Abstract

The k-Nearest Neighbors algorithm can be easily adapted to classify complex objects (e.g. sets, graphs) as long as a proper dissimilarity function is given over the input space. Both the representation of the learning instances and the dissimilarity employed on that representation should be determined on the basis of domain knowledge. However, even in the presence of domain knowledge, it can be far from obvious which complex representation should be used or which dissimilarity should be applied in the chosen representation. In this paper we present a framework that allows to combine different complex representations of a given learning problem and/or different dissimilarities defined on these representations. We build on ideas developed previously on metric learning for vectorial data. We demonstrate the utility of our method in domains in which the learning instances are represented as sets of vectors by learning how to combine different set distance measures.

1. Introduction

The k-nearest neighbor (kNN) algorithm (Aha, 1997) is an effective method to address classification problems. In this algorithm a class value for an unlabeled example is predicted as the most frequent label occurring in the k-nearest neighbors in the training set. Similar to other distance-based algorithms kNN does not require a direct access to the training examples, instead it accesses the data only by a dissimilarity function.

Although intuitively simple the kNN algorithm has proved its utility in many real-world applications (Aha, 1997). The common approach in most of the kNN classifiers is to represent the training instances as vectors in the \mathbb{R}^n space where the Euclidean metric is used to measure the dissimilarities between examples. This approach has the advantages of simplicity and generality, however, it has two main limitations. First, most of today’s machine learning applications hardly fit within the typical propositional representation and in such cases more general representations (e.g. lists, sets, graphs) should be used (Horváth et al., 2001; Eiter & Mannila, 1997; Ramon & Gärtner, 2003). Second, the Euclidean metric implies that the input space is isotropic, which is rarely valid in practical applications.

The proper representation of the learning examples and the actual dissimilarity over that representation are important constituents of kNN critically influencing its performance. Both of them should be directly determined by domain knowledge and application requirements, however, in practice we rarely have a solid description of the learning problem. As a result for a given problem there might exist several plausible dissimilarities which are defined on different representations and reflect different aspects of the data. As an example consider labeled graphs, a widely used representation in machine learning to represent complex objects, e.g. chemical compounds. Graphs, depending on the application requirements, can be represented among others as adjacency matrices, set of trees, sets of walks and sets of cyclic patterns (Ramon & Gärtner, 2003). Moreover, for each of the above representations different dissimilarities can be applied. An obvious question is how to select from this set of predefined dissimilarities and representations the one that best fits the requirements of the problem at hand. A simple solution is to select the dissimilarity (usually from a predefined set of dissimilarities) by cross-validation. The main drawback of this approach is that only one dissimilarity per training set is selected which limits the expressivity of the resulting method. Additionally this approach is limited to a small number of distances, due to computational constraints, and requires the use of extra data.

In this paper we show how to learn distance measures for kNN classification by combining predefined distances and the corresponding representations. We exploit ideas developed previously for adapting a metric to a given task by learning it directly from the data. In this context several attempts have been recently made, either in supervised (Goldberger et al., 2005; Globerson & Roweis, 2006; Domeniconi & Gunopulos, 2002; Weinberger et al., 2006; Yang et al., 2006; Schultz & Joachims, 2004) or in semi-
supervised settings (Xing et al., 2003; Hillel et al., 2003). The distance measures are usually restricted to belong to a Mahalanobis metric family\(^1\) parametrized by a positive semi-definite (PSD) matrix. All these methods were developed for vectorial data and are similar in the sense that the actual problem is cast as a mathematical optimization task which is amenable to efficient optimization techniques. However, these algorithms differ w.r.t. the actual objective function that is being optimized and hence they implicitly assume different distributions of the data. In this work we exploit three of the above methods, namely the ones presented in Xing et al. (2003), Goldberger et al. (2005) and Globerson and Roweis (2006), and adapt them so that they can be used in the context of complex structures. To the best of our knowledge it is the first attempt to learn distances over complex structures.

We will demonstrate our approach in applications in which learning examples are most naturally represented in the form of sets of vectors of possibly different cardinalities and the distances to be combined are different distances on sets. Nevertheless the framework is more general and can be applied on any arbitrary combination of distances and complex objects representation.

The paper is organized as follows. In Section 2 we describe the problem of choosing the complex representation and the dissimilarity function defined over that representation for a given application. In Section 3 we propose a framework for learning combinations of distance measures on complex objects where we exploit methods that were initially developed for learning metrics over vectorial data. Experimental results are reported in Sections 4 and 5, and Section 6 presents the related work. We conclude with Section 7 where we address the open issues and the future work.

2. Representations and Dissimilarities on Complex Objects

One of the main challenges in applications involving complex objects is that of the proper representation of the learning instances. The choice of the correct representation is crucial for the successful application of machine learning techniques since it renders the actual problem easier (if not trivial) to solve. Different languages for representing complex objects for the task of learning have been used over the years, mainly based on first order (Horváth et al., 2001; Dzeroski & Lavrac, 2001) or more general higher order logic (Gärtner et al., 2004). Within these languages the complex objects can be represented in different manners modeling for different semantics and aspects of the problem. For example graphs can be represented as sets of trees, walks, cyclic patterns, etc. (Ramon & Gärtner, 2003), for other applications representations based on adjacency matrices might be more appropriate.

Strongly associated with the problem of selection of the appropriate representation, is that of selection of an appropriate dissimilarity on the selected representation. It is possible to have different dissimilarities for a given representation, where again each dissimilarity models different semantics. Using again the example of graphs: if these are represented as sets of objects then we can choose among different dissimilarity measures on sets, whereas if they are modeled as adjacency matrices then we should choose among different dissimilarity measures for matrices.

Ideally, both the representation of the learning instances and the dissimilarity employed on that representation, should be determined on the basis of domain knowledge. However, even in the presence of domain knowledge, it can be far from obvious which complex representation should be used or which dissimilarity should be applied in the chosen representation. In this paper we take the view that the establishment of the appropriate combination of representation and dissimilarity should be a part of the learning process. In what follows we will collectively identify the couple of representation and the dissimilarity employed on this representation as a distance measure.

2.1. Distances on Sets

We will demonstrate the utility of our approach on learning complex distance combinations on problems where the learning objects come in the form of sets and we need to combine different set distance measures. Thus in this section we will give a brief description of set distance measures. We should emphasize here that the use of sets does not mean we are limited only to applications for which sets is an adequate representation, in fact the ideas presented later for distance combination are applicable for any type of distance measures over complex objects.

The central idea in set distance measures is the definition of a mapping of elements of one set to elements of the other set such that the final distance is determined on the basis of specific pairs of elements from the two corresponding sets. Different types of mappings correspond to distances that have different semantics (Eiter & Mannila, 1997; Horváth et al., 2001; Ramon & Bruynooghe, 2001). It should be noted that the other approach for computing distances is performed by comparing summary statistics computed from the corresponding sets, e.g. (Tatti, 2007). However, this feature might be inappropriate for applications where only some elements from the two sets determine the overall similarity (e.g. multiple-instance learning). In any case distances of that type can also be incorporated without any

\(^1\)The Mahalanobis metric parametrized by a positive semi-definite matrix \(A\) is defined as: \(d_A(x, y) = (x - y)^T A (x - y)\)
Consider two nonempty and finite sets $A = \{a_i\} \subseteq \mathcal{X}$ and $B = \{b_j\} \subseteq \mathcal{X}$. Let $d(.,.)$ be a metric defined on \mathcal{X}. The set distance measure D defined on $2^\mathcal{X}$ as $D(A,B) = \sum_{(a,b) \in F} d(a,b)$, i.e. it is a sum of pairwise distances over specific pairs which are defined by $F \subseteq A \times B$. Most of the set distances are normalized by $D(A,B) := \frac{D(A,B)}{n}$ such that the final distance takes values between 0 and 1. Within this framework we can define the Sum of Minimum Distances (D_{SM}), Hausdorff (D_H), RIBL (D_{RIBL}), Surjections (D_{S}), Linkings (D_{L}), Fair Surjections (D_{FS}) and Matchings (D_{M}) distances. Detailed description of these distance measures can be found in (Eiter & Mannila, 1997; Horváth et al., 2001; Ramon & Bruynooghe, 2001).

Nothing can be said about the general superiority of one distance measure over another. It all depends on the specific problem and its semantics which should mainly drive the selection of the appropriate mapping between the elements of the two sets. While this provides opportunities for exploiting prior knowledge, it can also be difficult in practice to find prior justification for the use of one set distance instead of another, providing thus an ideal context for distance combination.

3. Learning to combine distances

We view the problem of complex distance combination as an optimization problem where the two main constituents are the definition of a (differentiable) cost function that depends on the class labels and an optimization method. We only focus on learning a global distance measure as opposed to local methods which aim to determine a “stretched” neighborhood around each query instance such that class conditional probabilities are likely to be constant (Yang et al., 2006; Domeniconi & Gunopulos, 2002). Local methods form an interesting alternative and were shown to achieve better performance for data exhibiting “difficult” distributions, however, global methods have the advantage of providing insight into the underlying structure of the data which might be subsequently used e.g. for dimensionality reduction.

We begin with a labeled dataset consisting of n complex objects $\{(x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n)\}$ where $x_i \in \mathcal{X}$ and $y_i \in \{1,2,\ldots,c\}$. It should be noted that we use \mathcal{X} to denote the "abstract" domain of the learning instances and not the domain which corresponds to their actual representation. For a given set of distances $\{D_i\}_{i=1}^m$ over \mathcal{X} we define $\bar{D}(x_i,x_j) = [D_1(x_i,x_j), \ldots, D_m(x_i,x_j)]^T$. The quadratic combination of a set of distances $\{D_i\}_{i=1}^m$ is defined as:

$$D_A^2(x_i,x_j) = \bar{D}(x_i,x_j)^T A \bar{D}(x_i,x_j)$$ \hspace{1cm} (1)

where A is a positive semi-definite (PSD) matrix ($A \succeq 0$) to ensure that D_A^2 is a valid pseudometric. The above formula can be also reparametrized as:

$$D_W^2(x_i,x_j) = \bar{D}(x_i,x_j)^T W^T W \bar{D}(x_i,x_j)$$ \hspace{1cm} (2)

where $A = W^T W$. A possible optimization problem where the objective function is optimized w.r.t. matrix W is not constrained by $W \succeq 0$ and thus is easier to solve. Note that the quadratic form of Equation 1 is similar to the one of Mahalanobis distance for vectorial data. The difference is that the Mahalanobis distance requires direct access to the training examples whereas D_A^2 (or D_W^2) accesses the data only by the corresponding distance functions. The above formulation can be applied for any complex data for which different distance measures are defined.

A common approach for learning a metric is to provide information in the form of equivalence relations as pairwise constraints on the data. In the classification framework there is a natural equivalence relation, namely whether two points are in the same class or not, i.e. $S = \{(x_i,x_j)|y_i = y_j\}$ and $D = \{(x_i,x_j)|y_i \neq y_j\}$. The general problem of metric learning in a supervised setting can be now stated as the following optimization problem:

$$\min_Z \mathcal{F}_Z(S, D, D^2_Z)$$ \hspace{1cm} (3)

subject to some constraints where $Z = A$ or $Z = W$. For example for the parametrization in Equation 1 the optimization from Equation 3 has to be constrained by $A \succeq 0$. Depending on the actual form of the function \mathcal{F}_Z in Equation 3 and the optimization technique different instantiations of the algorithm can be obtained. Matrix A from Equation 3 can be restricted to be diagonal resulting in a weighted combination of distances, i.e.

$$D_A^2(x_i,x_j) = \sum_{i=1}^m a_{ii} D_i(x_i,x_j)$$

where a_{ii} are the diagonal elements of A. This restriction can be seen as a form of regularization since the effective number of parameters to estimate is reduced. As a result such regularization is expected to perform well on datasets with a small number of instances.

In the next subsections we explore three different instantiations of the above framework which differ with respect to the actual objective function which is being optimized. We are based in methods originally developed for vectorial data, namely Xing’s method (Xing et al., 2003), the Maximally Collapsing Metric Learning method (MCML) (Globerson & Roweis, 2006) and Neighborhood Component Analysis (NCA) (Goldberger et al., 2005), and adapt them so that they are used to learn quadratic distance combinations of the form given in Equations 1 and 2.

2In fact D_A^2 will be a pseudometric if $A \succeq 0$ and all D_i, $i = 1, \ldots, m$ are (pseudo-)metrics. In general $A \succeq 0$ is necessary to ensure that D_A^2 is non-negative.
The above methods differ with respect to the assumptions they make for the data distribution. In principle any metric learning method where the objective is a function of pairwise distances could be formulated within this framework. We should emphasize here that the three distance learning methods we build upon were developed for vectorial data, what they learn is the appropriate weighted combination of attributes, what we learn is the appropriate combination of full blown distances on the complete representations of the learning objects.

In the first two of the proposed methods (i.e. Xing’s and MCML) the re-parametrization is done according to Equation 1. As a result the objective functions are convex (Boyd & Vandenberghe, 2004) and thus the optimization problems are well defined in the sense that there exists a single global minimum. In order to ensure that $A \succeq 0$ we use the iterative projected approach as in Xing et al. (2003), calculate the eigen-decomposition of $A = \sum_k \lambda_k u_k u_k^T$, where $\lambda_k, k = 1, \ldots, m$ are A’s eigenvalues, u_k the corresponding eigenvectors, and set $A = \sum_k \max(\lambda_k, 0) u_k u_k^T$. In the NCA method the optimization is done w.r.t. matrix W from Equation 2 which makes the optimization problem easier to solve, since it is unconstrained. However, the objective function is no longer convex and is thus susceptible to local minima.

In this work the optimization problems are solved using the conjugate gradient method (Boyd & Vandenberghe, 2004) where the backtracking line search is used to optimize the step-size parameter. This method has a complexity of $O(m^2)$ since it requires to compute a gradient in the form of a $m \times m$ matrix.

3.1. Xing’s method

The first method proposed by Xing et al. (2003) was originally developed for semi-supervised clustering over vectorial data. We formulate the problem of distance combination as the following optimization problem:

$$\min_A \sum_{(x_i, x_j) \in S} D_A^2(x_i, x_j) \quad \text{s.t.} \quad \sum_{(x_i, x_j) \in D} D_A(x_i, x_j) \geq 1, A \succeq 0$$

It is straightforward to show that the optimization problem from Equation 4 is convex and is equivalent (up to a multiplications of A by a positive constant) to minimizing:

$$F_A = \sum_{(x_i, x_j) \in S} D_A^2(x_i, x_j) + \log\left(\sum_{(x_i, x_j) \in D} D_A(x_i, x_j) \right)$$

subject to $A \succeq 0$.

From Equation 5 it is clear that more emphasis is put on minimizing the pairwise distances between all examples in the same class. This implicitly assumes that instances from each class form a single compact connected set. In particular for binary problems where the negative class contains any examples which do not have the property encoded by the positive class the cost function for the Xing method will be severely penalized. A similar problem occurs for classes exhibiting highly multi-modal distributions. The other problem with this method is that the use of squared distance in the minimization term and the root of square distance for the constraint term is arbitrary and asymmetric.

3.2. MCML

The Maximally Collapsing Metric Learning algorithm (MCML) is based on the simple geometric intuition that all points of the same class should be mapped into a single location and far from points in the other classes (Globerson & Roweis, 2006). To learn the metric which would approximate this ideal geometrical setup a conditional distribution is introduced which for each example x_i selects another example x_j as its neighbor with some probability $p_A(j|i)$, and inherits its class label from the point it selects. The probability $p_A(j|i)$ is based on the softmax of the D_A distance:

$$p_A(j|i) = \frac{e^{-D_A^2(x_i, x_j)}}{\sum_{j \neq i} e^{-D_A^2(x_i, x_k)}} \cdot p(i|i) = 0$$

It can be shown (Globerson & Roweis, 2006) that any set of examples which has the distribution $p_0(j|i) = 1$ if $(x_i, x_j) \in S$ and $p_0(j|i) = 0$ if $(x_i, x_j) \in D$ exhibits the desired ideal geometry. It is thus natural to seek a matrix A such that $p_A(j|i)$ is as close (e.g. in the sense of the KL divergence) to $p_0(j|i)$. This is equivalent to minimizing:

$$F_A = \sum_i KL[p_0(j|i) | p_A(j|i)]$$

subject to $A \succeq 0$.

MCML is not based on Gaussian assumptions and the sufficient statistics used in the method are n “spread” matrices centered at each point (Globerson & Roweis, 2006). The main difference between the MCML methods and Xing’s is that the former puts more emphasis into the pairs of points which are in different classes. As a result the MCML is better suited for classification problems. The other drawback is that MCML tends to over fit the data because the cost function, which tries to maximize the accuracy on the entire training set, is not regularized in any way.

3.3. NCA

The Neighborhood Component Analysis (NCA) method from (Goldberger et al., 2005) attempts to directly optimize a continuous version of the leave-one-out error of the kNN
algorithm on the training data. The main difference between the NCA and the two previous methods is that optimization in NCA is done w.r.t. matrix W from Equation 2. The actual cost function used is a differentiable function based on stochastic neighbor assignments in the weighted space which is based on $p_{W}(j|i)$ from Equation 6. In the following we denote the set of points that share the same class with x_{i} by $C_{i} = \{ j|(x_i,x_j) \in S\}$. Under this stochastic selection rule the probability $p_{W}(i)$ of classifying x_{i} correctly is given by $p_{W}(i) = \sum_{j \in C_{i}} p_{W}(j|i)$.

One possible objective to maximize is the expected number of correctly classified points which is given by $\sum_{i} \sum_{j \in C_{i}} p_{W}(j|i)$. In this work, however, we use the following objective:

$$F_{W} = \sum_{i} \log(\sum_{j \in C_{i}} p_{W}(j|i))$$

which expresses the probability of obtaining an error free classification on the training set (Goldberger et al., 2005).

The main advantage of the NCA method is that it is non-parametric, making no assumptions about the shape of the class conditional distributions or the corresponding boundaries. In this sense it is similar to the MCML method. As already mentioned the main problem with the NCA algorithm is that there is no guarantee that a gradient method will converge to the global optima.

4. Experiments

In the experiments we evaluate the methods proposed in Section 3 on a number of relational datasets where training instances are represented as sets of vectors. The different complex distance combinations methods are compared in the context of the kNN algorithm. The goal is to examine whether combining them can increase the predictive performance of kNN. We will denote kNN in which the combined distances are used by kNN$_{DC}$.

We compared Xing’s, MCML and NCA methods obtained by optimizing the corresponding functions of Equation 3. We investigated two different instantiations for each one: (i) when the matrix Z is a full matrix and (ii) when Z is restricted to be diagonal. We used as comparison baseline two methods. The first one, denoted as kNN$_{best}$, is obtained by simply selecting the set distance which gives the best 10-fold CV performance on the full dataset and reporting that performance. It should be noted that this performance estimate is optimistically biased. The second, denoted as kNN$_{CV}$, is based on an inner cross-validation loop to select the appropriate set distance. More precisely on each training set an inner 10-fold stratified cross-validation is performed for each set distance in order to select the one with the highest accuracy.

We will experiment on a number of relational problems: musk, mutagenesis, diterpenes and protein fingerprints. The musk dataset was described in Dietterich et al. (1997) and is a standard multi-instance benchmark dataset; we worked with both versions (1 and 2) of the dataset, the first contains 92 instances and the second 102. The Mutagenesis dataset was introduced in Srinivasan et al. (1994), we experiment with the “regression friendly” version of this dataset, and represent each molecule as a set of bonds together with the two adjacent atoms, it contains 188 instances. In the diterpenes dataset (Dzorevski et al., 1996) the goal is to identify the type of diterpenoid compound skeletons given their ^{13}C-NMR-Spectrum, it contains 1503 instances. The last classification task was first described in (Hilario et al., 2004). Protein fingerprints are groups of conserved motifs (regions) drawn from multiple sequences alignment that can be used as diagnostic signatures to identify and characterize collections of protein sequences. Broadly speaking, fingerprints may be diagnostic for a gene family or superfAMILY (united by a common function), or a domain family (united by a common structural motif). In this work we model protein fingerprints as sets of their component motifs, the dataset contains 1842 instances.

In all the datasets the number of nearest neighbors was set to $k = 1$. We estimate accuracy using stratified ten-fold cross-validation and control for the statistical significance of observed differences using McNemar’s test (sig. level=0.05). The results (with the significance test results in parenthesis) are presented in Table 1.

5. Results

In Table 1, we see that MCML and NCA have an advantage over the considered baseline methods. They are never significantly worse and sometimes they are significantly better than both kNN$_{best}$ and kNN$_{CV}$. On the other hand Xing’s method does not fair so well, being sometimes significantly worse than both baseline methods.

The instantiations of the MCML and NCA for which optimization is performed over diagonal matrices tend to have an advantage over the corresponding full matrix instantiations, mainly for datasets with small number of examples. For these datasets when we work with the full matrices, which have $m^2/2$ parameters to estimate, the small number of available instances leads to underdetermined problems. Forcing the matrices to be diagonal corresponds, as already mentioned, to a form of regularization, by reducing the number of free parameters to estimate to m, protecting thus from possible overfit.

The poor performance of Xing’s method might be a result of the fact that the objective function in this method is heavily penalized for data exhibiting a multi-modal dis-
Learning to combine distances for complex representation

Table 1. Accuracy and significance test results of the \textit{kNNDC} algorithm for benchmark datasets (\(+\) stands for a significant win of the first algorithm in the pair, \(-\) for a significant loss and \(=\) for no significant difference). The first sign in the parenthesis corresponds to the comparison of \textit{kNNDC} vs. \textit{kNN} where the best distance is used (the \textit{kNNBest} column) and the second to the comparison of \textit{kNNDC} vs. \textit{kNN} with cross-validation (the \textit{kNNCV} column). Additionally for \textit{kNNBest} the best set distance measure is given. \textit{Xingfull}, \textit{MCMLfull} and \textit{NCAfull} denote methods where optimization is performed over a full matrix whereas in \textit{Xingdiag}, \textit{MCMLdiag} and \textit{NCAdiag} the matrix is restricted to be diagonal.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>\textit{Xingfull}</th>
<th>\textit{Xingdiag}</th>
<th>\textit{MCMLfull}</th>
<th>\textit{MCMLdiag}</th>
<th>\textit{NCAfull}</th>
<th>\textit{NCAdiag}</th>
<th>\textit{kNNBest}</th>
<th>\textit{kNNCV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSK1</td>
<td>69.56(\text{-}\text{-})</td>
<td>84.83(\text{=}\text{-})</td>
<td>84.78(\text{=}\text{+})</td>
<td>84.78(\text{=}\text{+})</td>
<td>90.22(\text{+}\text{+})</td>
<td>84.78(\text{=}\text{+})</td>
<td>84.78(\text{=}\text{+})</td>
<td>81.52</td>
</tr>
<tr>
<td>MUSK2</td>
<td>74.51(\text{=}\text{+})</td>
<td>70.59(\text{=}\text{+})</td>
<td>67.25(\text{=}\text{+})</td>
<td>77.43(\text{=}\text{+})</td>
<td>87.25(\text{+}\text{+})</td>
<td>77.43(\text{=}\text{+})</td>
<td>87.25(\text{+}\text{+})</td>
<td>73.53</td>
</tr>
<tr>
<td>MUTA</td>
<td>80.85(\text{=}\text{+})</td>
<td>81.91(\text{=}\text{+})</td>
<td>89.89(\text{+}\text{+})</td>
<td>84.57(\text{=}\text{+})</td>
<td>84.57(\text{=}\text{+})</td>
<td>84.57(\text{=}\text{+})</td>
<td>84.04</td>
<td>81.38</td>
</tr>
<tr>
<td>DITERP</td>
<td>71.01(\text{-}\text{-})</td>
<td>96.27(\text{=}\text{+})</td>
<td>98.34(\text{+}\text{+})</td>
<td>98.34(\text{+}\text{+})</td>
<td>95.68(\text{=}\text{+})</td>
<td>95.68(\text{=}\text{+})</td>
<td>96.14</td>
<td>96.14</td>
</tr>
<tr>
<td>FP</td>
<td>70.75(\text{-}\text{-})</td>
<td>83.73(\text{-}\text{-})</td>
<td>84.80(\text{=}\text{+})</td>
<td>84.67(\text{=}\text{+})</td>
<td>84.87(\text{=}\text{+})</td>
<td>84.87(\text{=}\text{+})</td>
<td>85.41</td>
<td>85.41</td>
</tr>
</tbody>
</table>

The results of the optimization process, both for full and diagonal matrices, can be very eloquently visualized providing insight to the relative importance of the distance measures (or their combinations), as these are determined by each method. An example of such a visualization for the musk2 dataset is given in Figure 1 where optimization is performed over diagonal matrices. The x-axis corresponds to a given distance measure for which the corresponding accuracy of \textit{kNN}, estimated by 10-fold CV, is given in parenthesis. The y-axis represents the (normalized) weights returned by the three methods. The visualization results are in agreement with results from Table 1. In particular \textit{NCAdiag} assigns high weights to distance measures which individually exhibit good performance (\textit{D\textsubscript{SMD}}, \textit{D\textsubscript{H}}, \textit{D\textsubscript{S}}, \textit{D\textsubscript{FS}} and \textit{D\textsubscript{M}}) and neglects the ones with low performance (\textit{D\textsubscript{RIBL}} and \textit{D\textsubscript{M}}). On the other hand the poor performance of \textit{Xingdiag} (60.78 \%) is a result of assigning a very high weight to \textit{D\textsubscript{RIBL}}. An example of visualization of the obtained full matrix is presented in Figure 2. The highest weights are assigned to \textit{D\textsubscript{H}}, \textit{D\textsubscript{S}}, \textit{D\textsubscript{FS}} and \textit{D\textsubscript{M}} as well as the combinations of these distances.

Using the methods instantiations based on diagonal matrices it is easy to reduce the size of the problem by selecting only the top \(l\) ranked distance measures (according to the assigned coefficients) which can be subsequently used to obtain the distance combination. We examined the performance of \textit{kNNDC} for \(l\) ranging from 1 to \(m\) (i.e. the total number of distance measures). The visualization for the musk2 dataset is given in Figure 3. It should be noted that the objective functions are optimized w.r.t. all the considered distance functions. Indeed from the Figure 3 it is clear that the best performance of \textit{kNNDC} is achieved when all the considered distance measures are used (i.e. \(l = m\)). However, the performance when we select the three top distance measures is very similar to the performance when all distances are considered.

There is an interesting synergy that arises from the nature of the set distances and the fact that we learn combinations of them. Remember that all the set distances we considered were defined on the basis of a given mapping, \(F\), of elements of one set to elements of the other set. One can view the task of learning a set distance measure as learning the mapping \(F\), i.e. which pairs of elements of the two sets should participate in the mapping and how important they are. Under this view learning a set distance measure would correspond to learning the weights \(\omega\) associated with a pair of elements \((a, b) \in X \times B\), in the function \(D(A, B) = \sum_{(a, b) \in X \times B} \omega_{ab}d(a, b)\) where \(\omega_{ab} \in \{0, 1\}\) (or more general \(\omega_{ab} \in [0, 1]\)). It can be seen that the com-
Figure 2. Relative importance of the different set distance measures, for the diterpenes dataset, as these are computed by NCAfull. Weights are normalized by the Frobenius norm of A.

Combination of distances from Equation 1 provides an intermediate solution to this problem. By restricting the matrix from Equation 1 to be diagonal we obtain a set distance measure of the form $D(A, B) = \sum_{(a,b) \in P} w_{ab} d(a, b)$ where $P = \bigcup_{i=1}^{m} F_i$, F_i is the mapping corresponding to set distance measure D_i and w_{ab} is computed by adding the coefficients assigned to set distance measures in which (a, b) appears. The final mapping, F, is more expressive than any of its constituents, F_i, and cannot be obtained by considering any of the F_is individually.

6. Related work

As already noted any (semi-)supervised metric learning method can be adapted for distance combination in complex domains, as long as in the objective function the access to data is only through a distance function. The RCA algorithm from (Hillel et al., 2003) constructs a Mahalanobis metric from a weighted sum of in-class covariance matrices, however, it only takes into account similar pairs of points and discards the dissimilar ones. As a result it is unlikely that this method will perform well on fully labeled data. One may imagine the straightforward extension of RCA that would also take into account the dissimilar pairs and try to maximize some measure of the variance or the distance between the dissimilar pairs while minimizing the corresponding measure between the similar pairs, an approach that would be actually echoing Fisher’s linear discriminants.

Chopra et al. (2005) proposed a method for metric learning parametrized by pairs of identical convolutional neural networks and as such this methods can not be directly extended for distance combination on complex domains. The method proposed in (Schultz & Joachims, 2004) learns the metric from relative and qualitative examples of the form “A is closer to B than A is to C”. It is not straightforward to extend this method to learn the metric in classification settings. Two algorithms which can be easily adapted to distance combinations and the methods from (Shalev-Shwartz et al., 2004) and (Weinberger et al., 2006). The cost functions in these algorithms is based on the notion of large margin which separates elements with different labels while keeping elements of the same class together. The main difference is that the latter focuses on the local neighborhood while the former seeks to minimize distance between all similarly labeled examples.

In addition to metric learning several attempts have been recently made to learn kernel operators directly from the data, e.g. (Lanckriet et al., 2004). This approach is more general than metric learning since a valid kernel k can be directly used to compute a pseudo metric in the feature space. The proposed methods differ in the objective functions (e.g. CV risk, margin based, KL divergence, etc.) as well as in the classes of kernels that they consider (e.g. finite set of kernels, linear combination of kernels, etc.). In the case of set distances based on kernels there are two main problems. First, most of the kernel on sets are based on averaging and hence their expensiveness is limited. For most of the set distances considered here there is no corresponding Hilbert space in which these distances can be presented as vectorial distances. Second, most of the methods work only in transductive setting, i.e. completing the labeling of a partially labeled dataset. This in turn limits the application area of such methods.

7. Conclusions and Future Work

In this paper we presented a framework that allows to combine different complex representations of a given learning
problem and/or different dissimilarities defined on these representations. We exploit ideas developed previously on metric learning for vectorial data. To the best of our knowledge this is the first time that distance combination (which amounts to distance learning) for non-vectorial data is considered.

In the future we will consider other metric learning algorithms (e.g. the ones described Section 6). We will also examine the impact that regularization techniques will have on the classification performance. In particular all the considered objective functions can be easily regularized by adding the \(\text{Tr}(A) \) term that will penalize matrices \(A \) with large elements. Finally, we would like to extend our framework to combine distances locally (Yang et al., 2006; Domeniconi & Gunopulos, 2002) which will result in an even more flexible method for distance combination on complex domains.

References

