
Journal of Artificial Intelligence Research 1 (2014) - Submitted -/-; published -/-

Using meta-mining to support data mining workflow

planning and optimization

Phong Nguyen Phong.Nguyen@unige.ch

Melanie Hilario Melanie.Hilario@unige.ch

Department of Computer Science
University of Geneva
Switzerland

Alexandros Kalousis Alexandros.Kalousis@hesge.ch

Department of Business Informatics

University of Applied Sciences

Western Switzerland, and

Department of Computer Science

University of Geneva

Switzerland

Abstract

Knowledge Discovery in Databases is a complex process that involves many different
data processing and learning operators. Today’s Knowledge Discovery Support Systems
can contain several hundred operators. A major challenge is to assist the user in designing
workflows which are not only valid but also – ideally – optimize some performance measure
associated with the user goal. In this paper we present such a system. The system relies on
a meta-mining module which analyses past data mining experiments and extracts meta-
mining models which associate dataset characteristics with workflow descriptors in view
of workflow performance optimization. The meta-mining model is used within a data
mining workflow planner, to guide the planner during the workflow planning. We learn
the meta-mining models using a similarity learning approach, and extract the workflow
descriptors by mining the workflows for generalized relational patterns accounting also for
domain knowledge provided by a data mining ontology. We evaluate the quality of the
data mining workflows that the system produces on a collection of real world datasets
coming from biology and show that it produces workflows that are significantly better
than alternative methods that can only do workflow selection and not planning.

I. Introduction

Learning models and extracting knowledge from data using data mining can be an ex-
tremely complex process which requires combining a number of Data Mining (DM) opera-
tors, selected from large pools of available operators, combined into a data mining workflow.
A DM workflow is an assembly of individual data transformations and analysis steps, im-
plemented by DM operators, composing a DM process with which a data analyst chooses

c©2014 AI Access Foundation. All rights reserved.

Nguyen, Hilario & Kalousis

to address his/her DM task. Workflows have recently emerged as a new paradigm for rep-
resenting and managing complex computations accelerating the pace of scientific progress.
Their (meta-)analysis is becoming increasingly challenging with the growing number and
complexity of available operators (Gil et al., 2007).

Today’s second generation knowledge discovery support systems (KDSS) allow com-
plex modeling of workflows and contain several hundreds of operators; the RapidMiner1

platform, in its extended version with Weka2 and R3, proposes actually more than 500
operators, some of which can have very complex data and control flows, e.g. bagging or
boosting operators, in which several sub-workflows are interleaved. As a consequence, the
possible number of workflows that can be modeled within these systems is on the order of
several millions, ranging from simple to very elaborated workflows with several hundred
operators. Therefore the data analyst has to carefully select among those operators the
ones that can be meaningfully combined to address his/her knowledge discovery problem.
However, even the most sophisticated data miner can be overwhelmed by the complexity
of such modeling, having to rely on his/her experience and biases as well as on thorough
experimentation in the hope of finding the best operator combination. With the advance
of new generation KDSS that provide even more advanced functionalities, it becomes im-
portant to provide automated support to the user in the workflow modeling process, an
issue that has been identified as one of the top-ten challenges in data mining (Yang & Wu,
2006).

II. State of the Art in DM Workflow Design Support

During the last decade, a rather limited number of systems have been proposed to provide
automated user support in the design of DM workflows. (Bernstein, Provost, & Hill,
2005), propose an ontology-based Intelligent Discovery Assistant (ida) that plans valid DM
workflows – valid in the sense that they can be executed without any failure – according
to basic descriptions of the input dataset such as attribute types, presence of missing
values, number of classes, etc. By describing into a DM ontology the input conditions
and output effects of DM operators, according to the three main steps of the KD process,
pre-processing, modeling and post-processing (Fayyad et al., 1996), ida systematically
enumerates with a workflow planner all possible valid operator combinations, workflows,
that fulfill the data input request. A ranking of the workflows is then computed according
to user defined criteria such as speed or memory consumption which are measured from
past experiments.

(Záková et al., 2011) propose the kd ontology to support automatic design of DM
workflows for relational DM. In this ontology, DM relational algorithms and datasets are
modeled with the semantic web language OWL-DL, providing semantic reasoning and

1. http://www.rapid-i.com
2. http://www.cs.waikato.ac.nz/ml/weka/
3. http://cran.r-project.org/

2

Using meta-mining to support DM workflow planning and optimization

inference in querying over a DM workflow repository. Similar to ida, the kd ontology
describes DM algorithms with their data input/output specifications. The authors have
developed a translator from their ontology representation to the Planning Domain Defini-
tion Language (PDDL) (McDermott et al., 1998), with which they can produce abstract
directed-acyclic graph workflows using a FF-style planning algorithm (Hoffmann, 2001).
They demonstrate their approach on genomic and product engineering (CAD) use-cases
where complex workflows are produced that make use of relational data structure and
background knowledge.

More recently, the e-LICO project4 featured another ida built upon a planner which
constructs DM plans following a hierarchical task networks (HTN) planning approach. The
specification of the HTN is given in the Data Mining Workflow (dmwf) ontology (Kietz
et al., 2009). As its predecessors, the e-LICO ida has been designed to identify operators
whose preconditions are met at a given planning step in order to plan valid DM workflows
and does an exhaustive search in the space of possible DM plans.

None of the three DM support systems that we have just discussed consider the eventual
performance of the workflows they plan with respect to the DM task that they are supposed
to address. For example if our goal is to provide workflows that solve a classification
problem, in planning these workflows we would like to consider a measure of classification
performance, such as accuracy, and deliver workflows that optimize it. All the discussed
DM support systems deliver an extremely large number of plans, DM workflows, which are
typically ranked with simple heuristics, such as workflow complexity or expected execution
time, leaving the user at a loss as to which is the best workflow in terms of the expected
performance in the DM task that he/she needs to address. Even worse, the planning search
space can be so large that the systems can even fail to complete the planning process, see
for example the discussion in (Kietz et al., 2012).

There has been considerable work that tries to support the user, in view of performance
maximization, for a very specific part of the DM process, that of modeling or learning. A
number of approaches have been proposed, collectively identified as meta-learning (Brazdil
et al., 2008; Kalousis & Theoharis, 1999; Kalousis, 2002; Soares & Brazdil, 2000; Hilario,
2002). The main idea in meta-learning is that given a new dataset the system should be
able to rank a pool of learning algorithms with respect to their expected performance on
the dataset. To do so one builds a meta-learning model from the analysis of past learn-
ing experiments, searching for associations between algorithms’ performances and dataset
characteristics. However as already mentioned all meta-learning approaches address only
the learning/modelling part and are not applicable on the complete process level.

In (Hilario et al., 2011) we did a first effort to lift meta-learning ideas to the level of
complete DM workflows. We proposed a novel meta-learning framework, that we call meta-
mining or process-oriented meta-learning, applied on the complete DM process which tries
to associate workflow descriptors and dataset descriptors, applying decision tree algorithms

4. http://www.e-lico.eu

3

Nguyen, Hilario & Kalousis

on past experiments, in order to learn which couplings of workflows and datasets will lead
to high predictive performance. The workflow descriptors were extracted using frequent
pattern mining accommodating also background knowledge, given by the Data Mining
Optimization (dmop) ontology, on DM tasks, operators, workflows, performance measures
and their relationships. In that same line of work we presented in (Nguyen et al., 2012b)
a meta-mining approach that learns what we called heterogeneous similarity measures,
associating dataset and workflow characteristics. The meta-mining model we propose there
learns similarity measures in the dataset space, the workflow space, as well in the dataset-
workflow space, which respectively reflect the similarity of the datasets with respect to the
similarity of the relative workflow performance applied on them, the similarity of workflows
with respect to their performance based similarity on different datasets, and the dataset-
workflow similarity based on the expected performance of the latter applied on the former.
Both systems can only select from or rank a set of given workflows according to their
expected performance, they cannot plan new workflows given an input dataset.

In (Nguyen et al., 2011) we presented an initial blueprint of an approach that does DM
workflow planning in view of workflow performance optimization. There we suggested that
the planner should be guided at each planning step by a meta-mining model that ranks
partial candidate workflows. In (Nguyen et al., 2012a) we gave some preliminary evaluation
results of the approach we proposed in (Nguyen et al., 2011). The meta-mining module was
rather trivial, it uses dataset and pattern-based workflow descriptors and does a nearest-
neighbor search over the dataset descriptors to identify the most similar datasets to the
dataset for which we want to plan the workflows. Within that neighborhood it ranks the
partial workflows using the support of the workflow patterns on the workflows that perform
best on the datasets of the neighborhood. The pattern-based ranking of the workflows was
cumbersome and heuristic; the system was not learning associations of dataset and workflow
characteristics which explicitly optimize the expected workflow performance which is what
must guide the workflow planning. The same meta-mining model we presented (Nguyen
et al., 2011, 2012a) to rank over the partial candidate workflows and plan was then deployed
in (Kietz et al., 2012).

In this paper we follow the line of work we first sketched in (Nguyen et al., 2011). We
couple tightly together a workflow planning and a meta-mining module to develop a DM
workflow planning system that given an input dataset designs workflows that are expected
to optimize the performance on the given dataset. The meta-mining module exploits
the heterogeneous similarity learning method we presented in (Nguyen et al., 2012b) to
directly learn associations between dataset and workflow descriptors that lead to optimal
performance. The learned associations are then used during the planning to guide the
planner in the workflow construction. To the best of our knowledge it is the first system
of its kind, i.e. being able to design DM workflows that are tailored to the characteristics
of the input dataset in view of optimizing a DM task performance measure. We evaluate
the system on a number of real world datasets and show that the workflows it plans are
significantly better than the workflows delivered by a number of baseline methods.

4

Using meta-mining to support DM workflow planning and optimization

Symbol Meaning
o a workflow operator.
e a workflow data type.
wl = [o1, . . . , ol] a ground DM workflow as a sequence of l operators.
wcl

= (I(p1 �t wl), . . . , I(p|P | �t wl))
T the fixed length |P |-dimensional vector description

of a workflow wl

xu = (x1, . . . , xd)
T the d-dimensional vector description of a dataset.

r(x,w) the relative performance rank of w workflow on x
dataset

g a DM goal.
t a HTN task.
m a HTN method.

Ô = {o1, . . . , on} a HTN abstract operator with n possible operators.
Cl a set of candidate workflows at some abstract oper-

ator Ô.
Sl a set of candidate workflows selected from Cl.

Table 1: Summary of notations used.

The rest of this paper is structured as follows. In section III, we present the global
architecture of the system, together with a brief description of the planner. In section
IV we describe in detail the meta-mining module, including the dataset and workflow
characteristics it uses, the learning model, and how the learned model is used for workflow
planning. In section V, we provide detailed experimental results and evaluate our approach
in different settings. Finally, we conclude in section VI.

III. System Description

In this section, we will provide a general description of the system. We will start by defining
the notations that we will use throughout the paper and then give a brief overview of the
different components of the system. Its two most important components, the planner and
the meta-miner will be described in subsequent sections (III.4 and IV respectively). We
will close the section by providing the formal representation of the DM workflows which
we will use in the planner and the meta-miner.

III.1 Notations

We will provide the most basic notations here and subsequently introduce additional nota-
tions as they are needed. We will use the term DM experiment to designate the execution
of a DM workflow w ∈ W on a dataset x ∈ X . We will describe a dataset x by a d-
dimensional column vector xu = (x1, . . . xd)

T; we describe in detail in section IV.1.1 the
dataset descriptions that we use. Each experiment will be characterized by some perfor-
mance measure; for example if the mining problem we are addressing is a classification

5

Nguyen, Hilario & Kalousis

problem one such performance measure can be the accuracy. From the performance mea-
sures of the workflows applied on a given dataset x we will extract the relative performance
rank r(x,w) ∈ R+ of each workflow w for the x dataset. We will do so by statistically com-
paring the performance differences of the different workflows for the given dataset (more on
that in section IV.1.3). The matrix X : n× d contains the descriptions of n datasets that
will be used for the training of the system. For a given workflow w we will have two rep-
resentations. wl will denote the l-length operator sequence that constitutes the workflow.
Note that different workflows can have different lengths, so this is not a fixed length rep-
resentation. wcl will denote the fixed-length |P |-dimensional binary vector representation
of the w workflow; each feature of wcl indicates the presence or absence of some relational
feature/pattern in the workflow. Essentially wcl is the propositional representation of the
workflow; we will describe in more detail in section IV.1.2 how we extract this propositional
representation. Finally W denotes a collection of m workflows, which will be used in the
training of the system, and W is the corresponding m × |P | matrix that contains their
propositional representations. Depending on the context the different workflow notations
can be used interchangeably. Table 1 summarizes the most important notations.

III.2 System Architecture and Operational Pipeline

We provide in figure 1 a high level architectural description of our system. The three blue
shaded boxes are: (i) the Data Mining Experiment Repository (dmer) which stores all the
base-level resources, i.e. training datasets, workflows, as well as the performance results
of the application of the latter on the former; essentially dmer contains the training data
that will be used to derive the models that will be necessary for the workflow planning and
design; (ii) the user interface through which the user interacts with the system, specifying
data mining tasks and input datasets and (iii) the Intelligent Discovery Assistant (ida)
which is the component that actually plans data mining workflows that will optimize some
performance measure for a given dataset and data mining task that the user has provided
as input. ida constitutes the core of the system and contains a planning component and a
meta-mining component which interact closely in order to deliver optimal workflows for the
given input problem; we will describe these two components in detail in sections III.4 and IV
respectively. The system operates in two modes, an offline and an online mode. In the
offline mode the meta-mining component analyses past base-level data mining experiments,
which are stored in the dmer, to learn a meta-mining model that associates dataset and
workflow characteristics in view of performance optimization. In the online mode the
meta-miner interacts with the planner to guide the planning of the workflows using the
meta-mining model.

We will now go briefly through the different steps of the system’s life cycle. We first
need to collect in the dmer a sufficient number of base-level data mining experiments,
i.e. applications of different data mining workflows on different datasets (step 1). These
experiments will be used in step 2 by the meta-miner to generate a meta-mining model.

6

Using meta-mining to support DM workflow planning and optimization

optimal plans

DMER

mode
online

goal
input MD training MD

 data flow

Intelligent Discovery Assistant (IDA)

1.

offline
mode

meta−mined

workflow ranking

(partial) candidate workflows

Meta−Miner

User Interface
input data

input MD

Planner
AI

DM Workflow
Ontology (DMWF)

DM Optimization
Ontology (DMOP)

model

datasoftware

2.

5.

4.

3.

Figure 1: The meta-mining system’s components and its pipeline.

More precisely we extract from the base level experiments a number of characteristics
that describe the datasets and the workflows and the performance that the latter achieved
when applied on the former. From these meta-data the meta-miner learns associations of
dataset and workflow characteristics that lead to high performance; it does so by learning
a heterogeneous similarity measure which outputs a high ”similarity” of a workflow to a
dataset if the former is expected to achieve a high performance when it will be applied to
the latter (more details in section IV.2).

Once the model is learned, the offline phase is completed and the online phase can
start. In the online phase the system directly interacts with its user. A given user can
select a data mining task g ∈ G, such as classification, regression, clustering, etc, as well
as an input dataset on which the task should be applied; he or she might also specify the
number of top-k optimal workflows that should be planned (step 3). Given a new task
and an input dataset the action is transfered in the IDA where the ai-planner starts the
planning process. At each step of the planning process the ai-planner generates a list of
valid actions, partial candidate workflows, which it passes for ranking to the meta-miner

according to their expected performance on the given dataset, step 4. The meta-miner

ranks them using the learned meta-mining model and the planning continues with the
top-ranked partial candidate workflows until the data mining task is resolved. At the end
of this planning process, the top-k workflows are presented to the user in the order given
by their expected performance on the input dataset. This is a greedy planning approach
where at each step we select the top-k current solutions. In principle we can let the ai-

planner first generate all possible workflows and then have the meta-miner rank them.
Then the resulting plans would not be ranked according to a local greedy approach, but
they would be ranked globally and thus optimally with respect to the meta-mining model.
However in general this is not feasible due to the complexity of the planning process and
the combinatorial explosion in the number of plans.

7

Nguyen, Hilario & Kalousis

Retrieve

Split

End

result

Weight by Information Gain

training set

Select by Weights

weights

Naive Bayes

test set

Apply Model

model

Performance

labelled datalabelled data

performance

example set

training set

input / output edges

sub input / output edges

X basic nodes

Legend

X composite nodes

Join

output
X-Validation

Figure 2: Example of a DM workflow that does performance estimation of a combination of
feature selection and classification algorithms.

III.3 DM Workflow Representation

We will now give a formal definition of a DM workflow and how we represent it. DM work-
flows are directed acyclic typed graphs (DAGs), in which nodes correspond to operators
and edges between nodes to data input/output objects. In fact they are hierarchical DAGs
since they can have dominating nodes/operators that contain sub-workflows. A typical ex-
ample is the cross-validation operator whose control flow is given by the parallel execution
of training sub-workflows, or a complex operator such as boosting. More formally, let:

• O be the set of all available operators that can appear in a DM workflow, e.g. clas-
sification operators, such as J48, SVMs, etc. O also includes dominating operators
which are defined by one or more sub-workflows they dominate. An operator o ∈ O
is defined by its name through a labelling function λ(o), the data types e ∈ E of its
inputs and outputs, and its direct sub-workflows if o is a dominating operator.

• E be the set of all available data types that can appear in a DM workflow, namely
the data types of the various I/O objects that can appear in a DM workflow such as
models, datasets, attributes, etc.

8

Using meta-mining to support DM workflow planning and optimization

The graph structure of a DM workflow is a pair (O′, E′), which also contains all sub-
workflows if any. O′ ⊂ O is the set of vertices which correspond to all the operators used in
this DM workflow and its sub-workflow(s), and E′ ⊂ E is the set of pairs of nodes, (oi, oj),
directed edges, that correspond to the data types of the output/input objects, that are
passed from operator oi to operator oj . Following this graph structure, the topological sort
of a DM workflow is a permutation of the vertices of the graph such that an edge (oi, oj)
implies that oi appears before oj , i.e. this is a complete ordering of the nodes of a directed
acyclic graph which is given by the node sequence:

wl = [o1, .., ol] (1)

where the subscript in wl denotes the length l (i.e. number of operators) of the topological
sort. The topological sort of a DM workflow can be structurally represented with a rooted,
labelled and ordered tree (Bringmann, 2004; Zaki, 2005), by doing a depth-first search
over its graph structure where the maximum depth is given by expanding recursively the
sub-workflows of the dominating operators. Thus the topological sort of a workflow or its
tree representation is a reduction of the original directed acyclic graph where the nodes
and edges have been fully ordered.

An example of the hierarchical DAG representing a RapidMiner DM workflow is given in
Figure 2. The graph corresponds to a DM workflow that cross-validates a feature selection
method followed by a classification model building step with the NaiveBayes classifier.
X-Validation is a typical example of a dominating operator which itself is a workflow – it
has two basic blocks, a training block which can be any arbitrary workflow that receives as
input a dataset and outputs a model, and a testing block which receives as input a model
and a dataset and outputs a performance measure. In particular, we have a training sub-
workflow, in which feature weights are computed by the InformationGain operator, after
which a number of features is selected by the SelectByWeights operator, followed by the
final model building by the NaiveBayes operator. In the testing block, we have a typical
sub-workflow which consists of the application of the learned model on the testing set with
the ApplyModel operator, followed by a performance estimation given by the Performance
operator. The topological sort of this graph is given by the ordered tree given in Figure 3.

III.4 Workflow planning

The workflow planner we use is based on the work of (Kietz et al., 2009, 2012), and
designs DM workflows using a hierarchical task network (HTN) decomposition of the crisp-
dm process model (Chapman et al., 2000). However this planner only does workflow
enumeration generating all possible plans, i.e. it does not consider the expected workflow
performance during the planning process and does not scale to large set of operators which
explode the search space. In order to address these limitations we presented in (Nguyen
et al., 2011, 2012a) some preliminary results in which we coupled the planner with a
frequent pattern meta-mining algorithm and a nearest-neighbor algorithm to rank the

9

Nguyen, Hilario & Kalousis

Retrieve
1

X-Validation
2/8

Weight by
Information Gain

3

Select by
Weights

4

Naive
Bayes

5

Apply
Model

6

Performance
7

End
9

Figure 3: The topological order of the DM workflow given in figure 2.

partial workflows at each step of the workflow planning; that system was also deployed
in (Kietz et al., 2012). The approach we followed was to prioritize the partial workflows
according to the support that the frequent patterns they contained achieved on a set of
workflows that performed well on a set of datasets that were similar to the input dataset for
which we want to plan the workflow. However we were not learning associations between
dataset and workflow characteristics, which is the approach we follow here.

In section III.4.1 we briefly describe the HTN planner of (Kietz et al., 2009, 2012); and
in section III.4.2 we describe how we use the prediction of the expected performance of a
partial-workflow applied on a given dataset to guide the HTN planner. We will give the
complete description of our meta-mining module that learns associations of dataset and
workflow characteristics that are expected to achieve high performance in section IV.

III.4.1 HTN Planning

Given some goal g ∈ G, the AI-planner will decompose in a top-down manner this goal
into elements of two sets, tasks T and methods M . For each task t ∈ T that can achieve
g, there is a subset M ′ ⊂ M of associated methods that share the same data input/output
(I/O) object specification with t and that can address it. In turn, each method m ∈ M ′

defines a sequence of operators, and/or abstract operators (see below), and/or sub-tasks,
which executed in that order can achieve m. By recursively expanding tasks, methods and
operators for the given goal g, the AI-planner will sequentially construct an HTN plan
in which terminal nodes will correspond to operators, and non-terminal nodes to HTN
task or method decompositions, or to dominating operators (X-Validation for instance will
dominate a training and a testing sub-workflows). An example of an HTN plan is given
in Figure 4. This plan corresponds to the feature selection and classification workflow of
Figure 2 with exactly the same topological sort (of operators) given in Figure 3.

The sets of goals G, tasks T , methods M , and operators O, and their relations, are
described in the dmwf ontology (Kietz et al., 2009). There, methods and operators are
annotated with their pre- and post-conditions so that they can be used by the AI-planner.
Additionally, the set of operators O has been enriched with a shallow taxonomic view in

10

Using meta-mining to support DM workflow planning and optimization

EvaluateAttributeSelectionClassification

X-Validation

In: Dataset
Out: Performance

AttributeSelection
ClassificationTraining

AttributeSelection
Training

Attribute

Weighting

Operator

In: Dataset
Out: AttributeWeights

Select by

Weights

In: Dataset
In: AttributeWeights

Out: Dataset

Classification
Training

Predictive

Supervised

Learner

In: Dataset
Out: Predictive

Model

AttributeSelection
ClassificationTesting

Model
Application

Apply

Model

In: Dataset
In: Predictive

Model
Out: Labelled

Dataset

Model

Evaluation

In: Labelled
Dataset

Out: Performance

Figure 4: The HTN plan of the DM workflow given in Figure 2. Non-terminal nodes are HTN
tasks/methods, except for the dominating operator X-Validation. Abstract operators are in bold

and simple operators in italic, each of which is annotated with its I/O specification.

which operators that share the same I/O object specification are grouped under a common
ancestor:

Ô = {o1, . . . , on} (2)

where Ô defines an abstract operator, i.e. an operator choice point or alternative among
a set of n syntactically similar operators. For example, the abstract AttributeWeighting
operator given in Figure 4 will include any feature weighting algorithms such as Informa-
tionGain or ReliefF, and similarly the abstract Predictive Supervised Learner operator will
contain any classification algorithms such as NaiveBayes or a linear SVM.

The HTN planner can also plan operators that can be applied on each attribute, e.g.
a continuous attribute normalization operator, or a discretization operator. It uses cyclic
planning structures to apply them on subsets of attributes. In our case we use its attribute-
grouping functionality which does not require the use of cyclic planning structures. More
precisely if such an operator is selected for application it is applied on all appropriate
attributes. Overall the HTN grammar contains descriptions of 16 different tasks and more
than 100 operators, over which the planner can plan. These numbers are only limited
by the modeling effort required to describe the tasks and the operators, they are not an
inherent limitation of the HTN grammar/planner.

11

Nguyen, Hilario & Kalousis

III.4.2 The Workflow Selection Task

The AI-planner designs during the construction of an HTN plan several partial workflows,
each of which will be derived by substituting an abstract operator Ô with one of its n
operators. The number of planned workflows can be in the order of several thousands
which will leave the user at a loss as to which workflow to choose for her/his problem;
even worse, it is possible that the planning process never succeeds to find a valid plan and
terminate due to the complexity of the search space.

To support the user in the selection of DM workflows, we can use a post-planning
approach in which the designed workflows will be evaluated according to some evaluation
measure in order to find the k ones that will be globally the best for the given mining prob-
lem. However, this global approach will be very computational expensive in the planning
phase as we mentioned above. Instead, we will follow here a planning approach in which
we will locally guide the AI-planner towards the design of DM workflows that will be opti-
mized for the given problem, avoiding thus the need to explore the whole planning search
space. Clearly, by following a local approach the cost that one has to pay is a potential
reduction in performance since not all workflows are explored and evaluated, potentially
missing good ones due to the greedy nature of the plan construction.

We adopt a heuristic hill climbing approach to guide the planner. At each abstract
operator Ô we need to determine which of the n candidate operators o ∈ Ô are expected
to achieve the best performance on the given dataset. More formally, we will define by:

Cl := {wlo = [wl−1 ∈ Sl−1|o ∈ Ô]}k×n (3)

the set of k × n partial candidate workflows of length l which are generated from the
expansion of an abstract operator Ô by adding one of the n candidate operators o ∈ Ô to
one of the k candidate workflows of length l − 1 that constitute the set Sl−1 of workflows
selected in the previous planning step (S0 is the empty set see below). Now let xu be a
vector description of the input dataset for which we want to plan workflows which address
some data mining goal g and optimize some performance measure. Moreover let wclo

be a binary vector that provides a propositional representation of the wlo workflow with
respect to the set of generalized relational frequent workflow patterns that it contains5.
We construct the set Sl of selected workflows at the current planning step according to:

Sl := {argmax
{wlo∈Cl}

r̂(xu,wclo|g)}
k (4)

where r̂(xu,wclo|g) is the estimated performance of a workflow with the propositional
description wclo when applied to a dataset with description xu, i.e. at each planning
step we select the best current partial workflows according to their estimated expected

5. We will provide a detailed description of how we extract the wclo descriptors in section IV.1.2, for the
moment we note that these propositional representations are fixed length representations, that do not
depend on l.

12

Using meta-mining to support DM workflow planning and optimization

performance. It is the meta-mining model, that we learn over past experiments, that
delivers the estimations of the expected performance. In section IV.2 we describe how we
derive the meta-mining models and how we use them to get the estimates of the expected
performance.

We should stress here that in producing the performance estimate r̂(xu,wclo |g) the
meta-mining model uses the workflow description wclo, and not just the candidate opera-
tor descriptions. These pattern-based descriptions capture dependencies and interactions
between the different operators of the workflows (again more on the wclo representation in
section IV.1.2). This is a rather crucial point since it is a well known fact that when we
construct data mining workflows we need to consider the relations of the biases of the dif-
ferent algorithms that we use within them, some bias combinations are better than others.
The pattern based descriptions that we will use provide precisely that type of information,
i.e. information on the operator combinations appearing within the workflows.

In the next section we will provide the complete description of the meta-miner module,
including how we characterize datasets, workflows and the performance of the latter applied
to the former, and of course how we learn the meta-mining models and use them in planning.

IV. The Meta-Miner

The meta-miner component operates in two modes. In the offline mode it learns from
past experimental data a meta-mining model which provides the expected performance
estimates r̂(xu,wclo |g). In the on-line mode it interacts with the AI-planner at each step
of the planning process, delivering the r̂(xu,wclo|g) estimates which are used by the planner
to select workflows at each planning step according to equation 4.

The rest of the section is organised as follows. In subsection IV.1.1 we explain how we
describe the datasets, i.e. how we derive the xu dataset descriptors; in subsection IV.1.2
how we derive the propositional representation wclo of the data mining workflows and in
subsection IV.1.3 how we rank the workflows according to their performance on a given
dataset, i.e. r(xu,wclo|g). Finally in subsection IV.2 we explain how we build models
from past mining experiments which will provide the expected performance estimations
r̂(xu,wclo|g) and how we use these models within the planner.

IV.1 Meta-Data and performance measures

In this section we will describe the meta-data, namely dataset and workflow descriptions,
and the performance measures that are used by the meta-miner to learn meta-mining mod-
els that associate dataset and workflow characteristics in view of planning DM workflows
that optimize a performance measure.

13

Nguyen, Hilario & Kalousis

IV.1.1 Dataset Characteristics

The idea to characterize datasets has been a full-fledged research problem from the early
inception of meta-learning until now (Michie et al., 1994; Soares & Brazdil, 2000; Köpf
et al., 2000; Pfahringer et al., 2000; Hilario & Kalousis, 2001; Peng et al., 2002; Kalousis
et al., 2004). Following state-of-art dataset characteristics, we will characterize a dataset
x ∈ X by the three following groups of characteristics.

• Statistical and information-theoretic measures: this group refers to data characteris-
tics defined in the STATLOG (Michie et al., 1994; King et al., 1995) and METAL
projects6 (Soares & Brazdil, 2000), and it includes number of instances, number of
classes, proportion of missing values, proportion of continuous / categorical features,
noise signal ratio, class entropy, mutual information. They mainly describe attribute
statistics and class distributions of a given dataset sample.

• Geometrical and topological measures: this group concerns new measures which try to
capture geometrical and topological complexity of class boundaries (Ho & Basu, 2002,
2006), and it includes non-linearity, volume of overlap region, maximum Fisher’s
discriminant ratio, fraction of instance on class boundary, ratio of average intra/inter
class nearest neighbour distance.

• Landmarking and model-based measures: this group is related to measures asserted
with fast machine learning algorithms, so called landmarkers (Pfahringer et al., 2000),
and its derivative based on the learned models (Peng et al., 2002), and it includes
error rates and pairwise 1− p values obtained by landmarkers such as 1NN or Deci-
sionStump, and histogram weights learned by Relief or SVM. We have extended this
last group with new landmarking methods based on the weight distribution of fea-
ture weighting algorithms such as Relief or SVM where we have build twenty different
histogram representations of the discretized feature weights.

Overall, our system makes use of a total of d = 150 numeric characteristics to describe
a dataset. We will denote this vectorial representation of a dataset x ∈ X by xu. We
have been far from exhaustive in the dataset characteristics that we used, not including
characteristics such as subsampling landmarks (Leite & Brazdil, 2010). Our main goal in
this work is not to produce a comprehensive set of dataset descriptors but to design a DM
workflow planning system that given a set of dataset characteristics, coupled with workflow
descriptors, can plan DM workflows that optimize some performance measure.

IV.1.2 Workflow Characteristics

As we have seen in section III.3 workflows are graph structures that can be quite complex
containing several nested sub-structures. These are very often difficult to analyze not only

6. http://www.metal-kdd.org/

14

Using meta-mining to support DM workflow planning and optimization

DM-Algorithm

PredictiveModelling

Algorithm

FeatureWeighting

Algorithm

ClassificationModelling

Algorithm

UnivariateFW

Algorithm

MultivariateFW

Algorithm

EntropyBasedFW

Algorithm

LearnerFreeFW

Algorithm

DataProcessing

Algorithm

MissingValues

Tolerant

Algorithm

ExactCOS

Based

Algorithm

IG ReliefF
Naive

Bayes
SVMC4.5

Irrelevant

Tolerant

Algorithm

is-implemented-byis-followed-by

Figure 5: A part of the dmop’s algorithm taxonomies. Short dashed arrows represent the
is-followed-by relation between DM algorithms, and long dashed arrows represent the

is-implemented-by relation between DM operators and DM algorithms.

(a)

X-Validation

Feature
Weighting
Algorithm

UnivariateFW
Algorithm

EntropyBasedFW
Algorithm

Classification
Modeling
Algorithm

Irrelevant
Tolerant
Algorithm

(b)

X-Validation

Feature
Weighting
Algorithm

LearnerFreeFW
Algorithm

Classification
Modeling
Algorithm

MissingValues
Tolerant
Algorithm

(c)

X-Validation

Feature
Weighting
Algorithm

Classification
w

Algorithm

ExactCOS
Based

Algorithm

Figure 6: Three workflow patterns with cross-level concepts. Thin edges depict workflow
decomposition; double lines depict dmop’s concept subsumption.

because of their ”spaghetti-like” structure but also because we do not have any information
on which subtask is addressed by which workflow component (Van der Aalst & Giinther,
2007). Process mining addresses this problem by mining for generalized patterns over
workflow structures (Bose & der Aalst, 2009).

To characterize DM workflows we will follow a process mining like approach; we will
extract generalized, relational, frequent patterns over their tree representations, that we
will use to derive propositional representations of them. Propositionalization is a standard
approach used extensively and successfully in learning problems in which the learning in-
stances are complex structures (Kramer et al., 2000). The possible generalizations will be

15

Nguyen, Hilario & Kalousis

described by domain knowledge which, among other knowledge, will be given by a data
mining ontology. We will use the Data Mining Optimization (dmop) ontology (Hilario
et al., 2009, 2011). Briefly, this ontology provides a formal conceptualization of the DM
domain by describing DM algorithms and defining their relations in terms of DM tasks,
models and workflows. It describes learning algorithms such as C4.5, NaiveBayes or SVM,
according to their learning behavior such as their bias/variance profile, their sensitivity to
the type of attributes, etc. For instance, the algorithms cited above are all tolerant to irrel-
evant attributes, but only C4.5 and NaiveBayes algorithms are tolerant to missing values,
whereas only the SVM and NaiveBayes algorithms have an exact cost function. Algo-
rithm characteristics and families are classified as taxonomies in dmop under the primitive
concept of DM-Algorithm. Moreover, dmop specifies workflow relations, algorithm order,
with the is-followed-by relation and relates workflow operators with DM algorithms
with the is-implemented-by relation. Figure 5 shows a snapshot of the dmop’s algo-
rithm taxonomies with ground operators at the bottom related to the DM algorithms they
implement.

To mine generalized relational patterns from DM workflows, we will follow the method
we presented in (Hilario et al., 2011). First, we use the dmop ontology to annotate a set W
of workflows. Then, we extract from this set generalized patterns using a frequent pattern
mining algorithm. Concretely, for each operator contained in the parse tree of a training
DM workflow wl ∈ W , we insert into the tree branch above the operator the taxonomic
concepts, ordered from top to bottom, that are implemented by this operator, as these are
given in the dmop. The result is a new parse tree that has additional nodes which are
dmop’s concepts. We will call this parse tree an augmented parse tree. We then reorder
the nodes of each augmented parse tree to to satisfy dmop’s algorithm taxonomies and
relations. For example a feature selection algorithm is typically composed of a feature
weighting algorithm followed by a decision rule that selects features according to some
heuristics. The result is a set of augmented and reordered workflow parse trees. Over
this representation, we apply a tree mining algorithm, (Zaki, 2005), to extracts a set P of
frequent patterns. Each pattern corresponds to a tree that appears frequently within the
augmented parse trees; we mine patterns that have a support higher or equal to five.

In Figure 6 we give examples of the mined patterns. Note that the extracted patterns
are generalized, in the sense that they contain entities defined at different abstraction levels,
as these are provided by DMOP. They are relational because they describe relations, such
as order relations, between the structures that appear within a workflow, and they also
contain properties of entities as these are described in the DMOP. For example pattern (c)
of Figure 6 states that we have a feature weighting algorithm (abstract concept) followed
by (relation) a classification algorithm that has an exact cost function (property), within
a cross-validation.

We use the set P of frequent workflow patterns to describe any DM workflow wl ∈ W
through the patterns p ∈ P that this wl workflow contains. The propositional description

16

Using meta-mining to support DM workflow planning and optimization

of a workflow wl is given by the |P |-length binary vector:

wcl = (I(p1 �t wl), . . . , I(p|P | �t wl))
T ∈ {0, 1}|P | (5)

where �t denotes the induced tree relation (Zaki, 2005) and I(pi �t wl) returns one if the
frequent pattern, pi, appears within the workflow and zero otherwise.

The propositional workflow representation can easily deal with the parameter values of
the different operators that appear within the workflows. To do so, we can discretize the
range of values of a continuous parameter to ranges such as low, medium, high, or other
ranges depending on the nature of the parameter, and treat these discretized values as
simply a property of the operators. The resulting patterns will now be ”parameter-aware”;
they will include information on the parameter range of the mined operators and they can
be used to support also the parameter setting during the planning of the DM workflows.
However within this paper we will not explore this possibility.

IV.1.3 Performance-based Ranking of DM Workflow

To characterize the performance of a number of workflows applied on a given dataset we
will use a relative performance rank schema that we will derive using statistical significance
tests. Given the estimations of some performance measure of the different workflows on a
given dataset we use a statistical significance test to compare the estimated performances
of every pair of workflows. If within a given pair one of the workflows was significantly
better than the other then it gets one point and the other gets zero points. If there was no
significance difference then both workflows get half a point. The final performance rank
of a workflow for the given dataset is simply the sum of its points over all the pairwise
performance comparisons, the higher the better. We will denote this relative performance
rank of a workflow wc applied on dataset xu by r(xu,wc). Note that if a workflow was
not applicable, or not executed, on the dataset x, we set its rank score to the default
value of zero which means that the workflow is not appropriate (if not yet executed) for
the given dataset. When g is the classification task we will use in our experiments as
evaluation measure the classification accuracy, estimated by ten-fold cross-validation, and
do the significance testing using McNemar’s test, with a significance level of 0.05.

In the next section we will describe how we build the meta-mining models from the
past data-mining experiments using the meta-data and the performance measures we have
described so far and how we use these models to support the DM workflow planning.

IV.2 Learning Meta-mining Models for Workflow Planning

Before starting to describe in detail how we build the meta-mining models let us take a
step back and give a more abstract picture of the type of meta-mining setting that we will
address. In the previous sections, we described two types of learning instances: datasets
x ∈ X and workflows w ∈ W. Given the set of datasets and the set of workflows stored in
the dmer, the meta-miner will build from these, two training matrices X and W. The

17

Nguyen, Hilario & Kalousis

X : n × d dataset matrix, has as its ith row the description xui
of the ith dataset. The

W : m× |P | workflow matrix, has as its jth row the description wcj of the jth workflow.
We also have a preference matrix R : n × m, where Rij = r(xui

,wcj), i.e. it gives the
relative performance rank of the workflow wj when applied to the dataset xi with respect
to the other workflows. We can see Rij as a measure of the appropriateness or match of
the wj workflow for the xi dataset. Additionally we will denote by rxui

the ith line of
the R matrix which contains the vector of the relative performance ranks of the workflows
that were applied on the xui

dataset. The meta-miner will take as input the X,W and R
matrices and will output a model that predicts the expected performance, r̂(xu,wc), of a
workflow w applied to a dataset x.

We construct the meta-mining model using similarity learning, exploiting two basic
strategies which we first presented in (Nguyen et al., 2012b) in the context of DM work-
flow selection. For reasons of clarity and completness we will present their main points here
and then for each one of them show how we use it in the context of workflow planning.
In the first strategy we learn homogeneous similarity measures, measuring similarity of
datasets and similarity of workflows, which we then use to derive the r̂(xu,wc|g) estimates.
In the second we learn heterogeneous similarity measures which directly estimate the ap-
propriateness of a workflow for a dataset, i.e. they produce direct estimates of r̂(xu,wc|g).

IV.2.1 Learning homogeneous similarity measures

Our goal is to provide meta-mining models that are good predictors of the performance
of a workflow applied to a dataset. In the simplest approach we want to learn a good
similarity measure on the dataset space that will deem two datasets to be similar if a set
of workflows applied to both of them will result in a similar relative performance, i.e. if
we order the workflows according to the performance they achieve on each dataset then
two datasets will be similar if the workflow orders are similar. Thus the learned similarity
measure on the dataset space should be a good predictor of the similarity of the datasets
as this is determined by the relative performance order of the workflows. In a completely
symmetrical manner we will consider two workflows to be similar if they achieve similar
relative performance scores on a set of datasets. Thus in the case of workflows we will
learn a similarity measure on the workflow space that is a good predictor of the similarity
of their relative performance scores over a set of datasets.

More formally, two instances i, j, of the X dataset matrix will be similar if we observe
on them similar relative workflow performances with respect to the workflows of W, i.e.
if the respective performance vectors, rxui

, rxuj
, are similar. Thus the dataset similarity

that we will learn will reflect the similarity of the relative performance of the workflows;
the latter similarity is given by the RRT : n × n matrix. The [RRT]ij = rTxui

rxuj
entry

gives the target similarity of the xi and xj datasets. In exactly the same manner, we will
construct them×m target similarity matrix for the workflows of W as RTR. We will learn
one Mahalanobis metric matrix for the datasets, MX , over the dataset matrix X which will

18

Using meta-mining to support DM workflow planning and optimization

reflect the relative performance similarities given by theRRT, and one Mahalanobis metric
matrix for the workflows, MW , which will reflect the relative performance similarities given
by the RTR.

To learn the d × d dataset Mahalonobis metric matrix MX we will use the Spearman
rank correlation coefficients matrix instead of the RRT matrix, since rank correlation is
more appropriate to measure the similarity of rank vectors than the plain inner product.
Nevertheless to simplify notation we will continue using the RRT notation. We define the
following convex metric learning optimization problem:

min
MX

F1 = ||RRT −XMXX
T||2F + µ tr(MX) (6)

s.t. MX � 0

where ||.||F is the Frobenius matrix norm, tr(·) the matrix trace, and µ ≥ 0 is a parameter
controlling the trade-off between empirical error and the metric complexity to control over-
fitting. To solve problem (6), we use the accelerated proximal gradient (APG) algorithm of
(Toh & Yun, 2010) to minimize the nuclear norm of MX which is equal to its trace norm
since MX is positive semi-definite. The derivative of F1 with respect to the metric is equal
to:

δF1

δMX
= −2XT(RRT −XMXX

T)X+ µMX (7)

which we use with the APG algorithm in order to minimize F1 where we will converge to
a global minimum since this function is convex. In a symmetrical manner we learn the
|P | × |P | Mahalanobis metric matrix MW in the DM workflow space W, through:

min
MW

F2 = ||RTR−WMWWT||2F + µ tr(MW) (8)

s.t. MW � 0

the derivative of which is:

δF2

δMW
= −2WT(RTR−XMWWT)W + µMW (9)

Note that so far we do not have a model that computes the expected relative performance
r̂(xu,wclo). In the case of the homogeneous metric learning we will compute it in the
on-line mode during the planning phase; we will describe right away how we do so in the
following paragraph.

Planning with the homogeneous similarity metrics (P1) We will use the two
learned Mahalanobis matrices, MX , MW , to compute the dataset similarity and the work-
flow similarity out of which we will finally compute the estimates r̂(xu,wclo) at each plan-
ning step.

19

Nguyen, Hilario & Kalousis

Concretely, prior to planning we determine the similarity of the input dataset xu (for
which we want to plan optimal DM workflows) to each of the training datasets xui

∈
X using the MX dataset metric to measure the dataset similarities. The Mahalanobis
similarity of two datasets, xu,xui

, is given by

sX (xu,xui
) = xT

uMXxui
(10)

Then, during planning at each planning step we determine the similarity of each candidate
workflow wlo ∈ Cl to each of the training workflows wcj of W, by

sW(wclo,wcj) = wT
clo
MWwcj . (11)

Finally we derive the r̂(xu,wclo) estimate through a weighted average of the elements
of the R matrix. The weights are given by the similarity of the input dataset xu to the
training datasets, and the similarities of the candidate workflow wclo to each of the training
workflows. More formally the expected rank is given by:

r̂(xu,wclo|g) =

∑
xui

∈X

∑
wcj

∈W ωxui
ωwcj

r(xui
,wcj |g)

∑
xui

∈X

∑
wcj

∈W ωxui
ωwcj

(12)

ωxui
and ωwcj

are the Gaussian weights given by ωxui
= exp(sX (xu,xui

)/τx) and ωwcj
=

exp(sW(wclo,wcj)/τw); τx and τw are the kernel widths that control the size of the neighbors
in the data and workflow spaces respectively, (Smart & Kaelbling, 2000; Forbes & Andre,
2000).

Using the rank performance estimates delivered by equation 12 we can select at each
planning step the best candidate workflows set, Sl, according to equation 4. We will call the
resulting planning strategy P1. Under P1 the expected performance of the set of selected
candidate workflows Sl greedily increases until we deliver the k DM complete workflows
which are expected to achieve the best performance on the given dataset.

IV.2.2 Learning a heterogeneous similarity measure

The P1 planning strategy makes use of two similarity measures that are learned inde-
pendently of each other, each one defined in its own feature space. This is a simplistic
assumption because it does not model for the interactions of workflows and datasets, we
know that certain types of DM workflows are more appropriate for datasets with certain
types of characteristics. In order to address this limitation, we will define a heterogeneous
metric learning problem in which we will directly estimate the similarity/appropriateness
of a workflow for a given dataset as this is given by the r(xu,wc) relative performance
measure.

Since learning a Mahalanobis metric is equivalent to learning a linear transformation, we
can rewrite the two Mahalanobis metric matrices describe previously as MX = UUT and

20

Using meta-mining to support DM workflow planning and optimization

MW = VVT. U : d×t andV : |P |×t are the respective linear transformation matrices with
dimensionality t = min(rank(X), rank(W)). To learn a heterogeneous similarity measure
between datasets and workflows using these two linear transformations, we will first define
the following matrix factorization problem of the R matrix:

min
U,V

F3 = ||R−XUVTWT||2F +
µ

2
(||U||2F + ||V||2F) (13)

This formulation is similar to the low-rank matrix factorization of (Srebro, Rennie, &
Jaakkola, 2005). However the factorization that we learn here as a function of the dataset
and workflow feature spaces can address samples that are out of the training instances,
also known as the cold start problem in recommendation systems. In the case of the DM
workflow planning problem this is a strong requirement because we need to be able to
plan workflows for datasets that have never been seen during training, and also be able
to qualify workflows that have also not been seen during training. The form of the F3

function is also known as a restricted form of bi-linear model where the two parametric
matrices U and V are required to be low-rank (Jain & Dhillon, 2013).

In addition to learning the heterogeneous metric we still want the two constituent linear
transformation matrices to lead also to homogeneous metrics in the dataset and workflow
spaces that will reflect the target similarities given by the RRT and RTR dataset and
workflow similarity matrices. To do so we will add into problem (13) the two optimization
functions of problems (6) and (8) which leads to the following optimization problem:

min
U,V

F4 = ||R−XUVTWT||2F + ||RRT −XUUTXT||2F

+ ||RTR−WVVTWT||2F +
µ

2
(||U||2F + ||V||2F)

these additional terms act as regularizers for the matrix factorization problem (13). It
was shown in (Nguyen et al., 2012b) that the addition of the two regularization terms in
the F4 function provides significantly better results than the unconstrained F3 function
since they play a role similar to graph regularization techniques for (non-negative) matrix
factorization (Cai, He, Han, & Huang, 2011). To solve the optimization problem (14) we
use an alternating gradient descent algorithm where we first optimize F4 with respect to
U keeping V fixed, and vice versa. The derivative of F4 with respect to U is given by:

δF4

δU
= −2XT(R−XUVTWT)WV − 2XT(RRT −XUUTXT)XU+ µU (14)

and we have a similar formulation for V. The optimization algorithm will converge to
a local minimum since F4 is not convex. In solving problem (14), we will thus learn
two linear transformations, each of which defines a metric that reflects the performance-
based similarities of datasets and workflows respectively, while together they give directly

21

Nguyen, Hilario & Kalousis

the similarity/appropriateness of a DM workflow for a dataset by directly estimating the
expected relative predictive performance by the heterogeneous similarity measure as:

r̂(xu,wclo |g) = xuUVTwT
clo

(15)

We can see the heterogeneous similarity metric as performing a projection of the dataset
and workflow spaces on a common latent space on which we can compute a standard
similarity between the projections.

Planning with the heterogeneous similarity measure (P2) Planning with the
heterogeneous similarity measure, a strategy we will denote by P2, is much simpler than
planning with the homogeneous similarity measures. Given an input dataset described
by xu at each step of the planning we make use of the relative performance estimate
r̂(xu,wclo|g) delivered by equation 15 to select the set of best workflows Sl from the set of
partial workflows Cl using the selection process described by equation 4. Unlike planning
strategy P1 which computes r̂(xu,wclo |g) through a weighted average with the help of the
two independently learned similarity metrics, P2 relies on a heterogeneous metric that
directly computes r̂(xu,wclo |g), modeling thus explicitly the interactions between dataset
and workflow characteristics.

We should note here that both P1 and P2 planning strategies are able to construct
workflows even over pools of ground operators that include operators with which we have
never experimented with in the baseline experiments, provided that these operators are well
described within the dmop. This is because the meta-mining models that the planner uses
to prioritize the workflows rely on the wclo descriptions of a workflow which are generalized
descriptions over workflows and operators.

In the next section we evaluate the ability of the two planning strategies that we have
introduced to plan DM workflows that optimize the predictive performance and compare
them to a number of baseline strategies under different scenarios.

V. Experimental Evaluation

We will evaluate our approach on the data mining task of classification. The reasons for
that are rather practical. Classification is a supervised task which means that there is a
ground truth against which we can compare the results produced by some classification
algorithm, using different evaluation measures such as accuracy, error, precision etc; for
other mining tasks such as clustering, performance evaluation and comparison is a bit
more problematic due to the lack of ground truth. It has been extensively studied, and
it is extensively used in many application fields, resulting in a plethora of benchmark
datasets, which we can easily reuse to construct our base-level experiments as well as to
evaluate our system. Moreover, it has been extensively addressed in the context of meta-
learning, providing baseline approaches against which to compare our approach. Finally
our approach requires that the different algorithms and operators that we use are well

22

Using meta-mining to support DM workflow planning and optimization

described in the dmop. Due to the historical predominance of the classification task and
algorithms as well as their extensive use in real world problems, we started developing
dmop from them; as a result the task of classification and the corresponding algorithms
are well described.

Having said all this, we should emphasize that our approach is not limited to the
task of classification. It can be applied to any mining task for which we can define an
evaluation measure, collect a set of benchmark datasets on which we will perform the base-
level experiments, and provide descriptions of the task and the respective algorithms in
the dmop.

To train and evaluate our approach we have collected a set of benchmark classification
datasets. We have applied on them a set of classification data mining workflows. From
these base-level experiments we learn our meta-mining models which are then used by the
planner to plan data mining workflows. Then we challenge the system with new datasets
which were not used in the training of the meta-mining models, datasets for which it has to
plan new classification workflows that will achieve a high level of predictive performance.
We will explore two distinct evaluation scenarios. In the first one, we will constrain the
system so that it plans DM workflows by selecting operators from a restricted operator
pool, namely operators with which we have experimented in the base-level experiments. In
the second scenario we will allow the system to also choose from operators with which we
have never experimented but which are described in the dmop ontology. The goal of the
second scenario is to evaluate the extend to which the system can effectively use unseen
operators in the workflows it designs, provided these operators are described in the dmop.

V.1 Base-level Datasets and DM Workflows

To construct the base-level experiments we have collected 65 real world datasets on genomic
microarray or proteomic data related to cancer diagnosis or prognosis, mostly from The
National Center for Biotechnology Information7. As is typical with such datasets, the
datasets we use are characterized by high-dimensionality and small sample size, and a
relatively low number of classes, most often two. They have an average of 79.26 instances,
15268.57 attributes, and 2.33 classes.

To build the base-level experiments we applied on these datasets workflows that con-
sisted either of a single classification algorithm, or of a combination of feature selection and
a classification algorithm. Although the HTN planner we use, (Kietz et al., 2009, 2012), is
able to generate much more complex workflows, over 16 different tasks, with more than 100
operators, we had to limit ourselves to the planning of classification, or feature selection
and classification, workflows simply because the respective tasks, algorithms and operators
are well annotated in the dmop. This annotation is important for the characterization of
the workflows and the construction of good meta-mining models which are used to guide
the planning. Nevertheless, the system is directly usable on planning scenarios of any com-

7. http://www.ncbi.nlm.nih.gov/

23

Nguyen, Hilario & Kalousis

plexity, as these are describe in the HTN grammar, provided that the appropriate tasks,
algorithms and operators are annotated in the dmop.

We used four feature selection algorithms: Information Gain, IG, Chi-square, CHI,
ReliefF, RF, and recursive feature elimination with SVM, SVMRFE; we fixed the number
of selected features to ten. For classification we used seven classification algorithms: one-
nearest-neighbor, 1NN, the C4.5 and CART decision tree algorithms, for C4.5 the C and
M parameters were set to 0.25 and 2 respectively and for CART the M and N (number
of folds for the minimal cost-complexity pruning) parameters were set to two and five
respectively, a Naive Bayes algorithm with normal probability estimation, NBN, a logistic
regression algorithm, LR, and SVM with the linear, SVMl and the rbf, SVMr, kernels, for
both kernels the C parameter was set to 1, for SVMr the γ parameter was set to 0.1. As
we have discussed previously, we can also deal with parameter support, by discretizing the
range of values of the parameters and treating them as properties of the operators. Another
alternative is to use inner cross-validation to automatically select over a set of parameter
values; strictly speaking, in that case, we would not be selecting a standard operator but
its cross-validated variant. Nevertheless, this would incur a significant computational cost.

Overall, we have seven workflows that only contained a classification algorithm, and
28 workflows that had a combination of a feature selection with a classification algorithm,
resulting to a total of 35 workflows applied on 65 datasets which corresponds to 2275 base-
level DM experiments. The performance measure we use is accuracy which we estimate
using ten-fold cross-validation. For all algorithms, we used the implementations provided
in the RapidMiner DM suite.

As already said, we have two evaluation settings. In the first one (Scenario 1) we
constrain the system to plan using operators only from the operators with which we have
experimented in the base-level experiments, i.e. only between the seven classification and
the four feature selection algorithms. In the second one (Scenario 2) we allow the system
to select also from unseen algorithms with which we have not experimented with, but are
described in the dmop. These additional algorithms are one feature selection algorithm:
Information Gain Ratio, IGR, and four classification algorithms: a Linear Discriminant
Analysis algorithm, LDA, a Rule Induction algorithm, Ripper, a Random Tree algorithm,
RDT, and a Neural Network algorithm, NNet. The total number of possible workflows in
this setting is 62.

V.2 Meta-Learning & Default Methods

We will compare the performance of our system against two baseline methods and a default
strategy. The two baseline methods are simple approaches that fall in the more classic
meta-learning stream but instead of selecting between individual algorithms they select
between workflows. Thus they cannot plan DM workflows and they can only be used in
a setting in which all workflows to choose from have been seen in the model construction
phase.

24

Using meta-mining to support DM workflow planning and optimization

The first meta-learning method that we will use, which we will call Eucl, is the standard
approach in meta-learning (Kalousis & Theoharis, 1999; Soares & Brazdil, 2000), which
makes use of the Euclidean based similarity over the dataset characteristics to select the
N most similar datasets to the input dataset xu for which we want to select workflows and
then averages their workflow rank vectors to produce the average rank vector:

1

N

N∑

i

rxui
,xui

∈ {argmax
xui

∈X
xT
uxui

}N (16)

which it uses to order the different workflows. Thus this method simply ranks the workflows
according to the average performance they achieve over the neighborhood of the input
dataset. The second meta-learning method that we call Metric makes use of the learned
dataset similarity measure given by Eq.(10) to select the N most similar datasets to the
input dataset and then averages as well their respective workflow rank vectors:

1

N

N∑

i

rxui
,xui

∈ {argmax
xui

∈X
xT
uMXxui

}N (17)

For the default recommendation strategy, we will simply use the average of the rxui
work-

flow rank vectors over the collection of training datasets:

1

n

n∑

i

rxui
,∀xui

∈ X (18)

to rank and select the workflows. We should note that this is a rather difficult baseline to
beat. To see why this is the case we plot in Figure 7 the percentage of times that each
of the 35 DM workflows appears among the top-5 worfklows over the 65 datasets. The
top workflow, consisting of just the LR algorithm, is among the top-5 for more than 80%
of the datasets. The next two workflows, NBN and IG with NBN, are among the top-5
for almost 60% of the datasets. In other words if we select the top-5 workflows using the
default strategy then in roughly 80% of the datasets LR will be correctly between them,
while for NBN and IG with NBN this percentage is around 60%. Thus the set of dataset
we have here is quite similar with respect to the workflows that perform better on them,
making the default strategy a rather difficult one to beat.

V.3 Evaluation Methodology

To estimate the performance of the planned workflows in both evaluation scenarios we will
use leave-one-dataset-out, using each time 64 datasets on which we build the meta-mining
models and one dataset for which we plan.

We will evaluate each method by measuring how well the list, L, of top-k ranked
workflows, that it delivers for a given dataset, correlates with the ”true” list, T , of top-k

25

Nguyen, Hilario & Kalousis

CH
I+

C4
5

RF
+N

BN
SV

M
RF

E+
C4

5
CH

I+
CA

RT
RF

+C
45

SV
M

r
1N

N
IG

+C
45

RF
+1

NN
SV

M
RF

E+
CA

RT C4
5

CH
I+

SV
M

r
RF

+C
AR

T
CH

I+
SV

M
l

IG
+C

AR
T

RF
+S

VM
r

RF
+S

VM
l

SV
M

RF
E+

1N
N

CH
I+

1N
N

IG
+1

NN
SV

M
RF

E+
SV

M
r

CA
RT

CH
I+

NB
N

IG
+S

VM
r

SV
M

RF
E+

LR
CH

I+
LR

RF
+L

R
SV

M
RF

E+
NB

N
IG

+S
VM

l
SV

M
l

IG
+L

R
SV

M
RF

E+
SV

M
l

NB
N

IG
+N

BN LR

0.0

0.2

0.4

0.6

0.8

Figure 7: Percentage of times that a workflow is among the top-5 workflows over the different
datasets.

ranked workflows for that dataset using a rank correlation measure. We place true between
quotes because in the general case, i.e. when we do not restrict the choice of operators to
a specific set, we cannot know which are the true best workflows unless we exhaustively
examine an exponential number of them, however since here we select from a restricted list
of operators we can have the set of the best. More precisely to measure the rank correlation
between two lists L and T we will use the Kendall distance with p penalty, which we will
denote K(p)(L, T), (Fagin, Kumar, & Sivakumar, 2003). The Kendall distance gives the
number of exchanges needed in a bubble sort to convert one list to the other. It assigns a
penalty of p to each pair of workflows such that one workflow is in one list and not in the
other; we set p = 1/2. Because K(1/2)(L, T) is not normalized, we propose to define the
normalized Kendall similarity Ks(L,T) as:

Ks(L, T) = 1−
K(1

2
)(L, T)

u
(19)

and takes values in [0, 1]. u is the upper bound of K(1
2
)(L, T) given by u = 0.5k(5k + 1)−

2
∑k

i=1 i, derived from a direct application of lemma 3.2 of (Fagin et al., 2003), where
we assume that the two lists do not share any element. We will qualify each method, m,
including the two baselines, by its Kendall similarity gain, Kg(m), i.e. the gain (or loss) it

26

Using meta-mining to support DM workflow planning and optimization

achieves with respect to the default strategy for a given datasets, which we compute as:

Kg(m)(L, T) =
Ks(m)(L, T)

Ks(def)(L, T)
− 1 (20)

For each method we will report its average Kendall similarity gain overall the datasets,
Kg(m). Note that in the only-seen-operators scenario the default strategy is based on the
average ranks of the 35 workflows. In the unseen-operators scenario the default strategy is
based on the average ranks of the 62 workflows, which we also had to experiment with in
order to set the baseline.

In addition to how well the top-k ranked list of workflows, that a given method suggests
for a given dataset, correlates to the true list we also compute the average accuracy that
the top-k workflows it suggests achieve for the given dataset, and report the average overall
datasets.

V.4 Meta-mining Model Selection

At each iteration of the leave-one-dataset-out evaluation of the planning performance we
rebuild the meta-mining model and we tune its µ parameter of the Mahalanobis metric
learning using inner ten-fold cross-validation; we select the µ value that maximizes the
Spearman rank correlation coefficient between the predicted workflow rank vectors and
the real rank vectors. For the heterogenous metric, we used the same parameter setting
defined in (Nguyen et al., 2012b). For the two meta-learning methods, we fixed the number
N of nearest neighbors to five, reflecting our prior belief on appropriate neighborhood size.
For planning, we set manually the dataset kernel width parameter to τxk = 0.04 and the
workflow kernel width parameter to τwk = 0.08 which result on small dataset and workflow
neighborhoods respectively. Again, these two parameters were not tuned but simply set
on our prior belief of their respective neighborhood size.

V.5 Experimental Results

In the following sections we give the results of the experimental evaluation of the different
methods we presented so far under the two evaluation scenarios described above.

V.5.1 Scenario 1, Building DM workflows from a pool of already

experimented operators

In this scenario, we will evaluate the quality of the DM workflows constructed by the
two planning strategies P1 and P2 and compare it to that of the two baseline methods
as well as to that of the default strategy. We do leave-one-dataset-out to evaluate the
workflow recommendations given by each method. In figure 8(a) we give the average
Kendall similarity gain for each method against the default strategy which we compute
over their top-k lists for k = 2, . . . , 35. Clearly the P2 strategy is the one that gives the

27

Nguyen, Hilario & Kalousis

(a) Scenario 1, only seen operators.

0 5 10 15 20 25 30 35

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

k

K
g

P2
P1
Metric
Eucl
def35

(b) Scenario 2, seen and unseen operators.

0 5 10 15 20 25 30 35

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

k

K
g P2

P1
def62

Figure 8: Average correlation gain K̄g of the different methods against the baseline on the 65
bio-datasets. In the x-axis, k = 2 . . . 35, we have the number of top-k workflows suggested to the
user. P1 and P2 are the two planning strategies. Metric and Eucl are baseline methods and defX

is the default strategy computed over the set of X workflows.

largest improvements with respect to the default strategy, between 5% to 10%, compared
to any other method. We establish the statistical significance of these results for each k,
counting the number of datasets for which each method was better/worse than the default,
using a McNemar’s test. The P2 is by far the best method being significanlty better than
the default for 16 out of the 34 values of k, close to significant (0.05 < p-value ≤ 0.1)
ten out of the 34 times and never significantly worse. From the other methods only P2
managed to beat the default and this only for 2 out of the 34 cases of k. In Table 3 in the
appendix we give the complete results for all methods for k = 2 . . . 35.

When we examine the average accuracy that the top-k workflows suggested by each
method achieve, the advantage of P2 is even more striking. Its average accuracy is 1.25%
and 1.43% higher than that of the default strategy, for k = 3 and k = 5 respectively,
Table 2(a). For k = 3, P2 achieves a higher average accuracy than the default in 39 out of
the 65 datasets, while it underperforms compared to the default only in 20. Using again
a McNemar’s test the statistical signicance is 0.02, i.e. P2 is significantly better than the
default strategy when it comes to the average accuracy of the top k = 3 workflows it
plans; the results are similar for k = 5. In fact for the eight top-k lists, k = 3 . . . 10, P2 is
significantly better than the default for five values of k, close to significantly better once,
and never significantly worse. For the higher values of k, k = 11 . . . 35, it is significantly
better 11 times, close to significantly better three times, and never significantly worse. It
stops being significantly better when k > 30. For such large k values the average is taken

28

Using meta-mining to support DM workflow planning and optimization

(a) Scenario 1, only seen operators

k = 3 k = 5
Avg. Acc W/L p− value Avg. Acc W/L p− value

P2 0.7988 39/20 +0.02 0.7925 41/21 +0.02
P1 0.7886 26/38 0.17 0.7855 35/28 0.45
Metric 0.7861 25/38 0.13 0.7830 32/33 1.00
Eucl 0.7829 30/32 0.90 0.7782 32/33 1.00
def35 0.7863 0.7787

(b) Scenario 2, seen and unseen operators

k = 3 k = 5
Avg. Acc W/L p− value Avg. Acc W/L p− value

P2 0.7974 39/24 0.08 0.7907 34/29 0.61
P1 0.7890 29/34 0.61 0.7853 31/34 0.80
def62 0.7867 0.7842

Table 2: Average accuracy of the top-k workflows suggested by each method. W indicates the
number of datasets that a method achieved a top-k average accuracy larger than the respective of
the default, and L the number of datasets that it was smaller than the default. p− value is the
result of the McNemar’s statistical significance test; + indicates that the method is statistically

better than the default.

over almost all workflows, thus we do not expect important differences between the lists
produced by the different methods.

P1 is never significantly better than the default for all k = 3 . . . 10, while for k = 11 . . . 35
it is significantly better for nine values of k, close to significantly better three times, and
close to significantly worse once. The Metric baseline is never significantly better than the
default for all k = 3 . . . 10, while for k = 11 . . . 35 it is significantly better for four values of
k,and close to significantly better four times. The results of EC are quite poor. In terms
of the average accuracy it is very similar to the default, while in terms of the number of
times that it performs better than the default, this for most of the cases is less than the
number of times that it performs worse than the default. In Table 4 of the appendix we
give the accuracy results for all methods for k = 3 . . . 35. P2 is the only method that
directly learns and exploits in the workflow planning the associations between the dataset
and the workflow characteristics which as the experimental result clearly demonstrate is
the strategy that best pays off.

V.5.2 Scenario 2: Building DM workflows from a pool of experimented

and non-experimented operators

In the second scenario we evaluate the performance of the two planning strategies, P1 and
P2, where the pool of available operators during the planning is not any more limited to
operators with which we have already experimented in the base-level experimented with

29

Nguyen, Hilario & Kalousis

but it is extented to include additional operators which are described in the dmop ontology.
We have already described the exact setting in section V.1; as a reminder the number of
possible workflows is now 62. As before we will estimate performances using leave-one-
dataset-out. Note that the two baseline methods, Metric and Eucl, are not applicable in
this setting, since they can be only deployed over workflows with which we have already
experimented in the baseline experiments. Here, as we already explained in section V.3,
the default strategy will correspond to the average rank of the 62 possible workflows and we
will denote it with def62. Note that this is a highly optimistically-biased default method
since it relies on the execution of all 62 possible workflows on the base-level datasets, unlike
P1 and P2 which only get to see 35 workflows for the model building, and the operators
therein, but will plan over the larger pool.

In figure 8(b) we give the average Kendall similarity gain for P1 and P2 over the
def62. Similarly to the first evaluation scenario, P2 has an advantage over P1 since it
demonstrates higher gains over the default. Note though that these performance gains are
now smaller than they were previously. In terms of the number of k values for which P2
is (close to be) significantly better than the default, these are now six and eight, for the
different k = 2 . . . 35. Def62 is now once significantly better than P2 and once close to
being significantly better. In what concerns P1 there is no significant difference between
its performance and Def62, for any value of k. For values of k > 30 P2 systematically
underperforms compared to Def62, due to the advantage of the latter that comes from
seeing the performance of all 62 workflows over the base-level dataset. We give the detailed
results in Table 5 of the appendix for all values of k = 2 . . . 35.

In what concerns the performance of P2 with respect to the average accuracy of the top-
k workflows it suggests, it has a slight advantage over Def62 but only for very small values
of k, up to four. It is significantly better compared to Def62 only once, k = 4. For k = 5 to
17 the two methods have no significant difference, while for k = 18 . . . 35 P2 is worse, most
often in a significant manner. For P1 the picture is slightly different, its average accuracy
is not significantly different than Def62, with the exception of three k values for which it is
significantly worse. We give the complete results in Table 6. It seems that the fact that P2
learns directly the associations between datasets and workflow characteristics puts it at a
disadvantage when we want to plan over operators that have not been seen in the training
phase. In such a scenario the P1 strategy which weights preferences by dataset similarity
and by workflow similarity seems to cope better with unseen operators. Nevertheless it
is still not possible to outperform the default strategy in a significant manner, keeping
however in mind that def62 is an optimistic default strategy because it is based on the
experimentation of all possible workflows on the training dataset.

V.6 Discussion

In the previous sections we evaluated the two workflow planning strategies in two settings:
planning only over seen operators, and planning with both seen and unseen operators. In

30

Using meta-mining to support DM workflow planning and optimization

the first scenario the P2 planning strategy that makes use of the heterogeneous metric
learning model, which directly connects dataset to workflow characteristics, clearly stands
out. It outperforms the default strategy in terms of the Kendall Similarity gain, in a
statistically significant, or close to statistically significant, manner for 24 values of k ∈
[2, . . . , 35]; in terms of the average accuracy of its top-k workflows it outperforms it for 20
values of k in a statistically significant, or close to statistically significant, manner. All the
other methods, including P1, follow with a large performance difference from P2.

When we allow the planners to include in the workflows operators which have not been
used in the baseline experiments, but which are annotated in the dmop, P2’s performance
advantage is smaller. In terms of the Kendall similarity gain this is statistically significant,
or close to, for k ∈ [10, . . . , 20]. With respect to the average accuracy of its top-k lists,
this is better than the default only for very small lists, k = 3, 4; for k > 23 it is in fact
significantly worse. P1 fairs better in the second scenario, however its performance is not
different from the default method. Keep in mind though that the baseline used in the
second scenario is a quite optimistic one.

In fact, what we see is that we are able to generalize and plan well over datasets, as
evidenced by the good performance of P2 in the first setting. However, when it comes
to generalizing both over datasets and operators as it is the case for the second scenario
the performance of the planned workflows is not good, with the exception of the few top
workflows. If we take a look at the new operators we added in the second scenario these were
a feature selection algorithm, Information Gain Ratio, and four classification algorithms,
namely a Linear Discriminant Algorithm, the Ripper rule induction algorithm, a Neural Net
algorithm, and a Random Tree. Out of them only for Information Gain Ratio we have seen
during the base level set of experiments an algorithm, Information Gain, that has a rather
similar learning bias to it. The Ripper rule induction is a sequential covering algorithm,
the closest operators to which in our set of training operators are the two decision tree
algorithms which are recursive partitioning algorithms. With respect to the dmop Ripper
shares a certain number of common characteristics with decision trees, however the meta-
mining model contains no information on how the set-covering learning bias performs over
different datasets. This might lead to it being selected for a given dataset based on its
common features with the decision trees, while its learning bias is not in fact appropriate
for that dataset. Similar observations hold for the other algorithms, for example LDA
shares a number of properties with SVMl and LR however its learning bias, maximing the
between to within class distances ratio, is different from the learning biases of these two,
as before the meta-mining model contains no information on how its bias associates with
dataset characteristics.

Overall, the extent to which the system will be able to plan, over seen and unseen
operators, workflows that achieve a good performance depends on the extend to which
the properties of the latter have been seen during the training of the meta-mining models
within the operators with which we have experimented with, as well as on whether the
unseen properties affect critically the final performance. In the case that all operators

31

Nguyen, Hilario & Kalousis

(a)

X-Validation

DataProcessing
Algorithm

FWAlgorithm

MultivariateFW
Algorithm

ClassificationModeling
Algorithm

HighBiasCMA

(b)

X-Validation

DataProcessing
Algorithm

FWAlgorithm

UnivariateFW
Algorithm

ClassificationModeling
Algorithm

HighVarianceCMA

Figure 9: Top-ranked workflow patterns according to their average absolute weights given in
matrix V.

are well characterized experimentally, as we did in scenario one, then the performance of
the workflows designed by the P2 strategy is very good. Note that it is not necessary
that all operators or workflows are applied to all datasets, it is enough to have a sufficient
set of experiments for each operator. The heterogeneous metric learning algorithm can
handle incomplete preference matrices, using only the available information. Of course it
is clear that the more the available information, whether in the form of complete preference
matrices or in the form of extensive base-level experiments over large number of datasets,
the better the quality of the learned meta-mining model will be. It will be interesting to
explore the sensitivity of the heterogeneous metric learning method over different levels
of completeness of the preference matrix; however this is outside the scope of the present
paper.

We can quantify the importance of the different workflow patterns and that of the
operators’ properties by analyzing the linear transformation over the workflow patterns
contained in the heterogeneous metric. More precisely, we establish the learned importance
of each workflow pattern by averaging the absolute values of the weights it is assigned over
the different factors (rows) of the V linear transformation matrix of equation 14. Note that
under this approach we only establish the importance of the patterns, and not whether
they are associated with good or bad predictive performance. In figure 9 we give the two
most important patterns as these are determined on the basis of their averaged absolute
weights. Both of them describe relations between the workflow operators, the first one
indicates that we have a multivariate feature weighting algorithm followed by a high bias
classification algorithm, while the second describes a univariate feature weighting algorithm
followed by a high bias classification algorithm. A systematic analysis of the learned model
could provide hints on where one should focus the ontology building effort, looking at what
are the important patterns as well as what are the patterns that are not used. In addition,
it can reveal which parts of the ontology might need refinement in order to distinguish
between different workflows with respect to their expected performance.

32

Using meta-mining to support DM workflow planning and optimization

VI. Conclusions & Future Work

In this paper we have presented what is, to the best of our knowledge, the first system
that is able to plan data mining workflows, for a given task and a given input dataset,
that are expected to optimize a given performance measure. The system relies on the tight
interaction of a hierarchical task network planner with a learned meta-mining model to
plan the workflows. The meta-mining model, a heterogeneous learned metric, associates
datasets characteristics with workflow characteristics which are expected to lead to good
performance. The workflow characteristics describe relations between the different compo-
nents of the workflows, capturing global interactions of the various operators that appear
within them, and incorporate domain knowledge as the latter is given in a data mining on-
tology (dmop). We learn the meta-mining model on a collection of past base-level mining
experiments, data mining workflows applied on different datasets. We carefully evaluated
the system on the task of classification and we showed that it outperforms in a significant
manner a number of baselines and the default strategy when it has to plan over operators
with which we have experimented with in the base-level experiments. The performance
advantage is less pronounced when it has to consider also during planning operators with
which we have not experimented with in the base-level experiments, especially when the
properties of these operators were not present within other operators with which we have
experimented with in the base-level experiments.

The system is directly applicable to other mining tasks e.g. regression, clustering. The
reasons for which we focused on classification were mainly practical: there is extensive
annotation of the classification task and the related concepts in the data mining ontology,
large availability of classification datasets, and extensive relevant work on meta-learning
and dataset characterization for classification. The main hurdle in experimenting with a
different mining task is the annotation of the necessary operators in the dmop and the
set up of a base-level collection of mining experiments for the specific task. Although
the annotation of new algorithms and operators is a quite labor intensive task, many of
the concepts currently available in the dmop are directly usable in other mining tasks,
e.g. cost functions, optimization problems, feature properties etc. In addition there is a
small active community8 maintaining and augmenting the ontology with new tasks and
operators, significantly reducing the deployment barrier for a new task.

There are a number of issues that we still need to explore in a finer detail. We would
like to gain a deeper understanding and a better characterization of the reduced perfor-
mance in planning over unseen operators; for example, under what conditions we can be
relatively confident on the suitability of an unseen operator within a workflow. We want
to experiment with the strategy we suggested for parameter tuning, in which we treat the
parameters as yet another property of the operators, in order to see whether it gives better
results; we expect it will. We want to study in detail how the level of missing information
in the preference matrix affects the performance of the system, as well as whether using

8. http://www.dmo-foundry.org/

33

Nguyen, Hilario & Kalousis

ranking based loss functions in the metric learning problem instead of sum of squares would
lead to even better performance.

On a more ambitious level we want to bring in ideas from reinforcement learning (Sut-
ton & Barto, 1998); let the system design its own workflows in a systematic way and have
them applied on the collection of available datasets in order to derive even better charac-
terizations of the workflow space and how they relate to the dataset space, exploring for
example areas in which the meta-mining model is less confident.

Acknowledgments

This work has been partially supported by the European Community 7th framework pro-
gram ICT-2007.4.4 under grant number 231519 ”e- Lico: An e-Laboratory for Interdisci-
plinary Collaborative Research in Data Mining and Data-Intensive Science”. Alexandros
Kalousis was partially supported by the RSCO ISNET NFT project. The basic HTN plan-
ner has been the result of collaborative work within the e-LICO project of Jörg-Uwe Kietz,
Floarea Serban, Simon Fischer. We would like to thank Jun Wang for the help he provided
in the metric-learning algorithms. Finally, we would like to thank the reviewers for the
suggestions that helped improve the paper.

References

Bernstein, A., Provost, F., & Hill, S. (2005). Toward intelligent assistance for a data mining
process: An ontology-based approach for cost-sensitive classification. Knowledge and
Data Engineering, IEEE Transactions on, 17 (4), 503–518.

Bose, R. J. C., & der Aalst, W. M. V. (2009). Abstractions in process mining: A taxonomy
of patterns. In Proceedings of the 7th International Conference on Bussiness Process
Management.

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2008). Metalearning: Applications
to Data Mining (1 edition). Springer Publishing Company, Incorporated.

Bringmann, B. (2004). Matching in frequent tree discovery. In Proceedings of the Fourth
IEEE International Conference on Data Mining (ICDM04, pp. 335–338.

Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix
factorization for data representation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33 (8), 1548–1560.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R.
(2000). Crisp-dm 1.0 step-by-step data mining guide. Tech. rep., The CRISP-DM
consortium.

34

Using meta-mining to support DM workflow planning and optimization

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing top k lists. In Proceedings of
the fourteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’03, pp.
28–36, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI magazine, 17 (3), 37.

Forbes, J., & Andre, D. (2000). Practical reinforcement learning in continuous domains.
Tech. rep., Berkeley, CA, USA.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,
M., Moreau, L., & Myers, J. (2007). Examining the challenges of scientific workflows.
Computer, 40 (12), 24–32.

Hilario, M. (2002). Model complexity and algorithm selection in classification. In Proceed-
ings of the 5th International Conference on Discovery Science, DS ’02, pp. 113–126,
London, UK, UK. Springer-Verlag.

Hilario, M., & Kalousis, A. (2001). Fusion of meta-knowledge and meta-data for case-
based model selection. In Proceedings of the 5th European Conference on Principles
of Data Mining and Knowledge Discovery, PKDD ’01, pp. 180–191, London, UK,
UK. Springer-Verlag.

Hilario, M., Kalousis, A., Nguyen, P., & Woznica, A. (2009). A data mining ontology for
algorithm selection and meta-learning. In Proc of the ECML/PKDD09 Workshop on
Third Generation Data Mining: Towards Service-oriented Knowledge Discovery.

Hilario, M., Nguyen, P., Do, H., Woznica, A., & Kalousis, A. (2011). Ontology-based
meta-mining of knowledge discovery workflows. In Jankowski, N., Duch, W., &
Grabczewski, K. (Eds.), Meta-Learning in Computational Intelligence. Springer.

Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems.
IEEE Trans. Pattern Anal. Mach. Intell., 24 (3), 289–300.

Ho, T. K., & Basu, M. (2006). Data complexity in pattern recognition. Springer.

Hoffmann, J. (2001). Ff: The fast-forward planning system. AI magazine, 22 (3), 57.

Jain, P., & Dhillon, I. S. (2013). Provable inductive matrix completion. arXiv preprint
arXiv:1306.0626.

Kalousis, A. (2002). Algorithm Selection via Metalearning. Ph.D. thesis, University of
Geneva.

Kalousis, A., Gama, J., & Hilario, M. (2004). On data and algorithms: Understanding
inductive performance. Machine Learning, 54 (3), 275–312.

Kalousis, A., & Theoharis, T. (1999). Noemon: Design, implementation and performance
results of an intelligent assistant for classifier selection. Intell. Data Anal., 3 (5),
319–337.

35

Nguyen, Hilario & Kalousis

Kietz, J.-U., Serban, F., Bernstein, A., & Fischer, S. (2009). Towards Cooperative Planning
of Data Mining Workflows. In Proc of the ECML/PKDD09 Workshop on Third
Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD-09).

Kietz, J.-U., Serban, F., Bernstein, A., & Fischer, S. (2012). Designing kdd-workflows via
htn-planning for intelligent discovery assistance. In 5th PLANNING TO LEARN
WORKSHOP WS28 AT ECAI 2012, p. 10.

King, R. D., Feng, C., & Sutherland, A. (1995). Statlog: Comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence, 9 (3), 289–
333.

Köpf, C., Taylor, C., & Keller, J. (2000). Meta-analysis: From data characterisation for
meta-learning to meta-regression. In Proceedings of the PKDD-00 Workshop on Data
Mining, Decision Support,Meta-Learning and ILP.

Kramer, S., Lavrač, N., & Flach, P. (2000). Relational data mining.. chap. Proposition-
alization Approaches to Relational Data Mining, pp. 262–286. Springer-Verlag New
York, Inc., New York, NY, USA.

Leite, R., & Brazdil, P. (2010). Active testing strategy to predict the best classification
algorithm via sampling and metalearning. In Proceedings of the 2010 conference
on ECAI 2010: 19th European Conference on Artificial Intelligence, pp. 309–314,
Amsterdam, The Netherlands, The Netherlands. IOS Press.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). Pddl-the planning domain definition language..

Michie, D., Spiegelhalter, D. J., Taylor, C. C., & Campbell, J. (1994). Machine learning,
neural and statistical classification..

Nguyen, P., Kalousis, A., & Hilario, M. (2011). A meta-mining infrastructure to support
kd workflow optimization. Proc of the ECML/PKDD11 Workshop on Planning to
Learn and Service-Oriented Knowledge Discovery, 1.

Nguyen, P., Kalousis, A., & Hilario, M. (2012a). Experimental evaluation of the e-lico
meta-miner. In 5th PLANNING TO LEARN WORKSHOP WS28 AT ECAI 2012,
p. 18.

Nguyen, P., Wang, J., Hilario, M., & Kalousis, A. (2012b). Learning heterogeneous similar-
ity measures for hybrid-recommendations in meta-mining. In IEEE 12th International
Conference on Data Mining (ICDM), pp. 1026 –1031.

Peng, Y., Flach, P. A., Soares, C., & Brazdil, P. (2002). Improved dataset characterisation
for meta-learning. In Discovery Science, pp. 141–152. Springer.

Pfahringer, B., Bensusan, H., & Giraud-Carrier., C. (2000). Meta-learning by landmark-
ing various learning algorithms.. Proc. 17th International Conference on Machine
Learning, 743–750.

36

Using meta-mining to support DM workflow planning and optimization

Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement learning in continu-
ous spaces. In Proceedings of the Seventeenth International Conference on Machine
Learning, ICML ’00, pp. 903–910, San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

Soares, C., & Brazdil, P. (2000). Zoomed ranking: Selection of classification algorithms
based on relevant performance information. In Proceedings of the 4th European Con-
ference on Principles of Data Mining and Knowledge Discovery, PKDD ’00, pp. 126–
135, London, UK. Springer-Verlag.

Srebro, N., Rennie, J. D. M., & Jaakkola, T. S. (2005). Maximum-margin matrix factoriza-
tion. In Saul, L. K., Weiss, Y., & Bottou, L. (Eds.), Advances in Neural Information
Processing Systems 17, pp. 1329–1336. MIT Press, Cambridge, MA.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Neural Networks,
IEEE Transactions on, 9 (5), 1054.

Toh, K.-C., & Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear
norm regularized linear least squares problems. Pacific Journal of Optimization,
6 (615-640), 15.

Van der Aalst, W. M., & Giinther, C. (2007). Finding structure in unstructured processes:
The case for process mining. In Application of Concurrency to System Design, 2007.
ACSD 2007. Seventh International Conference on, pp. 3–12. IEEE.

Yang, Q., & Wu, X. (2006). 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5 (04), 597–604.

Zaki, M. J. (2005). Efficiently mining frequent trees in a forest: Algorithms and applications.
IEEE Transactions on Knowledge and Data Engineering, 17 (8), 1021–1035. special
issue on Mining Biological Data.

Záková, M., Kremen, P., Zelezny, F., & Lavrac, N. (2011). Automating knowledge discovery
workflow composition through ontology-based planning. Automation Science and
Engineering, IEEE Transactions on, 8 (2), 253–264.

37

Nguyen, Hilario & Kalousis

Appendix, detailed results

P2 P1 Metric Eucl

k W L p-value W L p-value W L p-value W L p-value

2 8 7 1 13 13 1 4 11 0.121 9 11 0.823
3 17 11 0.344 17 20 0.742 12 16 0.570 16 15 1.000
4 24 18 0.440 18 27 0.233 19 27 0.302 25 19 0.450
5 35 21 0.082 24 29 0.582 23 27 0.671 29 25 0.683
6 39 23 0.056 29 31 0.897 26 35 0.305 32 27 0.602
7 41 19 0.006 33 31 0.900 27 37 0.260 35 25 0.245
8 43 20 0.005 36 27 0.313 30 34 0.707 31 30 1.000
9 43 22 0.013 33 31 0.900 30 33 0.801 32 32 1.000
10 47 18 0.000 35 30 0.619 29 35 0.531 33 31 0.900
11 40 24 0.060 30 35 0.619 26 38 0.169 30 35 0.619
12 42 21 0.011 34 29 0.614 33 31 0.900 27 37 0.260
13 40 25 0.082 33 28 0.608 32 33 1.000 28 36 0.381
14 40 25 0.082 38 26 0.169 34 31 0.804 33 31 0.900
15 43 21 0.008 38 26 0.169 34 30 0.707 32 33 1.000
16 40 25 0.082 37 27 0.260 34 31 0.804 30 35 0.619
17 40 25 0.082 35 29 0.531 32 32 1.000 31 34 0.804
18 40 25 0.082 35 29 0.531 34 31 0.804 33 32 1.000
19 40 25 0.082 34 30 0.707 32 33 1.000 32 33 1.000
20 38 27 0.214 37 26 0.207 31 32 1.000 32 33 1.000
21 38 27 0.214 35 30 0.619 30 35 0.619 28 37 0.321
22 39 25 0.104 37 27 0.260 31 34 0.804 30 35 0.619
23 38 27 0.214 35 29 0.531 32 33 1.000 30 35 0.619
24 41 24 0.047 36 28 0.381 33 31 0.900 32 33 1.000
25 40 24 0.060 36 28 0.381 33 32 1.000 31 34 0.804
26 39 26 0.136 36 29 0.456 31 34 0.804 30 35 0.619
27 41 23 0.033 38 27 0.214 32 32 1.000 29 35 0.531
28 42 22 0.017 38 26 0.169 35 29 0.531 29 35 0.531
29 41 24 0.047 39 26 0.136 35 30 0.619 29 36 0.456
30 41 24 0.047 39 25 0.104 37 28 0.321 30 35 0.619
31 44 21 0.006 40 24 0.060 39 26 0.136 31 34 0.804
32 44 21 0.006 42 23 0.025 39 26 0.136 32 33 1.000
33 43 21 0.008 41 24 0.047 38 27 0.214 32 33 1.000
34 42 21 0.011 39 25 0.104 37 27 0.260 32 33 1.000
35 42 21 0.011 40 24 0.060 36 28 0.381 31 34 0.804

Table 3: Wins/Losses and respective P-values of the McNemar’s test on the number of times that
the Kendal similarity of a method is better than the Kendal similarity of the default, Scenario 1.

38

Using meta-mining to support DM workflow planning and optimization

P2 P1 Metric EC Def

k Avg.Acc W L p-value Avg.Acc W L p-value Avg.Acc W L p-value Avg.Acc W L p-value Avg.Acc

3 0.798 39 20 0.019 0.788 26 38 0.169 0.786 25 38 0.130 0.782 30 32 0.898 0.786
4 0.793 41 21 0.015 0.786 28 35 0.449 0.784 26 37 0.207 0.780 32 32 1 0.785
5 0.792 41 21 0.015 0.785 35 28 0.449 0.783 32 33 1 0.778 32 33 1 0.778
6 0.789 43 21 0.008 0.785 38 25 0.130 0.782 33 32 1 0.777 34 30 0.707 0.777
7 0.786 39 24 0.077 0.786 33 30 0.801 0.780 32 31 1 0.776 30 33 0.801 0.780
8 0.784 38 25 0.130 0.783 33 29 0.703 0.779 28 33 0.608 0.774 30 35 0.619 0.778
9 0.782 41 24 0.047 0.782 40 25 0.082 0.779 35 27 0.374 0.773 30 34 0.707 0.775
10 0.780 36 26 0.253 0.781 38 27 0.214 0.778 34 30 0.707 0.773 31 33 0.900 0.775
11 0.778 41 20 0.010 0.778 38 25 0.130 0.776 34 28 0.525 0.773 31 34 0.804 0.774
12 0.777 36 27 0.313 0.777 30 33 0.801 0.775 29 33 0.703 0.772 26 37 0.207 0.774
13 0.777 44 20 0.004 0.777 40 22 0.030 0.774 40 24 0.060 0.772 31 33 0.900 0.771
14 0.774 38 23 0.073 0.775 40 23 0.043 0.773 39 25 0.104 0.772 33 30 0.801 0.771
15 0.773 38 25 0.130 0.774 37 26 0.207 0.771 32 33 1 0.771 31 34 0.804 0.771
16 0.772 40 22 0.030 0.772 40 24 0.060 0.770 33 29 0.703 0.770 30 33 0.801 0.769
17 0.771 43 18 0.002 0.771 41 21 0.015 0.770 40 25 0.082 0.769 34 30 0.707 0.766
18 0.770 40 22 0.030 0.770 40 22 0.030 0.769 38 27 0.214 0.767 33 31 0.900 0.765
19 0.769 40 22 0.030 0.769 39 23 0.056 0.767 36 26 0.253 0.767 32 31 1 0.765
20 0.767 36 26 0.253 0.768 35 27 0.374 0.767 29 35 0.531 0.766 30 35 0.619 0.766
21 0.766 42 21 0.011 0.767 41 18 0.004 0.766 38 25 0.130 0.765 37 28 0.321 0.763
22 0.765 34 29 0.614 0.765 33 24 0.289 0.765 36 25 0.200 0.764 33 30 0.801 0.763
23 0.763 39 24 0.077 0.763 45 19 0.001 0.764 42 22 0.017 0.762 32 30 0.898 0.761
24 0.762 38 26 0.169 0.762 33 27 0.518 0.763 35 27 0.374 0.761 30 32 0.898 0.761
25 0.761 37 25 0.162 0.761 34 30 0.707 0.762 36 29 0.456 0.760 30 32 0.898 0.760
26 0.760 37 24 0.124 0.760 43 18 0.002 0.761 45 11 0.001 0.758 37 26 0.207 0.756
27 0.759 39 19 0.012 0.758 43 20 0.005 0.759 41 20 0.010 0.757 37 22 0.068 0.756
28 0.757 33 20 0.099 0.757 39 23 0.056 0.758 38 24 0.098 0.756 33 26 0.434 0.756
29 0.755 32 14 0.012 0.754 34 17 0.025 0.755 35 10 0.000 0.754 31 19 0.119 0.753
30 0.753 33 15 0.014 0.751 32 27 0.602 0.752 33 19 0.071 0.751 32 24 0.349 0.751
31 0.751 32 10 0.001 0.748 28 30 0.895 0.750 34 17 0.025 0.749 25 28 0.783 0.749
32 0.749 21 15 0.404 0.746 22 31 0.271 0.748 22 18 0.635 0.747 20 28 0.312 0.748
33 0.747 8 5 0.579 0.744 16 30 0.055 0.745 13 17 0.583 0.745 12 25 0.048 0.747
34 0.742 18 10 0.185 0.741 26 36 0.253 0.742 19 21 0.874 0.742 13 18 0.472 0.742
35 0.737 2 3 1 0.737 2 2 1 0.737 2 5 0.449 0.737 2 3 1 0.737

Table 4: Average Accuracy, Wins/Losses, and respective P-values of the McNemar’s test on the
number of times the Average Accuracy of a method is better than the Average Accuracy of the

default, Scenario 1.

39

Nguyen, Hilario & Kalousis

P2 P1

k W L p-value W L p-value

2 9 24 0.014 8 11 0.646
3 15 28 0.067 13 13 1.000
4 25 32 0.426 17 18 1.000
5 28 34 0.525 21 25 0.658
6 33 30 0.801 24 29 0.582
7 36 29 0.456 32 28 0.698
8 38 27 0.214 34 26 0.366
9 40 25 0.082 34 29 0.614
10 43 22 0.013 35 30 0.619
11 43 22 0.013 33 32 1.000
12 40 25 0.082 34 31 0.804
13 41 24 0.047 32 32 1.000
14 43 22 0.013 34 31 0.804
15 43 22 0.013 36 29 0.456
16 40 25 0.082 35 30 0.619
17 42 23 0.025 36 29 0.456
18 40 25 0.082 35 30 0.619
19 40 25 0.082 35 30 0.619
20 40 25 0.082 36 29 0.456
21 39 26 0.136 36 28 0.381
22 39 26 0.136 37 28 0.321
23 38 27 0.214 35 30 0.619
24 38 27 0.214 35 30 0.619
25 40 25 0.082 34 31 0.804
26 40 25 0.082 34 31 0.804
27 38 27 0.214 35 30 0.619
28 38 27 0.214 34 30 0.707
29 38 27 0.214 34 31 0.804
30 37 28 0.321 33 32 1.000
31 35 30 0.619 33 32 1.000
32 35 30 0.619 33 32 1.000
33 30 35 0.619 33 32 1.000
34 29 36 0.456 34 31 0.804
35 29 36 0.456 32 33 1.000

Table 5: Wins/Losses and P-values of the McNemar’s test on the number of times Kendal
similarity of a method is better than the Kendal similarity of the default, Scenario 2.

40

Using meta-mining to support DM workflow planning and optimization

P2 P1 Def

k Avg.Acc W L p-value Avg.Acc W L p-value Avg.Acc

3 0.797 39 24 0.077 0.789 29 34 0.614 0.786
4 0.792 44 20 0.004 0.784 33 31 0.900 0.780
5 0.790 34 29 0.614 0.785 31 34 0.804 0.784
6 0.787 37 27 0.260 0.782 32 32 1.000 0.778
7 0.785 37 27 0.260 0.783 33 32 1.000 0.778
8 0.783 36 28 0.381 0.783 32 33 1.000 0.779
9 0.782 35 28 0.449 0.783 30 34 0.707 0.778
10 0.781 38 26 0.169 0.784 31 33 0.900 0.776
11 0.779 38 25 0.130 0.782 35 29 0.531 0.773
12 0.777 34 30 0.707 0.780 36 29 0.456 0.772
13 0.775 34 30 0.707 0.779 38 27 0.214 0.770
14 0.774 35 28 0.449 0.779 38 26 0.169 0.770
15 0.773 35 29 0.531 0.777 37 27 0.260 0.770
16 0.773 33 32 1.000 0.776 34 31 0.804 0.770
17 0.772 32 33 1.000 0.774 31 33 0.900 0.771
18 0.770 19 44 0.002 0.773 26 38 0.169 0.773
19 0.769 26 39 0.136 0.772 27 37 0.260 0.772
20 0.768 24 37 0.124 0.772 28 37 0.321 0.771
21 0.768 25 39 0.104 0.770 23 42 0.025 0.770
22 0.767 24 39 0.077 0.770 24 40 0.060 0.771
23 0.767 26 38 0.169 0.769 29 36 0.456 0.769
24 0.766 23 40 0.043 0.768 26 38 0.169 0.768
25 0.765 23 42 0.025 0.768 29 36 0.456 0.767
26 0.763 20 45 0.002 0.767 24 40 0.060 0.768
27 0.762 14 51 0.000 0.768 22 42 0.017 0.769
28 0.762 15 50 0.000 0.767 24 41 0.047 0.768
29 0.761 16 48 0.000 0.767 32 32 1.000 0.766
30 0.760 18 47 0.000 0.766 33 31 0.900 0.764
31 0.759 18 47 0.000 0.766 39 26 0.136 0.763
32 0.757 18 47 0.000 0.765 35 29 0.531 0.764
33 0.756 17 48 0.000 0.765 33 33 1.000 0.764
34 0.756 16 49 0.000 0.764 31 34 0.804 0.764
35 0.755 13 51 0.000 0.763 27 38 0.214 0.764

Table 6: Avg.Acc., Wins/Losses, and respective P-values of the McNemar’s test on the number of
times the Average Accuracy of a method is better than the Average Accuracy of the default,

Scenario 2.

41

