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Abstract
Mass-spectra based proteomic profiles have received widespread attention as potential tools for biomarker discov-
ery and early disease diagnosis. A major data-analytical problem involved is the extremely high dimensionality
(i.e. number of features or variables) of proteomic data, in particular when the sample size is small. This article
reviews dimensionality reduction methods that have been used in proteomic biomarker studies. It then focuses on
the problem of selecting the most appropriate method for a specific task or dataset, and proposes method
combination as a potential alternative to single-method selection. Finally, it points out the potential of novel
dimension reduction techniques, in particular those that incorporate domain knowledge through the use of infor-
mative priors or causal inference.
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INTRODUCTION
Motivation
There is a growing body of research on biomarker
discovery from high-throughput biological data. The
search for biomarkers is typically cast as the task of
finding the most discriminating variables (or features)
for classification (e.g. discriminating healthy versus
diseased, or different tumor stages). A major problem
is the huge number of dimensions or features—genes
or proteins/peptides—that represent potential bio-
markers in a microarray or mass spectrum. This high
dimensionality is compounded by data sparsity: in
controlled experiments, the number of available
cases/controls rarely exceeds a few dozens, so that
the number of variables or features p is usually much
higher than the number of samples n. This so-called
high-dimensional small-sample problem raises sig-
nificant data-analytical issues [1, 2]. When p> n,
certain techniques (e.g. standard linear discriminants)
will fail; others will build classifiers on noisy as well as
relevant features, thus degrading generalization;

still others will only find a solution at extremely
high computational cost. Dimensionality reduction
(DR) is therefore an indispensable preliminary step
to model building. More importantly, in biomarker
studies, DR is not just a computational necessity, it is
an intrinsic part of the knowledge discovery task.
Building an accurate model for phenotype classifica-
tion is inseparable from the task of distilling a handful
of biologically meaningful biomarkers from the
massive set of initial variables.

The knowledge discovery framework
Figure 1 shows the place of DR in the knowledge
discovery pipeline. First, the raw data are explored
and preprocessed in preparation for the learning or
modeling task. In proteomic mass-spectra based
diagnosis or prognosis, which is the focus of this
article, preprocessing includes baseline subtraction,
smoothing or denoising, intensity normalization
and peak detection and alignment. Preprocessing
typically reduces tens of thousands of raw variables
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(m/z points) to several hundreds of peaks (proteins or
peptides). The preprocessed data are then split into
training set and test set. The training set is used to
build a classification model while further reducing
data dimensionality; the test set is held aside for the
evaluation of the trained classifier. Note that the
diagram does not separate dimension reduction from
model construction, for these two major facets of the
data mining task can be coupled in diverse ways that
will be detailed below.

Definitions and distinctions
Formally DR is defined as follows: Given a set of n
vectors fx1, . . . ,xng 2 Rp, find a set of lower-
dimensional vectors fz1, . . . ,zng 2 Rp0 , p0 < p, that
maximally preserve the information in the original
data according to some criterion. For example,
in a classification task involving k classes
C ¼ fCjjj ¼ 1 . . . kg, and where a class label yi2C,
i¼ 1 . . . n, is associated with each data point xi and its
reduced version zi, the criterion could be some
measure of how well the p or p0 features discriminate
between the different classes.

DR methods can be divided into two broad cate-
gories: feature (variable) transformation and feature
selection. Feature transformation (FT) methods create
a (possibly smaller) set of new features by transform-
ing or combining the old. Feature selection methods
reduce the size of the original feature set by
eliminating irrelevant or redundant features. A com-
plementary classification scheme is based on how DR
is coupled to the learning (or model building) process.
Filter methods perform DR as a preprocessing step,
independently of the learning method. Wrapper
methods wrap DR around the learning process and
use the estimated performance of the learned model
as the selection criterion; the effectiveness of the
selected features depends strongly on the specific
learning method used. In embedded methods, DR is
programmed as an integral part of the learning
algorithm. The filter-wrapper-embedded distinction
first appeared in 1997 [3, 4] and remains widely used

in machine learning research [5]. Figure 2 visualizes
the difference between these three schemes.

The goal of this article is to review current
approaches to DR in mass-spectra based proteomic
biomarker identification; Table 1 gives a synoptic
view of these different approaches. The principal FT
and selection methods are discussed successively in
the next two sections. The problem of selecting the
most effective dimension reduction method is then
addressed, and method combination proposed as a
potential alternative solution. The conclusion sum-
marizes outstanding open issues and directions for
future research.

FEATURETRANSFORMATION
FT methods construct new features as functions that
express relationships between the initial features;
hence FT methods have greater potential for
conveying discriminatory content than feature
selection methods. However, this advantage comes
at the cost of comprehensibility, as complex func-
tions of base-level features often blur the straightfor-
ward interpretation associated with the original
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Figure 1: Dimensionality reduction in the knowledge discovery process.
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observations. FT methods typically learn a mapping
from Rp to Rp0 , where p0 is not necessarily smaller
than p. In other words, FT per se does not necessarily
reduce dimensionality; however most FT methods
provide principled ways of doing so. FT is either
supervised or unsupervised, depending on whether
or not class information is taken into account in
designing the transformation function.

Unsupervised methods
Principal Component Analysis (PCA) is the most
prominent method in this category. PCA seeks linear
transformations that best explain the variance in the
data. Formally, it obtains the transformed data set
Z¼XW by solving the optimization problem arg
maxw var(XW), where X is the n# p data matrix
and the linear transformation is given by the
orthogonal p# p0 matrixW. It does this by comput-
ing the eigenvalue decomposition of the covariance
matrix S ¼ 1=N

PN
i¼1 ðxi % !xÞðxi % !xÞT

! "
and pro-

jecting the training instances onto the basis defined
by the resulting eigenvectors (also called principal
components). It can be shown that the projection
directions W that maximize the variance are given
by the solutions SW:i ¼ !iW:i, where the eigen-
vector W.i (the i

th column ofW) corresponds to the
eigenvalue !i. PCA orders the eigenvectors in
decreasing order of their corresponding eigenvalues,
which measure their importance in terms of the

amount of variance they account for. The number
of non-null eigenvalues, and therefore the dimen-
sionality of the projection space, is upper-bounded
by min (p, n) where n is the number of training
instances. Consequently, in cases where n< p, PCA
will reduce dimensionality to at most n without any
information loss. Further reduction can be obtained
by selecting the first p0 < n eigenvectors.

In developing a diagnostic test for African
trypanosomiasis, Papadopoulos et al. [6] used PCA
to reduce a set of 206 peaks extracted from serum
mass spectra; 41 principal components accounting for
90% of the variance were selected to build and test
candidate diagnostic models. PCA has also been used
to reduce dimensionality of raw mass spectra prior to
further reduction by Fisher’s linear discriminant [7].
Raw mass spectra collected in ovarian and prostate
cancer studies contained over 15 000 features; to
meet constraints imposed by the use of Fisher’s linear
discriminant (see ‘Supervised Methods’ section),
PCA was applied to obtain a feature set smaller
than the set of training examples.

Other popular FTs include the Fourier and the
wavelet transforms. Both of these depict a signal, in
this case a mass spectrum, as a linear combination of
prespecified basis functions. Discrete wavelet trans-
forms were used to reduce the dimensionality of a
prostate cancer dataset that contained 48 538 features
and 248 training instances. Wavelet coefficients with

Table 1: Overview of major approaches to dimensionality reduction and examples of methods used in mass-spectra
based biomarker discovery

Feature Transformation Feature Selection

Univariate Multivariate

Filter Unsupervised PCA [6, 7] Parametric t-test [10, 6] Heuristic FS-MD [8]
Wavelets [8] "2-test [19] CFS [39]

Supervised LDA [7] F-ratio [18]
PLS [16] Non-parametric Kolmogorov^Smirnov [22, 23] Stochastic GA-LDA [40]

Wilcoxon test [20, 21] Relief [42]
Mutual Info [26]

Wrapper Heuristic DTE [69]
Stochastic GA-SOM [52]

GA-SVM [54]
GA-KNN [55]
PSO-SVM [56, 57]
ACO-SVM [58]

Embedded Supervised LDA [10] CCM [29] DTs [46, 47, 48]
Boosting [50, 51, 23]
RFE [60]

PLS [15] Shrunken centroids [31] LASSO [65]
SMLR [68]
LIKNON [66]
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a value lower than a given threshold were discarded,
yielding a new feature set consisting of 1271 wavelet
coefficients [8].

Supervised methods
In a supervised setting such as mass-spectra based
classification, one of the drawbacks of unsupervised
FT methods is that they do not exploit the informa-
tion provided by class labels. As a result, the
transformations they compute may not reflect the
underlying class structure; in PCA for instance,
the maximum variance directions do not necessarily
guarantee maximum discrimination.

The best-known supervised FT method is
Fisher’s Linear Discriminant Analysis (LDA) [9].
Though often presented as a classification method, it
is in fact a FT method that projects the initial data
onto a linear subspace of dimensionality k% 1, where
k is the number of classes. Like PCA, LDA effects a
linear transformation of the form Z¼XW where
the projection dimensions, i.e. the linear discrimi-
nants, simultaneously maximize between-class dis-
tance and minimize within-class variance. They
result from the solution of a generalized eigenvalues
problem SBW:i ¼ !iSWW:i where SB is the between-
class scatter matrix, SW the within-class scatter matrix
and the ith column, W:i, of W is given by the
generalized eigenvector that corresponds to the ith
largest eigenvalue !i (scatter matrices are essentially
unscaled covariance matrices). The solution requires
the inversion of SW; however, when p> n% k, as is
typical with mass-spectral data, the matrix is not
invertible. One way to solve this problem is to
reduce the feature set size to less than n% k prior to
LDA, using feature selection [10] or another FT
method such as PCA [7]. An alternative solution is to
use the pseudo-inverse instead of the inverse, as was
done in a different application area using spectro-
scopic data [11].

Partial Least Squares (PLS) is a regression
method that incorporates FT [12], but it is equally
applicable to classification problems [13]. Contrary to
LDA, it is not bound by any p < n constraint and is
therefore better adapted to high-dimensional small
samples; in addition it can handle highly correlated
features. Like PCA, PLS finds linear combinations of
the input features that maximize variance; unlike
PCA, it does this while simultaneously maximizing
correlation with the target variable. For this reason,
PLS usually performs better than PCA in prediction
problems. Furthermore, PLS is considerably more

efficient than PCA: its computational cost is O(np),
i.e. linear in the number of cases n and the number
of original predictors p, whereas that of PCA is on the
order of min (np2þ p3, pn2þ n3), i.e. cubic in n or p,
whichever is smaller [14]. Two studies on a lung
cancer dataset illustrate two different uses of PLS in a
classification setting. The first [15] directly utilized the
PLS model as a classifier. A wavelet transform was
used to reduce the initial set of '60 000 m/z values
to 545 wavelet coefficients. Based on the wavelet
representation PLS built a model to discriminate lung
cancer cases from controls. Potential biomarkers were
identified by selecting wavelet coefficients with high
regression weights in the PLS model; these wavelet
coefficients were then inverse-transformed to the
original m/z values. The second study [16] simply
employed PLS as a dimension reduction method.
After binning of raw m/z data points, the preprocessed
dataset contained 545 features, which were trans-
formed by PLS into a set of new features called latent
components. The number of latent components to
retain was based on the residual sum of squares
estimated via split-sample validation. The selected
PLS components were then used as predictors in
classifiers built using logistic regression and discrimi-
nant analysis.

FEATURE SELECTION
Feature selection methods output a subset of the
original input features without transforming them.
They are either univariate or multivariate, based on
whether they evaluate individual features or feature
subsets. Both univariate and multivariate methods
can be used as filters prior to learning or embedded
in the learning algorithm; the wrapper schema is
specific to multivariate methods. A survey of feature
selection techniques in a variety of bioinformatics
applications can be found in [17].

Univariate methods
Univariate methods assume mutual independence of
the predictive variables. Each feature is scored or
ranked based on its individual relevance, in isolation
from all other features. The final feature subset is
determined by a user-defined threshold on the
computed scores or ranks. Most often, a feature
(representing a peptide or protein) is selected when it
is shown to be differentially expressed at a statistically
significant level in the classes of interest (e.g. diseased
versus controls). Thus standard statistical tests
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have been widely used for this purpose. These tests
rely on the same basic procedure to evaluate each
variable: partition the sample according to classes (e.g.
healthy versus diseased), compute a test statistic of the
variable for each class, and then check for significant
differences in the values of this statistic. Parametric
tests, which assume a specific probability distribution
of the data, as well as nonparametric tests have been
used, whether in a filter or an embedded setup.

Univariate filters
Univariate statistical tests have been widely used as
filters due to their flexibility: the selected feature set
can be fed into any learning algorithm to build a
predictive model. Examples of parametric tests that
have been used in proteomic analyses are the t-test
[10, 6], the F-ratio [18], the "2-test [19]; nonpara-
metric tests include the Kolmogorov–Smirnov test
[22, 23] and the Wilcoxon rank test, which is
equivalent to the Mann–Whitney or AUC (area
under the ROC curve) test [20, 21]. Alternative
criteria include information-theoretic measures such as
mutual information [25] (known as information gain
in the machine learning community), which quan-
tifies the reduction in class entropy brought about by
a given feature. Mutual information proved to be an
effective variable ranking criterion in MS-based lung
cancer prediction [26].

Univariate embeddings
Individual variable ranking or scoring can be also
embedded in the learning algorithm. One example is
an extension of Tukey’s compound covariate
method (CCM) [27]. In the original paper, as in
Hedenfalk’s [28] application of the method to gene
expression analysis for breast cancer diagnosis,
features were selected individually through a stan-
dard t-test. A linear classifier was then built using the
selected features, each weighted by its computed
t-statistic. Yanasigawa [29] adapted this method to
the search for proteomic biomarkers of non-small-
cell lung cancer. To reduce variance and enhance
robustness, the standard t-test was replaced by a
battery of six statistical tests (e.g. Kruskal–Wallis test,
random permutation t-test, information score); a
feature was selected if it passed three of the six tests.
This method resulted in the selection of 82 peaks
that were differentially expressed between tumor and
normal lung tissue. The final compound covariate
model, a linear combination of the selected features,
perfectly classified a blinded test set as either diseased
or normal. However, the method did less well in

discriminating histological subgroups such as adeno-
carcinoma versus large-cell (94% test set accuracy)
or mediastinal nodal involvement (75% test set
accuracy).

A related approach is centroid shrinkage, a
feature selection method embedded in the nearest-
centroid classification algorithm. In this simple
learning scheme, the training samples are used to
compute the class centroids; a test sample is assigned
to the class with the closest centroid. Class centroid
computation is strictly univariate: the ith component
of the centroid of a given class k is !xik ¼

Pnk
j¼1 xij=nk,

where xij is the value of the ith variable in case j 2 k
and nk is the number of cases in class k. Similarly,
the ith component of the overall centroid is
!xi ¼

Pn
j¼1 xij=n, where n is the total number of

cases. To reduce the number of features, the distance
between the class centroids and the overall centroid
is shrunk by an amount determined by i, a user-
tuned parameter; the higher the shrinkage parameter,
the more rapidly the class centroids move to the
overall mean. Shrinkage can reduce the distance
between the class mean and the overall mean to zero
for noisy or non-discriminatory features, which are
in effect eliminated. The method was first applied to
gene expression analysis for diagnosis of small round
blue cell tumors [30]. It was later integrated into a
comprehensive classification procedure for mass
spectra called ‘peak probability contrasts’ and applied
to ovarian cancer diagnosis. Preprocessing of the raw
mass spectra led to the extraction of 192 peaks,
which were reduced by centroid shrinkage to seven
peaks. In a comparative study of seven methods, the
resulting classifier achieved a cross-validation error of
23 (out of 89) and was outperformed only by a
support vector machine (SVM), which scored two
errors less by using all initial 91 360 peak sites [31].

The main advantage of the univariate approach is
its efficiency; it requires computing no more than p
scores. However, it has a number of drawbacks [32]:
it cannot detect correlated or redundant features, or
interacting features (i.e. features which are irrelevant
by themselves but highly discriminatory in combina-
tion with others). Multivariate approaches are meant
to overcome these limitations.

Multivariate methods
Multivariate methods [5] assess the predictive power
of feature subsets rather than individual features,
hence they take feature dependencies into account
in the feature subset selection process. The major
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difficulty is that the number of possible subsets
increases exponentially with the number of features.
This precludes exhaustive search (i.e. the strategy of
generating and evaluating all 2p% 1 possible subsets
of p features [33]) for all but trivial datasets; heuristic
search strategies are needed. Forward selection and
backward elimination [33] are classical examples of
heuristic search. Forward selection starts with an
empty variable subset S and selects the variable that
maximizes a predefined scoring function. Thereafter
it selects from the remaining variables the one which,
added to S, maximizes the score of the resulting
subset. The process continues until a predefined
criterion is met, e.g. until the score of S ceases to
improve. Backward elimination proceeds in the
reverse direction; it starts with the full variable set
and at each step removes the variable whose
elimination yields the highest score for the remaining
subset. Both are greedy search strategies that are not
guaranteed to achieve optimal results. As a partial
remedy to the myopia of greedy search, so-called
floating strategies [34] allow forward (backward)
selection to eliminate (add) previously selected
(eliminated) features. Alternatively, stochastic search
methods use randomization to overcome the main
pitfall of greedy methods, that of being trapped in
local optima. Among these, biologically inspired
techniques—so called because they mimic mechan-
isms underlying the behavior or evolution of living
populations—have proved to be effective strategies
for finding discriminatory feature subsets. Examples
are Genetic Algorithms [35], Ant Colony Optimiza-
tion [36] and Particle Swarm Optimization [37],
whose application to protein biomarker selection
from mass spectra are discussed in the following
subsections.

Multivariate filters
A number of variable subset selection strategies have
been used as filters prior to the learning process.
Forward selection has been used with different
scoring functions in two mass-spectral applications.
In one experimental study on prostate cancer
detection [8], a discrete wavelet transform reduced
the initial mass set to 1271 derived features. Forward
search was then applied to find a subset that
maximized the Mahalanobis distance (MD) between
the cancer cases and controls. Informally, the MD
between two groups is computed as the Euclidean
distance between their centers (group means),
normalized by their covariance. This method

(henceforth FS-MD) resulted in a subset of 11
variables, which were then used to build a linear
discriminant model. In another forward selec-
tion scheme called Correlation-Based Feature
Selection (CFS), the evaluation criterion is based
on the idea that useful features are highly correlated
with the class yet uncorrelated with each other [38].
Correlation is measured in terms of symmetrical
uncertainty [25], a normalized form of mutual
information that captures dependencies other than
linear correlation. In a comparative study where CFS
and five univariate filters were coupled with five
different learning algorithms, CFS was found to yield
best performance for mass-spectra based ovarian
cancer diagnosis [39].

To discover lung cancer biomarkers based on a
dataset of 41 serum MALDI-TOF mass spectra,
Baggerly et al. [40] focused their search on very small
feature subsets. Low-level preprocessing of the raw
mass spectra reduced the 60 831 initial m/z values to
506; however, given the available data, a much
smaller feature set was needed to build a linear
discriminant. Exhaustive search was used to find
promising subsets of one or two features, and
GeneticAlgorithms (GAs) subsets of 3–5. A feature
set was considered optimal if it maximized the MD
between the lung cancer and control groups. Fifty
GA runs were done for each subset size p¼ 1 to 5;
for each run, an initial population of 200 p-feature
sets was generated and allowed to evolve for 250
generations using the standard genetic operations:
selection, mutation and crossover. For each feature
set, Fisher’s LDA was used to build a separating
hyperplane between the two classes, and the
classification error estimated using leave-one-out
cross-validation. A single misclassification error
(2.4%) was reported for the 5-feature linear classifier.

Relief [41] computes the relevance of each
predictive variable using a method based on
K-nearest neighbors. In a binary classification
problem, it repeatedly picks a case at random and
identifies the case’s nearest neighbor from the same
class and its nearest neighbor from the other class.
It then adjusts feature weights by rewarding features
that discriminate neighbors from different classes
while penalizing those with different values for
neighbors of the same class. Although feature
weights are updated separately, Relief is basically
multivariate since distance computation underlying
nearest neighbor identification takes joint account of
all features. Relief can be used as a feature selection
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filter for any learning algorithm; different variants
of Relief were shown to outperform a number
of state-of-the-art feature selection methods as a filter
to SVMs [42] and other machine learning algorithms
[26]. In [43] Relief is viewed as an online algorithm
that solves a convex optimization problem with a
margin-based objective function; this recent inter-
pretation sheds new light on Relief’s strengths and
weaknesses as well as suggests ways of mitigating
the latter.

Multivariate embeddings
Decision trees (DTs) like CART [44] and C4.5 [45]
are classical examples of learning algorithms that
embed heuristic feature selection. DT construction is
driven by a sequential forward search in the space of
candidate feature subsets, much like FS-MD and CFS
(see previous subsection). At each leaf node of the
partially built tree, the algorithm selects the feature
that maximally reduces the class impurity (or entropy)
of the examples associated with that node. One
measure of class entropy reduction is C4.5’s informa-
tion gain, defined as IðX;CÞ ¼ HðCÞ %HðCjXÞ,
where C is the class variable, X a predictor variable
and Hð(Þ is the entropy. In words, information gain is
the decrease in class entropy brought about by the
predictor variable X. However, DTs are multivariate
rather than univariate; in reality, what is measured is
the cumulative reduction in entropy brought about by
the feature subset consisting of all features along the
path from the root to the current node. DTs have
been applied directly to SELDI-MS peaks extracted
by Cipherghen’s built-in software: five biomarkers of
renal cell carcinoma were identified using C4.5 [46],
while three biomarkers of prostate cancer were selec-
ted by CART [47]. DT-based biomarker identifi-
cation can also be preceded by other feature selection
methods such as univariate ranking filters [48].

Another embedded multivariate technique con-
sists in building ensembles or committees of
univariate classifiers, which are then combined to
yield a single prediction. A widely used ensemble
learning method is boosting [49], which builds a
sequence of classifiers from adaptively generated data.
At each iteration, a classifier is built and its accuracy
on the training data is estimated. The weights of
misclassified cases are increased and those of correctly
classified cases decreased, so that the learning process
progressively focuses on the most difficult cases. After
training, a test sample x is classified using the rule
HðxÞ ¼ sgn

PT
t¼1 #thtðxÞ

! "
, where t indexes each of

the T base classifiers, ht is classifier t’s prediction and
at its weight, determined by its accuracy on the
training set. The result is a multivariate feature
selection scheme embedded in the boosting algo-
rithm. As any base learner can be used provided it
performs at least slightly better than chance,
simple schemes suffice to build univariate classifiers:
single-node decisions trees [50], linear discriminants
[51] and nearest centroids [23] have been used to
build boosted ensembles for cancer diagnosis.

Feature subset selection is typically a yes/no
decision (features are either selected or eliminated).
It is therefore prone to high variance: small changes
in the data can lead to very different models. To
attenuate this problem, so-called soft feature selec-
tion methods assign continuous weights to features
and use these weights to determine the final subset.
In Recursive Feature Elimination (RFE) [60], the
candidate feature set (initially the set of all variables)
is used to train a linear SVM; the features are ranked
in decreasing order of their (squared) weights in the
SVM hyperplane, and the lowest ranked features are
eliminated. The process is reiterated until a pre-
defined feature subset size is reached. When the cost
function is a quadratic function of the model
weights, this is equivalent to selecting the feature
subset that minimizes the cost function. RFE was
first used to select genes for cancer classification [60];
it has since been extended in diverse ways and
applied to proteomics-based diagnosis of ovarian
[61, 62] and breast cancer [63].

While RFE reduces the feature set by recursively
applying the SVM learning algorithm, other feature
weighting schemes directly build sparse models
(regressors or classifiers), i.e. models in which most
of the features have zero weights. Two such methods
build linear models while minimizing the L1 norm or
wk k1¼

Pp
j¼1 wj

## ## (in words, the sum of the absolute
values of the weights). The Lassomethod [64] solves
the problem minw,b

Pn
i¼1 ðw ( xi % yiÞ2 subject toPp

j¼1 jwjj ) t, an optimization problem that is solved
via quadratic programming. Making the threshold t
sufficiently small will cause some of the coefficients
to be exactly zero, thus eliminating the correspond-
ing features. The Lasso was used to build a linear
discriminant between cases and controls in a study on
head and neck squamous cell carcinoma. Input data
consisted of 32 055 m/z values per SELDI-TOF mass
spectrum; of these, only 65 retained non zero
weights in the final model, which achieved 68%
sensitivity and 73% specificity on a masked test
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set [65]. LIKNON [66] embeds the optimization
problem in SVM classification and uses linear
programming to minimize the L1 norm of the
weight vector. Applied to a 200-sample ovarian
cancer dataset, it produced a classifier with non-zero
weights for only 52 of the 15 154 initial features.
Finally, Sparse Multinomial Logistic Regression
(SMLR) [67] adopts a Bayesian perspective on the
same problem; to build sparse models, the likelihood
of the training data is regularized by a sparsity-
promoting prior belief on the weights. SMLR uses a
Laplacian prior, which has been shown to be
equivalent to minimizing the L1 norm [64]: formally,
pðwÞ ' e%!jjwjj1 . In a lung cancer study involving
68 mass spectra, low-level preprocessing yielded an
initial set of 308 peaks from raw mass spectra of
lung tissue samples [68]. SMLR used these peaks
to build a classification model with four candidate
biomarkers.

Multivariate wrappers
Multivariate wrappers were motivated by the insight
that the quality of a feature set is best revealed by the
performance of the model built on it. Hence DR is
implemented as an outer loop around the learning
process, and the feature set that produces a model
with the highest test accuracy is selected. Geurts et al.
[69] followed a more complex procedure based on
binary DTs together with the entropy reduction
measure
IðnodeÞ ¼ jSjHðSÞ % jST jHðSTÞ % jSFjHðSFÞ,
where S is the sample that reaches the node and ST
(SF) is the sample subset for which the test is true
(false); given a sample s, |s| is its size and H(s) its
class impurity. Contrary to information gain (see
‘Multivariate Embeddings’ subsection), IðnodeÞ
assigns higher scores to splits near the node. After
DT construction, the feature selection process can be
summarized as follows:

(1) Assign a score to each feature as the sum of I
(node) for all nodes that were split using the
feature.

(2) Rank all features in decreasing order of their
total scores, producing a nested series of
candidate feature subsets.

(3) Rerun the learning algorithm on progressively
larger feature subsets, starting from the top-
ranked features. The accuracy estimates on these
nested feature subsets typically increase to a
maximum, then decrease.

(4) Select the smallest feature subset that produced a
tree whose error rate is within 1 SE of the
smallest observed error.

Biomarkers for rheumatoid arthritis and inflam-
matory bowel disease were identified by wrapping
this procedure around ensemble learners such as
boosted DTs.

Genetic Algorithms have been used as feature
selection wrappers in several studies on ovarian
cancer diagnosis. In Petricoin et al.’s [52] work, the
input to the data mining process contained 15 154
m/z values or features. Evolutionary computation
started with an initial population of 1500 feature sets,
each containing between 5 and 20 m/z values. Each
feature set was used to train a Self-Organizing Map
(SOM), a neural network that clusters the input
samples while preserving the topology of the input
space [53]. Feature sets that produced a map with
homogeneous cancer and control clusters were
selected to spawn a new generation of feature sets
through crossover and mutation. The learning
process halted after 250 generations or when a map
was found that perfectly separated the cancer and
control cases. Two other studies on the same datasets
wrapped GAs around SVMs [54] and K nearest
neighbors (KNN) [55]. GA-SVMs consistently out-
performed a univariate method based on a standard
statistical test, and ROC curves confirmed this
dominance. In the GA-KNN setup, the 10 features
that appeared most frequently in the final population
were used to train a 5-NN which achieved 97%
accuracy, averaged over 50 runs.

Like GAs, swarm intelligence methods such as
Particle Swarm Optimization (PSO) [37] and
AntColonyOptimization (ACO) [36] are popula-
tion-based, stochastic optimization methods. While
GAs are based on the evolutionary metaphor, the
latter methods draw inspiration from the collective
intelligence manifested by bird flocks (PSO) or ant
colonies (ACO). Like GAs, they are initialized with a
population of random solutions and iteratively
update generations to find optimal solutions; candi-
date solutions are assessed using a chosen fitness
function. In PSO, each particle (or solution) moves
with randomly increasing velocity towards a location
determined by its own previous best position and the
known best collective position—either the best
global solution of the entire swarm or the best
local solution found within the particle’s neighbor-
hood. PSO has been used to reduce dimensionality
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and identify potential biomarkers of hepatocellular
carcinoma (HCC) [56, 57]. Low-level preprocess-
ing of SELDI-QqTOF serum mass spectra reduced
the '340 000 raw m/z values to 368 features
(m/z windows). From these features, PSO generated
an initial population of N particles, each composed
of p randomly selected features. Each particle or
feature set was used to train a linear SVM, whose
performance determined whether the particle was
fit enough to contribute to the next generation of
particles. Experiments with different particle sizes
p¼ 5 . . . 10 and population sizes N¼ 50 and 100 led
to the selection of 7–9 potential biomarkers. These
achieved up to 91% sensitivity and 92% specificity in
discriminating HCC cases from healthy controls on
an independent test set.

In a subsequent study [58], the same core team
used ACO to identify MALDI-TOF based biomar-
kers that distinguish HCC from cirrhosis. In ACO,
artificial ants build a solution much like real ants
build pheromone trails to optimize their search for
food. The solution space is modeled as a fully
connected construction graph GC¼ (V, E ) where V
is a set of vertices and E a set of edges. At a given
time point t, each ant k moves from vertex i to a
vertex j within its neighborhood according to a
transition probability function:

pkijðtÞ ¼
$ijðtÞ#%&ijP

l2Nk
i

$ilðtÞ#%&il
,

where $ij and %ij represent, respectively the pher-
omone intensity and heuristic value associated with
the edge (i, j), and # and & are parameters that
determine their relative importance. The above
function shows clearly that an ant is more likely to
select an edge with a higher pheromone level and/or
heuristic value. In the HCC/cirrhosis study, the
heuristic value was computed using Golub et al.’s
[59] signal-to-noise ratio %i ¼ j'1i % '2ij=(1i þ (2i
where '1i and '2i are the mean intensities of peak i
in the HCC and cirrhosis groups, respectively, and
(1i and (2i the corresponding SDs. # and & were
both set to 1, so that an ant is more likely to select an
edge that maximizes the product of pheromone
intensity and heuristic information.

After each move of all ants at time t, the
pheromone intensity of each arc is updated as
follows:

$ijðtþ 1Þ ¼ ð1% )Þ$ijðtÞ þ )
X

s2Sgood
FðsÞ,

where ) is the so-called evaporation factor and F(s)
is a fitness function that quantifies the quality
of solution s. In words, pheromone update blends
a form of forgetting with reinforcement of edges
traversed by good solutions.

In the HCC versus cirrhosis experiments, the
evaporation factor ) was set to 0.1, and the fitness
function F(s) used was the cross-validated accuracy of
a linear SVM classifier built on each candidate feature
subset s. A set of 50 ants (candidate solutions) was
generated, each containing five features randomly
selected from 228 peaks (m/z windows) detected via
low-level preprocessing. The ACO-SVM wrapper
was run 100 times, and all peaks were ranked based
on their frequency of occurrence in the final
solutions of all 100 runs. The eight top-ranked
peaks were used to build an SVM classifier, which
scored 94% sensitivity and 100% specificity on a
blinded test set.

THEMETHOD SELECTION
PROBLEM
The above survey, though far from exhaustive, gives
an idea of the profusion and diversity of techniques
for DR. This raises a critical question: which is the
best method for the given task and data? We call this
the DR method selection problem to distinguish it
from the related but distinct issue of model selection
in machine learning. On both issues, there is no
universally superior model or method; the most
appropriate choice depends on multiple interacting
factors relative to the domain task, the available data
and the user’s priorities.

However, the major contending DR
approaches—FT versus feature selection, univariate
versus multivariate feature selection, filter versus
wrapper versus embedded setups—have known
strengths and weaknesses that have been described
above. Matching these with the characteristics of the
available data would significantly reduce the combi-
natorics of choice. For instance, a number of rules of
thumb can be applied, based on whether the learning
process should tackle raw or preprocessed mass
spectra. Raw spectra of biological samples contain
thousands to hundreds of thousands of features,
many of them correlated. This immediately pre-
cludes the use of multivariate wrappers, which would
incur prohibitive computational costs. However,
the number of remaining candidates that would
both reduce and decorrelate the feature set remains
large. When DR takes place downstream of a
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preprocessing pipeline, the range of options is even
larger. DR method selection should take into
account the number, type (proteins/peptides or
derived features such as principal components or
wavelets) and characteristics (e.g. correlated or not)
of the preprocessed features.

Evaluation criteria
In all cases, principled method selection relies on
clear quantifiable criteria:

* The classificationperformance of the final model is the
outstanding criterion in the data-analytic phase of
biomarker discovery, pending definitive validation
through, e.g. biological assays and clinical trials.
The most commonly used performance measure is
accuracy, or the proportion of correctly classified
test cases. Its main disadvantage is that, in the case
of imbalanced class distributions, the accuracy rate
is dominated by the majority class and becomes
misleading when correct prediction of the minor-
ity class is critical. Hence preference is sometimes
given to class-specific performance measures such
as sensitivity and specificity, defined, respectively
as the proportion of correctly classified cases in the
positive and the negative class. Less biased scores
that measure performance over both classes while
giving them equal importance are the geometric
mean or the arithmetic mean of sensitivity and
specificity. These performance measures are
defined formally in Tables 2 and 3.

* A second criterion is the complexity of the feature
set, quantified for our purposes as the number of
selected features. (The complexity of the learned
model depends partly on the complexity of the
feature set and is a much more intricate issue that is
beyond the scope of this article.) The size of the
feature set has a significant impact on both the
performance and the interpretability of the final

model. Experiments reported in [70] suggest
that the DR method and the number of selected
features are more important than the learning
algorithm in constructing a reliable predictive
model. Should there be a conflict between feature
set size and generalization performance, protein
biomarker identification is one task where mini-
mizing the number of features might be more
important than classification performance. In the
current state of technology, the number of
candidate biomarkers that biology researchers can
identify and validate for diagnostic purposes is
severely limited. For this reason, most proteomic
studies focus on biomarker panels reduced to a
handful of features despite the possibility that much
larger feature sets might yield a gain in accuracy.

* A third criterion is the stability of the selected
feature set. Users instinctively have more con-
fidence in DR methods that select reasonably
similar feature subsets across slightly varying
experimental conditions. For instance, one of the
striking findings of Ressom et al.’s [56] study (see
‘Multivariate Embeddings’ subsection) was the fact
that a set of seven features consistently appeared in
the best 7–8 feature subsets produced by PSO-
SVM using different population sizes as well as in a
128-feature set selected using a two-tailed t-test.
Although feature stability cannot override classi-
fication performance when selecting between
candidate feature subsets, it is a useful auxiliary
criterion when performance rates of models built
from them are not significantly different. The issue
of feature stability has been relatively neglected to
date; an in-depth analysis in the context of
proteomic, genomic and biological text mining
applications can be found in [71].

Table 3: The most widely used classification perfor-
mance measures, defined on the basis of the quantities
shown in confusionmatrix A

Performance measure Formal definition

Accuracy TPþTN
TPþTNþFPþFN

Sensitivity (Recall) TP
TPþFN

Specificity TN
TNþFP

Balanced accuracy (Sensitivityþ Specificity)/2
Geometric mean accuracy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity# Specificity

p

TP (true positives): correctly classified positive cases; TN (true nega-
tives): correctly classified negative cases; FP (false positives): negative
cases classified as positive; FN (false negatives): positive cases classified
as negatives.

Table 2: In binary classification problems, the
confusion matrix shows the number of correctly and
incorrectly classified cases

Actual Predicted Positive Negative

Yes TP FP
No FN TN

TP (true positives): correctly classified positive cases; TN (true
negatives): correctly classified negative cases; FP (false positives):
negative cases classified as positive; FN (false negatives): positive cases
classified as negatives.
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Evaluation methodology
Similarly to model selection in learning,
method selection in DR requires a rigorous evalua-
tion methodology. The results of many proteomics
experiments need to be taken with caution due to
methodological flaws in data analysis experiments.
Similarly, the performance measures given in the
preceding sections for illustrative purposes should not
be taken as indications of the relative merits of the
methods used. These measures are simply incompar-
able across such different experimental settings.

The fundamental evaluation rule is that a model
should never be tested on the same samples that were
used to build the model in the first instance;
otherwise performance estimates will be overly
optimistic. The dataset should be split into two
disjoint sets: the first is used to train the classifier and
the second held aside for performance test, hence the
name holdout split. To increase statistical reliability,
performance measures are estimated by computing
their means, SEs and/or confidence intervals over
several holdout splits. With limited available data,
resampling techniques such as bootstrap and cross-
validation allow us to randomly generate the
necessary number of training/test partitions from
the original sample. Bootstrap resampling consists in
randomly drawing cases with replacement to create
multiple samples of the same size as the original data
set. In k-fold cross-validation, the initial dataset is split
into k subsets. At each iteration i, the subset is
reserved for testing and a model is built using the
k% 1 remaining subsets. The overall performance
measure (e.g. misclassification error) is obtained by
averaging over the k iterations. Cross-validation with
k¼ n, where n is the number of examples, is known
as leave-one-out cross-validation.

A major pitfall to avoid is what is now known as
the feature selection bias. It is an unfortunate but
common practice (e.g. [40, 10]) to perform DR on
the whole dataset and use the low-dimensional
version of the same dataset to train and evaluate a
classifier. Since DR is an integral part of the learning
process, this is tantamount to building and testing the
model on the same data, and leads to optimistically
biased performance estimates. Ambroise and
McLachlan [70] have shown that with this method,
one can get near perfect accuracy estimates on a
randomly labeled training set, simply by increasing
the number of features. However, such optimistic
results are completely misleading; reliable measures
of generalization performance can only be obtained

on test instances that have been used neither for
learning nor for DR. In the case of high-dimensional
small samples for which cross-validation is used,
this requires two nested cross-validation loops: an
outer loop for training and testing the classifier, and
at each step of this outer loop, an inner loop for
selecting the feature set [2].

METHODCOMBINATION
Given the difficulty of selecting the right method for
reducing high-dimensional data, an attractive idea is
to combine several of the existing methods. The
rationale is that purposive combination of different
methods could leverage their strengths to overcome
their respective weaknesses, in the same way that
ensemble learning [72] combines the predictions of
several base-level classification models to improve
predictive accuracy. However, DR method combi-
nation is distinct from ensemble learning: the former
blends feature sets obtained via different selection or
transformation techniques, not learned models.
Similarly to ensemble learning, DR method combi-
nation techniques can follow a serial or a parallel
scheme [73].

In the serial scheme, the different methods are
applied successively, and the output of one method is
input to the next. The goal is to distribute the DR
task among methods with complementary strengths.
In feature selection, for instance, univariate methods
are extremely fast but ignore feature redundancy and
interaction; multivariate methods capture what
univariate methods ignore, but incur higher compu-
tational costs. By applying a univariate method to a
very large feature set and a multivariate method to
the resulting reduced set, we obtain the advantage of
multivariate methods at a much lower cost. Kozak
et al. [20] applied univariate statistical tests to an
initially large peak set and identified 10 differentially
expressed proteins between ovarian cancer cases and
controls. Logistic regression with embedded back-
ward elimination was then applied to remove
redundant proteins, producing the final 5-protein
biomarker panel in significantly less time. Lilien et al.
[7] sequenced two FT methods, each at the
processing endpoint where it was most effective:
LDA cannot be applied to raw spectral data where
p + n, but PCA can. On the other hand, LDA is a
supervised method and can, contrary to PCA, exploit
class information to reduce dimensionality drastically
while ensuring maximal class separation. To exploit
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these complementary advantages, PCA was applied
to reduce the >15 000 raw spectral features to n% k
derived features; these were then used by LDA to
produce a discriminant with k% 1 features. All that
was left to do after LDA was tune a threshold to
optimize classification performance.

In the parallel method combination scheme,
several alternative methods are applied indepen-
dently to achieve a given task, and their results
integrated via a decision rule. The goal is to reduce
the variance or instability of feature sets obtained by
individual methods. A simple form of this approach is
illustrated in univariate ranking systems where single
statistical tests are replaced by up to half a dozen
parametric and nonparametric tests; only features that
pass all or the majority of these tests are retained
[20, 24, 29]. Chan et al. [74] combine FT (e.g. PCA)
with univariate (e.g. Wilcoxon) and multivariate
(e.g. CFS) feature selection, the latter using different
search strategies. The feature subset selected by each
method was fed to two learning algorithms, neural
networks and Naive Bayes. Each feature was then
assigned a weighted score based on the accuracy
rates of all classifiers built using that feature. Formally
each feature’s weighted score is defined as
WSðfjÞ ¼

PM
i¼1 ð1=FiÞeijai, where M is the number

of classifiers, eij¼ 1 if the feature fj was used in
classifier i, ai is the accuracy of classifier i and Fi is the
number of features for classifier i. A classifier was
built using the highest scoring features, successively
adding a feature until performance ceased to
improve. On one ovarian cancer dataset, neural
nets achieved 100% and Naive Bayes 98.4% cross-
validated accuracy using six features. The selected
6-feature set was then used to build a neural net
classifier on a different ovarian cancer dataset and
attained 83% accuracy, demonstrating that the
selected features were reasonably robust. Consensus
biomarker selection [75] uses four different scoring
functions and unifies their individual rankings using
two distinct methods. The first is a rank aggregation
algorithm, which defines a Markov chain over
the features and computes transition probabilities
between them based on their position in the partial
rankings. The final aggregated ranking is a list of
features sorted by their stationary probabilities. In the
second method, a consensus feature set is created by
taking the union of the k features top-ranked by the
univariate rankers. Principal components analysis is
then applied to the data matrix reduced to these k
consensus features; only the components that explain

at least 0.1% of the variance are retained, produ-
cing an even smaller set of uncorrelated consensus
features. In an experiment on prostate cancer,
features derived from consensus PCA and standard
PCA were fed into four learning algorithms. In 20
cross-validation runs, consensus PCA consistently
outperformed standard PCA for values of k varying
between 2 and 30. However, its superiority was less
clear in tests conducted on an ovarian dataset.

FUTUREDIRECTIONS
Similarly to model selection for classification,
method selection for DR remains a widely open
issue. In the wake of impressive successes in model
combination over the past decade, advances in DR
could be expected by exploring fresh tracks in
method combination. At the same time, the search
for novel individual techniques remains indispensa-
ble, as successes in method combination will depend
in part on the power of the base-level methods
mobilized in the aggregation process.

Despite a few remarkable attempts to exploit
techniques from machine learning and data mining,
work in proteomic biomarker discovery has been
dominated by the use of standard statistical tests
aimed at identifying differentially expressed proteins
among the different groups under study. Many state-
of-the-art methods for dimension reduction remain
untapped. For instance, Random Projection [76, 77]
is a family of FT methods that map the original
p-dimensional data onto a k-dimensional ðk << pÞ
hyperplane via a random k# p matrix R whose
columns have unit length. Its key property arises
from the Johnson–Lindenstrauss lemma [78]: for
every set of n points in a p-dimensional vector space,
there exists a mapping onto a subspace whose
dimensionality is lower-bounded by log n/"2

(where " is some desired distortion level), such that
the distances between the points are approximately
preserved. It has been shown that this lemma holds
for any random matrix whose elements follow a zero
mean, unit variance distribution, ensuring bounded
distortion in the move from a high to a lower-
dimensional space. This guarantee of low distortion,
coupled with significantly lower computational costs
than, e.g. PCA, makes Random Projection an
advantageous alternative to traditional projection-
based DR methods. Since the dimensionality p0 of
the projection space is determined only by the
cardinality n of the original data rather than its
dimensionality p, Random Projection is particularly
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appealing when n << p. It has been successfully
applied to the selection of the number of clusters
in gene expression clustering [79] and might be
profitably exploited in proteomic biomarker studies,
assuming that the original distance (which uses all the
features) is correct.

Contrary to the linear FT techniques that have
been applied in proteomics (e.g. standard PCA, LDA
and PLS, see ‘Feature Transformation’ section), a
number of recent FT techniques perform nonlinear
DR. Kernel PCA [80] extends standard PCA by
finding principal components that are nonlinear
combinations of the original features. Conceptually,
this is done by mapping the input data onto a high
dimensional feature space and by performing PCA in
that space. Kernel PCA therefore finds principal
components that are nonlinear combinations of the
original variables in the input space. In reality, the
computational overhead of working under high
dimensionality is circumvented through the use of
kernels, i.e. functions that compute inner products of
instances in high dimensional spaces without expli-
citly computing the mapping. One major difference
is that the number of principal components is upper-
bounded by min(n, p) in standard PCA and by
min(n, pfs) in kernel PCA, where pfs is the
dimensionality of the feature space. Whereas this
could raise a problem in classical applications where
n> p, in the small-sample setting typical of genomic
and proteomic experiments, the initial number of
principal components derived by kernel PCA
remains far smaller than the dimensionality of the
feature space. However, the loss of interpretability
incurred by kernel PCA is a potential issue.

Among the feature selection methods, recent
advances in Lp-based regularization could be fruit-
fully exploited in proteomic data analysis. L1 (e.g.
Lasso) and L2 norm based methods (e.g. SVMs and
ridge regression) control the variance of the feature
weights and therefore improve predictive accuracy,
especially when many features are correlated—a
typical case in proteomic and microarray data. The
difference between the two norms lies in the fact
that, due to the nature of the L1 norm, many
coefficients are forced to become exactly zero
(‘Multivariate Embeddings’ section), thus favoring
feature sparsity. In addition, it has been shown [81]
that the sample complexity of L1-regularized
logistic regression is logarithmic in the number of
features, whereas that of L2-regularized logistic
regression is linear in the number of features.

However L1-norm based methods still suffer from
a number of limitations. One of these is the difficulty
of choosing !, the regularization coefficient that
controls the trade-off between accuracy and sparse-
ness of the solution. This has been typically adjusted
via cross-validation, but an algorithm has recently
been proposed [82] that efficiently derives the
complete solution path, i.e. all variable coefficients
for all possible values of !, thus greatly facilitating
model selection in L1-norm SVMs. Preliminary tests
on gene biomarkers for leukemia diagnosis suggest
the potential utility of the method in proteomics.
Another limitation is that in the case of highly
correlated variables (a common situation in mass-
spectra based proteomics), L1 methods typically
select one of the correlated variables regardless of
its merit relative to the others. To overcome this
problem, the elastic net method [83, 84], based on a
convex combination of L1 and L2, assigns similar
weights to highly correlated features, in effect
grouping them so that they are included in or
excluded from the model together. The elastic net
has been adapted to logistic regression using the Lp
norm, p) 1, and tested on a number of microarray
datasets [85].

Other promising research directions can be
gathered from work on metric learning. The goal
is to learn the most appropriate distance metric for a
given problem, typically by assigning weights to the
different features, both in supervised [86–88]
and unsupervised [89, 90] learning. The problem is
cast as a mathematical optimization task, e.g.
minimize the sum of distances between objects
from the same class while maximizing the sum of
distances between objects from different classes.
The distance metric between two data points x and
y is defined in terms of a transformation matrix A:
d2Aðx, yÞ ¼ x% y

%% %%2
A¼ ðx% yÞTAðx% yÞ where A

should be positive semi-definite in order to ensure
two defining characteristics of a metric, nonnegativ-
ity and the triangle inequality. Here too, one can
impose the same type of sparsity constraint on the Lp
norms of the transformation matrix A.

A relatively neglected but crucial issue is the role
of prior knowledge in proteomic data DR. The use
of Lp norms in feature weighting/selection methods
can be viewed from a Bayesian perspective as
equivalent to the introduction of a prior over the
feature weight vectors [91]; the regularized solution
is then equivalent to the maximum a posteriori
solution. The L2 norm corresponds to a Normal
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prior, pðwÞ ' Nð0,diagð(2ÞÞ, while L1 corresponds
to a Laplacian prior, pðwÞ ' e%!L1ðwÞ. All these
methods allow us to directly model relevant domain
knowledge in the form of priors over variable
weights when this information is available. A related
method is the Relevance Vector Machine [92],
which allows for the possibility of assigning a distinct
parameterized prior pðwÞ '

Q
i Nð0,(2

i Þ to each
training point.

In addition to informative priors, specifically
biological knowledge should be brought to bear on
the dimension reduction and modeling process. As
shown in [1], one of the consequences of proteomic
data sparsity is that several feature sets will yield
identically high and even perfect test accuracy; this
nonuniqueness casts doubt on the biological rele-
vance of so-called optimal biomarker panels and
argues for feature selection techniques that are not
purely data-driven [93]. The search for meaningful
biomarkers needs to be constrained and directed by
current biological knowledge concerning, e.g. sus-
pected genes/proteins or pathogenetic pathways, or
simply the experimental environment that gave rise
to the data under study. In this regard, promising
tracks have been opened by groundbreaking work
on the role of causality in feature selection [94].
Sorting out causal relationships from the correlations
or statistical dependencies uncovered by relevance
measures has many advantages. Causal inference
from domain knowledge can help us understand the
data structure and distinguish, for instance, features
that are essential to the system under study (e.g. an
m/z point representing a protein that is overexpressed
due to the target disease) from simple experimental
artifacts (e.g. an m/z point whose intensity corre-
sponds to the baseline). Also, from a practical point
of view, knowing which features are causes or
consequences of the target (e.g. disease) under study
is critical in medical decision-making: a diagnosed
risk of disease can be averted by acting on a cause
but not by acting on a consequence of the disease.
A preliminary theoretical analysis of causality-based
feature selection has refined the concept of feature
relevance in the framework of causal Bayesian
networks. These are computational models that are
fully defined by their graphs (directed acyclic graphs
in which nodes represent features and an edge from
node X1 to X2 means X1 directly causes X2) and the
conditional probabilities PðXijDirectCausesðXiÞ [94].
There have been a few early attempts to exploit
causality in microarray data analysis [95, 96]; with

recent successes in scaling up Bayesian networks
to very high-dimensional data [97, 98], causal feature
selection has taken place as a competitive technique
for proteomic biomarker discovery.
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