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Abstract. In this paper we present a novel and general framework based on con-
cepts of relational algebra for kernel-based learning over relational schema. We
exploit the notion of foreign keys to define a new attribute that we call instance-
set and we use this type of attributes to define a tree like structured representation
of the learning instances. We define kernel functions over relational schemata
which are instances of R-Convolution kernels and use them as a basis for a rela-
tional instance-based learning algorithm. These kernels can be considered as be-
ing defined over typed and unordered trees where elementary kernels are used to
compute the graded similarity between nodes. We investigate their formal prop-
erties and evaluate the performance of the relational instance-based algorithm on
a number of relational benchmark datasets.

1 Introduction

Learning from structured data has recently attracted a great deal of attention within the
machine learning community ([1]). The reason for this is that it is in general hard to
represent most of real world data as a flat table. Recently it has been also realized that
one strength of the kernel-based learning paradigm is its ability to support input spaces
whose representation is more general than attribute-value ([2–5]). The latter is mainly
due to the fact that the proper definition of a kernel function enables the structured data
to be embedded in some linear feature space without the explicit computation of the
feature map. This can be achieved as long as we are able to define a function which is
both positive definite and appropriate for the problem at hand. The main advantage of
this approach is that any propositional algorithm which is based on inner products can
be applied on the structured data.

In this paper we bring kernel methods and learning from structured data together.
First we propose a novel database oriented approach and define our algorithms and op-
erations over relational schema where learning examples come in the form of intercon-
nected relational tables. There exists a single main relation each tuple of which gives
rise to a relational instance that spans through the relations of the relational schema.
Second we define a family of kernel functions over relational schemata which are gen-
erated in a “syntax-driven” manner in the sense that the input description specifies the
kernel’s operation. We show that the resulting kernels can be considered as kernels de-
fined on typed, unordered trees and analyze their formal properties. We exploit these
kernels to define a relational distance and experiment with and compare a number of
kernel-based distance measures.



2 General Description of the Relational Instance Based Learner

Consider a general relational schema that consists of a set of relations R = {R}. Each
tuple, Ri , of a relation R represents a relationship between a set of values {Rij} of the
set of attributes {R j} related via R. The domain, D(R j), of attribute R j is the set
of values that the attribute assumes in relation R. An attribute R j is called a potential
key of relation R if it assumes a unique value for each instance of the relation. An
attribute X i of relation X is a foreign key if it references a potential key R j of relation
R and takes values in the domain D(R j) in which case we will also call the R j a
referenced key. The association between R j and X i models one-to-many relations, i.e.
one element of R can be associated with a set of elements of X . A link is a quadruple
of the form l(R, R k, X, X l) where either X l is a foreign key of X referencing a
potential key R k of R or vice versa. We will call the set of attributes of a relation R

that are not keys (i.e. referenced keys, foreign keys or attributes defined as keys but not
referenced) standard attributes and denote it with {S j}. The notion of links is critical
for our relational learner since it will provide the basis for the new type of attributes,
i.e. the instance-set type that lies in the core of our relational representation.

Accessing a relational instance For a given referenced key R k of relation R we
denote by L(R, R k) the set of links l(R, R k, X, X fk

) in which R k is referenced
as a foreign key by X fk

of X . We will call the multiset of X relations, denoted as
L(R, R k){1}, the directly dependent relation of R for R k. By L(R, ) = ∪kL(R, R k)
we note the list of all links in which one of the potential keys of R is referenced as a
foreign key by an attribute of another relation. Similarly for a given foreign key R fk

of
R, L−1(R, R fk

) will return the link l(R, R fk
, X, X k) where X k is the potential key

of X referenced by the foreign key R fk
. We will call relation X the directly referenced

relation of R for R fk
and denoted it as L−1(R, R fk

){1}. If R has more than one
foreign keys then by L−1(R, ) = ∪fk

L−1(R, R fk
) we denote the set of all links of R

defined by the foreign keys of R, and by L−1(R, ){1} the corresponding multiset of
relations to which these foreign keys refer.

To define a classification problem one of the relations in R should be defined as the
main relation, M , i.e. the relation on which the classification problem will be defined.
Then one of the attributes of this relation should be defined as the class attribute, M c,
i.e. the attribute that defines the classification problem. Each instance, Mi , of the M

relation will give rise to one relational instance, M+
i , i.e. an instance that spans the

different relations in R. To get the complete description of M+
i one will have to tra-

verse possibly the whole relational schema according to the associations defined in the
schema. More precisely given instance Mi we create a relational instance M+

i that will
have the same set of standard attributes {S j} and the same values for these attributes
as Mi has. Furthermore each link l(M, M k, R, R fk

) ∈ L(M, ) ∪L−1(M, ) adds in
M+

i one attribute of type instance-set. The value of an attribute of type instance-set is
defined based on the link l and it will be the set of instances (actually also relational
instances) with which Mi is associated in relation R when we follow the link l. By
recursive application of this procedure at each level we obtain the complete description
of the relational instance M+

i .



We should note here that the relational instance M+
i can be seen as a tree like struc-

ture whose root contains Mi . Each node at the second level of the tree is an instance
from some relations R ∈ R related via a link l(M, M k, R, R fk

) with instance Mi . In
the same way nodes at the d level of the tree are also instances from a given relation.
Each of these instances is related with one of the instances found in nodes of the d − 1
level. In other words M+

i is a tree where each node is one tuple from one of the relations
that are part of the description of the relational instance and the connections between
the nodes are determined by the foreign key associations defined within the relational
schema. This means that the resulting tree is typed (i.e. each node is of a given type
determined by one of the relations within the relational schema) and unordered (i.e. the
order of instances appearing as children of a given node is not important). To limit the
size of the resulting tree and to make the computation of our algorithms less expensive
we sometimes prune the tree to a specific depth d.

The presence of two foreign keys, X f1k
, X f2k

, in relation X on the same potential
key R k of relation R has a side effect. It is now possible to have self-replicating loops
when traversing the relational schema in order to get the complete relational description
of an instance. In order to avoid that kind of situation we will have to keep track of all
the instances of the different relations that appear in a given path of the recursion; the
moment an instance appears a second time in the given recursion path the recursion
terminates.

Having an adequate way to handle attributes of type instance-set is the heart of the
problem that should be tackled in order to come with a relational learning algorithm that
could exploit the relational structure that we have sketched thus far. In the next section
we define kernel-based distances operating on this type of relational structures.

3 Kernels

A kernel is a symmetric function k : X ×X → <, where X is any set, such that for all
x, y ∈ X , k(x, y) =< φ(x), φ(y) > where φ is a mapping from X to a feature space Φ

embedded with an inner product, actually a pre-Hilbert space.
We should note here that the definition of kernels does not require that the input

space X be a vector space –it can be any kind of set which we can embed in the feature
space Φ via the kernel. This property allows us to define kernels on any kind of struc-
tures that will embed these structures in a linear space. The attractiveness of kernels lies
in the fact that one does not need to explicitly compute the mappings φ(x) in order to
compute the inner products in the feature space.

Examples of kernels defined on vector spaces are the polynomial kernel kPp,a
(x, y) =

(<x,y>+a)p√
(<x,x>+a)p

√
(<y,y>+a)p

where a ∈ <, p ∈ N+ and the Gaussian RBF kernel kGγ
(x, y) =

e−γ‖x−y‖2

where γ ∈ <. This two kernels are the ones we are going to use in our ex-
periments, however any valid elementary kernel could be plugged in so that it depicts
the domain knowledge of the relational problem.

Kernels on relational instances In order to define a kernel on the relational instances
we will distinguish two parts, Ris, Riset, in each relational instance Ri found in a



relation R. Ris denote the vector of standard attributes {S j} of R, let Ds = |{S j}|;
Riset denotes the vector of attributes that are of type instance-set and for a relation R

are given by L(R, ) ∪ L−1(R, ), let Dset = |L(R, ) ∪ L−1(R, )|.
Let Ri = (Ris, Riset) ∈ X = X{S j}×Xset where Xset = Xset1 ×Xset2 ,×...×

XsetDset
and Ris ∈ X{S j}, Riset ∈ Xset. Given this formalism we defined two re-

lational kernels: direct sum kernel (KΣ(., .)) and the kernel which is derived by direct
application of the R-Convolution kernel ( [3]) on the set X (K<(., .)). Since these ker-
nels are defined over multi-relational instances they are computed following the same
recursion path as the retrieval of a multi-relational instance.

The direct sum kernel is obtained by exploiting the fact that the direct sum of kernels
is itself a kernel , [6], which would give the following kernel on the set X (if |{S j}| 6=
0):

KΣ(Ri , Rj ) = ks(Ris, Rjs) +

Dset
∑

l=1

Kset(Risetl
, Rjsetl

) (1)

where ks(., .) can be any type of elementary kernel defined on the set {S j} of the stan-
dard attributes of R and Kset(., .) is a kernel between sets which will be defined in
section 3. If |{S j}| = 0 then the kernel defined over standard attributes vanishes and
we obtain KΣ(Ri , Rj ) =

∑Dset

l=1 Kset(Risetl
, Rjsetl

). It is obvious that the value of
KΣ(., .) is affected by the number of attributes that are of type instance-set since it con-
tains a sum of kernels defined on these attributes. If we were working with a single-table
propositional problem that would not pose a problem. However in the multi-relational
context this is a problem since the kernel on the main relation is based on recursive
computations of kernels in relations at the next levels which can have varying Ds and
Dset. In order to factor out that effect among different relations we use a normalized
version of KΣ (if |{S j}| 6= 0) defined as:

KΣ(Ri , Rj ) =
KΣ(Ri , Rj )

1 + Dset

(2)

If |{S j}| = 0 we have KΣ(Ri , Rj ) =
KΣ(Ri ,Rj )

Dset
. The resulting kernel is a valid

kernel since 1
1+Dset

> 0 ( 1
Dset

> 0) .
An alternative kernel is derived by the direct application of the R-Convolution kernel

as described in [3]. The main idea in the R-Convolution kernel is that composite objects
consist of simpler parts that are connected via a relation <. Kernels on the composite
objects can be computed by combining kernels defined on their constituent parts. Let
x ∈ X be a composite object and x = x1, ..., xD ∈ X1 × ... × XD its constituent
parts. Then we can represent the relation x are the parts of x by the relation < on
the set X1 × X2 × ... × XD × X where <(x, x) is true iff x are the parts of x. Let
<−1(x) = {x : <(x, x)}, a composite object can have more than one decomposing
possibilities. Then the R-Convolution kernel is defined as:

Kconv(x, y) =
∑

x∈<−1(x),y∈R−1(y)

D
∏

d=1

Kd(xd, yd) (3)



Since we defined only one way to decompose a relational instance Ri the sum in the
equation 3 vanishes and we obtain the product of kernels defined over attributes of type
instance-set and the kernels defined on standard attributes (only if standard attributes
are present). In case |{S j}| 6= 0 the resulting R-Convolution kernel is defined as

K<(Ri , Rj ) = ks(Ris, Rjs)

Dset
∏

l=1

Kset(Risetl
, Rjsetl

) (4)

otherwise, i.e. the relation does not have standard attributes, we obtain: K<(Ri , Rj ) =
∏Dset

l=1 Kset(Risetl
, Rjsetl

). Again it is obvious that the value of K<(., .) is affected
by the number of attributes that are of type instance-set since it contains a product of
kernels defined on these attributes. In order to factor out the effect of the varying number
of attributes across different relations we opted for:

K<(Ri , Rj ) =
K<(Ri , Rj )

√

K<(Ri , Ri )K<(Rj , Rj )
(5)

It is worth noting that this kernel can be also derived by exploiting the fact that kernels
are closed under tensor product, [6], i.e. if K1(x, y) is a kernel on X ×X and K2(u, v)
is a kernel on U ×U then K1⊗K2((x, u), (y, v)) = K1(x, y)K2(u, v) is a valid kernel
on (X × U) × (X × U).

These two kernels, K<(., .), KΣ(., .), are the ones with which we are going to ex-
periment and on which we are going to base our distance computations. Having a kernel
it is straightforward to compute the distance in the feature space Φ in which the kernel
computes the inner product as d(φ(x), φ(y)) =

√

k(x, x) − 2k(x, y) + k(y, y). This
is the final distance that we will be using to perform classification.

Kernels on Sets To complete the definition of the kernel on the relational structure we
defined here a kernel over sets of instances. This kernel can easily be derived by the
definition of R-Convolution kernels by letting < in the equation 3 be x ∈ <−1(x) ⇔
x ∈ x. Consequently we obtain:

Kset(X, Y ) =
∑

x∈X,y∈Y

KΣ|<(x, y) (6)

where KΣ|<(., .) is either KΣ(., .) or K<(., .). The kernel from equation 3 is sometimes
refereed as the cross product kernel. The computation of the final kernel is based on
recursive alternating applications of KΣ(., .) or K<(., .) and Kset(., .).

The procedure of computing the kernel on the variables of type instance-set indi-
cates that if the cardinalities of the sets vary considerably, sets with larger cardinality
will dominate the solution. This leads us to the issue of normalization of the sum on the
right side of the equation 6, so that we obtain:

Knorm(X, Y ) =
Kset(X, Y )

fnorm(X)fnorm(Y )
(7)



where fnorm(x) is a normalization function which is nonnegative and takes non-zero
values. Different choices of fnorm(x) give rise to different normalization methods, [7].
By putting fnorm(X) = |X |we obtain the Averaging normalization method (kΣA

(., .)).
The obtained function is a kernel since the explicit representation of the feature space
can be constructed (equation 8). Defining fnorm(X) =

√

kset(X, X) we get the Nor-
malization in the feature space (kΣFS

(., .)). Again the obtained function is a valid kernel
(the explicit representation of the feature space is given in equation 9).

Relational kernels as kernels over trees We already mentioned in the section 2 that
a relational instance can be considered as a tree-like structure where each node is one
tuple from one of the relations that are part of the description of the relational instance
and connections between nodes are determined by the foreign key associations defined
within the relational schema. This makes the relational kernel a kernel over trees. The
input trees are typed which results in the definition of a graded similarity. The similarity
of nodes of different type, i.e. nodes coming from different relations, is zero. The sim-
ilarity of nodes of the same type is determined on the basis of the attributes found on
the relation associated with the given type. At the same time input trees are unordered
which means that the order of comparison of the descendants is not important, the only
constraint being that only descendants of the same type can be compared. In other words
the subtree comparison is meaningful only between subtrees that are rooted on nodes
that come from the same relation.

Feature space induced by relational kernels In order to get a new insight into the
behavior of the relational kernels defined so far we will specify the feature space asso-
ciated with them. We start with the definition of the feature space induced by the kernel
over sets from equation 6. Lets assume ΦΣ|< (i.e. ΦΣ or Φ<) is an embedding function
into a feature space FΣ|< (FΣ or F< ) for the kernel KΣ|< (KΣ or K<) from equation 6
so that KΣ|<(x, y) =< ΦΣ|<(x), ΦΣ|<(y) >. It is easy to show that the feature space
induced by this kernel is given by:

Φset(X) =
∑

x∈X

ΦΣ|<(x) ∈ FΣ|<

Similarly the feature space induced by kernel from equation 7 where fnorm(X) = |X |
is given by

Φset(X) =

∑

x∈X ΦΣ|<(x)

|X | . (8)

It is clear that this normalization method amounts to computing the inner product, in
the feature space induced by the elementary kernels, between the two centroids of the
corresponding sets. In case fnorm(X) =

√

Kset(X, X) the feature space is given by

Φset(X) =

∑

x∈X ΦΣ|<(x)

‖∑

x∈X ΦΣ|<(x)‖ . (9)



So this normalization method computes the cosine of the angle between the two nor-
malized resultants of the vectors of the two sets.

Now we define the feature space associated with the direct sum (KΣ) and the R-
Convolution (K<) kernels. Lets assume that ΦΣ (Φ<) is an embedding function into a
feature space FΣ (F<) for kernel KΣ (K<). Let also φ1, φset1 , . . . , φset|Dset|

be embed-
ding functions into feature spaces Fs, Fset1 , . . . , Fset|Dset|

of the kernels ks, kset1 , . . . ,

kset|Dset|
which constitute the KΣ and K< kernels, respectively. It is easy to show that

FΣ = Fs ⊕ Fset1 ⊕ · · · ⊕ Fset|Dset|
and F< = Fs ⊗ Fset1 ⊗ · · · ⊗ Fset|Dset|

where
⊕ denotes the direct sum and ⊗ denotes the tensor product of vector spaces. In other
words the F< is constructed by computing all the possible products of all the dimen-
sions of its constituent spaces, where each product becomes a new dimension of F<.
In contrast the FΣ is constructed by a simple concatenation of the dimensions of its
constituent spaces. It is obvious that dim(FΣ) = dim(Fs) +

∑|Dset|
i=1 dim(Fseti

) and
dim(F<) = dim(Fs)

∏|Dset|
i=1 dim(Fseti

). In order to get an explicit feature space rep-
resentation induced by the relational kernel one has to recursively combine the feature
spaces induced by the kernel on sets and the direct sum or the R-Convolution kernels.

An important result is that the dimensionality of the feature space of the R-Convolution
kernel is much higher than that of the direct sum kernel (this result holds if the elemen-
tary kernels, thus also the kernel over sets, induce a feature space of finite dimension-
ality, otherwise they are both of infinite dimension). This means that instance based
learning in the feature space induced by the R-Convolution kernel should be more diffi-
cult than in this induced by the direct sum kernel. On the other hand the R-Convolution
kernel is more expressive since it accounts for feature interactions by means of the
products.

Time complexity Here we analyze the time complexity of the relational kernel defined
above. Let TrI = {TrI1, T rI2, . . . , T rIn} be a set of tree representations of the re-
lational instances in a given relational schema. Let also TrR be a tree representation
(with the depth d) of the relational schema at the “relation” level where each node is
a relation and the connections between the nodes are again determined by the foreign
key associations. In case there are loops in the relational schema the depth is limited
to an arbitrary value so that a valid tree is constructed. It is worth noting that depths
of each tree in TrI are at most as big as d. Having defined TrI and TrR let BFI

be the maximal out-degree of all nodes in all trees in the set TrI while BFR be the
maximal out-degree of all nodes in the TrR. BFI can be considered as the maximum
cardinality over all the sets which are part of a description of all possible relational in-
stances in the relational schema. On the other hand BFR is the maximum number of
links we can follow from any relation in the relational schema. The computation of the
relational kernel between two tree representation of relational instances is proportional
to O((BFI

2)d−1) = O(BFI
2(d−1)) (this because the computation of the kernel on sets

is proportional to O(BFI
2) and at level d there are BFI

d sets to compare). Here we
assume that the root of a tree is at level 1. The overall time complexity is proportional to
O(BFR

d−1BFI
2(d−1)). Of course this is the pessimistic estimate of the time complex-

ity and more useful characterization would be acquired if the average branching factors
were used. The complexity is dominated by BFI since BFR << BFI .



We will compare the computational complexity of the cross product kernel with
that of the inner product computed directly in the feature space. Lets assume that the
elementary kernel is a polynomial kernel with the exponent p (without the bias towards
lower order monomial) and input space is <N . The computation of the cross product
kernel between two finite sets A and B is proportional to O(|A||B|(N + p)) (one
has to compute |A||B| elementary kernels and each of them can be computed in time
proportional to O(N + p)) whereas computing directly the inner product in the feature
space induced by this kernel is proportional to O(2(

p+N−1
p )(|A| + |B|)) (each point

has to be mapped to (
p+N−1

p )-dimensional feature space (|A| + |B|) times and the
computation of the inner product in the feature space is again proportional to (

p+N−1
p )).

For example if we put N = 10, p = 2 and |A| = |B| = 100 then the computation
of the cross product kernel requires approximately five times more operations than the
inner product in the feature space, i.e. in some cases it is better to explicitly map the
instances to the feature space and compute the inner product.

4 Experiments

We will compare the selected kernel-based distance measures on a number of relational
problems: musk - version 1, diterpenes and mutagenesis. In the diterpene dataset [8] the
goal is to identify the type of diterpenoid compound skeletons given their 13C-NMR-
Spectrum. The musk dataset was described in [9]; here the goal is to predict the strength
of synthetic musk molecules. We worked with version 1 of the dataset which contains
47 musk molecules and 45 similar non-musk molecules. The Mutagenesis dataset was
introduced in [10]. The application task is the prediction of mutagenicity of a set of
230 aromatic and heteroaromatic nitro-compounds. We worked with the “regression
friendly” version of the dataset. We defined two different versions of the learning prob-
lem. In version 1 the examined compounds (in the main relation) consist of atoms (in
the atom relation) which constitute bonds (in the bound relation). The recursion depth
was limited to four. In version 2 the compounds consist of bonds while bonds consists
of atoms and the recursion level was limited to three. Bonds are described by two links
to specific entries in the atom relation and by the type of the bond while atoms are
described by their charge (numeric values), type and name (e.g. N, F, S, O, etc.). In
both versions the recursion depth was limited because of the time complexity of the
algorithm. All the results are given in table 1.

For diterpenes and musk datasets the computation of relational kernel can be simply
reduced to computing kernels on sets of vectors requiring thus no recursion. In these
cases the KΣ(., .) and K<(., .) relational kernels are equivalent (up to a normalization
term) so we report results only for the former. In the mutagenicity problem it will be
possible to move beyond a single level comparison of the instances and have many lev-
els of recursion. We report results for different set normalization schemes; the subscript
A will denote averaging and the subscript FS feature space normalization. In all ex-
periments we limited ourselves to normalized polynomial kPp,a

(., .) and Gaussian RBF
kGγ

(., .) elementary kernels. Here we give results for p = 2, 3, a = 1 (kPp,a
(., .)) and

for γ = 0.01, 0.001 (kGγ
(., .)), however more experiments with different parameter

setting were performed.



In the experiments we want to explore the effect of different elementary kernels,
the effect of different kernel set normalizations, as well as the relative performance
of the KΣ(., .) and K<(., .) kernels. We will experiment with one number of nearest
neighbors K = 1 (again more experiments with different K were performed).

We estimate accuracy using ten-fold cross-validation and control for the statistical
significance of observed differences using McNemar’s test (sig. level=0.05). We also
establish a ranking schema of the different kernel-based distance measures, based on
their relative performance as determined by the results of the significance tests, as fol-
lows: in a given dataset if kernel-based distance measure a is significantly better than
b then a is credited with one point and b with zero points; if there is no significant
difference then both are credited with half point.

Table 1. Accuracy and rank results on the benchmark datasets

Elementary kernel DITERPENES MUSK MUTAGENESIS MUTAGENESIS

(VERSION 1) (VERSION 1) (VERSION 2)
Relational kernel KΣA KΣA

kPp=2,a=1
91.22 (5.5) 85.87 (3.5) 78.72 (3.5) 82.45 (3.5)

kPp=3,a=1
91.75 (6) 88.04 (4.5) 79.79 (3.5) 82.98 (3.5)

kGγ=0.01 86.69 (2.5) 83.70 (3.5) 81.38 (3.5) 83.51 (3.5)
kGγ=0.001 83.30 (0.5) 81.52 (2.5) 80.32 (3.5) 84.04 (3.5)
Relational kernel KΣF S K<A

kPp=2,a=1
90.82 (4.5) 85.87 (3.5) 79.79 (3.5) 82.98 (3.5)

kPp=3,a=1
91.68 (6) 88.04 (4.5) 79.79 (3.5) 81.38 (3.5)

kGγ=0.01 86.76 (2.5) 83.70 (3.5) 81.38 (3.5) 82.45 (3.5)
kGγ=0.001 83.03 (0.5) 81.52 (2.5) 80.85 (3.5) 80.32 (3.5)
Default Accuracy 29.81 51.09 66.49

5 Results

To compare the different elementary kernels we fix a dataset and average the ranks of kP

and kG, ignoring their parameter settings.There is an advantage of the polynomial over
the Gaussian RBF elementary kernel for musk 1 and diterpenes datasets. For musk 1 the
average rank of polynomial kernels is 4 (for Gaussian RBF 3) while for diterpenes is
5.5 (1.5). For both formulations of mutagenesis the average rank of polynomial kernels
is 3.5 (3.5).

We performed more experiments than those listed in table 1, where we system-
atically varied the parameters of the elementary kernels (p = 1, 2, 3, 4, a = 0, 1 for
polynomial and γ = 0.1, 0.001, 0.0001, 0.00001 for Gaussian RBF). We also varied
the number of number of nearest neighbours K = 1, 3, 10. This did not seem to have
a significant effect on predictive performance, which was quite stable among different
values of the parameters, providing possible indication that the relational kernel is not
very sensitive to the parameter settings of the elementary kernels and thus no extensive
search is required over the parameters space. The stability among different parame-
ters of the elementary kernels might be a result of the fact that the normalization (in
equations 2, 5, 7) plays an important role in the construction of our relational kernel.



This normalization can factor out the effect of possible outliers, different cardinalities
of sets which finally amounts to the above mentioned stability. In addition, for mu-
tagenesis dataset, the stability could be an indication that the structural properties of
the relational instances are more important for the classification than the properties of
instances which constitute nodes.

The different normalization methods for kernels over sets also do not appear to have
an influence on the final results. For diterpenes Averaging had an average rank of 3.625
over the different elementary kernels and Feature space normalization an average rank
of 3.375. For musk 1 the corresponding figures were 3.5 and 3.5. One explanation for
this might be that the two denominators in equation 8 and 9 are correlated, which makes
sense since sets of higher cardinality will have probably a higher ‖∑

x∈X ΦΣ|<(x)‖,
at least for the datasets we examined. However, this depends on the problem at hand,
there could other datasets where this correlation does not hold.

The final dimension of comparison is the relative performance of KΣ(., .) and
K<(., .). Here again it did not have a big influence on the final results: for both for-
mulations of the mutagenesis problem KΣ(., .) and K<(., .) had an average rank of
3.5. This is a rather surprising fact since as we have shown before the feature space in-
duced by R-Convolution kernel is of much higher dimensionality than the feature space
induced by the direct sum kernel. This means that the instance based learning with
the R-Convolution kernel should be harder than the one using direct sum kernel. On
the other hand the R-Convolution kernel appears to be more expressive than the direct
sum kernel since it accounts for feature interaction. The trade-off between hardness of
learning in space of higher dimensionality and the higher expressiveness might explain
similar performance of the R-Convolution and the direct sum kernel.

To situate the performance of our relational learner to other relational learning sys-
tems we give the best results reported in the literature on the same benchmark datasets.
All the results denote the accuracy and all have been estimated with ten fold cross-
validation. The best result for the musk 1 dataset is 92.40 % (IAPR algorihtm) and it
was reported in [9]. In comparison our best kernel gave 88.04 % of accuracy. For the
diterpenes dataset the best accuracy was achieved using the DeS algorithm which comes
from [4]. The authors got 97.10 % whereas our best kernel gave 91.82 % of accuracy.
For the mutagenesis 2 dataset we obtained 83.51 % of accuracy while the best result
from the literature was 81.00 % and was taken from [11] on the B2 formulation of the
problem that corresponds to our version 2 of mutagenesis. From the results reported
above we can see that our kernel-based learner compares favorably with the results
achieved by special-purpose algorithms applied to structured data. On the other hand
our relational kernel gave competitive results with standard elementary kernels which
indicates that there is space for improvement if more elaborate elementary kernels better
suited for the problem at hand are used.

6 Related work

The most relevant kernel in our context is the R-Convolution kernel which was men-
tioned in section 3. To our best knowledge our kernel is the first time the original R-



Convolution kernel, [3], was applied to the type of relational structures we considered
here.

[4] proposed a framework that allows the application of kernel methods to differ-
ent types of structured data e.g. sets, trees, graphs, lists. The representation formalism
used was that of typed λ-calculus. The representation framework allows for the mod-
eling of arbitrary complex objects which however is not at all a trivial task. Under this
framework the authors explicitly defined kernels on sets and multisets. In [4] elemen-
tary (atomic) kernels are defined for each attribute separately, while our kernel assumes
elementary kernels defined on the level of relations thus treating relations as indivisible
objects. In [4] a kernel over tuples of objects is always defined as a direct sum of its
constituent parts whereas in our framework one is able to use either the direct sum ker-
nel or the R-Convolution, which have different representational powers. Finally in [4]
only the cross product kernel can be used to define kernels on sets whereas under our
framework any valid kernel on sets can be used.

The kernels described in [5] and in [12] can be considered as specialized R-Convolution
kernels where instances are considered to be labeled ordered directed trees. The idea of
these kernels is based on the notion of a number of common subtrees in a tree i.e. the
kernel function is the inner product in the space which describes the number of occur-
rences of all possible subtrees. The main difference between [5] and [12] is that the
former is applicable only to trees where no node shares its label with any of its siblings.
[12] overcomes this limitation by defining the substructures of a tree as a tree such that
there is a descendants order preserving mapping from vertices in the substructure to
vertices in the tree. There are many differences between our kernel and kernels defined
in [12]. First the trees considered in [12] are labeled trees, i.e. each node is character-
ized by a discrete label so two nodes are either the same or different, there is no graded
similarity. In our case however nodes are not labeled but typed which results in the
definition of a graded similarity. Second the trees in [12] are ordered whereas in our
case there is no order restriction, the only restriction imposed is that comparison is per-
formed only between subtrees rooted at nodes of the same type, i.e. same relation, and
only descendants of the same type can be compared. The difference in time complexity
between our kernel and the kernels of [5, 12] comes mainly from the fact that the input
trees for our kernel are unordered whereas their kernels operate on ordered trees, thus
increasing the number of possible comparisons.

7 Discussion and Future Work

Bringing together kernel methods and structured data is an important direction for prac-
tical machine learning research. In this paper we proposed a kernel based relational in-
stance based learner which, contrary to most of the previous relational approaches that
rely on different forms of typed logic, builds on notions from relational algebra. Thus
we cover what we see as an important gap in the current work on multirelational learn-
ing bringing it closer to the database community. Quoting [13] ’... by looking directly
at ”unpacked” databases, Multi-Relational Data Mining is closer to the ”real world” of
programmers formulating SQL queries than traditional KDD. This means that it has the
potential for wider use than the latter, but only if we address the problem of expressing



MRDM algorithms and operations in terms that are intuitive to SQL programmers and
OLAP users’. It is our feeling that the current work makes one step in that direction.

Our kernel functions can be considered as instances of the R-Convolution kernel in
the sense that we define a kernel on a composite object by means of kernel on the parts
of objects. On the other hand our kernels could be also seen as being defined over typed
and unordered trees. Since in other areas of computational biology many problems can
be described using similar structures we believe that our kernel could also useful there.

Central to the whole approach was the definition of appropriate kernels on the new
type of attributes i.e. the instance-set type. We believe that there is still a lot to be gained
in classification performance if more refined kernels are used for this type of attributes.
We have followed a rather simple approach where the kernel between two sets was
simply the sum of all the pairwise kernels defined over all the pairs of elements of the
two sets. A more elaborate approach would take into account only the kernels computed
over specific pairs of elements based on some mapping relation of one set to the other
defined on the feature space. That mapping relation can be based on the notions of
distance computation between sets given in [14].
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