SKMsmo documentation

Guillaume Obozinski

August 21, 2006

This is the documentation for the Matlab code that implements the algorithm of Francis
Bach and Gert Lanckriet as described in [1],[2]. The name SKMsmo stands for Support
Kernel Machine solved by Sequential Minimal optimization

0.1 In a nutshell

The two main functions are learn_SKM.m and learn_SKM2.m which are both implementing
the SKMsmo algorithm with two different types of input format: the first one assumes that
the kernels are stored in files to be read, and the second takes the kernel set as a Matlab
matrix. If the code is only given one kernel, the code is automatically switching to the (very
similar) SMO algorithm for SVM. You can test the code with the script code_test.m which
will generate some 50 Mb of kernels and use them to learn two SKMs.

1 Main functions

The format for the functions are:

[SKM]=learn_SKM(output_dir,filename_prefix,CO,Y,train,test,k1,k2,...,km)
[SKM]=learn_SKM2(CO,Y,train,test,K_stack)

output dir name of the directory where the output is to be stored. If empty, the results
are not written but just returned in the SKM structure.

filename prefix is the prefix of the files output by the code in <output_dir>
CO The regularisation value(s):

e if CO is scalar, the same regularization is used for all data points

e if CO is a pair of values, the first regularization is applied to the positives (against
FN) and the second is applied to the negatives (against FP)

e CO can also be a full vector of the same size as the training set or the full set.

Y is assumed to be a column vector of the same length as the number of entries in the
kernel matrices, containing the +1, —1 labels (only training are required, test are used
for error measure on test)

train is the list of the indices of the training points in Y and the kernel matrices
test is the list of the indices of the testing points in Y and in the kernels matrices
Kstack is the matrix obtained by stacking on top of one another all the kernels to be used.

k1,....,km the names of the files containing the kernels with the following format assumed:
each file is tab separated with first row and columns containing headers that are
ignored by the code.

2 The parameters

Most of the parameters of the algorithm are set in the script init_parameters.m which
is called before the core code is executed. It should make it convenient for the user to
edit that file and modify the settings. The code is of course be usable without changing
these parameters at all. However, the parameters acc.tau, acc.taul and acc.tau2 are
parameters that the user might want to adjust to achieve a better trade-off between speeding-
up the algorithm or getting a more precise solution.

Here is a description of the all the parameters found in init_parameters.m in order of
appearance (see that .m file):

e d is a m x 1 vector containing the d; as described in the paper. They are usually set
to 1 assuming the kernels have been normalized by their trace. (To match the SDP
formulation of SKM, if ¢ is the constraint on the sum of the traces tr(K;) then one

should use d; = tr(if” Setting all the d; to 1 corresponds to an assumption that the
different kernels are on the same scale, for instance that they all have traces that are
equal or close. A kernel which has a larger scale is otherwise likely to dominate in the
combination.

e The Dekker-Brent parameters are used by the Dekker-Brent line search algo-
rithm' which is a subroutine that performs each coordinate descent step. In general
the following parameters shouldn’t be changed: dkb.machine_precision is an upper
bound on the machine precision used to avoid numerical errors, dkb.maxiter is the
maximal number of bisections/interpolations, dkb.bisect_acc is the tolerance used
to assess whether a zero has been found (This value should be quite small)

e The regularization parameters correspond to the Moreau-Yoshida regularizations
that are successively solved to approach the non-differentiable problem. reg.value is
the initial value of the regularization and matches the parameter a; in the paper. This
value is then decreased iteratively by a multiplicative factor which is reg.dec_rate.
reg.min_reg is the minimal value of the regularization accepted by the algorithm (and
beyond which the computations become numerically ill-conditioned). The algorithm
stops and returns the best solution found so far if it reaches this value. reg.iter_max
is the maximal number of decreases of the regularization values allowed.

e The precision parameters

— acc.tau is the precision parameter to assess the convergence of each regulariza-
tion step. The algorithm decides it has found a solution to a regularized problem
(reg optimal) if the variable tau_here is less than acc.tau

— acc.taul and acc.tau2 are respectively the precision parameters for the slacks
€1 and €y in the paper (epsl and eps2 in the code). If both these precisions
are met then the non-differentiable problem is considered solved and the code
terminates (OPTIMAL!)

— acc.clip_etas is the threshold on the values of the unnormalized kernel weights
etas to set them to zero

— acc.clip_alphas is the parameter to clip the value of ; to 0 or C; (setting this
parameter to a too small value leads to bad assignments of the datapoints to the
sets Iy, I{f, IO_,IEF and 1)

— acc.Dalphas_res is the relative size of the smallest step in a acceptable measured

”a(tJrl)_a(t) I
b T
step are too small according to this precision, the program gives up at the current

regularization level

If for more than acc.max_nb_alpha_unchanged iterations the

— acc.Detas_res is the desired resolution for the weights: if the weight are not
changing at thar resolution for more than acc.max_nb_etas_unchanged itera-
tions then the weights are frozen and the algorithm switches to the SMO algo-
rithm for SVM.

1The Dekker-Brent method combines the advantages of bisection and interpolation with a second order
polynomial to find the zeros of a function, in our case the zero of a directional derivative

3

The counters

— counters.maxiter_per_reg Sets the maximal number of iterations per regular-
ized problem (message: over maximal number of iterations)

— counters.global is the global counter;

when option.store_history is set to 1 the code does some additional computation
and bookkeeping to return in the final SKM object the history of the different variables
as they evolve during the computation.

The output

The output is a structure SKM which has the following fields:

etas: n

etas_tilde: 7 the kernel weights

alphas: «

bias: b

epsl: €

eps2: €3

tau: € aka tau

nb_iter: the value of counters.global

Y the labels of the training points

duality_gap the duality gap at the end of the computation ie obj_ub-obj_1b
discrim: w-x +b=) n;K;D(y)a+b

outflags flags that characterize the termination of the algorithm.
discrim_test The value of the SKM on testing points.

err_test The 0-1 loss on the testing set if the true labels of the testing point where
given in Y.

Other fields available if option.store_history=1

Gas: the history of the regularized problems objective values
obj: the history of the objective value

obj_ub: the history of 1 max; aD(y)K;D(y)a — 1T«
obj_1b: the history of —% max; aD(y)K;D(y)a — CT¢
step_loss: the history of the 0-1 loss

cost: the history of the hinge loss

taus: the history of €

epsls: the history of ¢;

eps2s: the history of ey

References

[1] Francis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan (2004). Multiple Kernel Learn-
ing, Conic Duality, and the SMO Algorithm. Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning

[2] Bach, F.R., Lanckriet, G.R.G., Jordan, M.I. (2004). Fast Kernel Learning using Se-
quential Minimal Optimization . Technical Report CSD-04-1307, Division of Computer
Science, University of California, Berkeley.

