.

Before continuing let us make a remark on the way that the meta-learning
problems are constructed for the land set of characteristics. In section 4.1 we
gave the list of landmarkers used in land, we can see that some of them, Naive
Bayes, 1-nearest neighbor and linear discriminants, are also part of the pool of
inducers from which the selection is performed. It is obvious that these land-
markers cannot be used as dataset descriptors in those pairwise meta-learning
problems that they are involved, and consequently they are removed. For exam-
ple we remove from the set of landmarkers, the Naive Bayes landmarker from
all the pairwise meta-learning problems where one of the inducers is the Naive
Bayes inducer.
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7.2.1 Results on the Pairwise Meta-Learning Problems

All the five ways of characterizing a dataset give poor results on the pairwise
meta-learning problems. Their average improvement over the average default
accuracy is quite small. The highest is that of the dct set, (5.11%) and the
lowest that of land where actually we cannot talk for an improvement but for a
deterioration with respect to the average default accuracy of -1.7%, (Table 7.3)2.
Examining the results with respect to the significant wins, (Table 7.4), again we
see that all the five sets find it very difficult to statistically outperform the de-
fault accuracy. For statlog and land there is no pairwise problem for which their
performance is statistically significantly better then default accuracy. dct, histo
and histo-limited, outperform the default accuracy in a statistically significant
level only for two to three pairwise problems out of the 28. One possible ex-
planation for such a disappointing performance could be the limited number of
training examples, as we have seen the training set consists of only 65 datasets.
In what concerns the statistical significance of the differences between the sets
we see that none of them outperforms the others in a significant level for any of
the pairwise problems.

With these results it is quite hard to draw any reliable conclusions about
the discriminating power of the examined characterizations; we can say that,
based mainly on the results of the significant wins of the sets over the default
accuracy, we can divide them to two groups. In the first group we have dct,
histo and histo-limited that exhibit significant wins over the default accuracy
for a limited number of pairwise problems, while on the second group we have
land and statlog that never outperform the default accuracy in a statistically
significant way.

7.2.2 Results on the final suggestion

When examining the performances of the different sets with respect to the qual-
ity of the final prediction that they provide the results are somehow different
from the ones obtained on the pairwise problems. From the five sets, only two,
(histo,histo-limited) achieve a strict accuracy that overpasses the default accu-
racy of 13.84%. The three remaining sets, dct, statlog, land, have a similar strict
accuracy which is around 7%, considerably less than the default, (Table 7.5),
in other words they are not useful in predicting the exact group of inducers
that takes the top position for a specific dataset. If we compute the statistical
significance of the differences, (Table 7.6), between the sets we again observe
that none of them significantly outperforms the others in terms of the strict
accuracy. Although the differences are quite high for some pairs, for example
histo-limited outperforms dct almost by 14%, however the differences are not
significant at the 0.0034 level. When comparing with the default accuracy none
of histo and histo-limited outperforms it in a statistically significant level.

2The complete accuracy results on each pairwise problem can be found in section B.2 of
the appendix
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Table 7.1.  Class Distributions for each of the pairwise meta-learning problems on the 65
datasets.

Default
(algo—x, algo-y) pairs | algo-x | algo—y tie | Accuracy
c50rules c50boost 6.15% | 16.92% | 76.92% 76.92%
c50tree c50boost 7.69% | 26.15% | 66.15% 66.15%
c50tree ch0rules 4.61% | 18.46% | 76.92% 76.92%
Lindiscr ¢50boost 10.76% | 49.23% | 40.00% 49.23%
Lindiscr c50rules 10.76% 43.07% 46.15% 46.15%
Lindiscr c50tree 13.84% | 41.53% | 44.61% 44.61%
Ltree c50boost 9.23% 30.76% 60.00% 60.00%
Ltree c50rules 13.84% | 20.00% | 66.15% 66.15%
Ltree c50tree 23.07% 21.53% 55.38% 55.38%
Ltree Lindiscr 43.07% 12.30% 44.61% 44.61%
IBL c¢50boost 3.07% 38.46% 58.46% 58.46%
IBL c50rules 4.61% 36.92% 58.46% 58.46%
IBL c¢50tree 7.69% 35.38% 56.92% 56.92%
IBL Lindiscr 38.46% 24.61% 36.92% 38.46%
IBL Ltree 15.38% 43.07% 41.53% 43.07%
NB c¢50boost 7.69% 53.84% 38.46% 53.84%
NB c¢50rules 10.76% 49.23% 40.00% 49.23%
NB ch0tree 15.38% 49.23% 35.38% 49.23%
NB Lindiscr 29.23% 27.69% 43.07% 43.07%
NB Ltree 7.69% 50.76% 41.53% 50.76%
NB IBL 18.46% 36.92% 44.61% 44.61%
ripper c50boost 15.38% | 35.38% | 63.07% 63.07%
ripper ch0rules 4.61% 26.15% 69.23% 69.23%
ripper c50tree 10.76% | 23.07% | 66.15% 66.15%
ripper Lindiscr 38.46% | 27.69% | 33.84% 38.46%
ripper Ltree 9.23% 35.38% 55.38% 55.38%
ripper IBL 29.23% 16.92% 53.84% 53.84%
ripper NB 46.15% 20.00% 33.84% 46.15%
Average 54.45%

Shifting now to the performance in terms of the loose accuracy the situation
is similar, (Table 7.5). The histo and histo-limited sets exhibit the highest loose
accuracy, around 50%. That is for about 50% of the cases the set of inducers that
they propose is a subset of the truly best inducers. dct and statlog follow with
similar performance and at the last position we have the land set. Nevertheless
when we calculate the statistical significance of the differences, (Table 7.7), we
see that there is no set of characteristics that significantly outperforms any other
set.

To summarize the above, in terms of the final suggestion the default accuracy
is quite hard to beat and even harder to beat it at a statistically significant
level. Nevertheless the histogram oriented sets, histo and histo-limited exhibit a
performance that is better than the default. Between the five different ways of
characterizing a dataset there is evidence to support the claim that histogram
based characterization may provide increased discriminatory power over the
other methods of characterization; but still the results are not conclusive.
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Table 7.2. Groups of inducers that were ranked at the top for more than 3% of the 65
datasets.

Group Frequency | Percent
Lindiscr 9 13.84%
c50boost 8 12.30%
Ltree 6 9.2%
c50rules ch50tree Ltree 4 6.15%
c50rules ¢50boost cH0tree 3 4.61%
NB 2 3.07%
IBL 2 3.07%
Lindiscr Ltree 2 3.07%
c50rules c50boost c¢50tree Liree IBL ripper 2 3.07%
ch0rules ¢50boost c¢H0tree Lindiscr Ltree ripper 2 3.07%
c50rules ¢50boost c50tree Lindiscr Ltree IBLL NB ripper | 2 3.07%
¢50boost 1BL 2 3.07%
c50boost Ltree 2 3.07%
¢50boost ¢50tree 2 3.07%

Table 7.3. Mean accuracies and improvement over the mean default accuracy, for each one of
the five different dataset characterizations over the 28 meta-learning problems.

Characterization  Accuracy Improvement

dct 59.56% 5.11%
land 52.75% -1.70%
histo 59.18% 4.73%
histo-limited 57.80% 3.35%
statlog 57.14% 2.69%

7.2.3 Discriminatory power of the characteristics: c50boost
on the 65 datasets

In section 6.4 we examined the discriminatory power of the characteristics of
the histo, based on how often these were selected in the models that the learning
algorithms constructed for each of the pairwise problems. The characterization
was done based on the results that we obtained when training took place on
the manipulated datasets. In order to verify the results obtained there we will
repeat the same procedure here, but this time we will use only the 65 datasets
used in the comparison study of this chapter. Furthermore we will only exam-
ine the models produced by c50boost. Since the number of examples is limited,
the c50boost algorithm is not able to grow trees as big as when we used 1075
examples, this results in fewer attributes selected for each pairwise problem,
and accordingly the selectivity of each characteristic is now reduced. In fact
the average number of characteristics used in each pairwise problem drops from
61.53, (Table 6.13), to 36.46, (Table 7.8). In general the models produced from
the 1075 examples were much more complex than the ones produced from the
65 examples, the availability of a big number of training instances allows deci-
sion tree algorithms to grow much more complex hypothesis, (Oates & Jensen,
1998). In order for the results to be comparable with the ones presented in
section 6.4 we will limit the presentation only to the frequency with which each
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Table 7.4. Distribution of significant wins, based on the McNemar’s test, over the 28 pairwise
meta-learning problems. In a triplet AA/BB/CC, AA is the number of significant wins of the
row characterization, BB the number of significant wins of the column characterization and
CC the number of ties.

Characterization land histo histo-limited  statlog  default
dct 0/0/28 0/0/28 0/0/28 0/0/28 2/0/26
land 0/0/28 0/0/28 0/0/28 0/0/28
histo 0/0/28 0/0/28 3/0/25
histo-limited 0/0/28 3/0/25
statlog 0/0/28

Table 7.5. Results on the final suggestion of the five ways of characterizing a dataset.

Characterization  Strict Accuracy Improvement Loose Accuracy

dct 6.15% -7.69% 43.08%
land 7.69% -6.15% 36.92%
histo 15.38% 1.54% 52.31%
histo-limited 20.00% 6.16% 47.69%
statlog 7.69% -6.15% 41.54%

characteristic is selected to become a decision node®.

In table 7.9, we give the frequency with which the various characteristics are
selected by the c50boost inducer; we will compare these results with the selec-
tion rates of the characteristics as they were determined on the 1075 datasets,
table 6.17, in figure 7.1 we give the graph bars that correspond to the two tables.
We can make the following remarks; the selectivity of the simple characteristics,
like the number of attributes, number of instances or the ratio of attributes to
examples, still remains quite high. The statlog based characteristics like class
entropy, entropy of attributes, mutual information etc, also retain their high
selectivity, although the selection rate is slightly reduced compared to the one
observed on the 1075 training instances. Two notable exceptions to that, are the
SDratio and Mean Multiple Correlation Coefficient characteristics, whose selec-
tion rate went down to zero. In what concerns the characteristics that describe
the patterns of missing values, whereas they exhibited very high selectivity on
the training set of 1075 instances, their selection rate is now considerably re-
duced. For example the selection rate of the number of unknown values drops
from 4.84% down to 1.56%, the selection rate of the percent of unknown values
drops from 2.24% down to 0.35%. A similar decrease is also observed in the his-
togram of missing values, where now there are more bins that are never selected,
and the selection rate of the ones that are still used, is considerably reduced.
An explanation could be the fact that in the 1075 datasets, there were many
manipulated datasets whose difference was mainly the pattern of missing values.
This could force ¢50boost to consider the characteristics describing the patterns
of missing values highly discriminating and use them with a high frequency.
Nevertheless let us note here that fsIBL was not putting a high emphasis on

3The selection rates of the characteristics for each pairwise problem can be found in sec-
tion B.4 of the appendix.
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Table 7.6. Results of the McNemar test comparing the accuracies of the five characterizations,
in terms of the strict accuracy. + indicates a significant win for the row characterization, —
a significant win for the column characterization, and = a tie.

land histo histo-limited statlog default
dct =(1.00) =(0.113) =(0.03) =(1.000) =(0.227)
land =(0.267) =(0.08) =(1.000) =(0.342)
histo =(0.50) =(0.227)  =(1.000)
histo-limited =(0.043) =(0.386)
statlog =(0.422)

Table 7.7. Results of the McNemar test comparing the performances of the five characteriza-
tions, in terms of the loose accuracy. + indicates a significant win for the row characterization,
— a significant win for the column characterization, and = a tie.

land histo histo-limited statlog
dct =(0.454) =(0.239) =(0.647) =(1.000)
land =(0.067) =(0.211) =(0.628)
histo =(0.606) =(0.146)
histo-limited =(0.454)

the patterns of missing values. Concerning the remaining characteristics de-
scribed with the use of histograms, the correlation coefficient exhibits similar
high selectivity as in the case of the 1075 instances. The bins of the histogram
of the concentration coefficient between the attributes, have now a higher se-
lection rate; even the upper five bins that in the case of the 1075 instances had
a quite small selectivity are now selected with higher frequencies. This pattern
was already observed in the feature sets produced by fsIBL. Finally in what
concerns the histogram of the concentration coefficient between the attributes
and the class attribute the selectivity is slightly increased for all of the bins,
with the upper five bins still having a low selection rate. Finally some of the
characteristics that had small selection rate, like the percent of continuous or
discrete attributes have now a zero selection rate.

In general the central observation is that the main difference between the
models produced on the 1075 datasets and the ones produced on the 65 datasets
by c50boost, lies on the much smaller emphasis on the patterns that describe
the missing values. We can also note a similarity between the selection rates
produced by fsIBL on the 1075 instances and the selection rates produced by
c50boost on the 65. We believe that the discriminatory power of the character-
istics as it is given by c¢50boost on the 65 instances and fsIBL on the 1075, is
more representative of their true status.

7.3 Simple Framework
Under the simple framework hypothesis the goal of the meta-learning problem

is to predict for a specific dataset the inducer that will achieve the highest
accuracy. The class distribution of the corresponding meta-learning dataset is
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Table 7.8. Number of features used, by c50boost, for each pairwise problem, when trained on
the 65 datasets.

pair number of features
ch0rules ch0boost 27
ch0tree c50boost 36
ch0tree ch0rules 28
Lindiscr c50boost 40
Lindiscr c¢50rules 39
Lindiscr c50tree 36
Ltree ch0boost 41
Ltree ch0rules 32
Ltree ch0tree 34
Ltree Lindiscr 38
IBL c5h0boost 31
IBL c50rules 35
IBL c50tree 42
IBL Lindiscr 37
IBL Ltree 39
NB ch0boost 35
NB c50rules 44
NB c¢h0tree 41
NB Lindiscr 44
NB Ltree 37
NB IBL 35
ripper cb0boost 37
ripper ch0rules 34
ripper ch0tree 34
ripper Lindiscr 31
ripper Ltree 35
ripper IBL 41
ripper NB 38
Average 36.46

given in table 7.10. In the table we can see how many times an inducer, from
the pool of inducers, achieves the highest accuracy over all the 65 datasets. The
inducer positioned most often at the top is ¢50boost, with a frequency of 32.30%.
This quantity corresponds to the default accuracy of the simple meta-learning
framework. For any strategy of characterization to be useful it should achieve
an accuracy which is better than this default accuracy. Again the significance
level is readjusted, to take into account the multiplicity effect, to 0.0034.

In what concerns the construction of the meta-learning dataset we have to
note that in the case of the land set, for obvious reasons, we have to omit all
these landmarkers that are full fledged inducers and are also a part of the pool of
inducers, i.e. Lindiscr, Naive Bayes and 1-nearest neighbor. This leaves us with
the four following features in the land set: decision node, worst node, randomly
chosen node and elite 1-nearest neighbor.

Before continuing with the presentation of the results let us make more clear
the relation between the two meta-learning frameworks. The class distribution
of the simple meta-learning framework, table 7.10, corresponds conceptually to
the distribution of the groups of inducers that take the top position for the final
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Table 7.9. Frequency with which characteristics are selected as decision nodes, by c50boost
when trained on the 65 datasets.

Attribute frequency
# classes 4.07%
# attributes 2.95%
# instances 3.00%

# a.uttrlbutes 2.73%

#instances
# unknown values 1.56%

# unknown values
# attributes * # instances 0.35%
# nominal attributes 1.03%
max,min,mean,stdv of nominal attribute values | 1.74% 2.59% 0.40% 0.85%
1..5 concentration histogram 2.33% 1.07% 1.65% 1.07% 1.43%
6..10 concentration histogram 1.25% 1.56% 1.97% 0.85% 0.94%
non computable conc. histogram 0.76%
1..5 concentration histogram with class 2.73% 1.25% 1.83% 2.95% 1.21%
6..10 concentration histogram with class 1.29% 0.49% 0.00% 0.76% 0.08%
non computable conc. histogram with class 0.0008%
# continuous attributes 1.47%
1..5 correlation histogram 3.40% 1.74% 1.16% 1.16% 1.29%
6..10 correlation histogram 2.10% 1.74% 1.21% 1.65% 2.64%
non computable correlation histogram 1.03%
1..5 missing values histogram 0.00% 0.62% 1.61% 1.92% 1.52%
6..10 missing values histogram 1.74% 0.00% 1.56% 0.00% 0.00%
continuous
% attri.bu‘fes 0.00%
nomina

# attributes 0.00%

Binary Attributes 0.00%
Fract 1.03%

Cancor 2.51%

Mean Skew 2.73%

Mean Kurtosis 2.01%

Class Entropy 3.72%
Entropy Attributes 1.16%

Mutual Information 2.19%
Equivalent number of attributes 3.54%

NoiseSignal Ratio 2.42%
AttrMultiCorrel 0.00%

SDratio 0.00%




7.3. SIMPLE FRAMEWORK 109

.06

.05 +

.04 +

.03 o

.02 4

.01 4

Frequency

0.00

D 0 . 0y 0y Oy Oy OOy Oy Oy G G
<. .. 2 "0, "0, "0, 0O, O, O, 0. O. O. 77 O
2 2 224242 5% o o 7y T, %, 1, 0, 2
N0 Gy, 0y A5y Ay BN BN BN BN BN, s
R % 2, % S W s W R Y U % D
S0 2, %, Q2 0 R S0 O 0 S 1
S 0;,/)@/\’\*5\\*9 NAVRVASS \6‘\/\%\
»% % % 7 °¥X
NN O
% R R
Characteristics

Fig. 7.1. Frequency with which characteristics are selected as decision nodes on the 1075 and 65
datasets by c50boost

suggestion of the pairwise framework, table 7.2. A source of confusion could be
the fact that in the pairwise framework the group of inducers that get most often
the top position consists of Lindiscr while in the simple framework the inducer
that most often gets the top position is c50boost. The reason for that is that
in the first framework statistical significances are taken into account whereas in
the second we simply ignore them. So when we see in table 7.2 that Lindiscr
is the one that gets more often the top position, (9 datasets), this means that
for these datasets Lindiscr is statistically significant better than all the other
inducers. From table 7.10 we can see that Lindiscr has the highest accuracy in
13 datasets, but only in 9 of them as it is stated in table 7.2 it is significantly
better than all the other inducers. Obviously the same applies for c50boost.
When in table 7.2 we see that it gets the top position in 8 datasets, this means
that for these datasets it is significantly better than all the other inducers, even
though as it is stated in table 7.10 it has the highest accuracy in 21 datasets.
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Table 7.10. Class distribution for the simple meta-learning framework

Class #  Frequency
c¢50boost 21 32.30%
Lindiscr 13 20.00%

Ltree 12 18.46%
c50rules 9 13.84%
NB 3 4.61%
IBL 3 4.61%
c50tree 3 4.61%
ripper 1 1.53%

7.3.1 Results for the simple meta-learning framework

When we examine the accuracies that the five methods of characterization
achieve, table 7.11, we can distinguish three groups of sets that achieve sim-
ilar performance. The top group consists of only the histo set, which achieves
the highest accuracy with an improvement over the default of 18.47%. In the
second group we have histo-limited, statlog and dct with a similar performance
and an improvement over the default of around 10%. The last group consists of
the land* which is the only method of characterization that has a performance
worse than the default, with a deterioration of 7.68%. Checking the statisti-
cal significance of the differences between the characterizations, table 7.12, we
find only one pair where the difference is significant, that of histo, land. With
respect to the default accuracy again none of the sets manages to beat it in a
statistically significant level.

Table 7.11. Accuracy and improvement over the default accuracy, of the five sets of dataset
characterization, for the simple meta-learning framework.

Characterization ~ Accuracy Improvement

dct 41.54% 9.24%
land 24.62% -7.68%
histo 50.77% 18.47%
histo-limited 43.08% 10.78%
statlog 41.54% 9.24%

Table 7.12. Results of the McNemar test comparing the accuracies of the five characterizations,
under the simple framework. + indicates a significant win for the row set, - a significant win
for the column set, and = a tie.

land histo histo-limited statlog default
dct =(0.045) =(0.263) =(1.000) =(1.000) =(0.326)
land -(0.002) =(0.030) =(0.037) =(0.358)
histo =(0.382) =(0.211) =(0.044)
histo-limited =(1.000) =(0.281)
statlog =(0.307)

4Remember here that the land set consists of only four features
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7.4 Combining Characterizations

So far the dataset characterizations that we examined were based on a unique
paradigm, either a description of the datasets in terms of the statistical and
information based properties, (dct, statlog, histo, histo-limited) or a description
based on the performance of simple learners, (land). In an effort to further
improve the description of the datasets we will combine two different paradigms
in a single characterization. We will combine the histo characterization, the
best performing among the statistical and information based, with the land
characterization. We will evaluate the new set, which we will call combined,
both under the pairwise and the simple metalearning frameworks.

In table 7.13 we give the performance results of the combined characteriza-
tion for the pairwise meta-learning framework. The average accuracy overpasses
the default average accuracy by 4.01% with a value of 58.46%. Compared to its
constituent sets, i.e. land and histo, its average accuracy is slightly worse than
that of histo and better than land, but the differences are not statistically signif-
icant for any of the 28 meta-learning problems. Compared to the performance
of the default accuracy it is significantly better in three out of the 28 problems,
for the remaining ones the differences are not significant, (table 7.14).

In what concerns the performance of the final suggestion in terms of the
strict accuracy, combined is quite better than land but only marginally better
from histo, in both cases the differences are not statistically significant. Mea-
suring the performance with loose accuracy, combined is better than land but
worse than histo. But again the differences are not statistically significant. To
summarize the results on the pairwise framework, the combined set exhibits a
better performance than land, but it is slightly worse than the histo set, (Ta-
bles 7.13, 7.15).

Table 7.13. Performance of the combined characterization, in terms of average, strict and
loose accuracy over the 28 metalearning problems.

Combined Impr. over default land histo
Average Accuracy 58.46% 4.01% 52.75%  59.18%
Strict Accuracy 16.92% 3.08% 7.69% 15.38%
Loose Accuracy 49.23% 36.92%  52.32%

Table 7.14. Distribution of significant wins of combined compared with land and histo over
the 28 meta-learning problems. In a triplet AA/BB/CC, AA is the number of significant wins
of Combined, BB the number of significant losses and CC the number of ties.

land histo default
combined 0/0/28 0/0/28 3/0/25

The results are similar when we examine the performance of the combined
set under the simple framework, Table 7.16. The combined characterization
performs better than the default accuracy and the land characterization but
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Table 7.15. Significance levels comparing combined with its constituent sets and the default,
final suggestion.

land histo default
Strict Accuracy =(0.181) =(1.000) =(0.851)
Loose Accuracy =(0.170) =(0.790)

Table 7.16. Performance of the combined characterization on the simple meta-learning frame-
work.

Accuracy Impr. over default land histo
44.62% 12.32% 24.62%  50.77%

worse than the histo. Once more the differences are not statistically significant,
table 7.17.

In general the performance of the combined in all the frameworks is lower
than that of one its constituent sets, i.e. histo. The incorporation of the land-
marking based characteristics in the histo set seems to harm performance, still
it should be pointed that the results are not conclusive due to the absence of
statistical significance. Furthermore what should be explored is the possibil-
ity to use a subset of the combined set that would be selected with a feature
selection mechanism.

7.5 Summary and Conclusions

In this chapter we conducted a systematic study of the discriminatory power of
different ways of characterizing datasets, under two meta-learning frameworks,
on real world datasets. To our knowledge it is the first study of this kind.

In what concerns the first meta-learning framework and the performance
on the pairwise problems the results were not conclusive. Two out of the five
different characterizations, statlog and land could not outperform the default
accuracy in a statistical significant level in any of the 28 pairwise problems.
Actually land had an average accuracy which was even worse than the aver-
age default accuracy. The remaining three characterizations outperformed the
default accuracy for only two or three pairwise problems. Moving to the perfor-
mance with respect to the final suggestion, only the histogram based approaches
managed to beat the default accuracy, in terms of strict accuracy. The remain-
ing three approaches performed much worse than the corresponding default
accuracy. Unfortunately the differences of the histogram based approaches with
respect to the default accuracy were not statistically significant.

The results on the simple meta-learning framework are slightly different.
Here four out of the five different characterizations beat the default accuracy,
histo, histo-limited, dct and statlog; the only one that exhibited an accuracy
lower than the default was the land set, probably due to the fact that we used
a more limited set of the initial landmarkers. The histo set achieves the top
performance with a considerable improvement over the default, however once
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Table 7.17. Significance levels comparing combined with its constituent sets and the default
accuracy for the simple meta-learning framework

land histo default
=(0.016) —=(0.208) —(0.1858)

more this improvement is not statistically significant.

In an effort to further improve the performance of the predictions we exam-
ined the combined use of two different paradigms of characterizing a dataset,
one based on the landmarkers and the other based on the histogram represen-
tation of the statistical and information based properties of the datasets. The
results were not clear either for or against the combined use of the different
paradigms since the observed differences were not statistically significant. The
combined set exhibited a performance which was slightly worse than the histo
set one of its constituents.

The most disappointing observation was that none of the dataset character-
izations manage to beat the baseline performance, in any of the experimental
frameworks that we used, in a statistically significant level. However the his-
togram based approaches exhibited systematically better performance than the
other sets. For the first framework they were the only ones that manage to over-
pass the strict default accuracy, while for the second framework they were on
the top two positions. Based on these observations we could argue that the use
of histograms can only improve the performance in the meta-learning problems
that we are dealing with, thus providing more reliable predictions. We believe
that the poor performance is mainly due to the limited number of datasets used,
and that with a greater number of datasets better results can be achieved.

As a byproduct of the comparative study under the pairwise framework, we
analyzed the models produced by c50boost. This was done in order to determine
the discriminatory power of the characteristics as it is established from real
world datasets, and compare it with the one established from the manipulated
datasets. The results produced showed some differences mainly with respect to
the discriminatory power of the characteristics describing the patterns of missing
values. This can be attributed to the presence of a considerable number of
datasets, among the 1075 datasets used previously, that differed mainly in their
pattern of missing values. Nevertheless the produced description by c50boost
had similarities with the one produced by fsIBL on the 1075 datasets. We
believe that this characterization is a more reliable one.
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Chapter 8

Regression Based
Meta-Learning

So far in all the previous chapters we handled the meta-learning problem as a
typical classification task. In this chapter we will explore another alternative,
where we cast the problem as a regression problem. We face meta-learning tasks
as regression tasks whereby we look for relationships between the properties
of a dataset and the performance of the classifiers. We adopt two different
meta-learning frameworks. The first one is based on the pairwise meta-learning
framework introduced in the previous chapters. The second one relies on the
direct estimation of the expected error of inducers on a given set. The direct
error estimates can be used either to perform inducer selection, i.e. select the
most appropriate inducer for a dataset, or inducer ranking, i.e. rank the inducers
with respect to their expected performance on a dataset.

We will evaluate the regression approach for both frameworks and examine
the performance of regression models constructed from all the five sets of char-
acteristics used in the comparative study of chapter 7. Finally we will compare
the regression based ranking with zooming based ranking introduced in (Soares
& Brazdil, 2000).

8.1 Related Work

Concerning the direct estimation of performance of learners, little experimental
results with working systems has been reported. The idea of using regression
to predict the performance of learning algorithms was first used by Gama and
Brazdil (1995), while they continued on the framework adopted in STATLOG.
They tried to directly predict the error of an algorithm for a specific dataset
based on the characteristics of the dataset, as these were defined in the STAT-
LOG project. For each of the learners they evaluated various regression models
like linear regression, instance based regression and rule based regression. They
report poor results in terms of the Normalized Mean Squared Error (NMSE).

115
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From the 23x3x4=276 different regression models that they used only 63 were
useful, i.e. had an NMSE of less than 1. They stopped there, without trying to
use the regression models for model selection, or for ranking the algorithms.

Sohn in (Sohn, 1999) uses the results of STATLOG (i.e. same data charac-
terization, same learning algorithms and same datasets) and constructs linear
regression models that predict the errors of the learning algorithms on unseen
datasets. As she is using the results of STATLOG, the study is limited to 19
datasets and 11 learning algorithms. To overcome the small number of datasets
she used bootstrapping resampling to estimate the parameters of the regression
models. The regression models used were simple linear regression models pre-
dicting the logit! transformation of the errors of the learners. The models were
used to provide a ranking of the available learning algorithms. The results show
that the statistical models produced exhibit high performance. However they
must be interpreted cautiously because of the limited number of datasets used
in the study.

A recent paper provided some initial results related to the use of estimated
performances for model selection (Koepf et al., 2000). It shows that estimating
performances leads to a better result in selecting a learner from a pool than
learning through a repository of datasets classified in terms of the best perform-
ing algorithm in the pool. Using a pool composed by three classifiers, (Linear
Discriminant, Quadratic Discriminant and 1-Nearest Neighbor) the paper in-
dicates that regression (by M5, (Quinlan, 1992b)), when used to estimate the
error of the three classifiers, selects the classifier with least error with better
performance than using classification (with C5.0) to decide the best algorithm
for a dataset. The experiments, however, were preliminary and concentrated
only on one strategy of dataset characterization, on only three classifiers and
were performed on artificially generated datasets.

A work with a regression like flavor is also the work on ranking with zooming
(Soares & Brazdil, 2000). The goal there is to determine a preference order over
a pool of classifiers, based on predictive accuracy and computational cost. The
ranking for a new dataset is built by inspecting a number of k-nearest neighbors
in a collection of reference datasets, that form a meta-dataset. In the meta-
dataset each dataset is described by a number of features and labeled by the
performance obtained by each classifier in the pool. The produced ranking is
based on a preference function that weights cost and accuracy on the number
of neighbors that are to be considered. This could be considered similar to
kernel based regression, which fits a regression model to a neighborhood of
an instance. The main difference though is that in ranking with zooming the
preference function is static. The approach cannot be used as is to estimate
accuracies of learners, but only to provide a relative ranking of them. One of
the main limitations of the method is that it relies on a single global meta-model
that is based on the k-nearest neighbor approach. Meta-models constructed by
learners other than k-nearest neighbor, have been shown to give better results
(Kalousis & Hilario, 2000b). Also the dataset characteristics that affect the
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performance of a learner vary from one learner to another (Kalousis & Hilario,
2001), but ranking with zooming requires the use of a single set of dataset
characteristics, independently of the learner.

Our goal here is, to broaden the previous line of research, explore differ-
ent strategies of dataset characterization for regression based meta-learning and
compare the different approaches under a common framework. The experimen-
tal framework will be the same as the one used in chapter 7. That is, we will
use the same five sets of dataset characteristics, the same 65 datasets on which
the evaluation will take place, and the same pool of eight inducers.

8.2 Pairwise framework

We use the pairwise framework described in chapter 3. That is we construct
(2) pairwise metal-learning problems for n inducers, but unlike the classification
based approach we learn on each of these problems using regression. The main
idea is that instead of trying to predict which of the two inducers to use via
classification, we try to directly estimate their relative error difference using
regression and select among them the one with the lowest relative error. On the
next level we combine all the pairwise predictions to take the final suggestion of
the system, in the same way we did it for the classification based approach. An
instance of a pairwise metalearning problem consists of a dataset description
and the difference of the errors of the two inducers on the specific dataset.
Unlike the classification based approach we do not use any test of statistical
significance. As a result the prediction for a pairwise problem can be only one of
the two inducers involved and the notion of ties does not exist anymore. In ta-
ble 8.1 we give the class distributions for each of the 28 meta-learning problems,
the corresponding default accuracies, and the average default accuracy overall
the 28 problems (67.36%). Since now we do not have ties the final suggestion
of the system is a single inducer, the one that achieves the lowest relative error
among all inducers. Consequently the final suggestion is not anymore the set
of the best inducers and the notions of strict and loose accuracy merge to the
notion of normal accuracy. The distribution of the inducers that take the top
position has already been given in table 7.10. The default accuracy with which
we will compare the performance of the final suggestion is again determined by
the frequency of the top inducer, which is ¢50boost in 32.30% of the datasets.

8.2.1 Results on the Pairwise Meta-Learning Problems

All the five different ways of characterizing a dataset give poor results on the
pairwise metalearning problems. The improvement over the average default
accuracy is very small with the best characterization, dct, being better than
the average default accuracy only by 3.02%. The land set is again by far the
worst, having a performance which is lower than the average default accuracy
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Table 8.1. Class Distributions for each of the pairwise regression based meta-learning prob-
lems on the 65 datasets.

Default
(algo—x, algo-y) pairs | algo—x | algo—y | Accuracy
¢50boost c50rules 67.69% | 32.30% 67.69%
¢50boost ¢50tree 75.38% | 24.61% 75.38%
ch0boost Lindiscr 69.23% 30.76% 69.23%
¢50boost Ltree 56.92% | 43.07% 56.92%
ch0boost TBL 92.30% 07.69% 92.30%
ch0boost NB 73.84% 26.15% 73.84%
c50boost ripper 83.07% | 16.92% 83.07%
c50rules c50tree 72.30% | 27.69% 72.30%
ch0rules Lindiscr 63.07% 36.92% 63.07%
c50rules Ltree 63.07% | 36.92% 63.07%
ch0rules IBL 70.76% 29.23% 70.76%
ch0rules NB 67.69% 32.30% 67.69%
¢50rules ripper 76.92% | 23.07% 76.92%
ch0tree Lindiscr 63.07% 36.92% 63.07%
c50tree Ltree 58.46% | 41.53% 58.46%
ch0tree IBL 69.23% 30.76% 69.23%
ch0tree NB 67.69% 32.30% 67.69%
c50tree ripper 69.23% | 30.76% 69.23%
Lindiscr Ltree 27.69% 72.30% 72.30%
Lindiscr IBL 53.84% 46.15% 53.84%
Lindiscr NB 55.38% 44.61% 55.38%
Lindiscr ripper 44.61% | 55.38% 55.38%
Ltree IBL 78.46% 21.53% 78.46%
Ltree NB 73.84% 26.15% 73.84%
Ltree ripper 72.30% | 27.69% 72.30%
IBL. NB 56.92% 43.07% 56.92%
IBL ripper 47.69% 52.30% 52.30%
NB ripper 44.61% 55.38% 55.38%
Average 67.36%

by 6.26%. In table 8.22 we give the average accuracy for each characterization.
Examining the results with respect to the significant wins® (Table 8.3) we see
that there is no characterization that manages to beat the default accuracy at
a significant level. Moreover the differences among the characterizations for
the big majority of the 28 meta-learning problems are not significant either.
Note here that these results are not directly comparable with the results on the
pairwise meta-learning problems with classification given in section 7.2, since
the distribution of classes and the actual classes are different.

8.2.2 Results on the final suggestion

As it has already been mentioned the final suggestion of the system in the regres-
sion pairwise framework corresponds to the single inducer who is expected to

2The complete accuracy results on each pairwise problem can be found in section B.3 of
the appendix

3We are taking again into account the multiplicity effect and apply the Bonferroni adjust-
ment setting the significance level to 0.0034
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Table 8.2. Mean accuracies and improvement over the mean default accuracy, for the five
different dataset characterizations over the 28 meta-learning problems, for the regression based
pairwise approach.

Characterization  Accuracy Improvement

dct 70.38% 3.02%
land 61.10% -6.26%
histo 69.29% 1.92%
histo-limited 69.45% 2.09%
statlog 68.19% 0.82%

Table 8.3. Distribution of significant wins, based on the McNemar’s test, over the 28 meta-
learning problems, for the regression based pairwise approach. In a triplet AA/BB/CC, AA
is the number of significant wins of the row characterization, BB the number of significant
wins of the column characterization and CC the number of ties.

Characterization land histo histo-limited  statlog  default
dct 3/0/25 0/0/28 0/0/28 0/0/28 0/0/28
land 0/2/26 0/0/28 0/1/27 0/1/27
histo 0/0/28 0/0/28 0/0/28
histo-limited 0/0/28 0/0/28
statlog 0/0/28

achieve the highest accuracy for a given dataset. In that sense we are providing
exactly the same type of predictions as in the case of the simple meta-learning
framework for algorithm selection given in section 7.3. Table 8.4 gives the ac-
curacy results for the five characterizations for the final suggestion. At the top
position we have the histo set which is better than the default accuracy by
15.30% and again on the last position we have the land set of characteristics
which is worse than the default accuracy by 12.30%. In what concerns the sta-
tistical significance of the results, no characterization outperforms the default
accuracy in a statistical significant level (Table 8.5).

The accuracy results in table 8.4 are directly comparable with the corre-
sponding results on inducer selection under the simple framework, table 7.11.
It seems that the straight selection via classification has an advantage over the
regression pairwise selection. It provides better results for all the five different
ways of dataset characterization. The regression based approach exhibits the
highest degradation in performance for the statlog and histo-limited characteri-
zations, 13.85% and 6.16% respectively. For the remaining characterizations the
degradation of performance is between 1% and 4%. The explanation for that
difference in performance is that the pairwise selection is more prone to errors
since an error in one of the pairwise selections can harm the final suggestion.

8.3 Direct accuracy prediction framework
The primary goal here is to predict the actual accuracy of an inducer on a new

unseen dataset using a regression model constructed from the available training
data. Then these predictions can be used either for inducer selection, or inducer
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Table 8.4. Accuracy and improvement over the default accuracy, of the five sets of dataset
characterization, for the final suggestion on the pairwise regression problem

Characterization ~ Accuracy Improvement

dct 40.00% 7.70%
land 20.00% -12.30%
histo 47.69% 15.30%
histo-limited 36.92% 4.62%
statlog 27.69% -4.61%

Table 8.5. Results of the McNemar test comparing the accuracies of the five characterizations,
in terms of the accuracy of the final suggestion, for the pairwise regression approach. -+
indicates a significant win for the row characterization, — a significant win for the column
characterization, and = a tie.

land histo histo-limited statlog default

dct =(0.025) =(0.301) =(0.813) =(0.098) =(0.556)

land (0.002) =(0.072) =(0.423)  =(0.027)

histo =(0.045)  =(0.012) =(0.137)

histo-limited =(0.211) =(0.859)

statlog =(0.570)
ranking.

A meta-dataset is constructed for each inducer. In order to do that, each
dataset has to be characterized by a dataset characterization strategy. Every
instance of the meta-dataset corresponds to a specific dataset and consists of the
dataset characterization along with the accuracy of the inducer on that dataset
as it is measured by 10 fold cross validation. The meta-dataset can then be
treated as an ordinary regression problem.

8.3.1 Predicting accuracies

Regression was used to estimate the performance of classifiers using the different
strategies of dataset characterization. Since the quality of the estimate depends
on its closeness to the actual accuracy achieved by the classifier, the meta-
learning performance is measured by the Mean Absolute Deviation (MAD).
MAD is defined as the sum of the absolute differences between real and predicted
values divided by the number of test items. It can be seen as measure of the
distance between the actual values and the predicted ones.

In order to compare the estimation capabilities of the five strategies of
dataset characterization we used a kernel method (Torgo, 1999) to perform
regression on the meta-dataset. Kernel methods work in an instance-based
principle and they fit a linear regression model to a neighborhood around the
selected instance. It is straightforward to alter their distance metric in order
to make better use of the semantics of the non-applicable values that occur in
meta-attributes of dct, statlog, histo and histo-limited.

For each classifier meta-dataset, we run 10-fold cross-validation to assess the
quality of performance estimations. The quality of the estimation is assessed by
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Table 8.6. Kernel performance on estimating performance.

Classifier dct histo  histo-lim land  statlog dMAD
c50boost  0.112  0.123 0.122 0.050 0.119 0.134
cb0rules 0.109  0.120 0.121 0.051 0.114 0.133
ch0tree 0.109  0.125 0.123 0.054 0.116 0.137
Lindiscr 0.118 0.128 0.129 0.063 0.116 0.137

Ltree 0.105 0.115  0.113  0.041  0.108  0.132
TBL 0.120 0.140  0.137  0.081  0.133  0.153
NB 0.121 0.142  0.143 0064 0.122  0.146
ripper 0.113  0.129  0.127  0.056  0.125  0.145

the MAD in the 10 folds, and it is compared with the default MAD (dMAD). The
latter is the MAD obtained by predicting that the error of a classifier in a test
dataset is the mean of the error obtained in the training datasets. dMAD is a
benchmark for comparison, and one can think of it as the quantity corresponding
to default accuracy in a typical classification problem. We expect regression to
produce a smaller MAD than the dMAD. We have to note here that, in the
case of landmarkers, whenever we build a model to predict the performance
of a classifier that is a member of the set of landmarkers the corresponding
landmarker is removed.

The quality of the estimation with the kernel method using different dataset
characterization strategies is shown in table 8.6. The table presents the MAD in
the 10 folds for every regression problem and the dMAD. Landmarking outper-
forms the other by far and produces estimated accuracies with a MAD smaller
than 0.081 for every classifier. This means that the average error of the esti-
mated accuracy in unseen datasets will be in the worst case (that of mlcibl)
8.1%.

The rest of the characterization strategies do not produce estimates as good
as those produced by landmarking. One could suspect that this is because
the meta-dataset is relatively small when compared to the large number of
meta-attributes used by these two strategies of dataset characterization. To
check whether reducing the dimensionality of the problem would significantly
improve the estimates, we performed feature selection through wrapping on
the four meta-datasets. The estimates, however, were not greatly improved.
We conclude that landmarking performs best in performance estimation using
kernel.

To examine whether the results presented are significant we performed paired
t-tests of significance. In Table 8.7 we give the results of the paired t-test
between each model and the dMAD. In this table and in the following ones, +
indicates that the method is significantly better than the default, = signifies
that there is no difference, and — that the method is significantly worse then
the default. Since we have multiple comparisons with the default MAD we
will once again adjust the significance level for the multiplicity effect, the new
significance level will be 0.006. The table shows that the performance of land
is always significantly better than the default. For the other characterizations
the differences are not significantly different. However the dct characterization
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Table 8.7. P-values of paired T-tests of significance comparing with the dMAD.

Classifier dct histo histo-limited land statlog

cb0boost = (0.112) = (0.430) = (0.361) + (0.00) = (0.287)
ch0rules = (0.075 = (0.346) = (0.319) + (0.00) = (0.154)
ch0tree = (0.045) = (0.373) = (0.242) + (0.00) = (0.122)
Lindiscr = (0.110) = (0.485) = (0.548) + (0.00) = (0.107)
Ltree = (0.030) = (0.153) = (0.115) + (0.00) = (0.051)
IBL = (0.037) = (0.361) = (0.269) + (0.00) = (0.173)
NB = (0.036) = (0.758) = (0.807) + (0.00) = (0.058)
ripper = (0.024) = (0.243) = (0.217) + (0.00) = (0.152)

Table 8.8. Average Spearman’s Correlation Coefficients with the True Ranking

models

Characterization = Kernel = Zooming
default 0.330 0.330
dct 0.435 0.341
histo 0.394
histo-limited 0.405 0.371
land 0.180

land- 0.190
statlog 0.385

appears to have a small advantage over them, exhibiting lower significance levels.

Furthermore, land is always significantly better than the rest of the charac-
terization sets for all the eight different learning algorithms. Between the four
sets, the differences are not statistically significant for any of the 8 learners.

In conclusion we can say that the use of landmarkers to perform accuracy
estimation is a method with very good performance and low estimation error,
significantly better than the others. The reason is that landmark based charac-
teristics are better suited for that type of task: they provide a direct estimation
of the hardness of the problem since they are themselves performance estima-
tions. On the other side, the rest of the sets give an indirect description of
the hardness of the problem, through the use of characteristics like attributes
correlations, which are more difficult to directly associate with accuracy.

8.3.2 Ranking inducers

An obvious way to use the accuracies predicted by regression is to build a ranking
of the learners based on these predictions. In this section we give results for
various ways of predicting rankings. We validate their usefulness by comparing
them with the true ranking, and the performance of a default ranking.

To evaluate the different approaches, the rankings produced for a dataset
are compared to the true ranking of the learners on this dataset. The true
ranking is known since we know the accuracies of all the learners on the 65
datasets that we are using. As a measure of similarity of the rankings, we
used Spearman’s rank correlation coefficient (Neave & Worthington, 1992). We
also compare our method with ranking via zooming (Soares & Brazdil, 2000).
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Zooming cannot be applied to the full set of landmarkers, since that will mean
using the performance of Lindiscr, IBL and NB to predict their ranking. This
is why the corresponding combination, (zooming+land) is not included in the
table. Also the results of ranking with zooming for the statlog and histo sets
were not available. In the same table we give the average Spearman’s rank
correlation coefficient of the default ranking with the true ranking. The default
ranking is a ranking that remains the same no matter what the dataset under
examination is. It is computed on the basis of the mean accuracies that the
learners achieve over all the datasets. The default ranking, starting from the
best learner, is : ¢50boost, c50rules, c50tree, Ltree, ripper, IBL, NB, Lindiscr. A
ranking method is interesting if it performs significantly better than this default
ranking: in this case it is worth applying the meta-learning method to discover
a suitable ranking for a given dataset.

One of the drawbacks of using the Spearman’s correlation coefficient to eval-
uate rankings is the fact that it treats errors in a rank in the uniformly inde-
pendently of whether they appear at the top or at the bottom of the rank. It
is obvious that an error at the top of the rank is more important than an error
in the bottom, since we are mainly interested in the top rated algorithms. To
overcome that limitation of the Spearman’s rank correlation coefficient we can
focus only in the top position of the ranking and see how often the rankings
predict correctly the top classification algorithm. The complete results with
respect to that dimension of ranking evaluation are given in section 8.3.3. More
elaborate evaluation measures of rankings exist based on modifications of the
Spearman’s correlation coefficient. In these modifications errors are penalized
according to the position of the ranking list where they occur, (Soares et al.,
2000).

The results in terms of the average Spearman rank correlation coefficient
are given in table 8.8. Surprisingly enough in the top position we find the com-
bination of Kernel with dct followed closely by Kernel with histo, histo-limited
and statlog. What is interesting is that regression based ranking performs bet-
ter than ranking with zooming, even though the latter is a method specifically
designed to produce rankings. What is even more surprising is the poor per-
formance of the landmarking based characterizations, although landmarking
constructs regression models that have a very low MAD error, it fails to provide
a good ranking of the classifiers. The predictions provided by Kernel and dct,
while worse than the ones provided by landmarking based models, systemati-
cally keep the relative order of the accuracies of the classifiers. So although they
do not estimate the performances accurately, they do rank the classifiers well.
A reason for the poor performance of landmarking in ranking is that landmark-
ing based regression models give the error as a function of the error of simple
learners. This can lead to models where the error of an inducer is proportional
to the error of another inducer resulting in a more or less fixed ranking of the
available inducers, a fact that explains the poor performance of landmarkers
when it comes to ranking inducers. Examining whether the differences are sig-
nificant, after adjusting for the multiplicity effect on a 0.006 level, we see that
none of the examined methods achieves a performance that can beat that of the
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Table 8.9. P-values of paired t-tests, between the rank correlation coefficients of the models
and the rank correlation coefficient of the default ranking.

models
Characterization Kernel Zooming
dct =(0.050) =(0.862)
histo =(0.261)
histo-limited =(0.147) =(0.482)
land =(0.010)
land- =(0.018)
statlog =(0.311)

default ranking in a significant level, table 8.9.

To explain better the counter-intuitive bad performance of the landmarking
approach with respect to ranking, we used Cubist (Quinlan, 2000), a regres-
sion algorithm that produces rule based models, and examine the structure of
the constructed models. The reason for the use of Cubist is that the Kernel
based regression does not produce models. The performance of land with Cu-
bist is very similar to that with Kernel, both in terms of the quality of the
error predictions for each inducer (very good predictions), and the ranking (the
ranking correlation coefficients with the ideal ranking are much worse than the
performance of the default ranking). In table 8.10 we give the regression models
produced by Cubist for each one of the eight inducers. Each of the produced
models gives the error of the corresponding inducer as a function of the error
given by the landmarkers. Six out of the eight models are very simple linear re-
gression equations. If we examine the equations that give the errors of c50boost
and c50rules we can see that they are very similar, and they are based on the
error of the IBL landmarker. The equations on the one hand give a very good
prediction of the error of the two inducers, but on the same time always rank
them in the same way for every dataset, with c50boost always predicted to have
a smaller error than c50rules. This results in a ranking of the two inducers that
is always the same irrespectively of the dataset under examination. The same
situation holds also for other inducers, for example NB and ripper, whose errors
are given as a function of the same landmarkers (i.e. Lindiscr and IBL). It is
exactly this phenomenon, of a more or less fixed ranking between the inducers,
that explains the poor performance of land in what concerns ranking.

Using regression to perform ranking is essentially different from ranking with
zooming. Even when the regression model used is a kernel based one, whose
idea is the same with that of nearest neighbors used in ranking with zooming,
the similarities end there. In zooming, k-nearest neighbor is used to establish
a set of similar datasets to the one under examination. In order to perform
the ranking, the relative performances of the learners on the similar datasets
are used. In the case of ranking through regression, we don’t make use of the
relative performance of the learners and there is no need to establish a set of
similar datasets. Instead, the accuracies of the learners are directly predicted
using the extracted characteristics of the dataset under examination. As a
result of that we are not committed to any specific meta-learning model. More
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Table 8.10. Models produced by Cubist on the land set of characteristics

Inducer Regression Model
c50boost error=-0.0127 4 0.888 IBL

c50rules error=-0.0045 + 0.884 IBL
chO0tree error=-0.0134 4+ 0.595 IBL + 0.346 NB
Lindiscr error= 0.0333 + 0.869 NB
Ltree error=-0.025 + 0.407 IBL + 0.332 Lindiscr + 0.24 NB
1BL IF Lindiscr <= 0.396 THEN

error=0.0202 4+ 0.726 NB

IF Lindiscr > 0.396

error=-0.0835 + 0.82 Lindiscr + 0.34 Elite Node
NB IF Lindiscr <= 0.237 THEN

error=0.0211 + 0.645 IBL + 0.174 Lindiscr

IF Lindiscr > 0.237 THEN

error=0.0227 + 0.833 Lindiscr + 0.132 IBL

ripper error=-0.0077 4+ 0.604 IBL + 0.377 Lindiscr

Table 8.11. Accuracy results on the inducer selection problem, via regression.

Kernel Zooming
Characterization Acc. Impr. Acc. Impr.
dct 38.46% 6.16% 27.69% -4.34%
histo 46.16%  13.86%
histo-limited 36.92% 4.62% 29.24%  -3.06%
land 27.69% -4.61%
land- 23.08%  -9.22%
statlog 29.23%  -3.07%

expressive models can be used that provide a better insight of how the dataset
characteristics affect the performance of the learners, exactly like we do in the
case of Cubist.

8.3.3 Selecting the best inducer

As already mentioned one of the drawbacks of evaluating rankings via the Spear-
man correlation coefficient is the uniform treatment of errors independently of
their position in the ranking list. Here we will focus only in the top position
of the rankings and we will examine how often they correctly predict the best
classification algorithm. The meta-learning problem is exactly the same as the
one described in section 7.3, the difference comes from the way we are trying
to solve it. There we used classification methods, while here we are using re-
gression methods, to solve what at the end, is a typical classification problem.
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Obviously the class distribution is the one given in table 7.10 and the default
accuracy is also the same. It is also the same meta-learning problem with the
one defined in section 8.2. While there we were based on relative performance
prediction of pairs of algorithms via regression to select the best algorithm, here
we are relying on direct accuracy prediction.

We will examine the performance of Kernel combined with all the five pos-
sible ways of characterizing a dataset, plus the performance of zooming on the
three sets on which the results are available. The evaluation was done using
10 fold cross validation. In table 8.11 we give the results on accuracy along
with the improvement over the default accuracy. As a first fast insight into the
results, we can see that only the Kernel models produce accuracy results that
are better than the default for some of the sets. Models produced by zooming
are all worse than the default.

Kernel gives results which are better than the default for the det, histo and
histo—limited sets. histo is again the set that achieves the highest improvement
over the default, as it was also for the same problem when we tried to attack
it via classification. Again the improvement over the default is not statistically
significant.

Comparing the results of the regression based approach with the results
obtained by the classification based approach, table 7.11, we can see that for all
the characterizations regression produces worst results than direct classification.
However since the differences are small we can not draw safe conclusions about
the superiority of classification over regression.

8.4 Summary and Conclusions

In this chapter we examined an alternative approach to classification, for solving
the meta-learning problem, which was based on regression. We explored two
different meta-learning frameworks. The first one was based on the definition
of pairwise problems and the second one on the direct prediction of the errors
of inducers. In the later framework the regression models can be used either
to rank inducers or simply to select the best inducer for a specific dataset.
We examined the performance of five different dataset characterizations under
both frameworks and investigated the use of regression to rank classification
algorithms.

In what concerns the first framework the predictive accuracy with which the
appropriate algorithm was chosen was relatively low, around 48% for the best
characterization (the histo set). In total three characterizations overpassed the
default accuracy related with the final suggestion but none at a statistically
significant level.

For the direct error estimation the land set achieved by far the best perfor-
mance. But when these estimates were used to rank the algorithms according
to their expected performance it performed miserably, even significantly worse
than the default ranking. The best results with ranking were obtained by the
combination of Kernel and dct, followed by Kernel with histo-limited and histo.
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The regression based ranking in general outperformed the ranking via zooming,
nevertheless the differences between the methods, and between the methods and
the performance of the default ranking was not statistically significant.

When we used the error estimates to select the best inducer only three of
the methods managed to beat the default accuracy, but not in a statistically
significant level. On the top position we found Kernel with histo, the same
set that exhibited the highest performance when the problem of inducer selec-
tion was tackled via classification, section 7.3 or via the pairwise regression,
section 8.2. Followed by Kernel with dct and histo-limited. The rest of the meth-
ods performed worse than the default accuracy. In general the regression based
approach seems to perform slightly worse than the classification approach.
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Chapter 9

Overview, Limitations and
Future Work

The goal of this dissertation is to provide support to the analyst in selecting
the most appropriate learning algorithm for a classification problem refraining
from the tedious task of systematic experimentation with various learning algo-
rithms. As a first step to that goal we relied on meta-learning, viewing inducer
selection as a typical classification problem although at a meta-level. Within
this approach our work spans the whole range of tasks required for the solu-
tion of a typical classification problem. That is, we searched for an appropriate
formulation of the meta-learning space, and we constructed it in such a way
so that it closely simulates the steps followed by the analyst when he has to
select among different learners. Special care was also given to the feature ex-
traction part of the process, in order to have a set of characteristics that can best
discriminate between different datasets, a step which involved experimentation
with different sets of features. We proceeded to a systematic experimentation
of different learners on the meta-level and compared the set of characteristics
that we established with sets of characteristics from previous similar work. In
the last chapter of the dissertation we explored a different avenue that relied on
regression techniques, compared different dataset characterizations under the
regression scenario, and used the regression models not only to perform inducer
selection but also inducer ranking.

The formulation of the meta-learning space allows for a close examination of
the factors that affect the relative performance of specific pairs of inducers. The
establishment though of a number of pairwise meta-learning problems poses a
problem; an error of prediction in one of them could harm the final prediction.
A possible solution could be a more intelligent way of combining the partial
solutions to provide the final answer. This can be achieved via a meta-learning
schema like stacking or global cascade generalization, where the predictions from
the individual pairwise meta-learning problems will constitute a new learning
problem in which the goal will be to predict the final classification algorithm

129
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based on the patterns of predictions from the pairwise problems.

The suggested formulation of the meta-learning space gave satisfactory re-
sults when applied to the set of semiartificial datasets. The performance in
terms of the strict accuracy was, for the best meta-learner and the best dataset
characterization, 51.16%, an improvement over the default strict accuracy of
24.93%, while for the loose accuracy it was 76.74%. When tested only on real
datasets the performance was quite low, resulting in a strict accuracy of 15.38%
and 20.00%, depending on which histogram based characterization was used,
(corresponding improvements over the default accuracy 1.54% and 6.16%). The
loose accuracy was 52.31% and 47.69%. A possible explanation for the poor
performance in the real datasets is their limited number.

In defining the pairwise meta-learning problems special care was given in
the appropriate definition of the datasets characterization. The idea of the his-
tograms was introduced to describe in a finer detail the distributions of various
properties of datasets whose number depends on the number of attributes of
the dataset. We compared the histogram based characterizations with differ-
ent dataset characterizations in varying meta-learning frameworks including one
that was using regression to perform inducer selection. The histogram based
approaches took the top positions whether inducer selection was performed in
the pairwise meta-learning framework, the simple meta-learning framework, or
via regression. We should note here that a set of dataset characteristics consist-
ing mainly of the histogram characteristics, histo-limited exhibited quite good
performance, with respect to the others, providing evidence that it is the use of
histograms that improves the performance. Although the histogram based char-
acterizations systematically outperformed the other characterizations, in almost
all of the applied frameworks, the performance differences were not statistically
significant. What was also disappointing was the fact that the difference between
the histograms and the default accuracy was not statistically significant either.
However the histogram based approaches were consistently better than the de-
fault accuracy, for all the different frameworks examined, even if the difference
was not statistically significant. We cannot definitely support their superiority
over the other methods of characterization, however since they are the only ones
that systematically overpass the default accuracy and occupy the top positions
we can at least argue that their presence can only improve performance in the
inducer selection problem.

Before establishing the most appropriate histogram characterization we ex-
amined two different versions of feature sets with one of them trying also to cap-
ture and describe the associations between discrete and continuous attributes,
using ideas from analysis of variance. Unfortunately that extended version of
histograms did not bring any improvement in the performance and even more in
one case it harmed the performance (when IBL was used on the meta-level). As
a result we have chosen not to include these characteristics in the final set. This
leaves a gap in the description of the datasets and of course obvious space for
improvement. New characteristics should be devised that are able to describe
in a satisfactory way the relations between continuous and discrete attributes.
As a step to that we experimented with discretized versions of the datasets us-
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ing the Fayyad and Irani (1995) method of discretization; this results on new
versions of the datasets where all the attributes are discrete and characteristics
that are appropriate for discrete attributes can be applied without a problem,
unfortunately the results were not encouraging and we did not further explore
that direction.

We also have to note that the concept of histograms was not applied to all
the properties of the datasets that depend on the number of the attributes.
For example histograms could be applied to describe the distribution of the
mutual information between the attributes and the class or to the entropy of
the attributes. Instead for the suite of experiments presented here we used
only the means of these properties, mainly because they do not have a bounded
interval of possible values, but an interval whose bounds depend on specific
properties of the attributes. However with the proper normalization histograms
could be also applied to describe the distributions of these characteristics too.

Another promising direction which could help improving the quality of pre-
dictions, although at the expense of loss of understandability of the produced
models, is the application of principal components analysis on the set of dataset
characteristics, so that the new set will contain uncorrelated features. This
could prove beneficial especially for the case of the instance based learner on
the meta-level.

We proceeded further in providing a characterization of the discriminating
power of the individual characteristics by analyzing the models that the meta-
learners produced. The characterization was based on how often a characteristic
was selected to become part of a meta-learning model. The more often this was
done, the higher the discriminatory power of the characteristic. The first and
most important insight was the variation of the discriminatory power among
different pairs of inducers. This observation provided further experimental sup-
port for the choice of the specific formulation of the meta-learning space. It is
also an indication that meta-learning frameworks that rely on a single meta-
learning problem will have a more difficult problem to solve. Although the
pairwise meta-learning framework comes with the extra cost of the combination
of the individual predictions, which is not a trivial task, the fact that allows
for a focused study of the differences between inducers make us think that it
is more appropriate. Returning to the discriminating power of the individual
characteristics we believe that this is best reflected in the choices done by fsIBL
on the set of 1075 datasets and in the similar choices done by c50boost in the
65 datasets. According to this characterization the simple characteristics, the
STATLOG based ones, and the histograms describing the associations between
the attributes, along with the first half of the histogram that describes the as-
sociation with the class attribute are the most often selected, thus the most
discriminating.

Although the final performance of the system depends heavily on the quality
of the characteristics used to describe the datasets, we also tried to further
improve the performance by examining the use of various inducers on the meta-
learning level. The use of different inducers required some adaptation in the
representation of their values due to the existence of the non-applicable values.
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The best results were achieved by c¢50boost which was better than all the other
inducers on the meta-learning level at a statistically significant level. The use
of these inducers apart from being an effort to improve the performance, served
also in the characterization of the discriminating power of the characteristics,
as it was already described int the previous paragraph. It would be interesting
to examine inducers that go beyond the propositional paradigm. The argument
for that is the following: when we use a histogram to describe a property of
a dataset we actually introduce a number of new features that describe this
property; in some sense we place higher emphasis on that property since now it is
described by more than one feature. To overcome this unbalanced representation
a solution could be the use of learning algorithms that are able to cope with
attributes whose values are lists or sets. For example consider a version of
IBL where the attributes are lists or sets. What is needed in that case is a
metric that can define the distance between two sets or two lists. In the case
of lists, which is the one that better matches with the concept of histograms,
the solution could be simply the euclidean distance between the two lists. The
case of sets is not so straightforward because more elaborate metrics have to
be used to define the distance between two sets, metrics that should of course
respect the semantics of the problem. Whether we are dealing with attributes
that are lists or sets the result of the comparison between two attributes will
be a single quantity that can be incorporated naturally in the distance metric
of the IBL algorithm. Similar alterations could be done to decision trees, here
the splitting criterion should be altered so that it would be possible to define
splits on attributes whose values are lists or sets. Again the use of a metric
defined on lists or sets is essential. The use of sets is more appropriate when we
would like to exploit the full set of characteristics corresponding to a dataset,
without relying on the concept of histograms. For example for two datasets with
k and | continuous attributes we would have two sets of (’zc) and (é) correlation
coefficients respectively. If we were not to use histograms we should be able
to compare the two sets in terms of their similarity. The suggestion provided
above goes more into the direction of an inductive logic programming tool or
a case based reasoning system, more generally a system that is able to handle
multiple relations. Nevertheless the proposed system would lie between the two
approaches and would be closer to the propositional framework.

A novel paradigm of representation that has risen in the statistical field can
address successfully the representational issues set in the previous paragraph.
Bock and Diday (2000) present the notion of symbolic data types. The main idea
of symbolic data types is that symbolic variables can be defined which do not take
a single value as it is done in propositional approaches. Symbolic variables may
have as values: sets, intervals, and frequency or probability distributions. The
two latter cases are identified as modal variables; a special case of modal variables
are the histogram variables, where the distribution is typically given in the form
of a histogram. The authors present various metrics that can be used in order to
define distance between distributions, and extend that to vectors whose features
are complete distributions. It should be noted here that although symbolic
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variables are typically multivalued, they are treated as a single entity, thus
they do not increase overwhelmingly the dimensions of the search space, while
on the same time they preserve a sufficient amount of the initial information.
It is obvious that classification algorithms which are able to handle symbolic
objects provide an ideal solution to the representational problem set forth by
the description of datasets and they should be explored in view of meta-learning.

In a slightly different meta-learning scenario we used regression algorithms
to perform inducer selection, and examined also different ways of dataset char-
acterization. Here also the top performance was exhibited by a histogram based
characterization. Compared to inducer selection via classification we noticed a
slight decrease in performance. However the decrease was not significant and
cannot provide clear evidence for the superiority of the classification based ap-
proach over regression for inducer selection.

The regression models produced were also used to provide rankings of algo-
rithms. We compared the ranking performance of the different characterizations
and also compared the regression approach to ranking with zooming based rank-
ing. There were two main outcomes of this empirical comparison. The first one
was that regression based ranking was found to perform better than zooming
based one, even though the later is specifically designed with the problem of
ranking in mind, the difference however was not statistically significant. The
second one was the fact that while the landmarking set of characteristics pro-
vided the most reliable error estimates, it failed miserably with respect to rank-
ing. The explanation to that lay in the form of the regression models that were
constructed from the landmarking characterization.

Another point that is worth of further investigation is the population of the
DSs set used to train the system. The approach that we have followed was
based on the careful modification of some of the characteristics of an initial
set of datasets to various dimensions. An alternative approach could be the
use of completely artificial datasets, where the initial concepts described by the
instances of a dataset are known in advance. In that way not only we will know
the optimal error for every artificial dataset, but we will also be able to compute
the exact error of every classification algorithm without having to rely on a
resampling procedure, since we will have in our disposition as many instances
as we want. This will make meta-learning datasets more dense, and improve
their quality. It is even possible to use real world datasets as the starting point
for the artificial datasets. In order to achieve that we can produce a classification
model from a real world dataset and use that model as the starting point for the
construction of artificial datasets that will populate the dataset space around
the initial real world dataset.

The problem with which we tried to cope in this dissertation is the selection
of the most appropriate inducer for a specific dataset in the lack of any relevant
information apart from the dataset itself. Within this framework we took special
care in choosing an appropriate formulation for the meta-learning problem and
gave special attention in the definition of an appropriate set of characteristics.
The whole approach gave satisfactory results when it was tested on a pool of
semiartificial datasets. The results were not satisfactory when the tests were
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repeated on a limited number of real world datasets. However they provided
evidence that the incorporation of histogram based descriptions of the properties
of the dataset can help in solving the problem of inducer selection.

We believe that the main focus of future work should be in the refinement
of the descriptions of the datasets, a quite difficult problem as it is by now
obvious from the results achieved within this work. However we should keep in
mind that all the information we need is there; a dataset is the ultimate-most
detailed— description of itself, what we are looking for is an intelligent way to
compress describe it.
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Appendix A

Results on the 1075
datasets

A.l The 47 initial datasets

abalone, acetylation, ann-thyroid, australian, balance-scale, bupa, byzantine,
car, char, cleanl, clean2, flag language, flag_religion, flare_c, flare_c_er, flare_m,
flare_m_er, flare x, flare_x_er, german, glass, glass2, heart, ionosphere, iris, lenses,
lymphography, monk1l, monk2, monk3, new-thyroid, nursery, optdigits, page-
blocks, parity5_5, pendigits, pima-indians-diabetes, sat, segmentation, sonar,
soybean-small, titanic, vehicle, vote, waveform_21, wdbc, yeast.
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A.2 Characteristics Selected by fsIBL

Table A.1. Characteristics Selected by fsIBL on the 1075 datasets for the pairs : (c50rules
c50boost), (ch0tree c50boost), (c50tree c50rules)
Attribute ch0rules ch0tree ch0tree
cb0boost cb0boost cH0rules
# classes 1 1 0
# attributes 0 0 0
# instances 1 1 1
attributes
##instances 0 ! 0
# unknown values 0 0 0
# unknown values 0 1 0
# attributes * # instances
# nominal attributes 1 0 1
max,min,mean,stdv of nominal | 1011 1110 1011
attribute values
1..10 concentration histogram 0011011111 1010011000 1110000000
non computable conc. histogram | 1 0 0
1..10 concentration histogram | 0101000000 1101000000 1001000000
with class
non computable conc. histogram | 0 0 0
with class
# continuous attributes 1 1 0
1..10 correlation histogram 1101010011 1110111101 1100001101
non computable correlation his- | 1 0 0
togram
1..10 missing values histogram 0 0 0
# continuous 1 0 0
Fape
# attributes ! 0 0
Binary Attributes 0 0 1
Fracl 0 0 0
First Canonical Correlation 0 1 0
Mean Skew 0 1 0
Mean Kurtosis 0 0 1
Class Entropy 1 0 1
Mean Attribute Entropy 0 1 1
Mean Mutual Information 1 1 1
Equivalent number of attributes | 1 1 1
Noise to Signal Ratio 1 1 1
Mean Mult. Correl. Coef. 1 0 0
SDratio 1 1 1




A.2. CHARACTERISTICS SELECTED BY FSIBL

Table A.2. (Lindiscr ¢50boost), (Lindiscr ¢50rules), (Lindiscr ¢50tree)

Attribute Lindiscr Lindiscr Lindiscr
c¢50boost c50rules ch0tree
# classes 1 1 1
# attributes 0 1 0
# instances 1 0 0
# ;'Lttrlbutes 1 1 1
#£instances
# unknown values 0 0 0
# unknown values 1 1 1
# attributes * # instances
# nominal attributes 1 1 0
max,min,mean,stdv of nominal | 1001 1000 0011
attribute values
1..10 concentration histogram 1010000000 1011100000 0010100000
non computable conc. histogram | 0 0 0
1..10 concentration histogram | 0001000000 0001000000 1000000000
with class
non computable conc. histogram | 0 0 0
with class
# continuous attributes 0 0 0
1..10 correlation histogram 1000110000 0000111000 1111010000
non computable correlation his- | 0 0 0
togram
1..10 missing values histogram 0 0 0
continuous
7% attribu%es v v 0
nomina
# attributes 0 0 0
Binary Attributes 0 1 1
Fracl 0 0 0
First Canonical Correlation 1 0 0
Mean Skew 0 0 0
Mean Kurtosis 0 0 0
Class Entropy 1 1 0
Mean Attribute Entropy 1 1 0
Mean Mutual Information 0 1 0
Equivalent number of attributes | 1 1 1
Noise to Signal Ratio 1 1 1
Mean Mult. Correl. Coef. 1 0 1
SDratio 0 0 1
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APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.3. (Ltree c50boost), (Ltree c50rules), (Ltree c50tree)

Attribute

Ltree
ch0boost

Ltree
ch0rules

Ltree ch0tree

# classes

# attributes

# instances

# attributes
#tinstances

# unknown values

# unknown values
# attributes * # instances

# nominal attributes

max,min,mean,stdv of nominal
attribute values

1
0
0
1
0
1
0
1

101

0
0
1
1
1
1
1
1

000

1..10 concentration histogram

1100111111

1111010000

0011100000

non computable conc. histogram

1

0

0

1..10 concentration histogram
with class

0110100000

1001000000

0000000000

non computable conc. histogram
with class

# continuous attributes

0

1

1

1..10 correlation histogram

0101111111

1101110110

0111110000

non computable correlation his-
togram

0

0

0

1..10 missing values histogram

# continuous
# attributes

o

o

o

# nominal
# attributes

Binary Attributes

Fracl

First Canonical Correlation

Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy

Mean Mutual Information

Equivalent number of attributes

Noise to Signal Ratio

Mean Mult. Correl. Coef.

SDratio
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A.2. CHARACTERISTICS SELECTED BY FSIBL

Table A.4. (Ltree Lindiscr), (IBL ¢50boost), (IBL c50rules)

Attribute

Ltree
Lindiscr

IBL
c50boost

IBL ch0rules

# classes

0

# attributes

# instances

# attributes
#£instances

# unknown values

1
0
1
1

# unknown values
# attributes * # instances

0

# nominal attributes

1

o © | = [l

max,min,mean,stdv of nominal
attribute values

1
1
0
1
0
0
1
1

001

0011

0000

1..10 concentration histogram

1101100000

1001100000

1000000000

non computable conc. histogram

0

0

0

1..10 concentration histogram
with class

0001000000

0101000000

0000000000

non computable conc. histogram
with class

# continuous attributes

0

1

1

1..10 correlation histogram

0111001111

0111111000

1010010101

non computable correlation his-
togram

0

0

0

1..10 missing values histogram

# continuous
# attributes

o

# nominal
# attributes

Binary Attributes

Fracl

First Canonical Correlation

Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy

Mean Mutual Information

Equivalent number of attributes

Noise to Signal Ratio

Mean Mult. Correl. Coef.

SDratio
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Table A.5. (IBL c50tree), (IBL Lindiscr), (IBL Ltree)

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute IBL ch0tree IBL Lindiscr | IBL Ltree
# classes 1 1 1
# attributes 1 1 0
# instances 0 0 0
attributes
%W ! ! !
# unknown values 1 0 0
# }mknown va.ulues 0 1 1
# attributes * # instances
# nominal attributes 1 0 1
max,min,mean,stdv of nominal | 0011 0001 1011
attribute values
1..10 concentration histogram 1000000000 1010100000 0000000000
non computable conc. histogram | 0 0 0
1..10 concentration histogram | 1100000000 0101000000 0101000000
with class
non computable conc. histogram | 0 0 0
with class
# continuous attributes 1 0 0
1..10 correlation histogram 1110100101 0110101011 1111111101
non computable correlation his- | 0 0 0
togram
1..10 missing values histogram 0 0 0
continuous
## attribu%es 0 0 0
nomina
% 0 0 0
Binary Attributes 0 0 1
Fracl 0 1 0
First Canonical Correlation 1 1 1
Mean Skew 1 1 1
Mean Kurtosis 1 1 1
Class Entropy 0 1 0
Mean Attribute Entropy 1 1 1
Mean Mutual Information 0 1 1
Equivalent number of attributes | 1 0 0
Noise to Signal Ratio 1 1 1
Mean Mult. Correl. Coef. 1 0 1
SDratio 1 0 1




Table A.6. (NB c50boost), (NB c50rules), (NB c50tree)

A.2. CHARACTERISTICS SELECTED BY FSIBL

Attribute

NB c¢50boost

NB ch0rules

NB c¢h0tree

# classes

# attributes

# instances

# attributes
#£instances

# unknown values

# unknown values
# attributes * # instances

= O ©|=|Ool—

# nominal attributes

1

Sl O | = ===

= oo = |o|~|~

max,min,mean,stdv of nominal
attribute values

1010

0011

0010

1..10 concentration histogram

1010111111

1100000000

1100000000

non computable conc. histogram

1

0

0

1..10 concentration histogram
with class

1101000000

1000000000

1000000000

non computable conc. histogram
with class

# continuous attributes

1

0

0

1..10 correlation histogram

11110111111

01000011100

01111110010

non computable correlation his-
togram

1

0

0

1..10 missing values histogram

# continuous
# attributes

(==}

(==}

o

# nominal
# attributes

Binary Attributes

Fracl

First Canonical Correlation

Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy

Mean Mutual Information

Equivalent number of attributes

Noise to Signal Ratio

Mean Mult. Correl. Coef.

SDratio

O = =] =] = | =] = =] =] D =] =
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APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.7. (NB Lindiscr), (NB Ltree), (NB IBL)

Attribute

NB Lindiscr

NB IBL

# classes

# attributes

# instances

# attributes
#tinstances

# unknown values

# unknown values
# attributes * # instances

# nominal attributes

max,min,mean,stdv of nominal
attribute values

1
1
0
1
0
1
1
0

100

111

1
1
1
1
1
1
1
1

101

1..10 concentration histogram

1111100000

0111111111

1101110000

non computable conc. histogram

0

1

0

1..10 concentration histogram
with class

1101000000

1111111100

1001000000

non computable conc. histogram
with class

# continuous attributes

0

1

1

1..10 correlation histogram

0011000000

1110011110

1111111001

non computable correlation his-
togram

0

1

0

1..10 missing values histogram

# continuous
# attributes

o

—_

o

#£ nominal
# attributes

Binary Attributes

Fracl

First Canonical Correlation

Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy

Mean Mutual Information

Equivalent number of attributes

Noise to Signal Ratio

Mean Mult. Correl. Coef.

SDratio

o| =| =] =] =|~|~|lo| ol ||| o

o Bl el e Bl e e i e e R e
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A.2. CHARACTERISTICS SELECTED BY FSIBL

Table A.8. (ripper c¢50boost), (ripper c50rules), (ripper c¢50tree)

Attribute

ripper
c¢50boost

ripper
c50rules

ripper
c50tree

# classes

1

# attributes

# instances

# attributes
#£instances

# unknown values

0
0
1
1

# unknown values
# attributes * # instances

# nominal attributes

= oo = |o|=|=

max,min,mean,stdv of nominal
attribute values

0
0
1011

0010

1
1
0
0
0
1
1
1

010

1..10 concentration histogram

1111000000

1101100000

0100000000

non computable conc. histogram

0

0

0

1..10 concentration histogram
with class

1101000000

0101000000

1101000000

non computable conc. histogram
with class

# continuous attributes

1

0

0

1..10 correlation histogram

0101101011

1100010000

1010110100

non computable correlation his-
togram

0

0

0

1..10 missing values histogram

# continuous
# attributes

o

# nominal
# attributes

Binary Attributes

Fracl

First Canonical Correlation

Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy

Mean Mutual Information

Equivalent number of attributes

Noise to Signal Ratio

Mean Mult. Correl. Coef.

SDratio

Ol ===~ © o | o
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Table A.9. (ripper Lindiscr), (ripper Ltree), (ripper IBL)

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute ripper ripper Ltree ripper IBL
Lindiscr
# classes 1 1 0
# attributes 1 1 1
# instances 1 1 0
# {Lttrlbutes 1 1 1
#tinstances

# unknown values 1 0 0

# unknown values 1 1 1
# attributes * # instances
# nominal attributes 1 1 1
max,min,mean,stdv of nominal | 1111 0000 0011
attribute values
1..10 concentration histogram 1101111000 1100011111 1100000000
non computable conc. histogram | 0 1 0
1..10 concentration histogram | 0101000000 0101000000 1101000000
with class
non computable conc. histogram | 0 0 0
with class
# continuous attributes 1 1 1
1..10 correlation histogram 00101111000 11011111111 10100110010
non computable correlation his- | 0 1 0
togram
1..10 missing values histogram 0 0 0

continuous
% attribu%es 0 0 0
nomina

# attributes 0 1 0
Binary Attributes 0 1 0
Fracl 1 0 0
First Canonical Correlation 1 0 0
Mean Skew 1 1 0
Mean Kurtosis 1 1 1
Class Entropy 1 0 0
Mean Attribute Entropy 1 1 0
Mean Mutual Information 0 1 1
Equivalent number of attributes | 1 1 0
Noise to Signal Ratio 0 1 1
Mean Mult. Correl. Coef. 0 1 1
SDratio 0 1 0
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Table A.10. (ripper NB)

Attribute ripper NB
# classes
# attributes
# instances

# attributes

#tinstances
# unknown values

# unknown values

# attributes * # instances
# nominal attributes
max,min,mean,stdv of nominal | 1011
attribute values
1..10 concentration histogram 1100111111
non computable conc. histogram | 1
1..10 concentration histogram | 0001000000
with class
non computable conc. histogram | 0

el = i

with class

# continuous attributes 1

1..10 correlation histogram 10100110010
non computable correlation his- | 0

togram

1..10 missing values histogram 0

# continuous

# attributes

# nominal

# attributes
Binary Attributes

Fracl

First Canonical Correlation
Mean Skew

Mean Kurtosis

Class Entropy

Mean Attribute Entropy
Mean Mutual Information
Equivalent number of attributes
Noise to Signal Ratio
Mean Mult. Correl. Coef.
SDratio

(==}

[l Bl el =l ] Bl B=l B =)l E=] B =] K ==] R =]
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A.3 Selection Frequency by c50boost

Table A.11. Selection Frequency of characteristics by c50boost on the 1075 datasets, pair :

c¢50rules c50boost

Attribute
# classes 0.0216
# attributes 0.0266
# instances 0.0305
# ;'Lttrlbutes 0.0241
#£instances
# unknown values 0.0355
unknown values
# a‘ﬁributes * 4 instances 0.0355
# nominal attributes 0.0114

max, min, mean, stdv of nominal attribute values

0.0102 0.0063 0.0102 0.0089

1..5 concentration histogram

0.0102 0.0127 0.0102 0.0127 0.0076

6..10 concentration histogram

0.0038 0.0051 0.0000 0.0000 0.0076

non computable conc. histogram

0.0076

1..5 concentration histogram with class

0.0254 0.0076 0.0038 0.0178 0.0051

6..10 concentration histogram with class

0.0000 0.0000 0.0000 0.0000 0.0013

non computable conc. histogram with class

0.0013

# continuous attributes

0.0076

1..5 correlation histogram
6..10 correlation histogram

0.0279 0.0178 0.0203 0.0152 0.0127
0.0076 0.0190 0.0152 0.0228 0.0190

non computable correlation histogram

0.0114

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0343 0.0343 0.0241 0.0266
0.0254 0.0190 0.0013 0.0114 0.0000

# continuous
# attributes

0.0025

# nominal

% attributes 0.0013
Binary Attributes 0.0063
Fracl 0.0140
First Canonical Correlation 0.0178
Mean Skew 0.0165
Mean Kurtosis 0.0178
Class Entropy 0.0343
Mean Attribute Entropy 0.0368
Mean Mutual Information 0.0228
Equivalent number of attributes 0.0343
Noise to Signal Ratio 0.0368
Mean Mult. Correl. Coef. 0.0152
SDratio 0.0102
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Table A.12. ¢50tree c50boost

Attribute
# classes 0.0300
# attributes 0.0185
# instances 0.0185

# a.uttrlbutes 0.0092

Finstances
## unknown values 0.0554

unknown values
# az.%ributes * 4 instances 0.0254
# nominal attributes 0.0058
max,min,mean,stdv of nominal attribute values | 0.0104 0.0046 0.0150 0.0012
1..5 concentration histogram 0.0115 0.0161 0.0150 0.0069 0.0092
6..10 concentration histogram 0.0081 0.0058 0.0012 0.0000 0.0092
non computable conc. histogram 0.0127
hline 1..5 concentration histogram with class 0.0208 0.0046 0.0058 0.0231 0.0058
6..10 concentration histogram with class 0.0035 0.0012 0.0000 0.0000 0.0023
non computable conc. histogram with class 0.0000
# continuous attributes 0.0161
1..5 correlation histogram 0.0196 0.0185 0.0265 0.0242 0.0138
6..10 correlation histogram 0.0161 0.0081 0.0115 0.0173 0.0104
non computable correlation histogram 0.0161
1..5 missing values histogram 0.0000 0.0300 0.0438 0.0381 0.0288
6..10 missing values histogram 0.0208 0.0208 0.0035 0.0208 0.0012
continuous
nomina

-ﬂzﬁiattributes 0.0023
Binary Attributes 0.0058
Fracl 0.0173
First Canonical Correlation 0.0161
Mean Skew 0.0081
Mean Kurtosis 0.0081
Class Entropy 0.0450
Mean Attribute Entropy 0.0473
Mean Mutual Information 0.0208
Equivalent number of attributes 0.0219
Noise to Signal Ratio 0.0150
Mean Mult. Correl. Coef. 0.0138
SDratio 0.0138




156 APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.13. ¢50tree c50rules

Attribute
# classes 0.0375
# attributes 0.0250
# instances 0.0312

# ;;ttrlbutes 0.0250

#instances
# unknown values 0.0413

unknown values
# a‘ﬁributes * 4t instances 0.0325
# nominal attributes 0.0138
max, min, mean, stdv of nominal attribute values | 0.0138 0.0075 0.0037 0.0088
1..5 concentration histogram 0.0125 0.0138 0.0050 0.0063 0.0050
6..10 concentration histogram 0.0037 0.0013 0.0000 0.0000 0.0063
non computable conc. histogram 0.0138
1..5 concentration histogram with class 0.0063 0.0112 0.0013 0.0175 0.0100
6..10 concentration histogram with class 0.0013 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0163
1..5 correlation histogram 0.0275 0.0163 0.0213 0.0187 0.0187
6..10 correlation histogram 0.0325 0.0100 0.0163 0.0187 0.0163
non computable correlation histogram 0.0125
1..5 missing values histogram 0.0000 0.0300 0.0275 0.0312 0.0262
6..10 missing values histogram 0.0100 0.0163 0.0088 0.0088 0.0063
continuous
W 0.0013
nomina,

Binary Attributes 0.0075
Fracl 0.0213
First Canonical Correlation 0.0300
Mean Skew 0.0187
Mean Kurtosis 0.0163
Class Entropy 0.0362
Mean Attribute Entropy 0.0262
Mean Mutual Information 0.0150
Equivalent number of attributes 0.0125
Noise to Signal Ratio 0.0088
Mean Mult. Correl. Coef. 0.0362
SDratio 0.0213
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Attribute
# classes 0.0274
# attributes 0.0192
# instances 0.0535
# a.uttrlbutes 0.0178
Finstances
# unknown values 0.0549
unknown values
# a‘ﬁributes * 4t instances 0.0261
# nominal attributes 0.0069

maxminmeanstdv of nominal attribute values

0.0123 0.0041 0.0123 0.0069

1..5 concentration histogram
6..10 concentration histogram

0.0192 0.0055 0.0137 0.0082 0.0069
0.0082 0.0041 0.0027 0.0000 0.0041

non computable conc. histogram

0.0055

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0137 0.0027 0.0082 0.0123 0.0123
0.0096 0.0000 0.0000 0.0000 0.0041

non computable conc. histogram with class

0.0014

# continuous attributes

0.0096

1..5 correlation histogram
6..10 correlation histogram

0.0329 0.0178 0.0137 0.0082 0.0274
0.0165 0.0192 0.0316 0.0014 0.0123

non computable correlation histogram

0.0137

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0165 0.0219 0.0302 0.0247
0.0082 0.0206 0.0000 0.0096 0.0000

7# continuous
# attributes

0.0014

# nominal

7 attributes 0.0041
Binary Attributes 0.0041
Fracl 0.0343
First Canonical Correlation 0.0412
Mean Skew 0.0123
Mean Kurtosis 0.0110
Class Entropy 0.0439
Mean Attribute Entropy 0.0233
Mean Mutual Information 0.0192
Equivalent number of attributes 0.0316
Noise to Signal Ratio 0.0192
Mean Mult. Correl. Coef. 0.0192
SDratio 0.0151
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Table A.15. Lindiscr ¢50rules

Attribute
# classes 0.0212
# attributes 0.0279
# instances 0.0517
# a.uttrlbutes 0.0252
Finstances
# unknown values 0.0464
unknown values
# az%ributes * 4 instances 0.0199
# nominal attributes 0.0053

maxminmeanstdv of nominal attribute values

0.0292 0.0066 0.0027 0.0013

1..5 concentration histogram
6..10 concentration histogram

0.0133 0.0172 0.0146 0.0040 0.0186
0.0080 0.0053 0.0000 0.0000 0.0080

non computable conc. histogram

0.0080

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0027 0.0080 0.0093 0.0186 0.0040
0.0027 0.0000 0.0000 0.0000 0.0013

non computable conc. histogram with class

0.0013

# continuous attributes

0.0106

1..5 correlation histogram
6..10 correlation histogram

0.0172 0.0265 0.0093 0.0199 0.0186
0.0133 0.0199 0.0133 0.0199 0.0186

non computable correlation histogram

0.0080

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0225 0.0199 0.0225 0.0239
0.0186 0.0133 0.0013 0.0093 0.0080

7# continuous
# attributes

0.0000

#£ nominal

7 attributes 0.0027
Binary Attributes 0.0040
Fracl 0.0279
First Canonical Correlation 0.0332
Mean Skew 0.0239
Mean Kurtosis 0.0066
Class Entropy 0.0332
Mean Attribute Entropy 0.0318
Mean Mutual Information 0.0225
Equivalent number of attributes 0.0265
Noise to Signal Ratio 0.0199
Mean Mult. Correl. Coef. 0.0265
SDratio 0.0252
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Table A.16. Lindiscr c50tree

Attribute
# classes 0.0295
# attributes 0.0121
# instances 0.0456

# a.uttrlbutes 0.0295

Finstances
# unknown values 0.0416

unknown values
# a‘ﬁributes * 4t instances 0.0161
# nominal attributes 0.0040
maxminmeanstdv of nominal attribute values | 0.0188 0.0067 0.0094 0.0067
1..5 concentration histogram 0.0094 0.0134 0.0067 0.0027 0.0121
6..10 concentration histogram 0.0027 0.0054 0.0027 0.0000 0.0121
non computable conc. histogram 0.0174
1..5 concentration histogram with class 0.0080 0.0067 0.0054 0.0134 0.0067
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0013
# continuous attributes 0.0188
1..5 correlation histogram 0.0268 0.0174 0.0241 0.0094 0.0134
6..10 correlation histogram 0.0161 0.0201 0.0228 0.0147 0.0188
non computable correlation histogram 0.0161
1..5 missing values histogram 0.0000 0.0389 0.0295 0.0295 0.0255
6..10 missing values histogram 0.0282 0.0094 0.0013 0.0027 0.0054
continuous
W 0.0000
nomina

m 0.0013
Binary Attributes 0.0000
Fracl 0.0188
First Canonical Correlation 0.0416
Mean Skew 0.0174
Mean Kurtosis 0.0161
Class Entropy 0.0375
Mean Attribute Entropy 0.0282
Mean Mutual Information 0.0174
Equivalent number of attributes 0.0349
Noise to Signal Ratio 0.0094
Mean Mult. Correl. Coef. 0.0241
SDratio 0.0188
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Table A.17. Ltree c50boost

Attribute

# classes 0.0355

# attributes 0.0334

# instances 0.0284

# qttrlbutes 0.0304

#instances

# unknown values 0.0395

unknown values

# az.%ributes * 4 instances 0.0223

# nominal attributes 0.0152
max min mean stdv of nominal attribute values | 0.0142 0.0101 0.0111 0.0091

1..5 concentration histogram 0.0172 0.0122 0.0203 0.0071 0.0122
6..10 concentration histogram 0.0041 0.0061 0.0000 0.0000 0.0122
non computable conc. histogram 0.0041

1..5 concentration histogram with class 0.0162 0.0091 0.0091 0.0213 0.0061
6..10 concentration histogram with class 0.0010 0.0000 0.0000 0.0000 0.0020
non computable conc. histogram with class 0.0000

# continuous attributes 0.0172

1..5 correlation histogram 0.0152 0.0132 0.0142 0.0182 0.0142
6..10 correlation histogram 0.0172 0.0071 0.0111 0.0111 0.0152
non computable correlation histogram 0.0051

1..5 missing values histogram 0.0000 0.0193 0.0344 0.0182 0.0324
6..10 missing values histogram 0.0253 0.0132 0.0000 0.0182 0.0000
continuous
ﬁmw 0.0030
nomina,

m 0.0020
Binary Attributes 0.0030
Fracl 0.0233
First Canonical Correlation 0.0203
Mean Skew 0.0122
Mean Kurtosis 0.0263

Class Entropy 0.0537
Mean Attribute Entropy 0.0193
Mean Mutual Information 0.0284
Equivalent number of attributes 0.0233
Noise to Signal Ratio 0.0152
Mean Mult. Correl. Coef. 0.0233

SDratio 0.0172
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Table A.18. Ltree c¢50rules

Attribute

# classes 0.0271

# attributes 0.0188

# instances 0.0329

# qttrlbutes 0.0212

#instances

# unknown values 0.0588

unknown values

# aﬁributes * 4 instances 0.0212

# nominal attributes 0.0141
max, min, mean, stdv of nominal attribute values | 0.0176 0.0094 0.0082 0.0035

1..5 concentration histogram 0.0059 0.0106 0.0118 0.0059 0.0059
6..10 concentration histogram 0.0012 0.0012 0.0000 0.0000 0.0059
non computable conc. histogram 0.0094

1..5 concentration histogram with class 0.0165 0.0118 0.0047 0.0235 0.0118
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0012 0.0047
non computable conc. histogram with class 0.0000

# continuous attributes 0.0200

1..5 correlation histogram 0.0188 0.0188 0.0059 0.0176 0.0188
6..10 correlation histogram 0.0188 0.0200 0.0212 0.0082 0.0141
non computable correlation histogram 0.0141

1..5 missing values histogram 0.0000 0.0318 0.0247 0.0282 0.0282
6..10 missing values histogram 0.0235 0.0129 0.0024 0.0129 0.0012
continuous
%w 0.0000
nomina,

m 0.0012
Binary Attributes 0.0118
Fracl 0.0224
First Canonical Correlation 0.0400
Mean Skew 0.0153
Mean Kurtosis 0.0082

Class Entropy 0.0294
Mean Attribute Entropy 0.0235
Mean Mutual Information 0.0235
Equivalent number of attributes 0.0200
Noise to Signal Ratio 0.0200
Mean Mult. Correl. Coef. 0.0282

SDratio 0.0294
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Table A.19. Ltree c50tree

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0206
# attributes 0.0137
# instances 0.0297
# ;;ttrlbutes 0.0297
#instances
# unknown values 0.0503
unknown values
# a‘ﬁributes * 4t instances 0.0206
# nominal attributes 0.0183

max, min, mean, stdv of nominal attribute values

0.0149 0.0069 0.0103 0.0092

1..5 concentration histogram
6..10 concentration histogram

0.0126 0.0046 0.0183 0.0183 0.0046
0.0023 0.0011 0.0000 0.0000 0.0046

non computable conc. histogram

0.0000

1..10 concentration histogram with class
1..10 concentration histogram with class

0.0172 0.0103 0.0046 0.0195 0.0103
0.0011 0.0000 0.0000 0.0000 0.0011

non computable conc. histogram with class

0.0011

# continuous attributes

0.0114

1..5 correlation histogram
6..10 correlation histogram

0.0229 0.0114 0.0149 0.0263 0.0114
0.0149 0.0137 0.0069 0.0172 0.0160

non computable correlation histogram

0.0092

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0458 0.0206 0.0240 0.0378
0.0240 0.0160 0.0011 0.0137 0.0046

7# continuous
# attributes

0.0046

# nominal

Binary Attributes 0.0080
Fracl 0.0206
First Canonical Correlation 0.0423
Mean Skew 0.0217
Mean Kurtosis 0.0160
Class Entropy 0.0343
Mean Attribute Entropy 0.0206
Mean Mutual Information 0.0240
Equivalent number of attributes 0.0172
Noise to Signal Ratio 0.0240
Mean Mult. Correl. Coef. 0.0217
SDratio 0.0217
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Table A.20. Ltree Lindiscr

Attribute

# classes 0.0339

# attributes 0.0230

# instances 0.0411

# qttrlbutes 0.0230

#instances

# unknown values 0.0351

unknown values

# aﬁributes * 4 instances 0.0254

# nominal attributes 0.0097
max, min, mean, stdv of nominal attribute values | 0.0181 0.0097 0.0109 0.0048

1..5 concentration histogram 0.0169 0.0157 0.0145 0.0145 0.0024
6..10 concentration histogram 0.0060 0.0024 0.0000 0.0000 0.0121
non computable conc. histogram 0.0048

1..5 concentration histogram with class 0.0060 0.0169 0.0060 0.0181 0.0060
6..10 concentration histogram with class 0.0024 0.0000 0.0000 0.0012 0.0036
non computable conc. histogram with class 0.0000

# continuous attributes 0.0145

1..5 correlation histogram 0.0181 0.0266 0.0133 0.0121 0.0193
6..10 correlation histogram 0.0157 0.0266 0.0230 0.0085 0.0145
non computable correlation histogram 0.0157

1..5 missing values histogram 0.0000 0.0399 0.0206 0.0206 0.0278
6..10 missing values histogram 0.0230 0.0133 0.0012 0.0121 0.0073
continuous
%w 0.0024
nomina,

m 0.0024
Binary Attributes 0.0024
Fracl 0.0097
First Canonical Correlation 0.0339
Mean Skew 0.0242
Mean Kurtosis 0.0060

Class Entropy 0.0230
Mean Attribute Entropy 0.0411
Mean Mutual Information 0.0206
Equivalent number of attributes 0.0145
Noise to Signal Ratio 0.0181
Mean Mult. Correl. Coef. 0.0193

SDratio 0.0242
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Table A.21. IBL c¢50boost
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Attribute
# classes 0.0233
# attributes 0.0233
# instances 0.0480
# ;;ttrlbutes 0.0262
#instances
# unknown values 0.0408
unknown values
# a‘ﬁributes * 4t instances 0.0189
# nominal attributes 0.0087

max, min, mean, stdv of nominal attribute values

0.0160 0.0102 0.0131 0.0233

1..5 concentration histogram
6..10 concentration histogram

0.0247 0.0131 0.0146 0.0058 0.0189
0.0044 0.0044 0.0000 0.0000 0.0058

non computable conc. histogram

0.0058

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0116 0.0131 0.0000 0.0160 0.0058
0.0000 0.0000 0.0000 0.0015 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0102

1..5 correlation histogram
6..10 correlation histogram

0.0175 0.0131 0.0189 0.0131 0.0102
0.0146 0.0102 0.0160 0.0204 0.0131

non computable correlation histogram

0.0175

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0277 0.0408 0.0306 0.0262
0.0175 0.0146 0.0029 0.0116 0.0000

7# continuous
# attributes

0.0000

# nominal

Binary Attributes 0.0087
Fracl 0.0073
First Canonical Correlation 0.0146
Mean Skew 0.0175
Mean Kurtosis 0.0204
Class Entropy 0.0408
Mean Attribute Entropy 0.0291
Mean Mutual Information 0.0335
Equivalent number of attributes 0.0116
Noise to Signal Ratio 0.0218
Mean Mult. Correl. Coef. 0.0335
SDratio 0.0146
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Table A.22. IBL c¢50rules

Attribute

# classes 0.0220

# attributes 0.0220

# instances 0.0356

# qttrlbutes 0.0251

#instances

# unknown values 0.0460

unknown values

# aﬁributes * 4 instances 0.0157

# nominal attributes 0.0052
max, min, mean, stdv of nominal attribute values | 0.0136 0.0073 0.0178 0.0146

1..5 concentration histogram 0.0115 0.0063 0.0073 0.0136 0.0126
6..10 concentration histogram 0.0073 0.0010 0.0031 0.0000 0.0073
non computable conc. histogram 0.0094

1..5 concentration histogram with class 0.0042 0.0126 0.0073 0.0146 0.0052
6..10 concentration histogram with class 0.0021 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0010

# continuous attributes 0.0167

1..5 correlation histogram 0.0220 0.0209 0.0146 0.0167 0.0146
6..10 correlation histogram 0.0178 0.0251 0.0157 0.0126 0.0115
non computable correlation histogram 0.0146

1..5 missing values histogram 0.0000 0.0241 0.0272 0.0314 0.0377
6..10 missing values histogram 0.0262 0.0188 0.0010 0.0188 0.0000
continuous
%w 0.0010
nomina,

m 0.0031
Binary Attributes 0.0105
Fracl 0.0146
First Canonical Correlation 0.0282
Mean Skew 0.0126
Mean Kurtosis 0.0105
Class Entropy 0.0575
Mean Attribute Entropy 0.0241
Mean Mutual Information 0.0314
Equivalent number of attributes 0.0188
Noise to Signal Ratio 0.0126
Mean Mult. Correl. Coef. 0.0167
SDratio 0.0188
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Table A.23. IBL c50tree

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0282
# attributes 0.0282
# instances 0.0248
# ;;ttrlbutes 0.0248
#instances
# unknown values 0.0508
unknown values
# a‘ﬁributes * 4t instances 0.0169
# nominal attributes 0.0045

max, min, mean, stdv of nominal attribute values

0.0147 0.0147 0.0135 0.0135

1..5 concentration histogram
6..10 concentration histogram

0.0090 0.0056 0.0011 0.0169 0.0124
0.0056 0.0056 0.0011 0.0000 0.0068

non computable conc. histogram

0.0147

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0113 0.0045 0.0034 0.0169 0.0079
0.0068 0.0011 0.0000 0.0011 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0192

1..5 correlation histogram
6..10 correlation histogram

0.0181 0.0169 0.0192 0.0203 0.0192
0.0147 0.0158 0.0113 0.0113 0.0226

non computable correlation histogram

0.0113

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0271 0.0203 0.0316 0.0147
0.0169 0.0203 0.0000 0.0158 0.0011

7# continuous
# attributes

0.0034

# nominal

Binary Attributes 0.0045
Fracl 0.0169
First Canonical Correlation 0.0361
Mean Skew 0.0158
Mean Kurtosis 0.0090
Class Entropy 0.0632
Mean Attribute Entropy 0.0226
Mean Mutual Information 0.0260
Equivalent number of attributes 0.0181
Noise to Signal Ratio 0.0203
Mean Mult. Correl. Coef. 0.0271
SDratio 0.0192
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Table A.24. IBL Lindiscr

Attribute Frequency
# classes 0.0409
# attributes 0.0227
# instances 0.0329

# a.uttrlbutes 0.0341

Finstances
# unknown values 0.0443

unknown values
# a‘ﬁributes * 4t instances 0.0216
# nominal attributes 0.0045
maxminmeanstdv of nominal attribute values | 0.0136 0.0068 0.0136 0.0125
1..5 concentration histogram 0.0125 0.0079 0.0114 0.0102 0.0125
6..10 concentration histogram 0.0102 0.0045 0.0011 0.0000 0.0045
non computable conc. histogram 0.0114
1..5 concentration histogram with class 0.0102 0.0057 0.0045 0.0125 0.0057
6..10 concentration histogram with class 0.0011 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0148
1..5 correlation histogram 0.0295 0.0159 0.0148 0.0238 0.0170
6..10 correlation histogram 0.0159 0.0204 0.0091 0.0125 0.0114
non computable correlation histogram 0.0148
1..5 missing values histogram 0.0000 0.0261 0.0318 0.0295 0.0193
6..10 missing values histogram 0.0238 0.0148 0.0114 0.0148 0.0045
continuous
W 0.0000
nomina

m 0.0011
Binary Attributes 0.0170
Fracl 0.0079
First Canonical Correlation 0.0159
Mean Skew 0.0182
Mean Kurtosis 0.0170
Class Entropy 0.0477
Mean Attribute Entropy 0.0250
Mean Mutual Information 0.0204
Equivalent number of attributes 0.0125
Noise to Signal Ratio 0.0261
Mean Mult. Correl. Coef. 0.0216
SDratio 0.0204




168

APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.25. IBL Ltree

Attribute
# classes 0.0212
# attributes 0.0212
# instances 0.0339
# a.uttrlbutes 0.0275
Finstances
# unknown values 0.0508
unknown values
# az%ributes * 4 instances 0.0190
# nominal attributes 0.0085

maxminmeanstdv of nominal attribute values

0.0116 0.0042 0.0116 0.0169

1..5 concentration histogram
6..10 concentration histogram

0.0095 0.0042 0.0063 0.0106 0.0074
0.0116 0.0032 0.0000 0.0011 0.0063

non computable conc. histogram

0.0074

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0085 0.0106 0.0042 0.0169 0.0074
0.0042 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0127

1..5 correlation histogram
6..10 correlation histogram

0.0180 0.0212 0.0243 0.0127 0.0116
0.0169 0.0201 0.0169 0.0243 0.0085

non computable correlation histogram

0.0106

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0317 0.0455 0.0243 0.0201
0.0180 0.0063 0.0011 0.0053 0.0011

7# continuous
# attributes

0.0032

#£ nominal

7 attributes 0.0032
Binary Attributes 0.0063
Fracl 0.0201
First Canonical Correlation 0.0275
Mean Skew 0.0127
Mean Kurtosis 0.0243
Class Entropy 0.0593
Mean Attribute Entropy 0.0349
Mean Mutual Information 0.0265
Equivalent number of attributes 0.0148
Noise to Signal Ratio 0.0254
Mean Mult. Correl. Coef. 0.0254
SDratio 0.0190
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Table A.26. NB c50boost

Attribute
# classes 0.0249
# attributes 0.0345
# instances 0.0401

# a.uttrlbutes 0.0180

Finstances
# unknown values 0.0497

unknown values
# a‘ﬁributes * 4t instances 0.0249
# nominal attributes 0.0152
maxminmeanstdv of nominal attribute values | 0.0138 0.0124 0.0083 0.0152
1..5 concentration histogram 0.0180 0.0069 0.0193 0.0097 0.0069
6..10 concentration histogram 0.0041 0.0055 0.0014 0.0000 0.0083
non computable conc. histogram 0.0097
1..10 concentration histogram with class 0.0207 0.0055 0.0097 0.0290 0.0055
1..10 concentration histogram with class 0.0014 0.0000 0.0000 0.0014 0.0055
non computable conc. histogram with class 0.0014
# continuous attributes 0.0110
1..5 correlation histogram 0.0166 0.0069 0.0138 0.0152 0.0124
6..10 correlation histogram 0.0041 0.0138 0.0193 0.0207 0.0180
non computable correlation histogram 0.0110
1..5 missing values histogram 0.0000 0.0166 0.0235 0.0180 0.0221
6..10 missing values histogram 0.0207 0.0152 0.0000 0.0097 0.0055
continuous
W 0.0041
nomina

-ﬂzfattributes 0.0041
Binary Attributes 0.0055
Fracl 0.0055
First Canonical Correlation 0.0262
Mean Skew 0.0041
Mean Kurtosis 0.0138
Class Entropy 0.0552
Mean Attribute Entropy 0.0304
Mean Mutual Information 0.0401
Equivalent number of attributes 0.0331
Noise to Signal Ratio 0.0221
Mean Mult. Correl. Coef. 0.0138
SDratio 0.0207
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Table A.27. NB c50rules

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0387
# attributes 0.0193
# instances 0.0335
# ;;ttrlbutes 0.0271
#instances
# unknown values 0.0593
unknown values
# a‘ﬁributes * 4t instances 0.0258
# nominal attributes 0.0103

max, min, mean, stdv of nominal attribute values

0.0142 0.0116 0.0077 0.0077

1..5 concentration histogram
6..10 concentration histogram

0.0052 0.0155 0.0129 0.0090 0.0026
0.0000 0.0064 0.0000 0.0000 0.0077

non computable conc. histogram

0.0026

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0193 0.0168 0.0103 0.0026 0.0129
0.0026 0.0000 0.0000 0.0013 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0116

1..5 correlation histogram
6..10 correlation histogram

0.0193 0.0142 0.0155 0.0103 0.0193
0.0090 0.0155 0.0142 0.0180 0.0142

non computable correlation histogram

0.0168

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0258 0.0309 0.0374 0.0322
0.0116 0.0052 0.0026 0.0142 0.0077

7# continuous
# attributes

0.0000

# nominal

Binary Attributes 0.0013
Fracl 0.0284
First Canonical Correlation 0.0245
Mean Skew 0.0219
Mean Kurtosis 0.0258
Class Entropy 0.0309
Mean Attribute Entropy 0.0193
Mean Mutual Information 0.0361
Equivalent number of attributes 0.0245
Noise to Signal Ratio 0.0155
Mean Mult. Correl. Coef. 0.0168
SDratio 0.0232
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Table A.28. NB c50tree

Attribute

# classes 0.0317

# attributes 0.0238

# instances 0.0450

# qttrlbutes 0.0079

#instances

# unknown values 0.0516

unknown values

# aﬁributes * 4 instances 0.0225

# nominal attributes 0.0093
max, min, mean, stdv of nominal attribute values | 0.0132 0.0119 0.0132 0.0040

1..5 concentration histogram 0.0093 0.0172 0.0040 0.0119 0.0066
6..10 concentration histogram 0.0053 0.0040 0.0000 0.0000 0.0106
non computable conc. histogram 0.0079

1..5 concentration histogram with class 0.0198 0.0119 0.0119 0.0212 0.0106
6..10 concentration histogram with class 0.0040 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0106

1..5 correlation histogram 0.0251 0.0212 0.0185 0.0172 0.0212
6..10 correlation histogram 0.0132 0.0185 0.0198 0.0238 0.0172
non computable correlation histogram 0.0079

1..5 missing values histogram 0.0000 0.0119 0.0172 0.0278 0.0278
6..10 missing values histogram 0.0146 0.0172 0.0026 0.0146 0.0093
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0026
Fracl 0.0106
First Canonical Correlation 0.0357
Mean Skew 0.0198
Mean Kurtosis 0.0212

Class Entropy 0.0370
Mean Attribute Entropy 0.0172
Mean Mutual Information 0.0278
Equivalent number of attributes 0.0198
Noise to Signal Ratio 0.0238
Mean Mult. Correl. Coef. 0.0225

SDratio 0.0146
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Table A.29. NB Lindiscr

Attribute
# classes 0.0365
# attributes 0.0166
# instances 0.0476

# ;;ttrlbutes 0.0188

#instances
# unknown values 0.0465

unknown values
# a‘ﬁributes * 4t instances 0.0310
# nominal attributes 0.0122
max, min, mean, stdv of nominal attribute values | 0.0188 0.0066 0.0166 0.0066
1..5 concentration histogram 0.0177 0.0122 0.0100 0.0111 0.0166
6..10 concentration histogram 0.0077 0.0077 0.0011 0.0000 0.0122
non computable conc. histogram 0.0133
1..5 concentration histogram with class 0.0022 0.0166 0.0077 0.0288 0.0133
6..10 concentration histogram with class 0.0077 0.0000 0.0000 0.0000 0.0011
non computable conc. histogram with class 0.0000
# continuous attributes 0.0077
1..5 correlation histogram 0.0144 0.0221 0.0188 0.0100 0.0100
6..10 correlation histogram 0.0088 0.0144 0.0122 0.0122 0.0144
non computable correlation histogram 0.0122
1..5 missing values histogram 0.0000 0.0254 0.0221 0.0376 0.0288
6..10 missing values histogram 0.0188 0.0155 0.0000 0.0122 0.0044
continuous
W 0.0000
nomina,

Binary Attributes 0.0088
Fracl 0.0122
First Canonical Correlation 0.0221
Mean Skew 0.0077
Mean Kurtosis 0.0100
Class Entropy 0.0498
Mean Attribute Entropy 0.0254
Mean Mutual Information 0.0221
Equivalent number of attributes 0.0155
Noise to Signal Ratio 0.0265
Mean Mult. Correl. Coef. 0.0077
SDratio 0.0243
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Table A.30. NB Ltree

Attribute

# classes 0.0411

# attributes 0.0279

# instances 0.0264

# qttrlbutes 0.0235

#instances

# unknown values 0.0558

unknown values

# aﬁributes * 4 instances 0.0250

# nominal attributes 0.0132
max, min, mean, stdv of nominal attribute values | 0.0382 0.0117 0.0088 0.0132

1..5 concentration histogram 0.0059 0.0059 0.0073 0.0117 0.0073
6..10 concentration histogram 0.0059 0.0044 0.0029 0.0015 0.0059
non computable conc. histogram 0.0103

1..5 concentration histogram with class 0.0147 0.0191 0.0029 0.0103 0.0059
6..10 concentration histogram with class 0.0029 0.0015 0.0000 0.0000 0.0059
non computable conc. histogram with class 0.0000

# continuous attributes 0.0117

1..5 correlation histogram 0.0132 0.0147 0.0117 0.0088 0.0176
6..10 correlation histogram 0.0000 0.0294 0.0015 0.0117 0.0088
non computable correlation histogram 0.0250

1..5 missing values histogram 0.0000 0.0132 0.0162 0.0235 0.0338
6..10 missing values histogram 0.0279 0.0206 0.0029 0.0132 0.0000
continuous
%w 0.0000
nomina,

m 0.0059
Binary Attributes 0.0088
Fracl 0.0029
First Canonical Correlation 0.0220
Mean Skew 0.0162
Mean Kurtosis 0.0132
Class Entropy 0.0485
Mean Attribute Entropy 0.0352
Mean Mutual Information 0.0191
Equivalent number of attributes 0.0294
Noise to Signal Ratio 0.0206
Mean Mult. Correl. Coef. 0.0206
SDratio 0.0352




174 APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.31. NB IBL

Attribute
# classes 0.0337
# attributes 0.0180
# instances 0.0416

# ;;ttrlbutes 0.0427

#instances
# unknown values 0.0551

unknown values
# a‘ﬁributes * 4t instances 0.0202
# nominal attributes 0.0101
max, min, mean, stdv of nominal attribute values | 0.0112 0.0034 0.0146 0.0067
1..5 concentration histogram 0.0135 0.0090 0.0135 0.0112 0.0124
6..10 concentration histogram 0.0034 0.0067 0.0000 0.0000 0.0022
non computable conc. histogram 0.0101
1..5 concentration histogram with class 0.0191 0.0124 0.0112 0.0202 0.0079
6..10 concentration histogram with class 0.0056 0.0000 0.0011 0.0022 0.0011
non computable conc. histogram with class 0.0000
# continuous attributes 0.0101
1..5 correlation histogram 0.0202 0.0090 0.0180 0.0090 0.0157
6..10 correlation histogram 0.0124 0.0112 0.0112 0.0146 0.0079
non computable correlation histogram 0.0101
1..5 missing values histogram 0.0000 0.0247 0.0270 0.0360 0.0337
6..10 missing values histogram 0.0180 0.0112 0.0000 0.0079 0.0022
continuous
W 0.0011
nomina,

m 0.0000
Binary Attributes 0.0101
Fracl 0.0180
First Canonical Correlation 0.0214
Mean Skew 0.0180
Mean Kurtosis 0.0169
Class Entropy 0.0416
Mean Attribute Entropy 0.0225
Mean Mutual Information 0.0405
Equivalent number of attributes 0.0214
Noise to Signal Ratio 0.0202
Mean Mult. Correl. Coef. 0.0202
SDratio 0.0169
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Table A.32. ripper ¢50boost

Attribute
# classes 0.0231
# attributes 0.0272
# instances 0.0340
# ;}ttrlbutes 0.0190
#£instances
# unknown values 0.0367
unknown values
# aﬁributes * 4 instances 0.0286
# nominal attributes 0.0068
max, min, mean, stdv of nominal attribute values | 0.0122 0.0095 0.0095 0.0150
1..5 concentration histogram 0.0122 0.0109 0.0136 0.0150 0.0068
6..10 concentration histogram 0.0041 0.0054 0.0000 0.0000 0.0041
non computable conc. histogram 0.0109
1..5 concentration histogram with class 0.0136 0.0136 0.0068 0.0299 0.0068
6..10 concentration histogram with class 0.0041 0.0000 0.0000 0.0000 0.0014
non computable conc. histogram with class 0.0000
# continuous attributes 0.0150
1..5 correlation histogram 0.0122 0.0367 0.0122 0.0150 0.0163
6..10 correlation histogram 0.0177 0.0136 0.0204 0.0163 0.0204
non computable correlation histogram 0.0068
1..5 missing values histogram 0.0000 0.0476 0.0313 0.0218 0.0354
6..10 missing values histogram 0.0095 0.0082 0.0014 0.0122 0.0068
continuous
w 0.0000
nomina;
# attributes 0.0027
Binary Attributes 0.0163
Fracl 0.0136
First Canonical Correlation 0.0190
Mean Skew 0.0163
Mean Kurtosis 0.0082
Class Entropy 0.0503
Mean Attribute Entropy 0.0327
Mean Mutual Information 0.0082
Equivalent number of attributes 0.0245
Noise to Signal Ratio 0.0150
Mean Mult. Correl. Coef. 0.0136
SDratio 0.0218
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Table A.33. ripper c50rules

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0226
# attributes 0.0192
# instances 0.0238
# attributes

F#instances 0.0238
# unknown values 0.0543

# unknown values

# attributes * # instances 0.0305

# nominal attributes 0.0102

max, min, mean, stdv of nominal attribute values

0.0170 0.0045 0.0057 0.0147

1..5 concentration histogram
6..10 concentration histogram

0.0045 0.0147 0.0124 0.0057 0.0102
0.0000 0.0057 0.0011 0.0011 0.0147

non computable conc. histogram

0.0102

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0204 0.0124 0.0023 0.0147 0.0102
0.0034 0.0000 0.0000 0.0000 0.0011

non computable conc. histogram with class

0.0000

# continuous attributes

0.0113

1..5 correlation histogram
6..10 correlation histogram

0.0102 0.0136 0.0147 0.0079 0.0113
0.0260 0.0192 0.0079 0.0170 0.0158

non computable correlation histogram

0.0170

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0260 0.0339 0.0192 0.0294
0.0124 0.0226 0.0057 0.0079 0.0023

# continuous
# attributes

0.0011

# nominal

% attributes 0.0023
Binary Attributes 0.0124
Fracl 0.0192
First Canonical Correlation 0.0192
Mean Skew 0.0204
Mean Kurtosis 0.0102
Class Entropy 0.0554
Mean Attribute Entropy 0.0204
Mean Mutual Information 0.0351
Equivalent number of attributes 0.0362
Noise to Signal Ratio 0.0283
Mean Mult. Correl. Coef. 0.0192
SDratio 0.0181
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Table A.34. ripper c50tree

Attribute

# classes 0.0221

# attributes 0.0208

# instances 0.0294

# ;}ttrlbutes 0.0257

#£instances

# unknown values 0.0502

unknown values

# aﬁributes * 4 instances 0.0147

# nominal attributes 0.0074
max, min, mean, stdv of nominal attribute values | 0.0123 0.0086 0.0135 0.0135

1..5 concentration histogram 0.0257 0.0025 0.0086 0.0061 0.0061
6..10 concentration histogram 0.0049 0.0061 0.0000 0.0000 0.0123
non computable conc. histogram 0.0110

1..5 concentration histogram with class 0.0159 0.0110 0.0012 0.0221 0.0061
6..10 concentration histogram with class 0.0025 0.0012 0.0000 0.0000 0.0012
non computable conc. histogram with class 0.0000

# continuous attributes 0.0172

1..5 correlation histogram 0.0196 0.0110 0.0061 0.0135 0.0135
6..10 correlation histogram 0.0270 0.0159 0.0135 0.0159 0.0172
non computable correlation histogram 0.0086

1..5 missing values histogram 0.0000 0.0294 0.0319 0.0270 0.0221
6..10 missing values histogram 0.0245 0.0159 0.0000 0.0172 0.0012
continuous
w 0.0000
nomina;

# attributes 0.0061
Binary Attributes 0.0110
Fracl 0.0159
First Canonical Correlation 0.0098
Mean Skew 0.0147
Mean Kurtosis 0.0147

Class Entropy 0.0613
Mean Attribute Entropy 0.0233
Mean Mutual Information 0.0306
Equivalent number of attributes 0.0429
Noise to Signal Ratio 0.0257
Mean Mult. Correl. Coef. 0.0159

SDratio 0.0172
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Table A.35. ripper Lindiscr

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0264
# attributes 0.0242
# instances 0.0562
# attributes

F#instances 0.0132
# unknown values 0.0628

# unknown values

# attributes * # instances 0.0242

# nominal attributes 0.0099

max, min, mean, stdv of nominal attribute values

0.0176 0.0066 0.0033 0.0055

1..5 concentration histogram
6..10 concentration histogram

0.0077 0.0110 0.0044 0.0132 0.0110
0.0077 0.0044 0.0000 0.0000 0.0055

non computable conc. histogram

0.0187

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0110 0.0143 0.0110 0.0187 0.0044
0.0000 0.0000 0.0000 0.0000 0.0044

non computable conc. histogram with class

0.0000

# continuous attributes

0.0099

1..6 correlation histogram
6..10 correlation histogram

0.0176 0.0220 0.0143 0.0132 0.0198
0.0121 0.0132 0.0165 0.0154 0.0143

non computable correlation histogram

0.0110

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0341 0.0452 0.0275 0.0441
0.0176 0.0165 0.0011 0.0143 0.0000

# continuous
# attributes

0.0011

# nominal

% attributes 0.0000
Binary Attributes 0.0066
Fracl 0.0187
First Canonical Correlation 0.0209
Mean Skew 0.0187
Mean Kurtosis 0.0099
Class Entropy 0.0220
Mean Attribute Entropy 0.0297
Mean Mutual Information 0.0308
Equivalent number of attributes 0.0154
Noise to Signal Ratio 0.0121
Mean Mult. Correl. Coef. 0.0154
SDratio 0.0209
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Table A.36. ripper Ltree

Attribute

# classes 0.0283

# attributes 0.0215

# instances 0.0351

# ;}ttrlbutes 0.0261

#£instances

# unknown values 0.0431

# unknown values

# attributes * # instances 0.0136

# nominal attributes 0.0091
max, min, mean, stdv of nominal attribute values | 0.0170 0.0125 0.0125 0.0079

1..5 concentration histogram 0.0136 0.0102 0.0079 0.0125 0.0045
6..10 concentration histogram 0.0045 0.0079 0.0011 0.0000 0.0102
non computable conc. histogram 0.0057

1..5 concentration histogram with class 0.0102 0.0147 0.0034 0.0283 0.0023
6..10 concentration histogram with class 0.0023 0.0000 0.0000 0.0011 0.0057
non computable conc. histogram with class 0.0011

# continuous attributes 0.0045

1..10 correlation histogram 0.0125 0.0204 0.0159 0.0147 0.0125
6..10 correlation histogram 0.0136 0.0102 0.0079 0.0113 0.0057
non computable correlation histogram 0.0113

1..5 missing values histogram 0.0000 0.0408 0.0272 0.0306 0.0295
6..10 missing values histogram 0.0261 0.0159 0.0034 0.0181 0.0023
continuous
w 0.0011
nomina,

# attributes 0.0011
Binary Attributes 0.0159
Fracl 0.0125
First Canonical Correlation 0.0283
Mean Skew 0.0215
Mean Kurtosis 0.0147

Class Entropy 0.0510
Mean Attribute Entropy 0.0363
Mean Mutual Information 0.0193
Equivalent number of attributes 0.0283
Noise to Signal Ratio 0.0159
Mean Mult. Correl. Coef. 0.0215

SDratio 0.0238
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Table A.37. rippel IBL

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0324
# attributes 0.0252
# instances 0.0372
# attributes

F#instances 00288
# unknown values 0.0408

# unknown values

# attributes * # instances 0.0120

# nominal attributes 0.0120

max, min, mean, stdv of nominal attribute values

0.0096 0.0096 0.0096 0.0096

1..5 concentration histogram
6..10 concentration histogram

0.0156 0.0120 0.0084 0.0072 0.0120
0.0084 0.0024 0.0000 0.0000 0.0072

non computable conc. histogram

0.0132

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0156 0.0072 0.0048 0.0168 0.0084
0.0036 0.0000 0.0000 0.0000 0.0024

non computable conc. histogram with class

0.0000

# continuous attributes

0.0204

1..5 correlation histogram
6..10 correlation histogram

0.0216 0.0240 0.0156 0.0108 0.0180
0.0204 0.0120 0.0108 0.0096 0.0204

non computable correlation histogram

0.0132

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0300 0.0288 0.0204 0.0156
0.0168 0.0204 0.0060 0.0168 0.0036

# continuous
# attributes

0.0036

# nominal

% attributes 0.0048
Binary Attributes 0.0216
Fracl 0.0072
First Canonical Correlation 0.0276
Mean Skew 0.0108
Mean Kurtosis 0.0168
Class Entropy 0.0552
Mean Attribute Entropy 0.0300
Mean Mutual Information 0.0216
Equivalent number of attributes 0.0168
Noise to Signal Ratio 0.0192
Mean Mult. Correl. Coef. 0.0192
SDratio 0.0192
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Attribute
# classes 0.0363
# attributes 0.0264
# instances 0.0474
# attributes

#instances 0.0231
# unknown values 0.0562

# unknown values

# attributes * # instances 0.0220

# nominal attributes 0.0099

maxminmeanstdv of nominal attribute values

0.0176 0.0088 0.0143 0.0088

1..5 concentration histogram
6..10 concentration histogram

0.0077 0.0088 0.0132 0.0088 0.0066
0.0022 0.0077 0.0000 0.0000 0.0110

non computable conc. histogram

0.0022

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0110 0.0132 0.0066 0.0110 0.0033
0.0088 0.0000 0.0000 0.0011 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0088

1..5 correlation histogram
6..10 correlation histogram

0.0176 0.0143 0.0154 0.0099 0.0165
0.0143 0.0143 0.0154 0.0088 0.0143

non computable correlation histogram

0.0110

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0242 0.0341 0.0253 0.0352
0.0198 0.0055 0.0011 0.0154 0.0055

# continuous
# attributes

0.0033

# nominal

% attributes 0.0022
Binary Attributes 0.0033
Fracl 0.0077
First Canonical Correlation 0.0242
Mean Skew 0.0220
Mean Kurtosis 0.0209
Class Entropy 0.0540
Mean Attribute Entropy 0.0253
Mean Mutual Information 0.0275
Equivalent number of attributes 0.0308
Noise to Signal Ratio 0.0242
Mean Mult. Correl. Coef. 0.0132
SDratio 0.0198
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A.4 Selection Frequency by c50tree

Table A.39. c50rules c50boost

Attribute
# classes 0.0395
# attributes 0.0526
# instances 0.0132

# ;'Lttrlbutes 0.0263

#£instances
# unknown values 0.0395

unknown values
# a‘ﬁributes * 4f instances 0.0263
# nominal attributes 0.0132
max, min, mean, stdv of nominal attribute values | 0.0263 0.0132 0.0263 0.0132
1..5 concentration histogram 0.0000 0.0263 0.0132 0.0132 0.0132
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0263 0.0000 0.0000 0.0132 0.0132
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0000 0.0395 0.0263 0.0000 0.0000
6..10 correlation histogram 0.0132 0.0132 0.0000 0.0132 0.0263
non computable correlation histogram 0.0263
1..5 missing values histogram 0.0000 0.0263 0.0395 0.0263 0.0395
6..10 missing values histogram 0.0395 0.0263 0.0132 0.0132 0.0000
continuous
nomina;

% attributes 0.0000
Binary Attributes 0.0132
Fracl 0.0263
First Canonical Correlation 0.0000
Mean Skew 0.0132
Mean Kurtosis 0.0132

Class Entropy 0.0526
Mean Attribute Entropy 0.0395
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0526
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table A.40. c¢50tree c50boost

Attribute
# classes 0.0471
# attributes 0.0235
# instances 0.0471

# a.uttrlbutes 0.0000

Finstances
# unknown values 0.0353

unknown values
# a‘ﬁributes * 4t instances 0.0235
# nominal attributes 0.0000
maxminmeanstdv of nominal attribute values | 0.0235 0.0000 0.0235 0.0000
1..5 concentration histogram 0.0118 0.0118 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0118 0.0118 0.0000 0.0000 0.0000
non computable conc. histogram 0.0118
1..5 concentration histogram with class 0.0235 0.0000 0.0000 0.0118 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0235
non computable conc. histogram with class 0.0000
# continuous attributes 0.0235
1..5 correlation histogram 0.0000 0.0000 0.0118 0.0471 0.0118
6..10 correlation histogram 0.0000 0.0118 0.0000 0.0353 0.0118
non computable correlation histogram 0.0235
1..5 missing values histogram 0.0000 0.0588 0.0824 0.0235 0.0353
6..10 missing values histogram 0.0235 0.0235 0.0000 0.0353 0.0118
continuous
W 0.0000
nomina

m 0.0000
Binary Attributes 0.0000
Fracl 0.0118
First Canonical Correlation 0.0235
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0235
Mean Attribute Entropy 0.0235
Mean Mutual Information 0.0235
Equivalent number of attributes 0.0471
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0235
SDratio 0.0118
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Table A.41. c¢50tree c50rules

Attribute
# classes 0.0469
# attributes 0.0312
# instances 0.0312
# a.uttrlbutes 0.0312
Finstances
# unknown values 0.0469
unknown values
# az%ributes * 4 instances 0.0156
# nominal attributes 0.0000

maxminmeanstdv of nominal attribute values

0.0312 0.0000 0.0000 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0156 0.0156 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram

0.0156

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0000 0.0312 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0156

1..5 correlation histogram
6..10 correlation histogram

0.0156 0.0000 0.0156 0.0000 0.0156
0.0156 0.0156 0.0312 0.0469 0.0312

non computable correlation histogram

0.0156

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0469 0.0469 0.0625 0.0312
0.0156 0.0156 0.0156 0.0000 0.0156

7# continuous
# attributes

0.0000

#£ nominal

7 attributes 0.0000
Binary Attributes 0.0156
Fracl 0.0469
First Canonical Correlation 0.0312
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0625
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0156
Mean Mult. Correl. Coef. 0.0312
SDratio 0.0156
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Attribute
# classes 0.0328
# attributes 0.0328
# instances 0.0656
# a.uttrlbutes 0.0000
Finstances
# unknown values 0.0656
unknown values
# a‘ﬁributes * 4t instances 0.0492
# nominal attributes 0.0000

maxminmeanstdv of nominal attribute values

0.0164 0.0164 0.0492 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram

0.0164

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0164 0.0000 0.0328 0.0164 0.0164
0.0000 0.0000 0.0000 0.0000 0.0164

non computable conc. histogram with class

0.0000

# continuous attributes

0.0164

1..5 correlation histogram
6..10 correlation histogram

0.0164 0.0164 0.0164 0.0000 0.0164
0.0000 0.0328 0.0164 0.0000 0.0164

non computable correlation histogram

0.0164

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000 0.0164 0.0328 0.0328
0.0164 0.0164 0.0000 0.0164 0.0000

7# continuous
# attributes

0.0000

# nominal

7 attributes 0.0000
Binary Attributes 0.0164
Fracl 0.0328
First Canonical Correlation 0.0492
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0492
Mean Attribute Entropy 0.0164
Mean Mutual Information 0.0164
Equivalent number of attributes 0.0820
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio

0.0000
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Attribute
# classes 0.0159
# attributes 0.0317
# instances 0.0952
# ;;ttrlbutes 0.0159
#instances
# unknown values 0.0476
unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0159

max, min, mean, stdv of nominal attribute values

0.0317 0.0000 0.0000 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0317 0.0159 0.0159 0.0159 0.0159
0.0159 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram

0.0159

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0159 0.0000 0.0159 0.0159 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0000

1..5 correlation histogram
6..10 correlation histogram

0.0317 0.0317 0.0317 0.0159 0.0159
0.0159 0.0000 0.0000 0.0476 0.0317

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000 0.0159 0.0159 0.0317
0.0159 0.0159 0.0000 0.0000 0.0000

7# continuous
# attributes

0.0000

# nominal

7 attributes 0.0159
Binary Attributes 0.0000
Fracl 0.0635
First Canonical Correlation 0.0476
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0317
Mean Attribute Entropy 0.0159
Mean Mutual Information 0.0317
Equivalent number of attributes 0.0159
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0159
SDratio 0.0159
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Table A.44. Lindiscr c50tree

Attribute

# classes 0.0484

# attributes 0.0161

# instances 0.0484

# qttrlbutes 0.0323

#instances

# unknown values 0.0323

unknown values

# aﬁributes * 4 instances 0.0161

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0323 0.0000 0.0161 0.0000

1..5 concentration histogram 0.0484 0.0161 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0161 0.0000 0.0000
non computable conc. histogram 0.0323

1..5 concentration histogram with class 0.0323 0.0000 0.0000 0.0323 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0323 0.0000 0.0161 0.0161 0.0323
6..10 correlation histogram 0.0161 0.0323 0.0161 0.0161 0.0323
non computable correlation histogram 0.0161

1..5 missing values histogram 0.0000 0.0323 0.0000 0.0161 0.0161
6..10 missing values histogram 0.0484 0.0000 0.0000 0.0000 0.0000
continuous
ﬁnm«w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0323
First Canonical Correlation 0.0645
Mean Skew 0.0000
Mean Kurtosis 0.0000

Class Entropy 0.0645
Mean Attribute Entropy 0.0161
Mean Mutual Information 0.0161
Equivalent number of attributes 0.0161
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0161

SDratio 0.0161
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Table A.45. Ltree c50boost

Attribute
# classes 0.0526
# attributes 0.0316
# instances 0.0421

# ;;ttrlbutes 0.0000

#instances
# unknown values 0.0316

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0526
max, min, mean, stdv of nominal attribute values | 0.0000 0.0211 0.0000 0.0000
1..5 concentration histogram 0.0211 0.0000 0.0211 0.0105 0.0316
6..10 concentration histogram 0.0000 0.0105 0.0000 0.0000 0.0211
non computable conc. histogram 0.0105
1..5 concentration histogram with class 0.0105 0.0000 0.0211 0.0211 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0211
1..5 correlation histogram 0.0105 0.0000 0.0105 0.0211 0.0211
6..10 correlation histogram 0.0105 0.0105 0.0316 0.0000 0.0211
non computable correlation histogram 0.0211
1..5 missing values histogram 0.0000 0.0211 0.0316 0.0211 0.0421
6..10 missing values histogram 0.0316 0.0211 0.0000 0.0105 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0211
First Canonical Correlation 0.0105
Mean Skew 0.0105
Mean Kurtosis 0.0316
Class Entropy 0.0737
Mean Attribute Entropy 0.0105
Mean Mutual Information 0.0211
Equivalent number of attributes 0.0211
Noise to Signal Ratio 0.0105
Mean Mult. Correl. Coef. 0.0105
SDratio 0.0105
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Table A.46. Ltree c50rules

Attribute
# classes 0.0282
# attributes 0.0282
# instances 0.0704
attributes
%W 0.0141
# unknown values 0.0563
unknown values
# aﬁributes * 4 instances 0.0282
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0282 0.0141 0.0141 0.0000
1..5 concentration histogram 0.0000 0.0282 0.0423 0.0000 0.0282
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0141
non computable conc. histogram 0.0141
1..5 concentration histogram with class 0.0282 0.0141 0.0000 0.0282 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0141
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0141 0.0141 0.0141 0.0282 0.0000
6..10 correlation histogram 0.0423 0.0141 0.0141 0.0141 0.0000
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0423 0.0000 0.0141 0.0282
6..10 missing values histogram 0.0282 0.0141 0.0000 0.0282 0.0000
continuous
%w 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0282
First Canonical Correlation 0.0423
Mean Skew 0.0141
Mean Kurtosis 0.0000
Class Entropy 0.0282
Mean Attribute Entropy 0.0141
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0141
Mean Mult. Correl. Coef. 0.0282
SDratio 0.0282
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Table A.47. Ltree c50tree

Attribute
# classes 0.0465
# attributes 0.0000
# instances 0.0349

# ;;ttrlbutes 0.0233

#instances
# unknown values 0.0698

unknown values
# a‘ﬁributes * 4t instances 0.0349
# nominal attributes 0.0233
max, min, mean, stdv of nominal attribute values | 0.0116 0.0233 0.0000 0.0116
1..5 concentration histogram 0.0349 0.0000 0.0116 0.0116 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0116
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0233 0.0233 0.0000 0.0116 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0116 0.0116 0.0116 0.0349 0.0000
6..10 correlation histogram 0.0000 0.0116 0.0116 0.0465 0.0233
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0581 0.0116 0.0116 0.0349
6..10 missing values histogram 0.0233 0.0233 0.0000 0.0116 0.0116
continuous
ﬁum«w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0465
First Canonical Correlation 0.0349
Mean Skew 0.0233
Mean Kurtosis 0.0116
Class Entropy 0.0233
Mean Attribute Entropy 0.0116
Mean Mutual Information 0.0233
Equivalent number of attributes 0.0116
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0116
SDratio 0.0465
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Table A.48. Ltree Lindiscr

Attribute
# classes 0.0571
# attributes 0.0429
# instances 0.0571
attributes
%W 0.0143
# unknown values 0.0286
unknown values
# aﬁributes * 4 instances 0.0429
# nominal attributes 0.0286
max, min, mean, stdv of nominal attribute values | 0.0286 0.0143 0.0000 0.0000
1..5 concentration histogram 0.0286 0.0143 0.0143 0.0000 0.0000
6..10 concentration histogram 0.0143 0.0000 0.0000 0.0000 0.0143
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0000 0.0286 0.0143 0.0143 0.0143
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0143
non computable conc. histogram with class 0.0000
# continuous attributes 0.0286
1..5 correlation histogram 0.0000 0.0143 0.0000 0.0000 0.0000
6..10 correlation histogram 0.0286 0.0571 0.0429 0.0000 0.0143
non computable correlation histogram 0.0143
1..5 missing values histogram 0.0000 0.0286 0.0143 0.0286 0.0286
6..10 missing values histogram 0.0143 0.0143 0.0000 0.0143 0.0143
continuous
%w 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0429
Mean Skew 0.0143
Mean Kurtosis 0.0000
Class Entropy 0.0143
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0143
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0143
Mean Mult. Correl. Coef. 0.0286
SDratio 0.0286
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Table A.49. IBL c¢50boost

Attribute
# classes 0.0484
# attributes 0.0323
# instances 0.0806

# ;;ttrlbutes 0.0161

#instances
# unknown values 0.0323

unknown values
# a‘ﬁributes * 4t instances 0.0645
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0323 0.0000 0.0161 0.0161
1..5 concentration histogram 0.0323 0.0323 0.0161 0.0000 0.0323
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0161
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0484 0.0161 0.0000 0.0000 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0000 0.0161 0.0161 0.0000 0.0161
6..10 correlation histogram 0.0000 0.0323 0.0161 0.0323 0.0161
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0161 0.0323 0.0484 0.0484
6..10 missing values histogram 0.0000 0.0161 0.0000 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0161
Fracl 0.0000
First Canonical Correlation 0.0323
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0645
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0323
SDratio 0.0161
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Table A.50. IBL c¢50rules

Attribute

# classes 0.0112

# attributes 0.0562

# instances 0.0225

# qttrlbutes 0.0337

#instances

# unknown values 0.0787

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0337 0.0112 0.0000 0.0000

1..5 concentration histogram 0.0112 0.0000 0.0000 0.0225 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0112
non computable conc. histogram 0.0112

1..5 concentration histogram with class 0.0000 0.0112 0.0000 0.0112 0.0112
6..10 concentration histogram with class 0.0112 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0112

1..5 correlation histogram 0.0000 0.0112 0.0112 0.0225 0.0112
6..10 correlation histogram 0.0112 0.0225 0.0112 0.0000 0.0112
non computable correlation histogram 0.0337

1..5 missing values histogram 0.0000 0.0449 0.0449 0.0449 0.0225
6..10 missing values histogram 0.0112 0.0337 0.0000 0.0112 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0112
Fracl 0.0225
First Canonical Correlation 0.0449
Mean Skew 0.0225
Mean Kurtosis 0.0112

Class Entropy 0.0899
Mean Attribute Entropy 0.0112
Mean Mutual Information 0.0337
Equivalent number of attributes 0.0225
Noise to Signal Ratio 0.0112
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000




194 APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.51. IBL c50tree

Attribute
# classes 0.0581
# attributes 0.0581
# instances 0.0233

# ;;ttrlbutes 0.0233

#instances
# unknown values 0.0930

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0116 0.0116 0.0000 0.0116
1..5 concentration histogram 0.0116 0.0000 0.0000 0.0000 0.0233
6..10 concentration histogram 0.0000 0.0116 0.0000 0.0000 0.0000
non computable conc. histogram 0.0116
1..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0116 0.0000
6..10 concentration histogram with class 0.0233 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0233
1..5 correlation histogram 0.0116 0.0116 0.0116 0.0116 0.0116
6..10 correlation histogram 0.0233 0.0233 0.0349 0.0116 0.0465
non computable correlation histogram 0.0116
1..5 missing values histogram 0.0000 0.0116 0.0349 0.0233 0.0349
6..10 missing values histogram 0.0000 0.0349 0.0000 0.0233 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0233
Mean Skew 0.0116
Mean Kurtosis 0.0000
Class Entropy 0.0581
Mean Attribute Entropy 0.0465
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0233
Noise to Signal Ratio 0.0233
Mean Mult. Correl. Coef. 0.0233
SDratio 0.0116
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Table A.52. IBL Lindiscr

Attribute

# classes 0.0700

# attributes 0.0700

# instances 0.0000

# qttrlbutes 0.0400

#instances

# unknown values 0.0500

unknown values

# aﬁributes * 4 instances 0.0100

# nominal attributes 0.0100
max, min, mean, stdv of nominal attribute values | 0.0200 0.0200 0.0200 0.0000

1..5 concentration histogram 0.0100 0.0000 0.0000 0.0100 0.0200
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0100
non computable conc. histogram 0.0100

1..5 concentration histogram with class 0.0200 0.0000 0.0000 0.0000 0.0100
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0200

1..5 correlation histogram 0.0500 0.0400 0.0000 0.0000 0.0100
6..10 correlation histogram 0.0000 0.0500 0.0100 0.0100 0.0400
non computable correlation histogram 0.0100

1..5 missing values histogram 0.0000 0.0600 0.0300 0.0400 0.0100
6..10 missing values histogram 0.0400 0.0000 0.0100 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0100
Fracl 0.0100
First Canonical Correlation 0.0100
Mean Skew 0.0200
Mean Kurtosis 0.0200

Class Entropy 0.0600
Mean Attribute Entropy 0.0100
Mean Mutual Information 0.0100
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0100

SDratio 0.0100




196 APPENDIX A. RESULTS ON THE 1075 DATASETS

Table A.53. IBL Ltree

Attribute
# classes 0.0588
# attributes 0.0471
# instances 0.0588

# ;;ttrlbutes 0.0471

#instances
# unknown values 0.0824

unknown values
# a‘ﬁributes * 4t instances 00118
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0118 0.0000 0.0353 0.0235
1..5 concentration histogram 0.0235 0.0118 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0118 0.0000 0.0000 0.0118
non computable conc. histogram 0.0118
1..5 concentration histogram with class 0.0000 0.0118 0.0000 0.0118 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0118
1..5 correlation histogram 0.0000 0.0000 0.0235 0.0118 0.0118
6..10 correlation histogram 0.0118 0.0118 0.0118 0.0235 0.0118
non computable correlation histogram 0.0235
1..5 missing values histogram 0.0000 0.0000 0.0588 0.0235 0.0353
6..10 missing values histogram 0.0235 0.0000 0.0000 0.0000 0.0000
continuous
ﬁum«w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0235
First Canonical Correlation 0.0471
Mean Skew 0.0118
Mean Kurtosis 0.0235
Class Entropy 0.0353
Mean Attribute Entropy 0.0353
Mean Mutual Information 0.0118
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0353
SDratio 0.0118
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Table A.54. NB c50boost

Attribute

# classes 0.0758

# attributes 0.0606

# instances 0.0455

# qttrlbutes 0.0000

#instances

# unknown values 0.1212

unknown values

# aﬁributes * 4 instances 0.0303

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0152 0.0152 0.0000 0.0000

1..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0152
6..10 concentration histogram 0.0000 0.0000 0.0152 0.0000 0.0152
non computable conc. histogram 0.0152

1..5 concentration histogram with class 0.0303 0.0000 0.0152 0.0303 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0303
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0152 0.0000 0.0000 0.0303 0.0152
6..10 correlation histogram 0.0152 0.0152 0.0455 0.0152 0.0152
non computable correlation histogram 0.0152

1..5 missing values histogram 0.0000 0.0152 0.0152 0.0000 0.0152
6..10 missing values histogram 0.0152 0.0152 0.0000 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0152
Fracl 0.0000
First Canonical Correlation 0.0606
Mean Skew 0.0000
Mean Kurtosis 0.0000

Class Entropy 0.0455
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0152
Equivalent number of attributes 0.0455
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0303
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Table A.55. NB c50rules

Attribute
# classes 0.0513
# attributes 0.0256
# instances 0.0513

# ;;ttrlbutes 0.0256

#instances
# unknown values 0.0769

unknown values
# a‘ﬁributes * 4t instances 0.0256
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0000 0.0000 0.0000 0.0000
1..5 concentration histogram 0.0256 0.0128 0.0128 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0385 0.0256 0.0000 0.0000 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0256
1..5 correlation histogram 0.0256 0.0128 0.0256 0.0128 0.0256
6..10 correlation histogram 0.0128 0.0000 0.0128 0.0256 0.0000
non computable correlation histogram 0.0256
1..5 missing values histogram 0.0000 0.0128 0.0385 0.0769 0.0641
6..10 missing values histogram 0.0128 0.0000 0.0000 0.0256 0.0000
continuous
W 0.0000
nomina,

m 0.0256
Binary Attributes 0.0000
Fracl 0.0385
First Canonical Correlation 0.0000
Mean Skew 0.0385
Mean Kurtosis 0.0256
Class Entropy 0.0000
Mean Attribute Entropy 0.0256
Mean Mutual Information 0.0128
Equivalent number of attributes 0.0128
Noise to Signal Ratio 0.0128
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table A.56. NB c50tree

Attribute

# classes 0.0405

# attributes 0.0405

# instances 0.0270

# qttrlbutes 0.0135

#instances

# unknown values 0.0946

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0135
max, min, mean, stdv of nominal attribute values | 0.0270 0.0270 0.0135 0.0000

1..5 concentration histogram 0.0135 0.0000 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0135 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0135

1..5 concentration histogram with class 0.0000 0.0405 0.0000 0.0135 0.0135
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0270

1..5 correlation histogram 0.0135 0.0135 0.0135 0.0000 0.0270
6..10 correlation histogram 0.0135 0.0270 0.0000 0.0270 0.0270
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0135 0.0135 0.0405 0.0405
6..10 missing values histogram 0.0270 0.0135 0.0000 0.0270 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0541
Mean Skew 0.0270
Mean Kurtosis 0.0135

Class Entropy 0.0135
Mean Attribute Entropy 0.0135
Mean Mutual Information 0.0270
Equivalent number of attributes 0.0135
Noise to Signal Ratio 0.0270
Mean Mult. Correl. Coef. 0.0270

SDratio 0.0135
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Table A.57. NB Lindiscr

Attribute
# classes 0.0549
# attributes 0.0220
# instances 0.0330

# ;;ttrlbutes 0.0000

#instances
# unknown values 0.0879

unknown values
# a‘ﬁributes * 4t instances 0.0220
# nominal attributes 0.0220
max, min, mean, stdv of nominal attribute values | 0.0110 0.0220 0.0330 0.0110
1..5 concentration histogram 0.0330 0.0110 0.0000 0.0000 0.0110
6..10 concentration histogram 0.0110 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0110
1..5 concentration histogram with class 0.0000 0.0220 0.0220 0.0220 0.0000
6..10 concentration histogram with class 0.0110 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0220 0.0330 0.0220 0.0110 0.0220
6..10 correlation histogram 0.0220 0.0000 0.0110 0.0330 0.0110
non computable correlation histogram 0.0110
1..5 missing values histogram 0.0000 0.0110 0.0220 0.0440 0.0330
6..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0220
Fracl 0.0000
First Canonical Correlation 0.0220
Mean Skew 0.0769
Mean Kurtosis 0.0220
Class Entropy 0.0000
Mean Attribute Entropy 0.0330
Mean Mutual Information 0.0220
Equivalent number of attributes 0.0110
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0110
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Table A.58. NB Ltree

Attribute

# classes 0.0541

# attributes 0.0811

# instances 0.0135

# qttrlbutes 0.0270

#instances

# unknown values 0.1081

unknown values

# aﬁributes * 4 instances 0.0270

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0541 0.0135 0.0135 0.0135

1..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0135
6..10 concentration histogram 0.0000 0.0000 0.0135 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0000 0.0405 0.0000 0.0135 0.0135
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0135
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0135 0.0135 0.0270 0.0000 0.0405
6..10 correlation histogram 0.0000 0.0405 0.0000 0.0000 0.0000
non computable correlation histogram 0.0270

1..5 missing values histogram 0.0000 0.0000 0.0270 0.0135 0.0135
6..10 missing values histogram 0.0000 0.0000 0.0000 0.0135 0.0000
continuous
%w 0.0000
nomina,

m 0.0135
Binary Attributes 0.0270
Fracl 0.0000
First Canonical Correlation 0.0405
Mean Skew 0.0000
Mean Kurtosis 0.0000

Class Entropy 0.0541
Mean Attribute Entropy 0.0270
Mean Mutual Information 0.0135
Equivalent number of attributes 0.0270
Noise to Signal Ratio 0.0135
Mean Mult. Correl. Coef. 0.0135

SDratio 0.0270
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Table A.59. NB IBL

Attribute
# classes 0.0444
# attributes 0.0111
# instances 0.0333

# ;;ttrlbutes 0.0444

#instances
# unknown values 0.0778

unknown values
# a‘ﬁributes * 4t instances 00111
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0222 0.0111 0.0222 0.0000
1..5 concentration histogram 0.0000 0.0111 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0111 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0333 0.0111 0.0111 0.0111 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0111
non computable conc. histogram with class 0.0000
# continuous attributes 0.0111
1..5 correlation histogram 0.0222 0.0000 0.0111 0.0000 0.0111
6..10 correlation histogram 0.0333 0.0444 0.0111 0.0111 0.0222
non computable correlation histogram 0.0111
1..5 missing values histogram 0.0000 0.0111 0.0444 0.0667 0.0444
6..10 missing values histogram 0.0222 0.0111 0.0000 0.0111 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0111
Fracl 0.0111
First Canonical Correlation 0.0667
Mean Skew 0.0111
Mean Kurtosis 0.0111
Class Entropy 0.0222
Mean Attribute Entropy 0.0333
Mean Mutual Information 0.0222
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0111
SDratio 0.0222
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Table A.60. ripper ¢50boost

Attribute

# classes 0.0299

# attributes 0.0299

# instances 0.0597

# ;}ttrlbutes 0.0000

#£instances

# unknown values 0.0746

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0149 0.0149 0.0000 0.0000

1..5 concentration histogram 0.0299 0.0149 0.0149 0.0149 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0149
non computable conc. histogram 0.0149

1..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0299 0.0149
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0299

1..5 correlation histogram 0.0149 0.0448 0.0000 0.0000 0.0149
6..10 correlation histogram 0.0000 0.0448 0.0000 0.0149 0.0597
non computable correlation histogram 0.0149

1..5 missing values histogram 0.0000 0.0448 0.0448 0.0299 0.0299
6..10 missing values histogram 0.0149 0.0000 0.0000 0.0149 0.0000
continuous
w 0.0000
nomina;

# attributes 0.0000
Binary Attributes 0.0149
Fracl 0.0448
First Canonical Correlation 0.0000
Mean Skew 0.0299
Mean Kurtosis 0.0149

Class Entropy 0.0746
Mean Attribute Entropy 0.0299
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table A.61. ripper c¢50rules

Attribute
# classes 0.0361
# attributes 0.0361
# instances 0.0361

# ;'Lttrlbutes 0.0120

#£instances
# unknown values 0.0723

unknown values
# a‘ﬁributes * 4f instances 0.0361
# nominal attributes 0.0120
max, min, mean, stdv of nominal attribute values | 0.0241 0.0000 0.0120 0.0241
1..5 concentration histogram 0.0000 0.0120 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0120 0.0000 0.0000 0.0241
non computable conc. histogram 0.0120
1..5 concentration histogram with class 0.0482 0.0241 0.0000 0.0000 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0120
1..5 correlation histogram 0.0120 0.0000 0.0120 0.0000 0.0000
6..10 correlation histogram 0.0241 0.0120 0.0120 0.0241 0.0241
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0000 0.0361 0.0000 0.0361
6..10 missing values histogram 0.0120 0.0241 0.0120 0.0241 0.0120
continuous
nomina;

# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0120
Mean Skew 0.0361
Mean Kurtosis 0.0000
Class Entropy 0.0482
Mean Attribute Entropy 0.0602
Mean Mutual Information 0.0482
Equivalent number of attributes 0.0120
Noise to Signal Ratio 0.0120
Mean Mult. Correl. Coef. 0.0241
SDratio 0.0241
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Table A.62. ripper c50tree

Attribute

# classes 0.0141

# attributes 0.0704

# instances 0.0282

# ;}ttrlbutes 0.0282

#£instances

# unknown values 0.0563

unknown values

# aﬁributes * 4 instances 0.0282

# nominal attributes 0.0141
max, min, mean, stdv of nominal attribute values | 0.0000 0.0141 0.0000 0.0282

1..5 concentration histogram 0.0141 0.0000 0.0141 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0141 0.0000 0.0000 0.0141
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0282 0.0141 0.0000 0.0141 0.0141
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0141

1..5 correlation histogram 0.0000 0.0563 0.0000 0.0000 0.0000
6..10 correlation histogram 0.0282 0.0141 0.0282 0.0282 0.0000
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0282 0.0423 0.0141 0.0282
6..10 missing values histogram 0.0282 0.0141 0.0000 0.0141 0.0000
continuous
w 0.0000
nomina;

# attributes 0.0141
Binary Attributes 0.0141
Fracl 0.0141
First Canonical Correlation 0.0141
Mean Skew 0.0000
Mean Kurtosis 0.0000

Class Entropy 0.0845
Mean Attribute Entropy 0.0423
Mean Mutual Information 0.0423
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0141

SDratio 0.0141
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Table A.63. ripper Lindiscr

APPENDIX A. RESULTS ON THE 1075 DATASETS

Attribute
# classes 0.0230
# attributes 0.0345
# instances 0.0575
# attributes

F#instances 00115
# unknown values 0.0460

# unknown values

# attributes * # instances 0.0000

# nominal attributes 0.0230

max, min, mean, stdv of nominal attribute values

0.0575 0.0115 0.0000 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0115 0.0115 0.0000 0.0230 0.0115
0.0000 0.0000 0.0000 0.0000 0.0115

non computable conc. histogram

0.0115

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0115 0.0115 0.0000 0.0115 0.0000
0.0000 0.0000 0.0000 0.0000 0.0115

non computable conc. histogram with class

0.0000

# continuous attributes

0.0000

1..5 correlation histogram
6..10 correlation histogram

0.0000 0.0115 0.0230 0.0000 0.0575
0.0000 0.0000 0.0345 0.0115 0.0230

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0805 0.0460 0.0575 0.0345
0.0115 0.0115 0.0000 0.0115 0.0000

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0115
Fracl 0.0115
First Canonical Correlation 0.0230
Mean Skew 0.0345
Mean Kurtosis 0.0115
Class Entropy 0.0230
Mean Attribute Entropy 0.0115
Mean Mutual Information 0.0115
Equivalent number of attributes 0.0115
Noise to Signal Ratio 0.0115
Mean Mult. Correl. Coef. 0.0115
SDratio 0.0230
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Table A.64. ripper Ltree

Attribute

# classes 0.0370

# attributes 0.0247

# instances 0.0370

# ;}ttrlbutes 0.0247

#£instances

# unknown values 0.0247

unknown values

# aﬁributes * 4 instances 0.0123

# nominal attributes 0.0247
max, min, mean, stdv of nominal attribute values | 0.0000 0.0000 0.0247 0.0000

1..5 concentration histogram 0.0123 0.0247 0.0000 0.0123 0.0000
6..10 concentration histogram 0.0000 0.0123 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0123 0.0123 0.0123 0.0123 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0123
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0123 0.0247 0.0123 0.0370 0.0123
6..10 correlation histogram 0.0123 0.0123 0.0000 0.0123 0.0247
non computable correlation histogram 0.0247

1..5 missing values histogram 0.0000 0.0494 0.0123 0.0494 0.0123
6..10 missing values histogram 0.0123 0.0123 0.0000 0.0247 0.0000
continuous
w 0.0000
nomina;

# attributes 0.0000
Binary Attributes 0.0247
Fracl 0.0123
First Canonical Correlation 0.0370
Mean Skew 0.0000
Mean Kurtosis 0.0247

Class Entropy 0.0617
Mean Attribute Entropy 0.0247
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0494
Noise to Signal Ratio 0.0247
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0494
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Table A.65. ripper IBL
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Attribute
# classes 0.0727
# attributes 0.0545
# instances 0.0727
# attributes

F#instances 0.0545
# unknown values 0.0364

# unknown values

# attributes * # instances 0.0000

# nominal attributes 0.0000

max, min, mean, stdv of nominal attribute values

0.0182 0.0182 0.0000 0.0182

1..5 concentration histogram
6..10 concentration histogram

0.0182 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram

0.0182

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0182 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0364

1..5 correlation histogram
6..10 correlation histogram

0.0000 0.0364 0.0000 0.0364 0.0000
0.0545 0.0000 0.0000 0.0000 0.0182

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0364 0.0364 0.0182 0.0000
0.0182 0.0182 0.0000 0.0000 0.0000

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0364
Fracl 0.0000
First Canonical Correlation 0.0364
Mean Skew 0.0182
Mean Kurtosis 0.0182
Class Entropy 0.1091
Mean Attribute Entropy 0.0182
Mean Mutual Information 0.0182
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0182
SDratio 0.0182
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Table A.66. ripper NB
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Attribute
# classes 0.0435
# attributes 0.0217
# instances 0.0652
# attributes
F#instances 0.0217
# unknown values 0.0761
# unknown values

4 attributes * # instances 0.0109
# nominal attributes 0.0326

max, min, mean, stdv of nominal attribute values

0.0217 0.0217 0.0217 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0000 0.0217 0.0217 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0109

non computable conc. histogram

0.0000

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0000 0.0109 0.0109 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0000

1..5 correlation histogram
6..10 correlation histogram

0.0217 0.0109 0.0109 0.0109 0.0109
0.0326 0.0217 0.0326 0.0000 0.0109

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0109 0.0435 0.0217 0.0652
0.0217 0.0109 0.0000 0.0109 0.0109

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0109
First Canonical Correlation 0.0217
Mean Skew 0.0109
Mean Kurtosis 0.0326
Class Entropy 0.0652
Mean Attribute Entropy 0.0217
Mean Mutual Information 0.0217
Equivalent number of attributes 0.0217
Noise to Signal Ratio 0.0109
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0109

A.5 Accuracy Results
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Table A.67. Results on the histo set of characteristics

c50boost

c50rules

ch0tree

Ltree

Acc. Impr.

Acc. Impr.

Acc. Impr.

Acc. Impr.

c50rules c50boost
c50tree c50boost
c50tree ch0rules
Lindiscr ¢50boost
Lindiscr c50rules
Lindiscr c¢50tree
Ltree c50boost
Ltree c50rules
Ltree c50tree
Ltree Lindiscr
IBL c50boost
IBL c50rules
IBL c50tree

IBL Lindiscr
IBL Ltree

NB c50boost
NB c50rules

NB c50tree

NB Lindiscr

NB Ltree

NB IBL

ripper c50boost
ripper ch0rules
ripper c50tree
ripper Lindiscr
ripper Ltree
ripper IBL
ripper NB

84.74%  26.61%
82.88%  25.12%
86.23%  13.21%
87.72%  23.26%
87.07%  34.42%
87.26%  32.56%
81.58%  29.95%
84.09%  25.40%
81.7%  22.23%
84.56%  23.44%
87.53%  22.88%
81.02%  31.26%
84.19%  32.19%
85.30%  42.98%
81.86% 25.21%
88.56%  27.72%
88.28%  36.84%
87.16%  34.23%
84.65%  43.54%
87.91%  29.67%
86.79%  50.70%
84.65%  33.68%
85.21%  25.30%
85.95%  25.86%
82.42%  36.28%
78.88%  25.67%
86.33%  40.19%
84.28%  42.51%

82.23%  24.09%
79.26%  21.49%
82.79% 9.77%
86.60% 22.14%
86.14%  33.49%
85.86%  31.16%
T7.67%  26.05%
82.60% 23.91%
79.53%  20.00%
81.95%  20.84%
86.70%  22.05%
79.16%  29.40%
78.98%  26.98%
80.28%  37.95%
77.49%  20.84%
86.60% 25.77%
82.60% 31.16%
83.26%  30.33%
80.47%  39.35%
84.37%  26.14%
84.00% 47.91%
85.12%  34.14%
81.12%  21.21%
83.35%  23.26%
80.00%  33.86%
78.98%  25.77%
83.53%  37.40%
81.40% 39.63%

82.51% 24.37%
79.35%  21.58%
84.00% 10.98%
87.35%  22.88%
85.95%  33.30%
86.23%  31.54%
76.74%  25.12%
81.67%  22.98%
78.51%  18.98%
81.95%  20.84%
85.49%  20.84%
78.42%  28.65%
78.98%  26.98%
79.72%  37.40%
78.05%  21.40%
86.70%  25.86%
82.60% 31.16%
83.35%  30.42%
80.19%  39.07%
84.56%  26.33%
84.37%  48.28%
83.72%  32.74%
81.02% 21.12%
82.23%  22.14%
79.26%  33.12%
78.14%  24.93%
82.70%  36.56%
82.42%  40.65%

80.84%  22.70%
79.16%  21.40%
82.42% 9.40%
84.74%  20.28%
82.70%  30.05%
84.09%  29.40%
77.49%  25.86%
79.91% 21.21%
77.95%  18.42%
80.84%  19.72%
84.28%  19.63%
79.26%  29.49%
80.65%  28.65%
81.12%  38.79%
76.56%  19.91%
84.56%  23.72%
80.56%  29.12%
83.63%  30.70%
78.98%  37.86%
84.00%  25.77%
81.67%  45.58%
84.28%  33.30%
81.58%  21.68%
81.12%  21.02%
77.12%  30.98%
78.70%  25.49%
83.91% 37.77%
80.84%  39.07%

means

84.96%  30.82%

82.22%  28.07%

82.01% 27.86%

81.18%  27.03%




Table A.68. Results on the +histo set of characteristics

ch0boost

ch0rules

ch0tree

Ltree

Acc. Impr.

Acc. Impr.

Acc. Impr.

Acc. Impr.

ch0rules c50boost
ch0tree c50boost
ch0tree ch0rules
Lindiscr c¢50boost
Lindiscr c¢50rules
Lindiscr c50tree
Ltree c50boost
Ltree c50rules
Ltree ch0tree
Ltree Lindiscr
IBL c50boost
IBL c50rules
IBL c50tree

IBL Lindiscr
IBL Ltree

NB c50boost
NB c50rules

NB c50tree

NB Lindiscr

NB Ltree

NB IBL

ripper c50boost
ripper c50rules
ripper c50tree
ripper Lindiscr
ripper Ltree
ripper IBL
ripper NB

83.26%  25.12%
84.56%  26.79%
86.14% 13.12%
87.53%  23.07%
87.35%  34.70%
87.81%  33.12%
81.02%  29.40%
84.74%  26.05%
81.67%  22.14%
82.42%  21.30%
85.67%  21.02%
81.58%  31.81%
83.16% 31.16%
84.65%  42.33%
80.56%  23.91%
88.00% 27.16%
86.51%  35.07%
86.14%  33.21%
83.81%  42.70%
86.98%  28.74%
87.07%  50.98%
86.05%  35.07%
84.28%  24.37%
85.95%  25.86%
82.05%  35.91%
77.86%  24.65%
86.33%  40.19%
85.02%  43.26%

81.95%  23.81%
80.37%  22.61%
82.05% 9.02%

84.19%  19.72%
84.74%  32.09%
84.28%  29.58%
76.56%  24.93%
81.21%  22.51%
79.91%  20.37%
81.30%  20.19%
85.86% 21.21%
79.26%  29.49%
79.53%  27.53%
80.56%  38.23%
76.74%  20.09%
86.60%  25.77%
81.30%  29.86%
83.07%  30.14%
80.65%  39.54%
84.37%  26.14%
83.91%  47.81%
85.30%  34.33%
80.56%  20.65%
82.14%  22.05%
78.98%  32.84%
78.33%  25.12%
83.81% 37.67%
81.49%  39.72%

81.95% 23.81%
79.35%  21.58%
82.51% 9.49%

84.47%  20.00%
85.30%  32.65%
84.371%  29.68%
76.93%  25.30%
80.84%  22.14%
79.44%  19.91%
81.21%  20.09%
85.40%  20.74%
78.88%  29.12%
78.79%  26.79%
79.53%  37.21%
77.30%  20.65%
85.95%  25.12%
81.77%  30.33%
82.79%  29.86%
80.37%  39.26%
84.19%  25.95%
85.40%  49.30%
84.28%  33.30%
80.93%  21.02%
82.33%  22.23%
78.05%  31.91%
76.74%  23.54%
83.26%  37.12%
81.49%  39.72%

80.74%  22.61%
78.14%  20.37%
82.42% 9.40%

83.16%  18.70%
83.26%  30.60%
84.56%  29.86%
77.30%  25.68%
80.93%  22.23%
78.23%  18.70%
80.74%  19.63%
83.26%  18.60%
77.95%  28.19%
80.74%  28.74%
81.86%  39.54%
75.53%  18.88%
84.28%  23.44%
81.77%  30.33%
83.26%  30.33%
80.09%  38.98%
82.51%  24.28%
79.35%  43.26%
85.02%  34.05%
80.09%  20.19%
83.81% 23.72%
77.95%  31.81%
77.58%  24.37%
84.28%  38.14%
80.65%  38.88%

means

84.58%  30.44%

81.75%  27.61%

81.56%  27.42%

81.05% 26.91%

SLINSHY ADVHNDDV ¢V
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Table A.69. Results of the McNemar test comparing the accuracies of histo and +histo, on the pairwise meta-learning problems, for each of the four
decision treee based metalearners. (= no difference, + difference in favor of histo, - difference in favor of +histo.

c50boost c50rules c50tree Ltree

—an +4+an p—wal sig | —an 4an p—wal sig | —an 4an p—wal sig | —an 4an p—wal sig
c50rules c50boost 46 30 0.085 = 43 40 0.826 = 46 40 0.589 48 47 1.000 =
c50tree c50boost 35 53 0.069 = 53 65 0.311 = 65 65 0.930 = 65 54 0.359 =
ch0tree c50rules 29 28 1.000 = 45 37 0.439 = 46 30 0.085 = 46 46 0.916 =
Lindiscr c50boost 29 27 0.893 = 67 41 0.016 + 65 34 0.002 + 82 65 0.186 =
Lindiscr c50rules 32 35 0.806 = 55 40 0.150 = 50 43 0.533 = 64 70 0.665 =
Lindiscr c50tree 34 40 0.561 = 53 36 0.089 50 30 0.033 + 55 60 0.709 =
Ltree c50boost 42 36 0.571 = 62 50 0.298 = 56 58 0.995 = 54 52 0.922 =
Ltree c50rules 33 40 0.482 = 60 45 0.171 = 59 50 0.443 = 47 58 0.329 =
Ltree c50tree 48 47 1.000 = 66 70 0.796 = 57 67 0.418 = 78 81 0.873 =
Ltree Lindiscr 66 43 0.035 + 63 56 0.582 58 50 0.500 = 66 65 1.000 =
IBL c50boost 48 28 0.029 + 45 36 0.374 = 39 38 1.000 = 56 45 0.319 =
IBL c50rules 38 44 0.580 = 51 52 1.000 = 48 53 0.690 = 71 57 0.250 =
IBL c50tree 45 34 0.260 49 55 0.623 = 42 40 0.912 = 58 59 1.000 =
IBL Lindiscr 41 34 0.488 = 52 55 0.846 = 50 48 0.919 = 48 56 0.492 =
IBL Ltree 57 43 0.193 = 60 52 0.508 = 57 49 0.496 = 79 68 0.409 =
NB c50boost 25 19 0.450 = 49 49 0.919 = 53 45 0.479 = 66 63 0.860 =
NB c50rules 43 24 0.027 + 46 32 0.141 = 41 32 0.349 = 59 72 0.294 =
NB c50tree 38 27 0.214 = 40 38 0.909 = 38 32 0.550 = 55 51 0.770 =
NB Lindiscr 49 40 0.396 = 37 39 0.908 = 37 39 0.908 = 85 97 0.414 =
NB Ltree 30 20 0.203 = 41 41 0.912 = 44 40 0.743 = 58 42 0.133 =
NB IBL 37 40 0.819 = 62 61 1.000 = 51 62 0.346 = 94 69 0.060 =
ripper c50boost 32 47 0.115 = 26 28 0.891 = 26 32 0.511 = 34 42 0.422 =
ripper c50rules 43 33 0.301 = 35 29 0.531 = 30 29 1.000 = 61 45 0.145 =
ripper c50tree 29 29 0.895 = 37 24 0.124 = 28 29 1.000 = 21 50 0.001 —
ripper Lindiscr 54 50 0.768 = 68 57 0.371 = 76 63 0.308 = 68 7 0.506 =
ripper Ltree 54 43 0.309 = 56 49 0.558 = 51 36 0.133 = 63 51 0.302 =
ripper IBL 26 26 0.889 = 34 37 0.812 = 36 42 0.571 = 48 52 0.764 =
ripper NB 34 42 0.422 = 59 60 1.000 = 57 47 0.377 = 71 69 0.932 =




Appendix B

Results on the 65 datasets

B.1 The 65 datasets

abalone, acetylation, agaricus-lepiota, allbp, allhyper, allhypo, allrep, australian,
balance-scale, bands, breast-cancer-wisc,breast-cancer-wisc_nominal, bupa, car,
contraceptive, crx, dermatology, dis, ecoli, flag_language, flag religion, flare_c,
flare_c_er, flare_m, flare_m_er, flare_x, flare_x_er, fluid, german, glass, glass2,
heart, hepatitis, hypothyroid, ionosphere, iris, kp, led24, led7, lymphography,
monk1, monk2, monk3-full, mushrooms, new-thyroid, parity5_5, pima-indians-
diabetes, proc-cleveland-2, proc-cleveland-4, proc-hungarian-2, proc -hungarian-
4, proc-switzerland-2, proc-switzerland-4, quisclas, sick-euthyroid, soybean-large,
tic-tac-toe, titanic, tumor-LOI, vote, vowel, waveform40, wdbc, wpbc, yeast.
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B.2 C50boost on the different characterizations

Table B.1. Results of c50boost on the dct characterization on the 65 datasets

Pair Accuracy | Improvement
c50rules c50boost 72.31% -4.62%
c50tree c50boost 60.00% -6.15%
c50tree ch0rules 73.85% -3.08%
Lindiscr c¢50boost 64.62% 15.39%
Lindiscr c50rules 55.38% 9.23%
Lindiscr c50tree 49.23% 4.62%
Ltree c¢50boost 61.54% 1.54%
Ltree c50rules 72.31% 6.15%
Ltree c50tree 63.08% 7.69%
Ltree Lindiscr 64.62% 20.00%
IBL c¢50boost 70.77% 12.31%
IBL c50rules 64.62% 6.15%
IBL c50tree 67.69% 10.77%
IBL Lindiscr 41.54% 3.08%
IBL Ltree 49.23% 6.15%
NB c50boost 63.08% 9.23%
NB c¢50rules 66.15% 16.92%
NB c50tree 56.92% 7.69%
NB Lindiscr 47.69% 4.62%
NB Ltree 69.23% 18.46%
NB IBL 43.08% -1.54%
ripper c50boost 49.23% -13.85%
ripper ch0rules 66.15% -3.08%
ripper c50tree 60.00% -6.15%
ripper Lindiscr 60.00% 21.54%
ripper Ltree 58.46% 3.08%
ripper IBL 43.08% -10.77%
ripper NB 53.85% 7.69%
Average 59.56% 5.11%
Strict Accuracy 6.15% -7.69%
Loose Accuracy 43.08% %




B.2. C50BOOST ON THE DIFFERENT CHARACTERIZATIONS

Table B.2. land

Pair Accuracy | Improvement
c50rules c50boost 75.38% -1.54%
ch0tree c50boost 69.23% 3.08%
c50tree ch0rules 72.31% -4.62%
Lindiscr c¢50boost 44.62% -4.61%
Lindiscr ¢50rules 47.69% 1.54%
Lindiscr c50tree 43.08% -1.54%
Ltree c50boost 55.38% -4.62%
Ltree c50rules 52.31% -13.85%
Ltree c50tree 61.54% 6.15%
Ltree Lindiscr 50.77% 6.15%
IBL. c50boost 52.31% -6.15%
IBL c50rules 61.54% 3.08%
IBL c¢50tree 44.62% -12.31%
IBL Lindiscr 41.54% 3.08%
IBL Ltree 47.69% 4.62%
NB c50boost 55.38% 1.54%
NB c50rules 53.85% 4.62%
NB c50tree 46.15% -3.08%
NB Lindiscr 47.69% 4.62%
NB Ltree 60.00% 9.23%
NB IBL 44.62% 0.00%
ripper c50boost 56.92% -6.15%
ripper c50rules 55.38% -13.85%
ripper ch0tree 52.31% -13.85%
ripper Lindiscr 46.15% 7.69%
ripper Ltree 52.31% -3.08%
ripper IBL 43.08% -10.77%
ripper NB 43.08% -3.08%
Average 52.75% -1.70%
Strict Accuracy 7.69% -6.15%
Loose Accuracy 36.92% %
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Table B.3. histo-limited

Pair Accuracy | Improvement
c50rules c50boost 72.31% -4.62%
c50tree c50boost 52.31% -13.85%
c50tree ch0rules 72.31% -4.62%
Lindiscr c¢50boost 55.38% 6.15%
Lindiscr ¢50rules 55.38% 9.23%
Lindiscr c50tree 64.62% 20.00%
Ltree c50boost 53.85% -6.15%
Ltree c50rules 66.15% 0.00%
Ltree c50tree 67.69% 12.31%
Ltree Lindiscr 64.62% 20.00%
IBL. c50boost 73.85% 15.39%
IBL c50rules 61.54% 3.08%
IBL c¢50tree 55.38% -1.54%
IBL Lindiscr 58.46% 20.00%
IBL Ltree 40.00% -3.08%
NB c50boost 72.31% 18.46%
NB c50rules 49.23% 0.00%
NB c50tree 49.23% 0.00%
NB Lindiscr 43.08% 0.00%
NB Ltree 67.69% 16.92%
NB IBL 49.23% 4.62%
ripper c50boost 46.15% -16.92%
ripper c50rules 58.46% -10.77%
ripper ch0tree 56.92% -9.23%
ripper Lindiscr 60.00% 21.54%
ripper Ltree 46.15% -9.23%
ripper IBL 47.69% -6.15%
ripper NB 58.46% 12.31%
Average 57.80% 3.35%
Strict Accuracy 20.00% 6.16%%
Loose Accuracy 47.69% %




B.2. C50BOOST ON THE DIFFERENT CHARACTERIZATIONS

Table B.4. histo

Pair Accuracy | Improvement
c50rules c50boost 76.92% 0.00%
c50treec 50boost 53.85% -12.31%
c50treec 50rules 69.23% -7.69%
Lindiscr c¢50boost 58.46% 9.23%
Lindiscr c50rules 61.54% 15.39%
Lindiscr c50tree 64.62% 20.00%
Ltree ¢50boost 52.31% -7.69%
Ltree c50rules 66.15% 0.00%
Ltree c50tree 66.15% 10.77%
Ltree Lindiscr 61.54% 16.92%
IBL. c50boost 69.23% 10.77%
IBL c50rules 64.62% 6.15%
IBL c¢50tree 60.00% 3.08%
IBL Lindiscr 64.62% 26.15%
IBL Ltree 36.92% -6.15%
NB c¢50boost 69.23% 15.38%
NB c50rules 53.85% 4.62%
NB c50tree 49.23% 0.00%
NB Lindiscr 41.54% -1.54%
NB Ltree 69.23% 18.46%
NB IBL 58.46% 13.85%
ripper c50boost 64.62% 1.54%
ripper c50rules 55.38% -13.85%
ripper ch0tree 49.23% -16.92%
ripper Lindiscr 64.62% 26.15%
ripper Ltree 52.31% -3.08%
ripper IBL 47.69% -6.15%
ripper NB 55.38% 9.23%
Average 59.18% 4.73%
Strict Accuracy 15.38% 1.54%
Loose Accuracy 52.31% %
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Table B.5. statlog

Pair Accuracy | Improvement
c50rules c50boost 73.85% -3.08%
c50tree c50boost 55.38% -10.77%
c50tree ch0rules 73.85% -3.08%
Lindiscr ¢50boost 53.85% 4.62%
Lindiscr c50rules 56.92% 10.77%
Lindiscr c50tree 53.85% 9.23%
Ltree c¢50boost 60.00% 0.00%
Ltree c50rules 64.62% -1.54%
Ltree c50tree 61.54% 6.15%
Ltree Lindiscr 61.54% 16.92%
IBL. c50boost 64.62% 6.15%
IBL c50rules 69.23% 10.77%
IBL c50tree 61.54% 4.62%
IBL Lindiscr 43.08% 4.62%
IBL Ltree 47.69% 4.62%
NB c50boost 55.38% 1.54%
NB c50rules 50.77% 1.54%
NB c50tree 56.92% 7.69%
NB Lindiscr 38.46% -4.61%
NB Ltree 75.38% 24.62%
NB IBL 49.23% 4.62%
ripper c50boost 50.77% -12.31%
ripper ch0rules 66.15% -3.08%
ripper c50tree 60.00% -6.15%
ripper Lindiscr 53.85% 15.39%
ripper Liree 50.77% -4.61%
ripper IBL 49.23% -4.62%
ripper NB 41.54% -4.61%
Average 57.14% 2.69%
Strict Accuracy 7.69% -6.15%
Loose Accuracy 41.54% %
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B.3 Kernel on the different characterizations

Table B.6. Results of kernel on the dct characterizations on the 65 datasets

Pair Accuracy | Improvement
c¢50boost chH0rules 70.77% 3.08%
c50boost c50tree 70.77% -4.61%
¢50boost Lindiscr 61.54% -7.69%
c50boost Ltree 64.62% 7.69%
c¢50boost TBL 90.77% -1.54%
c50boost NB 75.38% 1.54%
¢50boost ripper 76.92% -6.15%
c50rules c50tree 73.85% 1.54%
c50rules Lindiscr 69.23% 6.15%
c50rules Ltree 63.08% 0.00%
c50rules IBL 72.31% 1.54%
ch0rules NB 75.38% 7.69%
c50rules ripper 75.38% -1.54%
chb0tree Lindiscr 66.15% 3.08%
c50tree Ltree 63.08% 4.62%
ch0tree IBL 69.23% 0.00%
ch0tree NB 80.00% 12.31%
c50tree ripper 55.38% -13.85%
Lindiscr ltree 73.85% 1.54%
Lindiscr IBL 66.15% 12.31%
Lindiscr NB 73.85% 18.46%
Lindiscr ripper 64.62% 9.23%
Ltree IBL 69.23% -9.23%
Ltree NB 67.69% -6.15%
Ltree ripper 81.54% 9.23%
IBL. NB 69.23% 12.31%
IBL ripper 60.00% 7.69%
NB ripper 70.77% 15.39%
Average 70.38% 3.02%
Final suggestion 40.00% 7.70%
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Table B.7. land

Pair Accuracy | Improvement
c50boost c50rules 64.62% -3.08%
c50boost c50tree 73.85% -1.54%
c50boost Lindiscr 63.08% -6.15%
c50boost Ltree 52.31% -4.62%
c¢50boost TBL 90.77% -1.54%
ch0boost IBL 70.77% -3.08%
¢50boost ripper 70.77% -12.31%
c50rules c50tree 52.31% -20.00%
c50rules Lindiscr 58.46% -4.61%
c50rules Ltree 43.08% -20.00%
ch0rules IBL 61.54% -9.23%
ch0rules NB 60.00% -7.69%
c50rules ripper 73.85% -3.08%
chb0tree Lindiscr 56.92% -6.15%
c50tree Ltree 44.62% -13.85%
ch0tree IBL 61.54% -7.69%
c50tree NB 55.38% -12.31%
c50tree ripper 60.00% -9.23%
Lindiscr Ltree 61.54% -10.77%
Lindiscr IBL 44.62% -9.23%
Lindiscr NB 64.62% 9.23%
Lindiscr ripper 55.38% 0.00%
Ltree IBL 61.54% -16.92%
Ltree NB 76.92% 3.08%
Ltree ripper 64.62% -7.69%
IBL NB 60.00% 3.08%
IBL ripper 49.23% -3.08%
NB ripper 58.46% 3.08%
Average 61.10% -6.26%
Final Suggestion 20.00% -12.30%
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Table B.8. histo-limited

Pair Accuracy | Improvement
c50boost c50rules 69.23% 1.54%
c50boost c50tree 73.85% -1.54%
c50boost Lindiscr 64.62% -4.61%
c50boost Ltree 70.77% 13.85%
c¢50boost TBL 89.23% -3.08%
c50boost NB 76.92% 3.08%
¢50boost ripper 80.00% -3.08%
c50rules c50tree 73.85% 1.54%
c50rules Lindiscr 61.54% -1.54%
c50rules Ltree 66.15% 3.08%
ch0rules IBL 73.85% 3.08%
ch0rules NB 70.77% 3.08%
c50rules ripper 72.31% -4.62%
chb0tree Lindiscr 67.69% 4.62%
c50tree Ltree 64.62% 6.15%
ch0tree IBL 70.77% 1.54%
c50tree NB 67.69% 0.00%
c50tree ripper 63.08% -6.15%
Lindiscr Ltree 78.46% 6.15%
Lindiscr IBL 64.62% 10.77%
Lindiscr NB 76.92% 21.54%
Lindiscr ripper 61.54% 6.15%
Ltree IBL 60.00% -18.46%
Ltree NB 75.38% 1.54%
Ltree ripper 69.23% -3.08%
IBL NB 61.54% 4.62%
IBL ripper 55.38% 3.08%
NB ripper 64.62% 9.23%
Average 69.45% 2.09%
Final Suggestion 36.92% 4.62%
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Table B.9. histo

Pair Accuracy | Improvement
c50boost c50rules 78.46% 10.77%
c50boost c50tree 72.31% -3.08%
c50boost Lindiscr 66.15% -3.08%
c50boost Ltree 67.69% 10.77%
c¢50boost TBL 89.23% -3.08%
c50boost NB 80.00% 6.15%
¢50boost ripper 81.54% -1.54%
c50rules c50tree 75.38% 3.08%
ch0rules Lindiscr 66.15% 3.08%
c50rules Ltree 63.08% 0.00%
ch0rules IBL 61.54% -9.23%
ch0rules NB 70.77% 3.08%
c50rules ripper 72.31% -4.62%
chb0tree Lindiscr 69.23% 6.15%
c50tree Ltree 60.00% 1.54%
ch0tree IBL 66.15% -3.08%
c50tree NB 67.69% 0.00%
c50tree ripper 61.54% -7.69%
Lindiscr Ltree 80.00% 7.69%
Lindiscr IBL 67.69% 13.85%
Lindiscr NB 76.92% 21.54%
Lindiscr ripper 60.00% 4.62%
Ltree IBL 56.92% -21.54%
Ltree NB 75.38% 1.54%
Ltree ripper 67.69% -4.61%
IBL NB 66.15% 9.23%
IBL ripper 58.46% 6.15%
NB ripper 61.54% 6.15%
Average 69.29% 1.92%
Final Suggestion 47.69% 15.30%




B.3. KERNEL ON THE DIFFERENT CHARACTERIZATIONS

Table B.10. statlog

Pair Accuracy | Improvement
c¢50boost chH0rules 67.69% 0.00%
c50boost c50tree 69.23% -6.15%
c50boost Lindiscr 53.85% -15.38%
c50boost Ltree 61.54% 4.62%
ch0boost IBL 90.77% -1.54%
c50boost NB 76.92% 3.08%
c50boost ripper 81.54% -1.54%
c50rules c50tree 73.85% 1.54%
c50rules Lindiscr 58.46% -4.61%
c50rules Liree 61.54% -1.54%
ch0rules IBL 63.08% -7.69%
c50rules NB 73.85% 6.15%
c50rules ripper 76.92% 0.00%
c50tree Lindiscr 64.62% 1.54%
c50tree Liree 66.15% 7.69%
ch0tree IBL 69.23% 0.00%
ch0tree NB 70.77% 3.08%
c50tree ripper 63.08% -6.15%
Lindiscr Ltree 72.31% 0.00%
Lindiscr TBL 58.46% 4.62%
Lindiscr NB 67.69% 12.31%
Lindiscr ripper 61.54% 6.15%
Ltree IBL 63.08% -15.38%
Ltree NB 75.38% 1.54%
Ltree ripper 67.69% -4.61%
IBL. NB 67.69% 10.77%
IBL ripper 61.54% 9.23%
NB ripper 70.77% 15.39%
Average 68.19% 0.82%
Final Suggestion 27.69% -4.61%
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B.4 Selection Frequency by c50boost

Table B.11. Selection Frequency of Characteristics by c50boost on the 65 datasets, pair :
c¢50rules c50boost
Attribute
# classes 0.0000
# attributes 0.0517
# instances 0.0517
# ;'Lttrlbutes 0.0517
#£instances
# unknown values 0.0000
# unknown values
# attributes * # instances 0.0000
# nominal attributes 0.0000

0.0517 0.0000 0.0172 0.0000
0.0000 0.0000 0.0172 0.0000 0.0172
0.0690 0.0000 0.0000 0.0000 0.0000
0.0000

0.1379 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

max, min, mean, stdv of nominal attribute values
1..5 concentration histogram

6..10 concentration histogram

non computable conc. histogram

1..5 concentration histogram with class

6..10 concentration histogram with class

non computable conc. histogram with class

0.0000

# continuous attributes

0.0172

1..5 correlation histogram

0.0000 0.0345

0.0000 0.0000 0.0172

6..10 correlation histogram

0.0172 0.0345

0.0345 0.0345 0.0172

non computable correlation histogram

0.0000

1..5 missing values histogram

0.0000 0.0172

0.0000 0.0345 0.0345

6..10 missing values histogram

0.0000 0.0000

0.0000 0.0000 0.0000

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0345
First Canonical Correlation 0.0000
Mean Skew 0.0000
Mean Kurtosis 0.0172
Class Entropy 0.0345
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0345
Equivalent number of attributes 0.0690
Noise to Signal Ratio 0.0517
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.12. c50tree c50boost

Attribute

# classes 0.0250

# attributes 0.0875

# instances 0.0125

# qttrlbutes 0.0125

#instances

# unknown values 0.0000

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0125
max, min, mean, stdv of nominal attribute values | 0.0125 0.0375 0.0000 0.0125

1..5 concentration histogram 0.0000 0.0000 0.0125 0.0375 0.0000
6..10 concentration histogram 0.0500 0.0000 0.0000 0.0250 0.0125
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.1000 0.0000 0.0000 0.0375 0.0000
6..10 concentration histogram with class 0.0125 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0125 0.0000 0.0000 0.0000 0.0250
6..10 correlation histogram 0.0000 0.0375 0.0250 0.0125 0.0250
non computable correlation histogram 0.0250

1..5 missing values histogram 0.0000 0.0000 0.0000 0.0125 0.0125
6..10 missing values histogram 0.0000 0.0000 0.0125 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0500
First Canonical Correlation 0.0125
Mean Skew 0.0250
Mean Kurtosis 0.0250

Class Entropy 0.0125
Mean Attribute Entropy 0.0125
Mean Mutual Information 0.0125
Equivalent number of attributes 0.0750
Noise to Signal Ratio 0.0750
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.13. c50tree c50rules

Attribute
# classes 0.0000
# attributes 0.0926
# instances 0.0185

# ;;ttrlbutes 0.0185

#instances
# unknown values 0.0000

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0185 0.0370 0.0000 0.0185
1..5 concentration histogram 0.0185 0.0000 0.0000 0.0185 0.0000
6..10 concentration histogram 0.0741 0.0000 0.0556 0.0556 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0370 0.0556 0.0000 0.0370 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0556 0.0370 0.0000 0.0000 0.0185
6..10 correlation histogram 0.0185 0.0741 0.0000 0.0185 0.0000
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0000 0.0000 0.0185 0.0556
6..10 missing values histogram 0.0000 0.0000 0.0185 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0000
Mean Skew 0.0185
Mean Kurtosis 0.0000
Class Entropy 0.1111
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.14. Lindiscr c50boost

Attribute

# classes 0.0303

# attributes 0.0202

# instances 0.0404

# qttrlbutes 0.0303

#instances

# unknown values 0.0202

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0101
max, min, mean, stdv of nominal attribute values | 0.0202 0.0505 0.0101 0.0000

1..5 concentration histogram 0.0505 0.0000 0.0404 0.0202 0.0101
6..10 concentration histogram 0.0000 0.0303 0.0303 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0000 0.0000 0.0404 0.0000 0.0202
6..10 concentration histogram with class 0.0202 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0202

1..5 correlation histogram 0.0303 0.0101 0.0000 0.0101 0.0101
6..10 correlation histogram 0.0202 0.0101 0.0000 0.0202 0.0909
non computable correlation histogram 0.0101

1..5 missing values histogram 0.0000 0.0101 0.0303 0.0101 0.0000
6..10 missing values histogram 0.0404 0.0000 0.0000 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0202
First Canonical Correlation 0.0101
Mean Skew 0.0404
Mean Kurtosis 0.0202

Class Entropy 0.0000
Mean Attribute Entropy 0.0101
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0606
Noise to Signal Ratio 0.0202
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.15. Lindiscr c50rules

Attribute
# classes 0.0125
# attributes 0.0250
# instances 0.0375

# ;;ttrlbutes 0.0000

#instances
# unknown values 0.0125

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0000 0.0000 0.0000 0.0125
1..5 concentration histogram 0.0375 0.0125 0.0250 0.0000 0.0125
6..10 concentration histogram 0.0125 0.0375 0.0000 0.0000 0.0250
non computable conc. histogram 0.0375
1..5 concentration histogram with class 0.0000 0.0250 0.0000 0.0375 0.0125
6..10 concentration histogram with class 0.0250 0.0125 0.0000 0.0125 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0375
1..5 correlation histogram 0.0500 0.0250 0.0000 0.0375 0.0000
6..10 correlation histogram 0.0125 0.0250 0.0000 0.0875 0.0250
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0000 0.0125 0.0125 0.0000
6..10 missing values histogram 0.0250 0.0000 0.0000 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0125
First Canonical Correlation 0.0375
Mean Skew 0.0375
Mean Kurtosis 0.0625
Class Entropy 0.0375
Mean Attribute Entropy 0.0125
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0250
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.16. Lindiscr c50tree

Attribute
# classes 0.0519
# attributes 0.0000
# instances 0.0519
attributes
%W 0.0519
# unknown values 0.0260
unknown values
# aﬁributes * 4 instances 0.0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0000 0.0390 0.0000 0.0130
1..5 concentration histogram 0.0260 0.0000 0.0000 0.0000 0.0130
6..10 concentration histogram 0.0000 0.0260 0.0000 0.0000 0.0000
non computable conc. histogram 0.0130
1..5 concentration histogram with class 0.0130 0.0130 0.0260 0.0390 0.0130
6..10 concentration histogram with class 0.0130 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0260
1..5 correlation histogram 0.0130 0.0000 0.0260 0.0000 0.0260
6..10 correlation histogram 0.0909 0.0000 0.0000 0.0260 0.0260
non computable correlation histogram 0.0390
1..5 missing values histogram 0.0000 0.0000 0.0390 0.0260 0.0000
6..10 missing values histogram 0.0260 0.0000 0.0130 0.0000 0.0000
continuous
ﬁnm«w 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0130
First Canonical Correlation 0.0519
Mean Skew 0.0130
Mean Kurtosis 0.0390
Class Entropy 0.0390
Mean Attribute Entropy 0.0130
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0260
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.17. Ltree c50boost

Attribute
# classes 0.0222
# attributes 0.0222
# instances 0.0111

# ;;ttrlbutes 0.0444

#instances
# unknown values 0.0222

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0444
max, min, mean, stdv of nominal attribute values | 0.0222 0.0222 0.0000 0.0000
1..5 concentration histogram 0.0111 0.0444 0.0000 0.0333 0.0222
6..10 concentration histogram 0.0111 0.0000 0.0444 0.0000 0.0111
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0333 0.0222 0.0000 0.0333 0.0000
6..10 concentration histogram with class 0.0000 0.0111 0.0000 0.0111 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0333
1..5 correlation histogram 0.0333 0.0000 0.0000 0.0000 0.0222
6..10 correlation histogram 0.0111 0.0111 0.0111 0.0000 0.0667
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0111 0.0111 0.0111 0.0111
6..10 missing values histogram 0.0444 0.0000 0.0111 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0000
Mean Skew 0.0111
Mean Kurtosis 0.0222
Class Entropy 0.0000
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0778
Equivalent number of attributes 0.0556
Noise to Signal Ratio 0.0444
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000




B.4. SELECTION FREQUENCY BY C50BOOST 231

Table B.18. Ltree c50rules

Attribute

# classes 0.095

# attributes 0.015

# instances 0.000

# qttrlbutes 0.0159

#instances

# unknown values 0.031

unknown values

# aﬁributes * 4 instances 0.0159

# nominal attributes 0.0317
max, min, mean, stdv of nominal attribute values | 0.0000 0.0000 0.0000 0.0317

1..5 concentration histogram 0.0794 0.0159 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0159 0.0476 0.0159 0.0000
non computable conc. histogram 0.0159

1..5 concentration histogram with class 0.0635 0.0000 0.0159 0.0317 0.0000
6..10 concentration histogram with class 0.0000 0.0476 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0159

1..5 correlation histogram 0.0000 0.0317 0.0159 0.0000 0.0159
6..10 correlation histogram 0.0000 0.0159 0.0000 0.0159 0.0159
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0000 0.0000 0.0476 0.0159
6..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0794
Mean Skew 0.0159
Mean Kurtosis 0.0159

Class Entropy 0.0317
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0635
Equivalent number of attributes 0.0159
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.19. Ltree c50tree

APPENDIX B. RESULTS ON THE 65 DATASETS

Attribute
# classes 0.1481
# attributes 0.0247
# instances 0.0000
# ;;ttrlbutes 0.0617
#instances
# unknown values 0.0247
unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0370

max, min, mean, stdv of nominal attribute values

0.0123 0.0494 0.0000 0.0247

1..5 concentration histogram
6..10 concentration histogram

0.0247 0.0000 0.0000 0.0247 0.0000
0.0123 0.0000 0.0247 0.0000 0.0000

non computable conc. histogram

0.0000

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0370 0.0000 0.0370 0.0247 0.0000
0.0123 0.0123 0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0123

1..5 correlation histogram
6..10 correlation histogram

0.0370 0.0247 0.0000 0.0247 0.0247
0.0494 0.0370 0.0000 0.0000 0.0000

non computable correlation histogram

0.0123

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000 0.0000 0.0000 0.0123
0.0000 0.0000 0.0123 0.0000 0.0000

7# continuous
# attributes

0.0000

# nominal

Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0247
Mean Skew 0.0247
Mean Kurtosis 0.0000
Class Entropy 0.0494
Mean Attribute Entropy 0.0247
Mean Mutual Information 0.0247
Equivalent number of attributes 0.0123
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.20. Ltree Lindiscr

Attribute

# classes 0.0230

# attributes 0.0115

# instances 0.0575

# qttrlbutes 0.0230

#instances

# unknown values 0.0345

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0230
max, min, mean, stdv of nominal attribute values | 0.0000 0.0115 0.0000 0.0115

1..5 concentration histogram 0.0115 0.0000 0.0230 0.0345 0.0000
6..10 concentration histogram 0.0000 0.0115 0.0000 0.0000 0.0230
non computable conc. histogram 0.0115

1..5 concentration histogram with class 0.0115 0.0345 0.0460 0.0115 0.0000
6..10 concentration histogram with class 0.0115 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0115

1..5 correlation histogram 0.1264 0.0230 0.0000 0.0230 0.0000
6..10 correlation histogram 0.0000 0.0115 0.0000 0.0000 0.0805
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0000 0.0460 0.0230 0.0000
6..10 missing values histogram 0.0230 0.0000 0.0115 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0230
First Canonical Correlation 0.0230
Mean Skew 0.0345
Mean Kurtosis 0.0230

Class Entropy 0.0345
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0230
Equivalent number of attributes 0.0345
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.21. IBL c50boost

Attribute
# classes 0.0323
# attributes 0.0323
# instances 0.1129

# ;;ttrlbutes 0.0161

#instances
# unknown values 0.0000

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0161 0.0968 0.0161 0.0161
1..5 concentration histogram 0.0161 0.0484 0.0000 0.0000 0.0161
6..10 concentration histogram 0.0000 0.0323 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
6..10 concentration histogram with class 0.0161 0.0000 0.0000 0.0161 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0161
1..5 correlation histogram 0.0645 0.0000 0.0000 0.0000 0.0161
6..10 correlation histogram 0.0323 0.0000 0.0161 0.0000 0.0323
non computable correlation histogram 0.0323
1..5 missing values histogram 0.0000 0.0000 0.0161 0.0161 0.0000
6..10 missing values histogram 0.0000 0.0000 0.0323 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0323
First Canonical Correlation 0.0484
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0000
Mean Attribute Entropy 0.0323
Mean Mutual Information 0.0323
Equivalent number of attributes 0.0968
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.22. IBL c50rules

Attribute

# classes 0.0972

# attributes 0.0417

# instances 0.0417

# qttrlbutes 0.0417

#instances

# unknown values 0.0000

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0139 0.0139 0.0000 0.0000

1..5 concentration histogram 0.0000 0.0139 0.0139 0.0139 0.0139
6..10 concentration histogram 0.0000 0.0139 0.0833 0.0139 0.0139
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0139 0.0000 0.0000 0.0278 0.0278
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0278 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0417 0.0000 0.0000 0.0278 0.0000
6..10 correlation histogram 0.0139 0.0000 0.0139 0.0139 0.0417
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0000 0.0000 0.0139 0.0694
6..10 missing values histogram 0.0139 0.0000 0.0000 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0139
First Canonical Correlation 0.0556
Mean Skew 0.0000
Mean Kurtosis 0.0000

Class Entropy 0.0278
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0694
Equivalent number of attributes 0.0278
Noise to Signal Ratio 0.0278
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.23. IBL c50tree

APPENDIX B. RESULTS ON THE 65 DATASETS

Attribute
# classes 0.0380
# attributes 0.0127
# instances 0.0253
# ;;ttrlbutes 0.0506
#instances
# unknown values 0.0000
unknown values
# a‘ﬁributes * 4t instances 0.0127
# nominal attributes 0.0127

max, min, mean, stdv of nominal attribute values

0.0127 0.0253 0.0253 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0127 0.0127 0.0000 0.0000 0.0127
0.0000 0.0000 0.0000 0.0253 0.0380

non computable conc. histogram

0.0506

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0380 0.0000 0.0000 0.0127 0.0127
0.0000 0.0000 0.0000 0.0380 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0127

1..5 correlation histogram
6..10 correlation histogram

0.0759 0.0000 0.0127 0.0127 0.0000
0.0127 0.0253 0.0127 0.0127 0.0127

non computable correlation histogram

0.0127

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000 0.0000 0.0127 0.0127
0.0127 0.0000 0.0000 0.0000 0.0000

7# continuous
# attributes

0.0000

# nominal

Binary Attributes 0.0000
Fracl 0.0127
First Canonical Correlation 0.0253
Mean Skew 0.0127
Mean Kurtosis 0.0380
Class Entropy 0.0127
Mean Attribute Entropy 0.0127
Mean Mutual Information 0.0127
Equivalent number of attributes 0.0633
Noise to Signal Ratio 0.1013
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.24. IBL Lindiscr

Attribute

# classes 0.0595

# attributes 0.0595

# instances 0.0238

# qttrlbutes 0.0833

#instances

# unknown values 0.0357

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0119 0.0000 0.0000 0.0119

1..5 concentration histogram 0.0357 0.0119 0.0476 0.0000 0.0119
6..10 concentration histogram 0.0119 0.0000 0.0238 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0238 0.0119 0.0000 0.0238 0.0119
6..10 concentration histogram with class 0.0119 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0238

1..5 correlation histogram 0.0952 0.0238 0.0000 0.0238 0.0000
6..10 correlation histogram 0.0595 0.0119 0.0119 0.0119 0.0000
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0119 0.0238 0.0238 0.0238
6..10 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0000
Mean Skew 0.0238
Mean Kurtosis 0.0238

Class Entropy 0.0000
Mean Attribute Entropy 0.0119
Mean Mutual Information 0.0119
Equivalent number of attributes 0.0476
Noise to Signal Ratio 0.0238
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.25. IBL Ltree

APPENDIX B. RESULTS ON THE 65 DATASETS

Attribute
# classes 0.0612
# attributes 0.0204
# instances 0.0306
# ;;ttrlbutes 0.0102
#instances
# unknown values 0.0000
unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000

max, min, mean, stdv of nominal attribute values

0.0000 0.0612

0.0000 0.0000

1..5 concentration histogram
6..10 concentration histogram

0.0408 0.0000
0.0000 0.0000

0.0102 0.0102 0.0102
0.0510 0.0204 0.0000

non computable conc. histogram

0.0204

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0306 0.0102
0.0000 0.0000

0.0408 0.0816 0.0000
0.0000 0.0000 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0102

1..5 correlation histogram
6..10 correlation histogram

0.0102 0.0102
0.0000 0.0204

0.0102 0.0000 0.0204
0.0102 0.0612 0.0510

non computable correlation histogram

0.0102

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000
0.0510 0.0000

0.0102 0.0102 0.0102
0.0204 0.0000 0.0000

7# continuous
# attributes

0.0000

# nominal

Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0000
Mean Skew 0.0000
Mean Kurtosis 0.0204
Class Entropy 0.0306
Mean Attribute Entropy 0.0204
Mean Mutual Information 0.0204
Equivalent number of attributes 0.0102
Noise to Signal Ratio 0.0714
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.26. NB c50boost

Attribute
# classes 0.0145
# attributes 0.0145
# instances 0.0435
attributes
#;Einstw 0.0145
# unknown values 0.0000
unknown values
# aﬁributes * 4 instances 0.0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0145 0.0000 0.0145 0.0145
1..5 concentration histogram 0.0580 0.0290 0.0435 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0725 0.0000 0.0000 0.0580
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0580 0.0145 0.0290 0.0435 0.0000
6..10 concentration histogram with class 0.0145 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0145
# continuous attributes 0.0145
1..5 correlation histogram 0.0290 0.0435 0.0000 0.0435 0.0290
6..10 correlation histogram 0.0290 0.0000 0.0000 0.0145 0.0000
non computable correlation histogram 0.0290
1..5 missing values histogram 0.0000 0.0000 0.0000 0.0000 0.0000
6..10 missing values histogram 0.0000 0.0000 0.0435 0.0000 0.0000
continuous
%w 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0145
First Canonical Correlation 0.0145
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0145
Mean Attribute Entropy 0.0145
Mean Mutual Information 0.0290
Equivalent number of attributes 0.0435
Noise to Signal Ratio 0.0290
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.27. NB c¢50rules

Attribute
# classes 0.0220
# attributes 0.0220
# instances 0.0110

# ;;ttrlbutes 0.0000

#instances
# unknown values 0.0110

unknown values
# a‘ﬁributes * 4t instances 0.0330
# nominal attributes 0.0110
max, min, mean, stdv of nominal attribute values | 0.0110 0.0110 0.0000 0.0000
1..5 concentration histogram 0.0330 0.0110 0.0000 0.0000 0.0220
6..10 concentration histogram 0.0110 0.0220 0.0000 0.0220 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0110 0.0000 0.0549 0.0549 0.0110
6..10 concentration histogram with class 0.0440 0.0549 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0220
1..5 correlation histogram 0.0549 0.0330 0.0000 0.0110 0.0330
6..10 correlation histogram 0.0110 0.0220 0.0000 0.0000 0.0110
non computable correlation histogram 0.0220
1..5 missing values histogram 0.0000 0.0330 0.0110 0.0330 0.0110
6..10 missing values histogram 0.0110 0.0000 0.0440 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0110
First Canonical Correlation 0.0330
Mean Skew 0.0110
Mean Kurtosis 0.0220
Class Entropy 0.0440
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0110
Equivalent number of attributes 0.0220
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.28. NB c50tree

Attribute
# classes 0.0588
# attributes 0.0353
# instances 0.0588
attributes
%W 0.0000
# unknown values 0.0118
unknown values
# aﬁributes * 4 instances 0.0118
# nominal attributes 0.0353
max, min, mean, stdv of nominal attribute values | 0.0235 0.0235 0.0000 0.0118
1..5 concentration histogram 0.0118 0.0471 0.0118 0.0000 0.0235
6..10 concentration histogram 0.0588 0.0353 0.0000 0.0235 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0118 0.0000 0.0353 0.0235 0.0000
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0118
1..5 correlation histogram 0.0235 0.0235 0.0000 0.0353 0.0235
6..10 correlation histogram 0.0235 0.0000 0.0235 0.0000 0.0118
non computable correlation histogram 0.0118
1..5 missing values histogram 0.0000 0.0118 0.0000 0.0235 0.0118
6..10 missing values histogram 0.0471 0.0000 0.0118 0.0000 0.0000
continuous
ﬁnm«w 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0235
Mean Skew 0.0235
Mean Kurtosis 0.0118
Class Entropy 0.0706
Mean Attribute Entropy 0.0118
Mean Mutual Information 0.0118
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.29. NB Lindiscr

Attribute
# classes 0.0404
# attributes 0.0404
# instances 0.0101

# ;;ttrlbutes 0.0101

#instances
# unknown values 0.0101

unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0202 0.0202 0.0000 0.0000
1..5 concentration histogram 0.0101 0.0000 0.0000 0.0101 0.0101
6..10 concentration histogram 0.0101 0.0303 0.0404 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0404 0.0101 0.0000 0.0404 0.0404
6..10 concentration histogram with class 0.0202 0.0000 0.0000 0.0101 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0202
1..5 correlation histogram 0.0000 0.0101 0.0202 0.0101 0.0202
6..10 correlation histogram 0.0404 0.0202 0.0202 0.0101 0.0404
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0000 0.0404 0.0404 0.0101
6..10 missing values histogram 0.0303 0.0000 0.0202 0.0000 0.0000
continuous
W 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0101
First Canonical Correlation 0.0303
Mean Skew 0.0000
Mean Kurtosis 0.0707
Class Entropy 0.0303
Mean Attribute Entropy 0.0101
Mean Mutual Information 0.0303
Equivalent number of attributes 0.0101
Noise to Signal Ratio 0.0303
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.30. NB Ltree

Attribute

# classes 0.0156

# attributes 0.0625

# instances 0.0156

# qttrlbutes 0.0000

#instances

# unknown values 0.0625

unknown values

# aﬁributes * 4 instances 0.0312

# nominal attributes 0.0312
max, min, mean, stdv of nominal attribute values | 0.0156 0.0156 0.0000 0.0000

1..5 concentration histogram 0.0312 0.0000 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0156 0.0156 0.0156
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0000 0.0000 0.0000 0.1094 0.0156
6..10 concentration histogram with class 0.0156 0.0000 0.0000 0.0000 0.0156
non computable conc. histogram with class 0.0000

# continuous attributes 0.0156

1..5 correlation histogram 0.0156 0.0469 0.0625 0.0000 0.0312
6..10 correlation histogram 0.0000 0.0000 0.0156 0.0312 0.0000
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0000 0.0469 0.0000 0.0156
6..10 missing values histogram 0.0156 0.0000 0.0469 0.0000 0.0000
continuous
%w 0.0000
nomina,

m 0.0000
Binary Attributes 0.0000
Fracl 0.0312
First Canonical Correlation 0.0000
Mean Skew 0.0156
Mean Kurtosis 0.0156

Class Entropy 0.0156
Mean Attribute Entropy 0.0156
Mean Mutual Information 0.0312
Equivalent number of attributes 0.0156
Noise to Signal Ratio 0.0312
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.31. NB IBL

Attribute
# classes 0.0659
# attributes 0.0440
# instances 0.0000
attributes
#;Einstw 0.0220
# unknown values 0.0220
unknown values
# a‘ﬁributes * 4t instances 0-0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0549 0.0000 0.0110 0.0110
1..5 concentration histogram 0.0549 0.0330 0.0110 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0769 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000
1..5 concentration histogram with class 0.0000 0.0000 0.0110 0.0110 0.0220
6..10 concentration histogram with class 0.0110 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0220
1..5 correlation histogram 0.0549 0.0330 0.0000 0.0000 0.0110
6..10 correlation histogram 0.0220 0.0330 0.0000 0.0110 0.0220
non computable correlation histogram 0.0110
1..5 missing values histogram 0.0000 0.0000 0.0440 0.0440 0.0000
6..10 missing values histogram 0.0110 0.0000 0.0220 0.0000 0.0000
continuous
W 0.0000
nomina,
m 0.0000
Binary Attributes 0.0000
Fracl 0.0110
First Canonical Correlation 0.0659
Mean Skew 0.0000
Mean Kurtosis 0.0000
Class Entropy 0.0440
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0110
Equivalent number of attributes 0.0659
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000




B.4. SELECTION FREQUENCY BY C50BOOST 245

Table B.32. ripper c50boost

Attribute
# classes 0.0119
# attributes 0.0238
# instances 0.0357
attributes
@insm 0.0119
# unknown values 0.0000
unknown values
# aﬁributes * 4 instances 0.0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0119 0.0000 0.0000 0.0000
1..5 concentration histogram 0.0238 0.0119 0.0476 0.0357 0.0357
6..10 concentration histogram 0.0119 0.0000 0.0595 0.0000 0.0357
non computable conc. histogram 0.0238
1..5 concentration histogram with class 0.0357 0.0119 0.0119 0.0238 0.0357
6..10 concentration histogram with class 0.0119 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0119
# continuous attributes 0.0000
1..5 correlation histogram 0.0000 0.0000 0.0000 0.0000 0.0119
6..10 correlation histogram 0.0000 0.0357 0.0119 0.0000 0.0357
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0357 0.0238 0.0000 0.0714
6..10 missing values histogram 0.0119 0.0000 0.0000 0.0000 0.0000
continuous
w 0.0000
nomina;
# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0357
Mean Skew 0.0833
Mean Kurtosis 0.0119
Class Entropy 0.0476
Mean Attribute Entropy 0.0119
Mean Mutual Information 0.0119
Equivalent number of attributes 0.0119
Noise to Signal Ratio 0.0238
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.33. ripper c50rules

APPENDIX B. RESULTS ON THE 65 DATASETS

Attribute
# classes 0.0132
# attributes 0.0263
# instances 0.0000
# attributes

F#instances 0.0789
# unknown values 0.0000

# unknown values

# attributes * # instances 0.0000

# nominal attributes 0.0000

max, min, mean, stdv of nominal attribute values

0.0132 0.0395

0.0000 0.0132

1..5 concentration histogram
6..10 concentration histogram

0.0000 0.0000
0.0132 0.0000

0.0000 0.0000 0.0526
0.0132 0.0000 0.0132

non computable conc. histogram

0.0132

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0395 0.0263
0.0395 0.0000

0.0658 0.0000 0.0263
0.0000 0.0000 0.0132

non computable conc. histogram with class

0.0000

# continuous attributes

0.0000

1..5 correlation histogram
6..10 correlation histogram

0.0132 0.0000
0.0000 0.0132

0.0395 0.0000 0.0000
0.0658 0.0000 0.0263

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0132
0.0263 0.0000

0.0000 0.0395 0.0263
0.0263 0.0000 0.0000

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0395
Mean Skew 0.0263
Mean Kurtosis 0.0000
Class Entropy 0.0789
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0132
Equivalent number of attributes 0.0263
Noise to Signal Ratio 0.0263
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.34. ripper c50tree

Attribute

# classes 0.0563

# attributes 0.0000

# instances 0.0704

# ;}ttrlbutes 0.0704

#£instances

# unknown values 0.0282

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0563 0.0141 0.0141 0.0000

1..5 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000
6..10 concentration histogram 0.0000 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0282 0.0423 0.0563 0.0141 0.0141
6..10 concentration histogram with class 0.0141 0.0000 0.0000 0.0423 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0141

1..5 correlation histogram 0.0000 0.0141 0.0282 0.0423 0.0000
6..10 correlation histogram 0.0000 0.0282 0.0141 0.0141 0.0423
non computable correlation histogram 0.0000

1..5 missing values histogram 0.0000 0.0282 0.0141 0.0141 0.0000
6..10 missing values histogram 0.0423 0.0000 0.0141 0.0000 0.0000
continuous
w 0.0000
nomina;

# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0282
Mean Skew 0.0563
Mean Kurtosis 0.0000

Class Entropy 0.0423
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0141
Equivalent number of attributes 0.0000
Noise to Signal Ratio 0.0282
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.35. ripper Lindiscr

Attribute
# classes 0.0000
# attributes 0.0000
# instances 0.0685

# ;'Lttrlbutes 0.0548

#£instances
# unknown values 0.0274

unknown values
# a‘ﬁributes * 4f instances 0.0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0000 0.0000 0.0000 0.0000
1..5 concentration histogram 0.0137 0.0000 0.0685 0.0548 0.0274
6..10 concentration histogram 0.0137 0.0000 0.0000 0.0137 0.0000
non computable conc. histogram 0.0137
1..5 concentration histogram with class 0.0000 0.0000 0.0000 0.0274 0.0000
6..10 concentration histogram with class 0.0274 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0000
1..5 correlation histogram 0.0137 0.0548 0.0548 0.0137 0.0000
6..10 correlation histogram 0.0411 0.0000 0.0000 0.0548 0.0274
non computable correlation histogram 0.0685
1..5 missing values histogram 0.0000 0.0000 0.0000 0.0137 0.0137
6..10 missing values histogram 0.0000 0.0000 0.0137 0.0000 0.0000
continuous
nomina;

# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0137
First Canonical Correlation 0.0137
Mean Skew 0.0685
Mean Kurtosis 0.0000
Class Entropy 0.0548
Mean Attribute Entropy 0.0137
Mean Mutual Information 0.0411
Equivalent number of attributes 0.0137
Noise to Signal Ratio 0.0000
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.36. ripper Ltree

Attribute

# classes 0.0575

# attributes 0.0345

# instances 0.0000

# ;}ttrlbutes 0.0115

#£instances

# unknown values 0.0230

unknown values

# aﬁributes * 4 instances 0.0000

# nominal attributes 0.0345
max, min, mean, stdv of nominal attribute values | 0.0230 0.0345 0.0000 0.0230

1..5 concentration histogram 0.0115 0.0000 0.0000 0.0000 0.0230
6..10 concentration histogram 0.0000 0.0000 0.0460 0.0000 0.0000
non computable conc. histogram 0.0000

1..5 concentration histogram with class 0.0115 0.0690 0.0000 0.0115 0.0230
6..10 concentration histogram with class 0.0000 0.0000 0.0000 0.0115 0.0000
non computable conc. histogram with class 0.0000

# continuous attributes 0.0000

1..5 correlation histogram 0.0230 0.0000 0.0000 0.0115 0.0000
6..10 correlation histogram 0.0115 0.0115 0.0230 0.0000 0.0000
non computable correlation histogram 0.0115

1..5 missing values histogram 0.0000 0.0000 0.0345 0.0345 0.0115
6..10 missing values histogram 0.0000 0.0000 0.0230 0.0000 0.0000
continuous
w 0.0000
nomina;

# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0230
Mean Skew 0.0575
Mean Kurtosis 0.0460

Class Entropy 0.0460
Mean Attribute Entropy 0.0575
Mean Mutual Information 0.0345
Equivalent number of attributes 0.0575
Noise to Signal Ratio 0.0345
Mean Mult. Correl. Coef. 0.0000

SDratio 0.0000
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Table B.37. ripper IBL
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Attribute
# classes 0.0323
# attributes 0.0108
# instances 0.0215
# attributes

F#instances 0-0000
# unknown values 0.0108

# unknown values

# attributes * # instances 0.0000

# nominal attributes 0.0000

max, min, mean, stdv of nominal attribute values

0.0323 0.0645

0.0108 0.0215

1..5 concentration histogram
6..10 concentration histogram

0.0215 0.0000
0.0108 0.0108

0.0430 0.0000 0.0323
0.0108 0.0215 0.0108

non computable conc. histogram

0.0000

1..5 concentration histogram with class
6..10 concentration histogram with class

0.0215 0.0000
0.0108 0.0000

0.0108 0.0215 0.0215
0.0000 0.0430 0.0000

non computable conc. histogram with class

0.0000

# continuous attributes

0.0000

1..5 correlation histogram
6..10 correlation histogram

0.0645 0.0108
0.0215 0.0108

0.0215 0.0000 0.0000
0.0323 0.0215 0.0000

non computable correlation histogram

0.0000

1..5 missing values histogram
6..10 missing values histogram

0.0000 0.0000
0.0000 0.0000

0.0000 0.0215 0.0215
0.0000 0.0000 0.0000

# continuous
# attributes

0.0000

# nominal

% attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0215
Mean Skew 0.0860
Mean Kurtosis 0.0215
Class Entropy 0.0323
Mean Attribute Entropy 0.0323
Mean Mutual Information 0.0000
Equivalent number of attributes 0.0753
Noise to Signal Ratio 0.0108
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000
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Table B.38. ripper NB

Attribute
# classes 0.0238
# attributes 0.0357
# instances 0.0238
attributes
#:%&insm 0.0000
# unknown values 0.0238
unknown values
# aﬁributes * 4 instances 0.0000
# nominal attributes 0.0000
max, min, mean, stdv of nominal attribute values | 0.0238 0.0476 0.0000 0.0000
1..5 concentration histogram 0.0119 0.0119 0.0357 0.0000 0.0238
6..10 concentration histogram 0.0119 0.0119 0.0000 0.0000 0.0119
non computable conc. histogram 0.0119
1..5 concentration histogram with class 0.0119 0.0119 0.0119 0.0476 0.0119
6..10 concentration histogram with class 0.0238 0.0000 0.0000 0.0000 0.0000
non computable conc. histogram with class 0.0000
# continuous attributes 0.0476
1..5 correlation histogram 0.0000 0.0238 0.0476 0.0000 0.0119
6..10 correlation histogram 0.0476 0.0119 0.0000 0.0000 0.0000
non computable correlation histogram 0.0000
1..5 missing values histogram 0.0000 0.0000 0.0238 0.0000 0.0000
6..10 missing values histogram 0.0238 0.0000 0.0476 0.0000 0.0000
continuous
w 0.0000
nomina;
# attributes 0.0000
Binary Attributes 0.0000
Fracl 0.0000
First Canonical Correlation 0.0119
Mean Skew 0.0357
Mean Kurtosis 0.0476
Class Entropy 0.1190
Mean Attribute Entropy 0.0000
Mean Mutual Information 0.0119
Equivalent number of attributes 0.0238
Noise to Signal Ratio 0.0357
Mean Mult. Correl. Coef. 0.0000
SDratio 0.0000




