
Learning Neighborhoods for Metric Learning

Jun Wang, Adam Woznica, and Alexandros Kalousis

AI Lab, Department of Computer Science, University of Geneva, Switzerland
Department of Business Informatics, University of Applied Sciences, Western

Switzerland {jun.wang,adam.woznica}@unige.ch
{alexandros.kalousis}@hesge.ch

Abstract. Metric learning methods have been shown to perform well
on different learning tasks. Many of them rely on target neighborhood
relationships that are computed in the original feature space and remain
fixed throughout learning. As a result, the learned metric reflects the
original neighborhood relations. We propose a novel formulation of the
metric learning problem in which, in addition to the metric, the target
neighborhood relations are also learned in a two-step iterative approach.
The new formulation can be seen as a generalization of many existing
metric learning methods. The formulation includes a target neighbor as-
signment rule that assigns different numbers of neighbors to instances
according to their quality; ‘high quality’ instances get more neighbors.
We experiment with two of its instantiations that correspond to the met-
ric learning algorithms LMNN and MCML and compare it to other met-
ric learning methods on a number of datasets. The experimental results
show state-of-the-art performance and provide evidence that learning the
neighborhood relations does improve predictive performance.
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1 Introduction

The choice of the appropriate distance metric plays an important role in distance-
based algorithms such as k-NN and k-Means clustering. The Euclidean metric
is often the metric of choice, however, it may easily decrease the performance
of these algorithms since it relies on the simple assumption that all features are
equally informative. Metric learning is an effective way to overcome this limita-
tion by learning the importance of difference features exploiting prior knowledge
that comes in different forms. The most well studied metric learning paradigm
is that of learning the Mahalanobis metric with a steadily expanding literature
over the last years [19, 13, 3, 2, 10, 18, 9, 5, 16].

Metric learning for classification relies on two interrelated concepts, similarity
and dissimilarity constraints, and the target neighborhood. The latter defines for
any given instance the instances that should be its neighbors and it is specified
using similarity and dissimilarity constraints. In the absence of any other prior
knowledge the similarity and dissimilarity constraints are derived from the class
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labels; instances of the same class should be similar and instances of different
classes should be dissimilar.

The target neighborhood can be constructed in a global or local manner.
With a global target neighborhood all constraints over all instance pairs are
active; all instances of the same class should be similar and all instances from
different classes should be dissimilar [19, 3]. These admittedly hard to achieve
constraints can be relaxed with the incorporation of slack variables [13, 2, 10, 9].
With a local target neighborhood the satisfiability of the constraints is exam-
ined within a local neighborhood [4, 17, 10, 18]. For any given instance we only
need to ensure that we satisfy the constraints that involve that instance and
instances from its local neighborhood. The resulting problem is considerably
less constrained than what we get with the global approach and easier to solve.
However, the appropriate definition of the local target neighborhood becomes
now a critical component of the metric learning algorithm since it determines
which constraints will be considered in the learning process. [18] defines the lo-
cal target neighborhood of an instance as its k, same-class, nearest neighbors,
under the Euclidean metric in the original space. Goldberger et al. [4] initialize
the target neighborhood for each instance to all same-class instances. The local
neighborhood is encoded as a soft-max function of a linear projection matrix
and changes as a result of the metric learning. With the exception of [4], all
other approaches whether global or local establish a target neighborhood prior
to learning and keep it fixed throughout the learning process. Thus the metric
that will be learned from these fixed neighborhood relations is constrained by
them and will be a reflection of them. However, these relations are not necessarily
optimal with respect to the learning problem that one is addressing.

In this paper we propose a novel formulation of the metric learning problem
that includes in the learning process the learning of the local target neighbor-
hood relations. The formulation is based on the fact that many metric learning
algorithms can be seen as directly maximizing the sum of some quality mea-
sure of the target neighbor relationships under an explicit parametrization of
the target neighborhoods. We cast the process of learning the neighborhood as
a linear programming problem with a totally unimodular constraint matrix [14].
An integer 0-1 solution of the target neighbor relationship is guaranteed by the
totally unimodular constraint matrix. The number of the target neighbors does
not need to be fixed, the formulation allows the assignment of a different number
of target neighbors for each learning instance according to the instance’s quality.
We propose a two-step iterative optimization algorithm that learns the target
neighborhood relationships and the distance metric. The proposed neighborhood
learning method can be coupled with standard metric learning methods to learn
the distance metric, as long as these can be cast as instances of our formulation.

We experiment with two instantiations of our approach where the Large Mar-
gin Nearest Neighbor (LMNN) [18] and Maximally Collapsing Metric Learning
(MCML) [3] algorithms are used to learn the metric; we dub the respective in-
stantiations LN-LMNN and LN-MCML. We performed a series of experiments
on a number of classification problems in order to determine whether learning
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the neighborhood relations improves over only learning the distance metric. The
experimental results show that this is indeed the case. In addition, we also com-
pared our method with other state-of-the-art metric learning methods and show
that it improves over the current state-of-the-art performance.

The paper is organized as follows. In section 2, we discuss in more detail the
related work. In Section 3 we present the optimization problem of the Learn-
ing Neighborhoods for Metric Learning algorithm (LNML) and in Section 4 we
discuss the properties of LNML. In Section 5 we instantiate our neighborhood
learning method on LMNN and MCML. In Section 6 we present the experimental
results and we finally conclude with Section 7.

2 Related Work

The early work of Xing et al., [19], learns a Mahalanobis distance metric for
clustering that tries to minimize the sum of pairwise distances between similar
instances while keeping the sum of dissimilar instance distances greater than a
threshold. The similar and dissimilar pairs are determined on the basis of prior
knowledge. Globerson & Roweis, [3] introduced the Maximally Collapsing Met-
ric Learning (MCML). MCML uses a stochastic nearest neighbor selection rule
which selects the nearest neighbor xj of an instance xi under some probabil-
ity distribution. It casts the metric learning problem as an optimization prob-
lem that tries to minimize the distance between two probability distributions,
an ideal one and a data dependent one. In the ideal distribution the selection
probability is always one for instances of the same class and zero for instances
of different class, defining in that manner the similarity and dissimilarity con-
straints under the global target neighborhood approach. In the data dependent
distribution the selection probability is given by a soft max function of a Maha-
lanobis distance metric, parametrized by the matrix M to be learned. In a similar
spirit Davis et al., [2], introduced Information-Theoretic Metric Learning. ITML
learns a Mahalanobis metric for classification with similarities and dissimilarities
constraints that follow the global target neighborhood approach. In ITML all
same-class instance pairs should have a distance smaller than some threshold and
all different-class instance pairs should have a distance larger than some thresh-
old. In addition the objective function of ITML seeks to minimize the distance
between the learned metric matrix and a prior metric matrix, modelling like that
prior knowledge about the metric if such is available. The optimization problem
is cast as a distance of distributions subject to the pairwise constraints and
finally expressed as a Bregman optimization problem (minimizing the LogDet
divergence). In order to be able to find a feasible solution they introduce slack
variables in the similarity and dissimilarity constraints.

The so far discussed metric learning methods follow the global target neigh-
borhood approach in which all instances of the same class should be similar
under the learned metric, and all pairs of instances from different classes dissim-
ilar. This is a rather hard constraint and assumes that there is a linear projection
of the original feature space that results in unimodal class conditional distribu-
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tions. Goldberger et al., [4], proposed the NCA metric learning method which
uses the same stochastic nearest neighbor selection rule under the same data-
dependent probability distribution as MCML. NCA seeks to minimize the soft
error under its stochastic nearest neighbor selection rule. It uses only similarity
constraints and the original target neighborhood of an instance is the set of all
same-class instances. After metric learning some, but not necessarily all, same
class instances will end up having high probability of been selecting as nearest
neighbors of a given instance, thus having a small distance, while the others will
be pushed further away. NCA thus learns the local target neighborhood as a
part of the optimization. Nevertheless it is prone to overfitting, [20], and does
not scale to large datasets. The large margin nearest neighbor method (LMNN)
described in [17, 18] learns a distance metric which directly minimizes the dis-
tances of each instance to its local target neighbors while keeping a large margin
between them and different class instances. The target neighbors have to be
specified prior to metric learning and in the absence of prior knowledge these
are the k same class nearest neighbors for each instance.

3 Learning Target Neighborhoods for Metric Learning

Given a set of training instances {(x1, y1), (x2, y2) , . . . , (xn, yn)} where xi ∈ Rd

and the class labels yi ∈ {1, 2, . . . , c}, the Mahalanobis distance between two
instances xi and xj is defined as:

DM(xi,xj) = (xi − xj)T M(xi − xj) (1)

where M is a Positive Semi-Definite (PSD) matrix (M � 0) that we will learn.
We can reformulate many of the existing metric learning methods, such as [19,

13, 3, 10, 18], by explicitly parametrizing the target neighborhood relations as
follows:

min
M,Ξ

∑
ij,i 6=j,yi=yj

Pij · Fij(M,Ξ) (2)

s.t. constraints of the original problem

The matrix P,Pij ∈ {0, 1}, describes the target neighbor relationships which
are established prior to metric learning and are not altered in these methods.
Pij = 1, if xj is the target neighbor of xi, otherwise, Pij = 0. Note that the
parameters Pii and Pij : yi 6= yj are set to zero, since an instance xi cannot be
a target neighbor of itself and the target neighbor relationship is constrained to
same-class instances. This is why we have i 6= j, yi = yj in the sum, however, for
simplicity we will drop it from the following equations. Fij(M,Ξ) is the term of
the objective function of the metric learning methods that relates to the target
neighbor relationship Pij , M is the Mahalanobis metric that we want to learn,
and Ξ is a set of other parameters in the original metric learning problems, e.g.
slack variables. Regularization terms on the M and Ξ parameters can also be
added into Problem 2 [13, 10].



Learning Neighborhoods for Metric Learning 5

The Fij(M,Ξ) term can be seen as the ’quality’ of the target neighbor rela-
tionship Pij under the distance metric M; a low value indicates a high quality
neighbor relationship Pij . The different metric learning methods learn the M
matrix that optimizes the sum of the quality terms based on the a priori estab-
lished target neighbor relationships; however, there is no reason to believe that
these target relationships are the most appropriate for learning.

To overcome the constraints imposed by the fixed target neighbors we propose
the Learning the Neighborhood for Metric Learning method (LNML) in which,
in addition to the metric matrix M, we also learn the target neighborhood
matrix P. LNML has as objective function the one given in Problem 2 which
we now optimize also over the target neighborhood matrix P. We add some new
constraints in Problem 2 which control for the size of the target neighborhoods.
The new optimization problem is the following:

min
M,Ξ,P

∑
ij

Pij · Fij(M, Ξ) (3)

s.t.
∑
i,j

Pij = Kav ∗ n

Kmax ≥
∑

j

Pi,j ≥ Kmin

1 ≥ Pij ≥ 0
constraints of the original problem

Kmin and Kmax are the minimum and maximum numbers of target neighbors
that an instance can have. Thus the second constraint controls the number of
target neighbor that xi instance can have. Kav is the average number of target
neighbor per instance. It holds by construction that Kmax ≥ Kav ≥ Kmin.
We should note here that we relax the target neighborhood matrix so that its
elements Pij take values in [0, 1] (third constraint). However, we will show later
that a solution Pij ∈ {0, 1} is obtained, given some natural constraints on the
Kmin, Kmax and Kav parameters.

3.1 Target neighbor assignment rule

Unlike other metric learning methods, e.g. LMNN, in which the number of target
neighbors is fixed, LNML can assign a different number of target neighbors for
each instance. As we saw the first constraint in Problem 3 sets the average num-
ber of target neighbors per instance to Kav, while the second constraint limits
the number of target neighbors for each instance between Kmin and Kmax. The
above optimization problem implements a target neighbor assignment rule which
assigns more target neighbors to instances that have high quality target neigh-
bor relations. We do so in order to avoid overfitting since most often the ’good’
quality instances defined by metric learning algorithms [3, 18] are instances in
dense areas with low classification error. As a result the geometry of the dense
areas of the different classes will be emphasized. How much emphasis we give
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on good quality instances depends on the actual values of Kmin and Kmax. In
the limit one can set the value of Kmin to zero; nevertheless the risk with such
a strategy is to focus heavily on dense and easy to learn regions of the data and
ignore important boundary instances that are useful for learning.

4 Optimization

4.1 Properties of the Optimization Problem

We will now show that we get integer solutions for the P matrix by solving a
linear programming problem and analyze the properties of Problem 3.

Lemma 1. Given M,Ξ, and Kmax ≥ Kav ≥ Kmin then Pij ∈ {0, 1}, if Kmin,
Kmax and Kav are integers.

Proof. Given M and Ξ, Fij(M,Ξ) becomes a constant. We denote by p the
vectorization of the target neighborhood matrix P which excludes the diagonal
elements and Pij : yi 6= yj , and by f the respective vectorized version of the Fij

terms. Then we rewrite Problem 3 as:

min
p

pT f

s.t. (Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,Kav ∗ n)T ≥ Ap ≥

(Kmin, · · · ,Kmin︸ ︷︷ ︸
n

,Kav ∗ n)T

1 ≥ pi ≥ 0 (4)

The first and second constraints of Problem 3 are reformulated as the first con-
straint in Problem 4. A is a (n+1)× (

∑
cl

n2
cl
−n) constraint matrix, where ncl

is the number of instances in class cl

A =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 1 · · · 1


where 1 (0) is the vector of ones (zeros). Its elements depends on the its position
in the matrix A. In its ith column, all 1 (0) vectors have ni − 1 elements, where
ni is the number of instances of class cj with cj = ypi . According to the sufficient
condition for total unimodularity (Theorem 7.3 in [14]) the constraint matrix A
is a totally unimodular matrix. Thus, the constraint matrix B = [I,−I,A,−A]T

in the following equivalent problem also is a totally unimodular matrix (pp.268
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in [12]).

min
p

pT f

s.t. Bp ≤ e

e = ( 1, · · · , 1︸ ︷︷ ︸P
cl

n2
cl
−n

, 0, · · · , 0︸ ︷︷ ︸P
cl

n2
cl
−n

,Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,

Kav ∗ n,−Kmin, · · · ,−Kmin︸ ︷︷ ︸
n

,−Kav ∗ n)T (5)

Since e is an integer vector, provided Kmin, Kmax, and Kav, are integers, and
the constraint matrix B is totally unimodular, the above linear programming
problem will only have integer solutions (Theorem 19.1a in [12]). Therefore, for
the solution p it will hold that pi ∈ {0, 1} and consequently Pij ∈ {0, 1}.

Although the constraints to control the size of the target neighborhood are
convex, the objective function in Problem 3 is not jointly convex in P and (M,Ξ).
However, as shown in Lemma 1, the binary solution of P can be obtained by a
simple linear program if we fix (M,Ξ). Thus, Problem 3 is individually convex
in P and (M,Ξ), if the original metric learning method is convex; this condition
holds for all the methods that can be coupled with our neighborhood learning
method [19, 13, 3, 10, 18].

4.2 Optimization Algorithm

Based on Lemma 1 and the individual convexity property we propose a gen-
eral and easy to implement iterative algorithm to solve Problem 3. The details
are given in Algorithm 1. At the first step of the kth iteration we learn the
binary target neighborhood matrix P(k) under a fixed metric matrix M(k−1)

and Ξ(k−1), learned in the k − 1th iteration, by solving the linear programming
problem described in Lemma 1. At the second step of the iteration we learn the
metric matrix M(k) and Ξ(k) with the target neighborhood matrix P(k) using as
the initial metric matrix the M(k−1). The second step is simply the application
of a standard metric learning algorithm in which we set the target neighborhood
matrix to the learned P(k) and the initial metric matrix to M(k−1). The conver-
gence of proposed algorithm is guaranteed if the original metric learning problem
is convex [1]. In our experiment, it most often converges in 5-10 iterations.

5 Instantiating LNML

In this section we will show how we instantiate our neighborhood learning
method with two standard metric learning methods, LMNN and MCML, other
possible instantiations include the metric learning methods presented in [19, 13,
10].
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Algorithm 1 LNML
Input: X, Y, M0,Ξ0, Kmin, Kmax and Kav

Output: M
repeat

P(k)=LearningNeighborhood(X,Y,M(k−1),Ξ(k−1)) by solving Problem 4
(M(k),Ξ(k))=MetricLearning(M(k−1),P(k))
k := k + 1

until convergence

5.1 Learning the Neighborhood for LMNN

The optimization problem of LMNN is given by:

min
M,ξ

∑
ij

Pij{(1− µ)DM(xi,xj) + µ
∑

l

(1−Yil)ξijl} (6)

s.t. DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl

ξijl > 0
M � 0

where the matrix Y,Yij ∈ {0, 1}, indicates whether the class labels yi and yj

are the same (Yij = 1) or different (Yij = 0). The objective is to minimize the
sum of the distances of all instances to their target neighbors while allowing for
some errors, this trade off is controlled by the µ parameter. This is a convex
optimization problem that has been shown to have good generalization ability
and can be applied to large datasets. The original problem formulation corre-
sponds to a fixed parametrization of P where its non-zero values are given by
the k nearest neighbors of the same class.

Coupling the neighborhood learning framework with the LMNN metric learn-
ing method results in the following optimization problem:

min
M,P,ξ

∑
ij

Pij · Fij(M, ξ) (7)

= min
M,P,ξ

∑
ij

Pij{(1− µ)DM(xi,xj) + µ
∑

l

(1−Yil)ξijl}

s.t. Kmax ≥
∑

j

Pi,j ≥ Kmin∑
i,j

Pij = Kav ∗ n

1 ≥ Pij ≥ 0
DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl

ξijl > 0
M � 0
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We will call this coupling of LNML and LMNN LN-LMNN. The target neighbor
assignment rule of LN-LMNN assigns more target neighbors to instances that
have small distances from their target neighbors and low hinge loss.

5.2 Learning the Neighborhood for MCML

MCML relies on a data dependent stochastic probability that an instance xj is
selected as the nearest neighbor of an instance xi; this probability is given by:

pM(j|i) =
e−DM(xi,xj)

Zi
=

e−DM(xi,xj)∑
k 6=i e−DM(xi,xk)

, i 6= j

(8)

MCML learns the Mahalanobis metric that minimizes the KL divergence dis-
tance between this probability distribution and the ideal probability distribution
p0 given by:

p0(j|i) =
Pij∑
k Pik

, p0(i|i) = 0 (9)

where Pij = 1, if instance xj is the target neighbor of instance xi, otherwise,
Pij = 0. The optimization problem of MCML is given by:

min
M

∑
i

KL[p0(j|i)|pM(j|i)] (10)

= min
M

∑
i,j

Pij
(DM(xi,xj) + log Zi)∑

k Pik

s.t. M � 0

Like LMNN, this is also a convex optimization problem. In the original problem
formulation the ideal distribution is defined based on class labels, i.e. Pij =
1, if instances xi and xj share the same class label, otherwise, Pij = 0. The
neighborhood learning method cannot learn directly the target neighborhood for
MCML, since the objective function of the latter cannot be rewritten in the form
of the objective function in Problem 3, due to the denominator

∑
k Pik. However,

if we fix the size of the neighborhood to
∑

k Pi,k = Kav = Kmin = Kmax the
two methods can be coupled and the resulting optimization is given by:

min
M,P

∑
ij

Pij · Fij(M) (11)

= min
M,P

∑
i,j

Pij
(DM(xi,xj) + log Zi)

Kav

s.t.
∑

j

Pi,j = Kav

M � 0
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We will dub this coupling of LNML and MCML as LN-MCML. The original
MCML method follows the global approach in establishing the neighborhood,
with LN-MCML we get a local approach in which the neighborhoods are of fixed
size Kav for every instance.

6 Experiments

With the experiments we wish to investigate a number of issues. First, we want
to examine whether learning the target neighborhood relations in the metric
learning process can improve predictive performance over the baseline approach
of metric learning with an apriori established target neighborhood. Second, we
want to acquire an initial understanding of how the parameters Kmin and Kmax

relate to the predictive performance. To this end, we will examine the pre-
dictive performance of LN-LMNN with two fold inner Cross Validation (CV)
to select the appropriate values of Kmin and Kmax, method which we will
denote by LN-LMNN(CV), and that of LN-LMNN, with a default setting of
Kmin = Kmax = Kav. Finally, we want to see how the method that we pro-
pose compares to other state of the art metric learning methods, namely NCA
and ITML. We include as an additional baseline in our experiments the per-
formance of the Euclidean metric (EucMetric). We experimented with twelve
different datasets: seven from the UCI machine learning repository, Sonar, Iono-
sphere, Iris, Balance, Wine, Letter, Isolet; four text mining datasets, Function,
Alt, Disease and Structure, which were constructed from biological corpora [7];
and MNIST [8], a handwritten digit recognition problem. A more detailed de-
scription of the datasets is given in Table 1.

Since LMNN is computationally expensive for datasets with large number
of features we applied principal component analysis (PCA) to retain a limited
number of principal components, following [18]. The datasets to which this was
done were the four text mining datasets, Isolet and MNIST. For the two latter
173 and 164 principal components were respectively retained that explain 95% of
the total variance. For the text mining datasets more than 1300 principal com-
ponents should be retained to explain 95% of the total variance. Considering the
running time constraints, we kept the 300 most important principal components
which explained 52.45%, 47.57%, 44.30% and 48.16% of the total variance for
respectively Alt, Disease, Function and Structure. We could experiment with
NCA and MCML on full tranining datasets only with datasets with a small
number of instances due to their computational complexity. For completeness
we experimented with NCA on large datasets by undersampling the training
instances, i.e. the learning process only involved 10% of full training instances
which was the maximum number we could experiment for each dataset. We
also applied ITML on both versions of the larger datasets, i.e. with PCA-based
dimensionality reduction and the original ones.

For ITML, we randomly generate for each dataset the default 20c2 constraints
which are bounded repectively by the 5th and 95th percentiles of the distribution
of all available pairwise distances for similar and dissimilar pairs. The slack
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Table 1. Datasets.

Datasets Description # Sample # Feature # Class # Retained PCA Components % Explained Variance

Sonar 208 60 2 NA NA
Ionosphere 351 34 2 NA NA
Wine 178 13 3 NA NA
Iris 150 4 3 NA NA
Balance 625 4 3 NA NA

Letter character recognition 20000 16 26 NA NA
Function sentence classification 3907 2708 2 300 44.30%
Alt sentence classification 4157 2112 2 300 52.45%
Disease sentence classification 3273 2376 2 300 47.57%
Structure sentence classification 3584 2368 2 300 48.16%
Isolet spoken character recognition 7797 619 26 173 95%
MNIST handwritten digit recognition 70000 784 26 164 95%

variable γ is chosen form {10i}4
i=−4 using two-fold CV. The default identity

matrix is employed as the regularization matrix. For the different instantiations
of the LNML method we took care to have the same parameter settings for the
encapsulated metric learning method and the respective baseline metric learning.
For LN-LMNN, LN-LMNN(CV) and LMNN the regularization parameter µ that
controls the trade-off between the distance minimization component and the
hinge loss component was set to 0.5 (the default value of LMNN). For LMNN
the default number of target neighbors was used (three). For LN-LMNN, we set
Kmin = Kmax = Kav = 3, similar to LMNN. To explore the effect of a flexible
neighborhood, the values of the Kmin and Kmax parameters in LN-LMNN(CV)
were selected from the sets {1, 4, 3} and {2, 5, 3} respectively, while Kav was fixed
to three. Similarly for LN-MCML we also set Kav = 3. The distance metrics for
all methods are initialized to the Euclidean metric. As the classification algorithm
we used 1-Nearest Neighbor.

We used 10-fold cross validation for all datasets to estimate classification
accuracy, with the exception of Isolet and MNIST for which the default train
and test split was used. The statistical significance of the differences were tested
with McNemar’s test and the p-value was set to 0.05. In order to get a better
understanding of the relative performance of the different algorithms for a given
dataset we used a ranking schema in which an algorithm A was assigned one point
if it was found to have a significantly better accuracy than another algorithm B,
0.5 points if the two algorithms did not have a significantly different performance,
and zero points if A was found to be significantly worse than B. The rank of an
algorithm for a given dataset is simply the sum of the points over the different
pairwise comparisons. When comparing N algorithms in a single dataset the
highest possible score is N − 1 while if there is no significant difference each
algorithm will get (N − 1)/2 points.

6.1 Results

The results are presented in Table 2. Examining whether learning also the neigh-
borhood improves the predictive performance compared to plain metric learn-
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ing, we see that in the case of LN-MCML, and for the five small datasets for
which we have results, learning the neighborhood results in a statistically sig-
nificant deterioration of the accuracy in one out of the five datasets (balance),
while for the remaining four the differences were not statistically significant.
If we now examine LN-LMNN(CV), LN-LMNN and LMNN we see that here
learning the neighborhood does bring a statistically significant improvement.
More precisely, LN-LMNN(CV) and LN-LMNN improve over LMNN respec-
tively in six (two small and four large) and four (two small and two large) out
of the 12 datasets. Moreove, by comparing LN-LMNN(CV) and LN-LMNN, we
see that learning a flexible neighborhood with LN-LMNN(CV) improves signif-
icantly the performance over LN-LMNN on two datasets. The low performance
of LN-MCML on the balance dataset was intriguing; in order to take a closer
look we tried to determine automatically the appropriate target neighborhood
size, Kav, by selecting it on the basis of five-fold inner cross validation from the
set Kav = {3, 5, 7, 10, 20, 30}. The results showed that the default value of Kav

was too small for the given dataset, with the average selected size of the target
neighborhood at 29. As a result of the automatic tunning of the target neigh-
borhood size the predictive performance of LN-MCML jumped at an accuracy
of 93.92% which represented a significant improvement over the baseline MCML
for the balance dataset. For the remaining datasets it turned out that the choice
of Kav = 3 was a good default choice. In any case, determining the appropriate
size of the target neighborhood and how that affects the predictive performance
is an issue that we wish to investigate further. In terms of the total score that
the different methods obtain the LN-LMNN(CV) achieves the best in both the
small and large datasets. It is followed closely by NCA in the small datasets and
by LN-LMNN in the large datasets.

7 Conclusion and Future Work

We presented LNML, a general Learning Neighborhood method for Metric Learn-
ing algorithms which couples the metric learning process with the process of es-
tablishing the appropriate target neighborhood for each instance, i.e. discovering
for each instance which same class instances should be its neighbors. With the
exception of NCA, which cannot be applied on datasets with many instances, all
other metric learning methods whether they establish a global or a local target
neighborhood do that prior to the metric learning and keep the target neighbor-
hood fixed throughout the learning process. The metric that is learned as a result
of the fixed neighborhoods simply reflects these original relations which are not
necessarily optimal with respect to the classification problem that one is trying
to solve. LNML lifts these constraints by learning the target neighborhood. We
demonstrated it with two metric learning methods, LMNN and MCML. The
experimental results show that learning the neighborhood can indeed improve
the predictive performance.

The target neighborhood matrix P is strongly related to the similarity graphs
which are often used in semi-supervised learning [6], spectral clustering [15] and
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Table 2. Accuracy results. The superscripts +−= next to the LN-XXXX accuracy
indicate the result of the McNemar’s statistical test result of its comparison to the
accuracy of XXXX and denote respectively a significant win, loss or no difference
for LN-XXXX. Similarly, the superscripts +−= next to the LN-LMNN(CV) accuracy
indicate the result of its comparison to the accuracies of LMNN and LN-LMNN. The
bold entries for each dataset have no significant difference from the best accuracy
for that dataset. The number in the parenthesis indicates the score of the respective
algorithm for the given dataset based on the pairwise comparisons.

(a) Small datasets

Datasets MCML LN-MCML LMNN LN-LMNN LN-LMNN(CV) EucMetric NCA ITML

sonar 82.69(3.5) 84.62(3.5)= 81.25(3.5) 81.25(3.5)= 83.17(3.5)== 80.77(3.5) 81.73(3.5) 82.69(3.5)
ionosphere 88.03 (3.0) 88.89(3.5)= 89.17(3.5) 87.75 (3.0)= 92.02(5.5)=+ 86.32 (3.0) 88.60(3.5) 87.75 (3.0)
wine 91.57 (3.0) 96.07(4.0)= 94.38 (3.0) 97.75(5.5)+ 97.75(5.5)+= 76.97 (0.0) 91.57 (3.0) 94.94(4.0)
iris 98.00(4.5) 96.00(3.5)= 96.00(3.5) 94.00 (3.0)= 94.00 (3.0)== 96.00(3.5) 96.00(3.5) 96.00(3.5)
balance 91.20 (5.0) 78.08 (1.0)− 78.56 (1.0) 89.12 (4.5)+ 89.28 (4.5)+= 78.72 (1.0) 96.32(7.0) 87.84 (4.0)

Total Score 19.0 15.5 14.5 19.5 22.0 11.0 20.5 18.0

(b) Large datasets
Datasets PCA+LMNN PCA+LN-LMNN PCA+LN-LMNN(CV) EucMetric PCA+EucMetric PCA+NCA ITML PCA+ITML

letter 96.86 (5.0) 97.71(6.5)+ 97.64(6.5)+= 96.02 (0.5) 96.02 (0.5) 96.48 (3.0) 96.39 (3.0) 96.39 (3.0)
func 76.30 (2.5) 76.73 (2.5)= 78.91(6.0)++ 78.73(6.0) 76.48 (2.5) 72.36 (0.0) 78.73(6.0) 76.45 (2.5)
alt 83.98 (5.0) 84.92(6.5)+ 85.37(6.5)+= 68.51 (0.5) 71.33 (2.0) 78.54 (4.0) 68.49 (0.5) 72.53 (3.0)
disease 80.23(4.0) 80.14(4.0)= 80.66(4.0)== 80.60(4.0) 80.23(4.0) 73.59 (0.0) 80.60(4.0) 80.14(4.0)
structure 77.87 (4.5) 78.83(6.0)= 79.37(6.5)+= 75.82 (1.5) 77.00 (4.0) 71.93 (0.0) 75.79 (1.5) 77.06 (4.0)
Isolet 95.96(6.0) 95.06(6.0)= 95.06(6.0)== 88.58 (1.5) 88.33 (1.5) 85.63(0.0) 92.05 (3.5) 91.08 (3.5)
MNIST 97.66(6.0) 97.66(6.0)= 97.73(6.0)== 96.91 (2.0) 96.97 (2.0) 96.58 (1.5) 96.93 (1.5) 97.09 (3.0)

Total Score 33 37.5 41.5 16 16.5 8.5 20 23

manifold learning [11]. Most often the similarity graphs in these methods are
constructed in the original space, which nevertheless can be quite different from
true manifold on which the data lies. These methods could also profit if one is
able to learn the similarity graph instead of basing it on some prior structure.
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