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Abstract. In this paper we to try to identify potential biomarkers for
early stroke diagnosis using SELDI mass-spectrometry coupled with anal-
ysis tools from machine learning and data-mining. Data consist of 42
specimen samples, ie, mass-spectra divided to two big categories, stroke
and control specimens. Among the stroke specimens two further cate-
gories exist that correspond to ischemic and hemorrhagic stroke; in this
paper we limit our data analysis to discriminating between control and
stroke specimens. We performed two suites of experiments. In the first
one we simply applied a number of different machine learning algorithms;
in the second one we have chosen the best performing algorithm as it was
determined from the first phase and coupled it with a number of differ-
ent feature selection methods. The reason for that was two-fold, first
to establish whether feature selection can indeed improve performance,
which in our case it did not seem to confirm, but more importantly to
acquire a small list of potentially interesting biomarkers. Of the different
methods explored the most promising one was Support Vector Machines
which gave us high levels of sensitivity and specificity. Finally analyz-
ing the models constructed by Support Vector Machines we produced a
small set of 13 features that could be used as potential biomarkers, and
which exhibited very good performance both in terms of sensitivity and
specificity.

Key words:stroke, biomarker discovery, data mining, support vector ma-
chines, feature selection, model stability.

1 Introduction

This paper is concerned with the first stage of protein biomarker discovery-
validation, namely exploratory data driven discovery of protein profiles that
appear to distinguish stroke from control specimens. Blood samples of the in-
dividuals participating in the study were submitted to mass spectrometry. The
resulted spectra underwent a systematic preprocessing phase in order to acquire
the appropriate data for analysis. Special care was given in the identification



of peaks and mass clustering and a systematic procedure for performing that
task is presented. Once the preprocessed data were available we undertook a
systematic study of well known data mining algorithms on the given problem.
The diagnostic power of the models build was high, however due to the high di-
mensionality of the input space the models were not easy to translate. In order
to do so we examined a number of feature selection algorithms with the aim to
reduce the dimensionality of the input space while preserving the good predictive
performance.

One of the problems that we faced is that since we used resampling procedures
to estimate the predictive performance of the algorithms we had a number of
different models produced during evaluation. In order to come up with a final
set of suggested biomarkers we had to fuse these models. However before even
trying to do so we had to show that the produced models were not sensitive to
perturbations of the training set, i.e., they were relatively stable with respect
to different training data, so that their fusion would make sense. We devised a
procedure to measure the stability of these models, and after showing that it
was quite high we combined the suggestions of the individual models to come
up with the final set of biomarkers.

2 Study population and sample handling

Forty-two consecutive patients admitted to the Geneva University Hospital emer-
gency unit were enrolled in this study. The local institutional ethical committee
board approved this study. Each patient or patient’s relatives gave informed con-
sent prior to enrollment. For each patient, a blood sample was collected at the
time of admission in dry heparin-containing tubes. Of the 42 patients enrolled,
21 were diagnosed with orthopedic disorders (without any known peripheral or
central nervous system condition) and classified as control samples (including 12
men and 9 women, aged 69.5 years, range 34-94 years) and 21 were diagnosed
with stroke (11 men, 9 women and 1 unknown, aged 61.95 years, ranging from 27
to 87 years.) including 11 ischemic and 10 hemorrhagic. After centrifugation at
1500g for 15 minutes at 4C, plasma samples were aliquoted and stored at -70C
until analysis. For the patients of the stroke group, the time interval between the
neurological event and the first blood draw was 185 minutes (ranging from 40
minutes to 3 days). The diagnosis of stroke was established by a trained neurol-
ogist and was based on the sudden appearance of a focal neurological deficit and
the subsequent delineation of a lesion consistent with the symptoms on brain CT
or MRI images, with the exception of transient ischemic attacks (TIAs) where
a visible lesion was not required for the diagnosis. The stroke group was sepa-
rated according to the type of stroke (ischemia or haemorrhage), the location of
the lesion (brainstem or hemisphere) and the clinical evolution over time (TIA
when complete recovery occurred within 24 hours, or established stroke when
the neurological deficit was still present after 24 hours).



3 Preparation of SELDI ProteinChips

The Strong Anion Exchange arrays (SAX2 ProteinChip c©,Ciphergen Biosystems,
Fremont, CA, USA) were used as a first fractionation step of the plasma samples.
SAX2 spots were first outlined with a hydrophobic pap-pen and air-dried. Chips
were then equilibrated 3 times during 5 min with 10µL binding buffer (20 mM
Tris, 5 mM NaCl, pH9.0) in a humidity chamber at room temperature. Two
µL of binding buffer was applied on each spot and 1µL of crude (stroke or
control) plasma samples was added to each spot and incubated 30 min in a
humidity chamber at room temperature. Plasma was removed and each spot
was individually washed 5 times 5 min with 5µL of binding buffer followed by 2
quick washes of the chip with deionised water. Excess of H2O was removed and
while the surface was still moist, 0.5µL of sinapinic acid (SPA, Ciphergen) in
50% (v/v) acetonitrile and 0.5% (v/v) trifluoroacetic acid was added twice per
spot and dried. The arrays were then read in a Protein-Chip reader system, PBS
II sery (Ciphergen Biosystems, Fremont, CA, USA). The ionized molecules were
detected and their molecular masses determined according to their time-of-flight
(TOF). TOF mass spectra, collected in the positive ion mode were generated
using an average of 65 laser shots throughout the spot at a laser power set slightly
above threshold (10-15% higher than the threshold). Spectra were collected and
analysed using the Ciphergen Proteinchip software (version 3.0) [1, 2]. External
calibration of the reader was performed using the ”all-in-1” peptide molecular
weight standards (Ciphergen Biosystems, Inc.) diluted in the SPA matrix (1:1,
vol/vol) and directly applied onto a well of a normal phase chip.

4 Data Preparation

Each spectrum consists of 28351 data points of the form (mass/charge (m/z),
intensity), with the m/z ratio ranging from 8 to 68600 Daltons (within the
text the terms m/z, mass/charge and mass, will be used in indistinguishable
manner). Analysis is further constrained to m/z values bigger than 1 kilodalton
resulting in 24901 data points. Intensity values lower than this threshold where
not considered due to the distortion caused by the matrix molecules. Biologists
performed baseline removal and spectrum normalization with the aid of the
Ciphergen ProteinChip Software. Spectra normalization was done with total
ion current using a number of manually detected peaks. Then the Ciphergen
ProteinChip Software was used to first identify peaks on each one of the available
spectra (section 4.1), which should be clustered in order to determine the distinct
ones (section 4.2).

4.1 Peak Detection

Peak detection is an effort to further reduce the dimensionality of the problem.
It is a critical step on the outcome of which depends heavily the quality of the
final results. The detected peaks will provide the basis for the construction of the



final variables that will describe the spectra. Obviously variables of poor quality
will produce poor results.

Peak detection was done within the Ciphergen ProteinChip Software. We
used the software in order to determine a list of peaks for each spectrum. This was
done for a single spectrum each time without taking into account the remaining
spectra; the final outcome was a list of peaks for each spectrum.

The peak detection process accepts two parameters: valley depth and height,
both used to control different aspects of the signal to noise ratio. The first one
indicates how many times higher than the noise level should be the depth of
the valley between two consecutive peaks, while the second indicates how many
times higher than the noise level should be the height of a peak. Appropriate
adjustment of these parameters gives rise to a different number of detected peaks
per spectrum. We experimented with a number of different values of these pa-
rameters, setting them manually through the Ciphergen Protein Chip software,
and produced different descriptions–datasets–for the problem. The names of the
datasets follow the format vdX hY, where X, and Y, are the values set for the
valley depth and height parameters. The detailed results on the total number
of detected peaks and the average number of peaks per spectrum for each pa-
rameter setting are given in table 1. The default entry denotes the setting of
the parameters given as default by the software. Manual indicates a description
of the problem that was the result of the intervention of the domain experts
in order to define an initial set of peaks; the domain experts visually inspected
all the 42 samples and identified manually points in the spectra that they con-
sidered to be peaks on a case by case basis. The reason behind this extensive
experimentation with different values of the parameters is to acquire an initial
understanding of the behavior of the used methods to different signal to noise
ratios. If we allow for low values of that ratio we would detect more peaks some
of them being possibly part of the noise. Allowing only for high values of the
signal to noise ratio will produce fewer peaks but might result in loss of valuable
information.

In a next step we will identify which peaks among the different spectra cor-
respond to the same mass based on their mass distance.

4.2 Mass Clustering

Each detected peak corresponds either to a unique protein with the given m/z
ratio or possibly to several proteins that share the same m/z ratio. The idea
is to find which of the detected peaks among the different spectra correspond
to the same m/z ratio. The problem is complicated by the measurement error,
merr, of the apparatus which is around ±0.05% − 0.03% of the measured m/z
ratio (m/z±m/z×merr). Using as a starting point the lists of peaks produced
by the peak detection process we have to produce a list of unique features, each
one corresponding to a m/z ratio, that will be used to describe all the spectra in
a uniform manner. The idea is to group together into a single variable all those
peaks that correspond to the same m/z value, i.e., all those peaks whose m/z
ratios have a distance which is smaller than twice the mass measurement error,



Table 1. Results of the different peak detection settings for the valley depth (vd), and
height (h), parameters.

datasets Number of Number of
detected peaks distinct masses

manual 1001 33
vd10 h10 486 52
vd7 h7 675 75
vd6 h6(default) 788 86
vd4 h4 1126 123
vd3 h3 1482 154
vd2 h2 2441 256
vd1 h1 8950 681

i.e. 2×merr, of the apparatus. Under that scenario two masses m/za,m/zb, will
be considered as the same masses if the corresponding intervals [m/za±m/za×
merr], [m/zb ± m/zb × merr] have an overlap. The variables constructed from
that procedure will provide the description of each spectrum; wrong decisions
on what is different and what is the same can have a great impact on the final
results both in terms of diagnostic performance and the discovered biomarkers.

To determine which peaks correspond to the same mass and which are distinct
we applied a hierarchical clustering procedure, [4], based only on the m/z values
of the detected peaks. Furthermore due to the special nature of the problem
some additional constraints should be imposed. Before proceeding to further
details of the algorithm we will explain how we measure the distance between
two individual masses (clustering algorithms are usually based on some notion of
distance of the instances that should be clustered). The idea is to express mass
distances relatively to the mass scale so that they can be directly comparable
with the 2 ×merr. We decided to use the following distance measure between
two masses m1,m2:

d(m1,m2) =
|m1 −m2|

µ
, µ = (m1 +m2)/2.

where the distance of two masses is expressed relatively to their mean, a measure
which is on the same scale as merr.

For a hierarchical clustering algorithm to be completely defined one has to
provide a measure of the distance between sets of instances in our cases sets of
masses. We decided to represent a cluster of masses simply by the average of the
masses it includes and the distance between two clusters of masses, C1, C2, sim-
ply as the d(µC1

, µC2
) distance of the corresponding averages. In essence we are

performing centroid linkage based hierarchical clustering. The complete cluster-
ing procedure together with the appropriate constraints are given in algorithm 1.

The definition of the clustering procedure is not yet completed, we have to
give the additional constraints imposed by the nature of the specific problem.
First, clusters can be merged only if their distance is less than merr (the first



condition of the while loop). Since each final cluster contains small perturbations
of a given mass we should not group together masses that in reality correspond
to different masses. Second, if two clusters have been identified as possible can-
didates for merging, i.e., d(C1, C2) ≤ 2 ×merr, merging will only take place if
the two farthest elements of the clusters have a distance which is smaller than
2 × merr (the second condition of the while loop). This constraint also covers
the case of merging together masses that come from the same spectrum; since
the distance between any two masses from the same spectrum would be more
than 2 × merr this type of merging will not be allowed either. However there
have been cases of spectra, when low signal to noise ratios was used in peak
detection, where this condition was not true, i.e., the software detected peaks
among the same spectrum with a mass distance smaller than 2×merr. We have
chosen to keep all the cases like that and not allow their merging either, this
is why sometimes some feature sets might contain masses that have a distance
which is smaller than 2×merr.

Among the possible candidate pairs for merging that satisfy the constraints
the algorithm chooses the one that has the minimum distance (third condition
of the while loop). In figure 1 we present a schematic example of the situations
that may appear, for the specific configuration of masses the algorithm would
terminate at the sixth step since there are no more masses to merge.

When there are no more clusters to merge the algorithm simply returns
the list of remaining clusters, C. Each of them will correspond to a specific
mass/charge ratio, the mean of the mass/charge ratios found in it. Every cluster,
Ci, will now become a feature of the description of our spectra. In the next section
we will see how we assign values to these features for each of the spectra.

To summarize the first two preprocessing steps: different signal to noise trade
offs (table 1) result in peak sets of varying sizes. The mass/charge values in each
of these peak sets are clustered according to the algorithm given above, resulting
in different feature sets, again of different size (their exact cardinality is given
in Number of distinct masses of table 1).

Algorithm 1 MassCluster(L)

{L : list of masses mi from all the spectra}
Ci ← mi,mi ∈ L
C ← {Ci}
while Exist Cl, Ck,∈ C with d(µCl , µCk ) ≤ 2×merr AND
argmaxml,mkd(ml,mk) ≤ 2×merr, ml ∈ Cl, mk ∈ Ck AND
d(µCl , µCk ) = argminCi,Cj (d(µCi , µCj )) do

merge(Cl, Ck)
end while
return C



4.3 Intensity Values

One final issue that had to be addressed is how the values of the Ci features
determined by the clustering algorithms were going to be calculated for a given
spectrum (these values will correspond to the intensity of the corresponding
peaks). The answer is obvious for all the clusters that are associated with one
of the detected peaks in the spectrum, but less so for these clusters that do not
have an associated peak, i.e., there was no peak detected in that m/z range for
the given spectrum. The problem is that each spectrum is potentially described
by a different subset of features of C. There is a number of possible options
like assigning an indicator of non-applicability or an indicator of missing values.
The first is more appropriate but it is not straightforward since most of the
standard learning algorithms do not offer that possibility. The option of missing
value is less appropriate because it does not really match the semantics of the
problem. Another alternative would be to actually fill the values of the absent
features Ci, either with the value of zero which could mean that the intensity
of the corresponding peak is zero, a logical assumption since absence can be
interpreted as an indication of zero intensity, or with a value taken directly
from the spectrum within the close neighborhood of Ci, i.e. within the interval
Ci ± Ci × merr . We have opted for the second option because we think it is
more robust, and the value that we assign is the maximum intensity over the
close neighborhood. Having the actual intensity values means that the learning
algorithm will less prone to errors introduced by the peak detection procedure.
This is not possible when we assign a value of zero on the intensities of the
non-detected masses since the intensity information is lost.

In an alternative direction one can consider a completely different family
of learning algorithms that assume a different representation paradigm, namely
relational learning algorithms. This type of algorithms allow for representations
of learning paradigms that are of variable length. However they do not fall within
the scope of the current paper.

4.4 Intensity Normalization

The above procedures gave rise to a fixed-length attribute-value representation
of our spectra. Each spectrum is described by the set C of Ci features where each
feature corresponds to a specific mass/charge ratio and the value of the feature
is the intensity of the spectrum in the close neighborhood of the given ratio.
Since different ratios have different domains of values (minimum and maximum
values of intensities differ radically between low and high ratios of mass/charge)
we had to scale them to the same interval. We applied a simple scaling where the
values of each feature Ci where normalized by its corresponding maximum, i.e.
C ′i = Ci/max(Ci), the new values will be in the [0, 1] interval. These algorithms
based on distance measures or dot products, like the nearest neighbor algorithm,
support vector machines and multilayer perceptrons, will not be affected by the
different scales of the variables.
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Spectra 1
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Fig. 1. Example of mass clustering. The numbered steps indicate the sequence of the
merging steps. Steps 5 and 6 are not allowed because they violate domain constrains.
Step 5 because it would put into the same cluster two masses that have a distance that
is bigger than 2 ×merr; moreover it would have placed together two distinct masses
from the same spectrum (spectrum 1), and step 6 because the distance of the two
clusters exceeds the 2×merr threshold.



5 Learning with mass-spectra

The learning experiments can be distinguished to two suites of experiments. In
the first one we applied a series of algorithms on the eight available datasets
(section 5.1). In the second suite we explored feature selection in order to see
whether we can improve our classification performance and on the same time
acquire models based on smaller feature sets which are easier to explore (sec-
tion 5.2).

All the evaluations of performance were done using ten-fold cross validation.
Control of the statistical significance of the differences between the learning
algorithms was done using McNemar’s test with the p value set to 0.05. Further-
more since we were comparing different learning algorithms we had to establish
a ranking schema based on their relative performance as this was determined by
the results of the significance tests. The procedure we followed was: in a given
dataset every time an algorithm, a, was significantly better than another algo-
rithm b then a was credited with one point and b with zero points, if there was
no significance difference between the two algorithms then both were credited
with half point. If one algorithm is significantly better than all the others then it
will get n−1 points, where n is the total number of algorithms being compared,
while if there is no significance difference between the algorithms then each one
will get (n− 1)/2 points.

We have to note here that with such a small sample it is very difficult to
get significant differences between the algorithms; in some cases the test did not
signal a significant difference even though one of the algorithms had more than
double the error of the other. In some sense the test of significance we used was
quite conservative in detecting significant differences.

5.1 Learning Algorithms and Parameters

We experimented with a number of different classification algorithms trying to
cover a variety of different learning approaches. Moreover for each one of them
we did not rely on the default parameters settings but explored a number of
them. We used one decision tree algorithm J48, [5, 6], with three different values
for the M parameter, M=2,5,7, a parameter that controls the minimum number
of examples allowed in each leaf node of the decision tree, in one sense it controls
the complexity of the model, higher values mean simple and more general models;
a nearest neighbor algorithm, IBL, [4], with the number of nearest neighbors,
k, varying k = 1, 3, 5, low values of k correspond to complex and highly variant
models similarly to low values of the M parameter; a support vector machine
algorithm, SVM, with a simple linear kernel and the value of the C parameter
being C=0.5, 1, 2, [7], and a multilayer perceptron, MLP, of a single layer of ten
hidden units [8]. The implementations of the algorithms were the ones of the
WEKA machine learning environment, [5].



Table 2. Algorithms and their explored settings

algorithm Parameter Value

SVM C 0.5,1,2
J48 M 2,5,7
IBL K 1,3,5
MLP - -

Base Learning Results Each of the learning algorithms was applied to each
one of the eight datasets given in table 1, for each one of its parameter settings
given in table 2. Overall the number of base experiments was 80.

We do not present the complete results of each parameter setting but only
the results of the best setting for each algorithm over the eight datasets, table 3.
To get a better picture of the relative performance of the algorithms we also give
graphically the error evaluation results, figure 2. What is immediately evident is
the bad performance of the decision trees algorithm. In almost all the different
datasets it is the worst classification algorithm. In terms of its ranking it is never
significantly better than any other algorithm and it is once significantly worse
than two (vd1 h1, SVM, MLP) and twice significantly worst than one (vd2 h2-
MLP, vd10 h10-SVM). There are more datasets in which J48 has more than
double the error of other algorithms but the test did not signal a significant
difference probably due to the small number of available instances as mentioned
earlier.

One of the surprising results is that the manual dataset (the dataset in which
the domain experts defined the set of peaks based on the visual examination
of the spectra) is the one that shows the lowest performance among the eight
examined datasets.

We will now take a closer look at the sensitivity and specificity performance
of SVM since it was the algorithm that achieved not only the best average
performance among all the different versions of the data sets, but it was also
the one whose performance exhibited the smallest variance. Sensitivity in this
application problem will be the number of detected strokes over the total number
of strokes, while specificity the number of detected controls over the total number
of controls (complete results in table 4). We get excellent results for sensitivity,
actually in five of the eight datasets it is 100% and in the remaining three it is
between 95% and 90%, resulting in an average of 97%. However the specificity
is lower and the number of control samples misclassified as stroke ranges from
three up to nine resulting in values of specificity between 57% and 86%, with an
average of 71%. The fact that the performance of SVM is good and stable over
the different versions of the datasets is an indication that we are dealing with a
problem in which one has to closely examine more than one variable in the same
time in order to make a classification of a sample.

We have to note here that the results reported are based on cross validation
which means that the created models are always tested on samples which have



not been used in the construction of the classification model. Error in the training
set is much smaller some times even zero but it should never be used as an
indicator of performance since it is always overly optimistic.

Table 3. Estimated errors in base experiments, the numbers in parentheses are the
scores that the algorithms achieve for a given dataset, see details in text.

dataset IBL-5 J48-5 SVM-0.5 MLP Average

manual 30.95(1.5) 28.57(1.5) 21.42(1.5) 28.57(1.5) 27.38
vd10 h10 21.42(1.5) 30.95(1.0) 14.28(2.0) 19.04(1.5) 21.42
vd7 h7 21.42(1.5) 33.33(1.5) 16.66 (1.5) 21.42(1.5) 21.42
vd6 h6(default) 16.66(1.5) 28.57(1.5) 16.66 (1.5) 21.42(1.5) 22.61
vd4 h4 21.42(1.5) 33.33(1.5) 14.28(1.5) 19.04(1.5) 23.21
vd3 h3 26.19(1.5) 33.33(1.5) 19.04(1.5) 14.28(1.5) 22.02
vd2 h2 30.95(1.0) 33.33(1.0) 14.28(1.5) 11.90(2.5) 20.83
vd1 h1 26.19(1.0) 33.33(1.0) 11.90(2.0) 14.28(2.0) 32.14
Average 24.40 31.84 16.07 18.75

Table 4. Specificity and Sensitivity results of SVM on the base experiments. Cells of
the tables contain counts.

manual vd10 h10 vd7 h7 vd6 h6

Ctrl Strk Ctrl Strk Ctrl Strk Ctrl Strk
Ctrl 12 9 15 6 14 7 14 7
Strk 0 21 0 21 0 21 0 21T

ru
e

Predicted

vd4 h4 vd3 h3 vd2 h2 vd1 h1

Ctrl Strk Ctrl Strk Ctrl Strk Ctrl Strk
Ctrl 15 6 14 7 17 4 18 3
Strk 0 21 1 20 2 19 2 19T

ru
e

Predicted

We will take a closer look on the behavior of the SVM among the different
datasets in what concerns its specificity, i.e. the number of control instances
that are wrongly classified as stroke. In table 5 we give the control instances
that are wrongly misclassified as stroke among the different datasets. There
are two instances, 34, 30, which are systematically misclassified among all the
datasets; two which are misclassified in seven out of the eight datasets, and the
remaining range from six misclassifications down to one. In order to have a more
precise idea of why these instances are misclassified we will take a look to a
specific dataset, vd6 h6, and see the values of the linear function produced by



10
0

20
0

30
0

40
0

50
0

60
0

70
0

15

20

25

30

Base Experiments

Number of features

%
 E

rr
or

IBL
J48
SVM
MLP

Fig. 2. Errors of the learning algorithms on the eight different datasets traced with
respect to the number of features of the initial datasets.

SVM for each instance when that instance was a part of a fold test. Remember
here that since we are using ten fold cross-validation to perform error estimation
we have ten different learned models one for each separation to train and test
sets. Graph 3 give us for each fold I of the cross validation the values of the
linear function, learned on the train set of the Ith fold, when applied to each
one of the instances of the corresponding test set. When the value of the linear
function on a given instance is higher than zero then that instance is classified
as stroke, otherwise it is classified as control. From the graph we can see that
the most problematic instances are 34, 30 and 38 which had output values that
were much further than the decision surface. The remaining four instances were
very close to the decision boundary and they can be considered as near misses.
It remains to be seen what are the particularities of these three control samples
that place them so far and on the wrong side of the decision surface.

5.2 Feature Selection Experiments

In order to examine whether it is possible to further improve the predictive
performance of the SVMs we also examined a number of feature selection algo-
rithms. Even if we do not manage to improve performance but keep it at the
same levels, having smaller feature sets would give us a better understanding of
what factors are important in determining stroke or no-stroke. Error evaluation
was done with feature selection as a part of the cross-validation loop. That is,
for each fold we first applied feature selection and then the learning algorithm
on the selected features. Alternatively feature selection could be done only once
in a preprocessing step but this would optimistically bias the results of the error



Table 5. Control instances that were wrongly classified as stroke by SVM among the
different datasets.

Instances Ids

dataset 34 30 23 38 40 29 33 5 28 3 41 36 27 8

manual x x x x x x x x x
v10 d10 x x x x x x
vd7 d7 x x x x x x x
vd6 d6 x x x x x x x
vd4 d4 x x x x x x
vd3 h3 x x x x x x x x
vd2 d2 x x x x x
vd1 d1 x x x x x
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Fig. 3. Each one of the xI partitions of the graph corresponds to the Ith fold of the
cross validation. Within it we see the test instances that were associated with the test
set of that fold and their output values as they were determined by the linear model
produced by the SMV algorithm when trained on the train set of the Ith fold.



evaluation, since the whole data would have been used to provide a part of the
model, in this case the selected features.

We experimented with three different feature selection algorithms, Informa-
tion Gain based feature selection (IG) [4], Relief-F (RF) [9], SVM based feature
selection (SVMfs). They follow completely different paradigms of feature selec-
tion. In information gain features are selected on the basis of their mutual in-
formation with respect to the target variable. It is a univariate feature selection
method and not able to capture feature interactions; moreover it can result in
feature sets that contain many correlated features, ie, redundant features, which
happen to have high score with the class. The Relief-F algorithm is able to bet-
ter capture feature interactions and is based on the notion of nearest neighbor
classification; features which help to predict the class correctly get a high score
while features that do not discriminate or lead to false predictions get a low
score. In SVM based feature selection a simple linear kernel is used to construct
a classification model; based on that model features that get high coefficients
are considered of high importance (this is true when all features are scaled to
the same interval).

All the methods can be used either with a threshold, ie, select all features
that get a score higher than the threshold, or to select a given number N of
features. We have opted for the second choice since apriori we did not have
any idea of what could be a good value for a threshold. We have chosen to set
the number of selected features to N = 15, a number of features which was
considered acceptable from the domain experts. IG though had a problem since
the features for which it was assigning a score more than zero were always less
than 15 so for this algorithm we used instead a threshold set to zero.

Feature Selection Results Overall the results of feature selection are rather
disheartening. The complete results are given in table 6 and figure 4. All feature
selection methods apart from SVMfs significantly harmed the predictive perfor-
mance. In the case of SVMfs the performance in average overall the datasets
was also damaged. However there were two datasets in which the performance
of feature selection was comparable with the performance on the complete set,
namely vd10 h10 where there was a small deterioration of the predictive error,
and vd7 h7 where there was a small improvement, the corresponding estimated
errors are 16.66% and 14.28%. The fact that only SVMfs had an acceptable per-
formance is a further indication of the importance of accounting for interactions
between features.

It seems that 15 features could provide a sufficient basis for discriminating
between the two populations, since we can get similar performance with the
complete datasets, at least for two of the eight datasets. However further exper-
iments should be performed in order to determine the optimal set of features.
Here we simply restrict ourselves to feature sets of size 15. It might be the case
that fewer are required to discriminate; more experiments are needed to address
that issue. An interesting issue in the same direction is the possibility of finding



different feature subsets of equally good classification performance, this could
provide a basis for further exploration of the features interactions.

Table 6. Results of feature selection with SVMs

dataset IG SVMfs Relief

manual 33.33 26.19 28.57
vd10 h10 30.95 16.66 30.95
vd7 h7 33.33 14.28 38.09
vd6 h6(default) 45.23 21.42 35.71
vd4 h4 45.23 21.42 42.85
vd3 h3 38.09 26.19 33.33
vd2 h2 40.47 35.71 35.71
vd1 h1 16.66 21.42 33.33

Average 35.41 20.76 33.03

6 Identification of Potential Biomarkers

One of the main goals of this study, probably the most important, is to suggest a
small set of features that could provide the basis for a potential set of biomarkers.
For this we have to analyze the models produced by our learning algorithms in
order to determine which features were most important. The task would have
been relatively straightforward if the best performing algorithms had been those
that produce readable models such as J48 decision trees. This was not the case.
Since SVMs turned out to be the most effective algorithm both as a base learner
and a feature selector, we will choose its models for further analysis.

6.1 Model Stability Control

Before proceeding to the actual analysis of the models we will undertake a small
study of the stability of the models produced with respect to perturbations of
the training set. Obviously models that change radically with different training
sets would not be of much use.

In order to examine stability we relied on the different models constructed
by cross validation. Since we used ten-fold cross validation as the evaluation
strategy in essence we used ten different training sets, one for each fold of the
cross-validation. Any two training folds have a difference of around 22% when
one is using ten fold cross-validation.

To quantify the stability of the produced models we adopted the following
strategy: for each fold we produced a ranking of the features based on the impor-
tance assigned to them by the coefficients of the linear discriminator produced
by the SVM. To compare the rankings among two different folds a, b, we used
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Spearman’s rank correlation coefficient, [10]:

rab = 1− 6
∑

f

(fra − frb)2

N(N2 − 1)
,

where the sum is taken overall the features f and fra , frb , are the ranks of the
f feature in the two different folds and N is the number of features. At the end
we average the pairwise rank correlation coefficients overall the fold pairs. The
results are given in table 7. As one can see there the average rank correlation
coefficients are quite high which means that the relative order of the features
among the different training folds is preserved to a great extend. We have to
note that if we restrict attention only to the top ranked features the averages
are even higher. This happens because there are a lot of differences in the way
that the less important features are ranked from fold to fold3, whereas in the top
the changes are small. The rank correlation coefficients show that the produced
models are quite stable.

We can take a closer look at the model stability by examining how the list of
the top 15 features is determined for the vd7 h7 dataset. This dataset produced

3 Less important features get very small coefficients by the linear discriminator, in
these cases a small change in the coefficient can change a lot its ranking at the last
positions.



some of the best results both at the base experiments but also in feature selection
with SVM with estimated errors being as low as 14.28%. In table 8 we give for
the top 15 features, ie, mass/charge ratios, the rank that they get for each of the
cross validation folds. As we can see especially for the top ranked features their
rank is quite stable among the different folds. The order in which the features
appear in the table is determined by their average rank among the folds of the
cross-validation, so it reflects their importance.

Table 7. Averaged rank correlation coefficient of feature rankings.

manual vd10 h10 vd7 h7 vd6 h6 vd4 h4 vd3 h3 vd2 h2 vd1 h1

0.8123 0.8226 0.7752 0.7825 0.7827 0.7388 0.7050 0.7459

Table 8. Top 15 feature for vd7 h7 based on their average rank among the ten folds
of the cross-validation for the different datasets.

mass/charge 10 1 2 3 4 5 6 7 8 9 avg var

15142.21 1 2 3 2 7 1 4 1 3 1 2.5 1.9
6650.63 2 3 1 3 5 2 2 2 4 2 2.6 1.1
66454.06 6 1 4 5 1 3 3 7 5 4 3.9 1.9
4480.20 4 8 7 11 2 4 1 3 2 6 4.8 3.1
9114.72 8 5 8 4 8 6 6 5 6 8 6.4 1.5
7578.39 3 6 6 7 13 5 13 4 7 5 6.9 3.4
28130.95 5 21 2 1 9 7 5 19 8 3 8.0 6.8
66704.85 16 4 13 12 3 10 9 15 10 9 10.1 4.2
16001.45 7 9 20 9 18 8 12 6 9 7 10.5 4.7
33357.24 9 7 9 13 6 12 8 21 13 17 11.5 4.7
22290.18 14 25 12 8 11 19 11 14 14 18 14.6 4.9
9394.80 20 15 17 15 14 17 15 8 12 20 15.3 3.5
8611.98 11 16 5 10 17 15 14 18 11 41 15.8 9.6
8010.05 12 17 19 16 19 16 17 12 18 13 15.9 2.6
4077.23 13 42 11 6 38 9 7 10 15 15 16.6 12.7

6.2 Model Stability across Datasets

We will now examine whether the models produced by the SVM change over
the different datasets that we used. The procedure is somehow similar to the
one followed in the previous section. For each dataset we identified the 15 most
discriminating features based on the results of the ten fold cross-validation, so we
got seven more feature tables similar to table 8. From these tables we created a
pool of 15×8 features and after accounting for the merr of the mass/charge ratios



we ended up with 44 different features 4. The meaning of these final features is
that each one of them was ranked among the top 15 features in at least one of
the eight datasets.

We further characterized the quality of a given feature for a given dataset
to a finer grain level by the percent of the folds in which it appears among the
ten folds of the cross validation. So finally we had for each dataset a vector of
44 dimensions where each dimension was giving the frequency of selection of
the corresponding mass/charge ratio in the folds of that dataset. Ordering these
features by their quality over all the datasets gave figure 5. The darker the color
of a cell is the higher the selection frequency of the corresponding feature is for
the corresponding dataset. The quality of a feature is determined by an eight
dimensional vector (each dimension is the frequency of selection of the feature
in the top 15 features among the folds of a given dataset) and it is simply the
average of the vector values. The features that appear on the top of the graph
are the ones selected most often among the different datasets, the higher a ratio
appears in the figure the most important it is considered by the SVM over all
the datasets.

There are three different groups among the eight datasets on the basis of
the features that they select. In the first we find all the datasets with a low
number of features, ie, groupa={vd3 h3, vd4 h4, vd6 h6, vd7 h7, vd10 h10}, the
second consists of the datasets with many features, groupb={vd2 h2, vd1 h1}.
The manual version is closer to the first pattern but it has still some differences.
Namely the differences in the mass/charge ratios with values 66454 and 66704
which are completely absent because in the manual version they were removed
since they correspond to albumin. What is interesting is the completely different
set of features found in the datasets of groupa and groupb. The datasets of the
second, especially vd1 d1, contain a lot of peaks and many of them can be part
of the noise.

The noise is an intrinsic characteristic of the samples and not of the sampling
procedure since this was exactly the same for all samples used in this study. Con-
sidering the good predictive performance on the datasets of groupb the question
that arises is whether the noise, especially since it is intrinsic to the samples, can
provide some discriminative information. A possible explanation of the good per-
formance on the datasets of groupb could be in the way the spectra were initially
normalized. Normalization was done using total ion current, if the peaks chosen
as the normalization basis were discriminative peaks then by scaling all spectra
according to them would also scale the noise making it thus discriminative. For
the moment though this remains an open issue.

6.3 Identifying potential biomarkers

We will now summarize the work done so far in view of suggesting a small set
of potential biomarkers. Applying SVMs and MLP on the different complete

4 Accounting for the merr also resulted in the merging of two masses of the vd1 h1
dataset, namely 3326.102 and 3335.321, so this is why for that dataset there will be
only 14 top features.
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Fig. 5. Frequency of appearance of the top mass/charge ratios among the folds of
cross-validation. Black denotes 100% frequency of appearance and white 0%.



datasets, ie, no feature selection, gave us good results (table 3). When we per-
formed feature selection with SVMs and feature sets of size 15 we got similarly
good results for a couple of datasets, namely vd10 h10, vd7 h7 (table 6), so a
set of 15 features could provide a good basis for discrimination. Examining the
stability of the models produced by SVMs we have shown that this is high (ta-
bles 7,8) in other words the set of the top 15 features is quite stable. Based on
this observation we retrieved the sets of the top 15 features for each dataset
(always with SVMs). We distinguished three groups of datasets from which we
think that the most interesting is groupa. We did not continue with groupb be-
cause we are not sure on how to explain the good performance on these datasets.
The manual dataset was left outside since it did not provide very good results.

Focusing on the features chosen in groupa we see that there are a lot of com-
monalities in the top selected features among the different datasets (neighboring
dark cells at the top of the graph in figure 5). We consider these to be the most
interesting potential biomarkers. If we had to suggest a precise set of masses
we would say that the ones which in the graph of figure 5 appear higher than
the 59700, including 59700, are the most interesting ones. From these ones we
can exclude 66454 and 66704 since they correspond to albumin resulting in the
features given in table 9.

Just to provide an indication of the predictive performance with the masses
of table 9 we can say that the error of a very simple algorithm like IBk evaluated
with ten fold cross-validation on that subset of 13 features was 90.5%, 88.1%,
85.7% (respectively for k=1,3,5). A high performance that shows that all the
features are highly relevant and should be considered in a parallel manner in
order to perform the classification. The sensitivity and specificity results are
given in table 10, specificity is stable at 85.7% while sensitivity takes the following
values: 95%, 90% and 85.7%, for k=1,3,5.

Table 9. Potential biomarkers, from left to right and top to bottom line, in increasing
order of importance.

59700.03 15890.74 4077.23 8601.25
9114.72 16001.45 7578.39 4638.32
33357.24 28130.95 6650.63 4480.20
15142.21

7 Related Work

The analysis of mass spectrometry data using machine learning methods has
attracted a lot of attention recently. It posses a number of significant challenges
namely the high dimensionality of the input space and the data preparation and
preprocessing issues. Just to shortly review the relevant literature we should



Table 10. Specificity and Sensitivity results of IBk on the list of potential biomarkers.
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mention the special issue on data mining methods for mass spectrometry in the
Proteomics journal [11], devoted to the presentation of the results of a workshop
whose goal was the analysis of mass-spectrometry data for lung cancer diagnosis
and biomarker discovery using machine learning and data mining methods. The
papers presented in that issue explore a number of different machine learning
and data mining methods including decision trees, genetic algorithms, logistic
regression, and neural networks.

Other relevant work includes [12] where the authors used decision trees
and more precisely CART, [13], to distinguish between prostate cancer, be-
nign prostate hyperplasia and healthy samples based on the mass-spectra of
serum samples. [14] where they tried to discriminate between breast cancer and
healthy samples on the basis of serum mass-spectra. In this work they used a
special form of linear discriminant functions based on statistical learning called
Unified Maximum Separability Analysis which was first applied in microarray
analysis in [15]. [16] performed a study on prostate cancer. One of the interest-
ing parts of that study was that they have chosen to represent the spectra using
the coefficients of the wavelet decomposition of the initial spectra and apply on
these coefficients a linear discriminant function. The problem though working
with the wavelet coefficients is that the final model is not easily interpretable
since it is given in a different space than m/z ratios. The same team applied
boosted decision trees, [17], in [18] on the same prostate cancer problem. A very
interesting work is that presented in [19] where the problem is again prostate
cancer diagnosis and biomarker discovery. In this paper the authors follow an
exhaustive procedure of data preparation and preprocessing that includes noise
reduction, baseline elimination and peak identification not necessarily in inde-
pendent stages and use boosting to perform the final classification.

8 Future Work

Although the results are quite good, there are still many things that could be
improved. We see most of the work mainly on the preprocessing stage. More work
should be done in the peak identification part and the handling of the noise. We
should further examine whether there is some information in the noise patterns
possibly by experimenting with the complete spectra and not only with their
identified peaks. Normalization is also a crucial factor and different methods of
spectra normalization should be explored.



Other possible directions include a more systematic experimentation with
SVMs in order to further fine tune their parameters, here we limited ourselves
only to a small set of values of a single parameter.

The search for a good subset of features was limited to sets of fixed length,
this is an issue that should be further explored. Are there other, possibly smaller
feature sets, with equally good discriminating power? Can we get different sub-
sets with similar good performance? And if yes what can we conclude about the
cross-set interactions? Some work has already been done in identifying feature
interactions with promising results. Some of these can be used either to provide
new insights about the protein interactions or as part of the preprocessing to
reduce the initial set of features.
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