
Proceedings of International Joint Conference on Neural Networks, Montreal, Canada. July 31 - August 4, 2005

Deriving Kernels from MLP Probability Estimators
for Large Categorization Problems

Ivan Titov
Department of Computer Science

University of Geneva
24, rue General Dufour

CH-1211 Geneve 4, Switzerland
E-mail: ivan.titov@cui.unige.ch

Abstract- In multi-class categorization problems with a very
large or unbounded number of classes, it is often not compu-
tationally feasible to train and/or test a kernel-based classifier.
One solution is to use a fast computation to pre-select a subset
of the classes for reranking with a kernel method, but even then
tractability can be a problem. We investigate using trained multi-
layer perceptron probability estimators to derive appropriate
kernels for such problems. We propose a kernel derivation
method which is specifically designed for reranking problems,
and a more efficient variant of this method which is specifically
designed for neural networks with large numbers of output units.
When applied to a neural network model of natural language
parsing, these new methods achieve state-of-the-art performance
which improves over the original model.

I. INTRODUCTION

There is increasing interest in applying kernel methods to
large complex problems, but these efforts are often compro-
mised by the computational cost of these methods. This is
particularly true when the space of possible output categories
is unbounded, or even just very large, as in structural clas-
sification problems. One common solution is to use a fast
computation to select a subset of the categories, and then use
a kernel-based classifier to discriminate the best class from
amongst this subset (called reranking) [1], [2], [3], [4]. But this
approach does not completely address the computational costs
of kernel methods for complex domains, and kernel designers
must be careful to balance the accuracy of their proposals
against their computational tractability.

In most complex domains, previous work on probability
models have already developed proposals which achieve good
accuracy while staying tractable. We can potentially improve
on these models, while still exploiting the domain knowledge
they embody, by applying methods which derive kernels from
probabilistic models [5], [6]. Such methods not only exploit
the domain-specific design of the probabilistic model, they also
exploit the information extracted from the data during training
of the probabilistic model.

In this paper, we first propose a new method for deriving
kernels from probabilistic models which is specifically de-
signed for reranking problems, and then investigate several
ways of applying this and previous kernel derivation methods
to multi-layer perceptron probability estimators. We test these

James Henderson
School of Informatics

University of Edinburgh
2 Buccleuch Place

Edinburgh EH8 9LW, United Kingdom
E-mail: james.henderson@ed.ac.uk

approaches on a neural network for estimating the probabilities
of natural language parses [7]. This approach achieves state-
of-the-art performance on the parsing task, and the kernels
designed for reranking show a significant improvement over
the original model. This includes one kernel which greatly
improves computational efficiency by selecting kernel features
based on the subset of categories to be reranked.

II. KERNELS DERIVED FROM PROBABILISTIC MODELS

In recent years, several methods have been proposed for
constructing kernels from trained probabilistic models. As
usual, these kernels are then used with linear classifiers to learn
the desired task. As well as some empirical successes, these
methods are motivated by theoretical results which suggest
we should expect some improvement with these classifiers
over the classifier which chooses the most probable answer
according to the probabilistic model (i.e. the maximum a
posteriori (MAP) classifier). There is guaranteed to be a linear
classifier for the derived kernel which performs at least as well
as the MAP classifier for the probabilistic model. So, assuming
the classifier learning is sufficiently good, we should generally
expect the derived kernel's classifier to perform at least as well
as the probabilistic model's classifier.

In this section, we first present two previous methods for
deriving kernels and then propose a new method specifically
for reranking tasks. Before discussing the different methods
for deriving kernels from probabilistic models, we need to
introduce the class of discriminant functions, defined in terms
of feature extractors from input-output pairs. We consider the
problem of learning a mapping function from an input space X
to a structured output space Y. For example, in parsing, X is
the space of all possible sentences and Y is the space of parse
trees. On the basis of training data, we learn a discriminant
function F: X xY -, RZ. For an input x, the model outputs the
category y with the largest value of the discriminant function
F(x, y). We focus on linear discriminant functions:

(1)

where +(x, y) is a feature vector for the input-output pair x, y,
and w is the parameter vector for the discriminant function. In

0-7803-9048-2/05/$20.00 02005 IEEE

Fw (x, y) = w',O(X, Y),

937

the remainder of this section, we will characterize the kernel
methods we consider in terms of the feature extractor +(x, y).
A. Fisher Kernels

The Fisher kernel [5] is one of the best known methods for
deriving kernels from probability models. Given a generative
model of P(zjI) with smooth parameterization, the Fisher
score of an example Z is a vector of partial derivatives of
the log-likelihood of the example with respect to the model
parameters:

(alog P(ZjG) aiog P(zlI)) (2)
This score can be regarded as specifying how the model should
be changed in order to maximize the likelihood of the example
z. Then we can define the similarity between data points as the
inner product of the corresponding Fisher scores. This kernel is
often referred to as the practical Fisher kernel. The theoretical
Fisher kernel depends on the inverse of the Fisher information
matrix, which is not feasible to compute for most practical
tasks and is usually omitted.
The Fisher kernel is only directly applicable to binary

classification tasks. We can apply it to our task by considering
an example z to be an input-output pair (x, y), and classifying
the pairs into correct ones versus incorrect ones. When we use
the Fisher score 00(x, y) in the discriminant function F, we
can interpret the value as the confidence that the output y is
correct, and choose the y in which we are the most confident.
B. TOP Kernels

Tsuda et al. [6] proposed another kernel constructed from
a probabilistic model, called the Tangent vectors Of Posterior
log-odds (TOP) kernel. Their TOP kernel is also motivated
only for binary classification tasks, so, as above, we treat
the input z as a input-output pair and the output category
c E {-1, +1} as incorrect/correct. It is assumed that the true
probability distribution is included in the class of probabilistic
models and that the true parameter vector 9* is unique. The
feature extractor of the TOP kernel for the input z is defined
by:

(3)1 7..., aV(o)
where

v(z, 0)=logP(c =+llz, #)- log(l-P(c =+llz,O)). (4)
In addition to being at least as good as the MAP classifier,

the choice of the TOP kernel feature extractor is motivated by
the minimization of the classification error of a linear classifier
wT (z) + b.
The motivation for the TOP kernel isn't quite appropriate

for structural classification problems because of the different
definition of the classifier error. Also the computation of the
probabilities P(c -ljz,9) = P(ylx,9) on the basis of a
generative probability model isn't straightforward for struc-
tural classification problems, where the number of possible
outputs y is usually very large:

P(x,)=E(Yj,) 10)(5P(yjx, 9) - Y Io

Here the sum in the denominator is taken over all the possible
outputs y' for the input x. In section III-A we describe a
method which can be used with a neural network generative
probability estimator to approximate the normalization factor
and its derivatives.

C. A TOP Kernel for Reranking
We propose a new TOP kernel which is motivated by

the minimization of error in reranking problems. We define
the reranking task as choosing an output from the list of
candidates selected by some model. Furthermore, we only
consider learning to rerank the output of a particular candidate
selection model, without requiring the classifier to have good
performance when applied to a candidate list provided by a
different model. To construct the kernel we apply an approach
similar to that used in [6] but adapt it to this reranking task.

Again we make the assumption that the true probability
distribution is in the class of probabilistic models, with the
parameter vector 9*. The classification error of an optimal
linear classifier in the feature space is defined as

R(0)=z min Ex,,y(Dminv{wT(q+(x, y) - 40(x, yt))}), (6)
WERL+l t=1I's

where the expectation is taken over all the possible inputs x
and the outputs y which appear in the candidate list, 4(a)
denotes the step function which equals to 1 if the argument is
negative and to 0 otherwise. To obtain a bound for R(46), we
define the error of the posterior probability estimator of the
form g(wTOd(X, y)) where g is the logistic sigmoid function:

D(04) = mniin E, kmax Ig(wTOO(X,Yk))-WEJZL+1 k=1,s

P(YkIX,Yl... Ys, *)1, (7)

here P(Yk Ix, Yl ... ys, 9*) is the probability that Yk is the out-
put for the input x when selecting from the list of candidates
Yi * * .ys. Let us denote the candidate selected by the linear
classifier as y and the most probable candidate as y*, the
following result is straightforward to obtain:

P(y* Ix,Y ...Y.",*) - P(y'lx,Yi Y., 0*) <
2 max Ig(wTfrb(x, Yk)) -P(YkX, Yl ...Ys, O*),

kc=l,s (8)

which immediately gives us

R(o) - L* < 2D(kO), (9)
where L* is the Bayes error.
We can expect that if we minimize D(40) then we will

also (approximately) minimize the loss R(00), so the next
step is to define the feature extractor which minimizes D(10).
To achieve the minimum D(O6) = 0, the feature extractor
40(x,Yk) and the parameter vector w have to satisfy the
condition

wTOO(X,yk) =g9'(P(yk|x,y ...ys,O*))
10gP(Yk IX, Yl . .. Y,,

*)-10og(1-P(YklX, Y1 ..**Y,, O*)) (10)
for all data points x. Since the true distribution is unknown
we need to construct the feature extractor that approximately

s38

satisfies the equation with certain values of the vector w. Let
us introduce the notation:

V(X, Yk, 0) = ogP(yk x, Y1... Ys,0)
- 19log(-P(Yk IX, Yl Ys 70)).(1

We approximate v(x, Yk, 0*) by Taylor expansion around 0:

V(X,yk,0*) V(X,Yk, 0) -Or). (12)
t= 1

This gives us useful features for the feature extractor:

0r6(X,Yk) = (V(X,Yk,0), 00(ao1 7-**7 a (13)

Observing that the discriminative probability can be estimated
from the generative model by normalizing over candidates,

P(X,Yk IO)
P(Yk Ix,Yl ...y, 0) =y (14)

P(X,yj 0)
we obtain

v(X, Yk, 0) = logP(x, Yk)-logE P(x, yjI 0). (15)

We will call this kernel the TOP reranking kernel.

III. KERNELS DERIVED FROM MLP PROBABILITY
ESTIMATORS

Previous work on kernels derived from probabilistic models
has applied the derivation method directly to the parameters
in a symbolic specification of the model. In this paper we
investigate using a second level of parameterization, namely
the weights of a neural network which has been trained to
estimate the symbolic parameters. This has the advantage that
the set of symbolic parameters does not have to be finite,
a feature we exploit in our application of this method to
natural language parsing. In this section we discuss several
alternative ways in which the weights of the neural network
can be mapped to a set of parameters to which we apply the
kernel derivation methods.

A. MLP Probability Estimation for Large Categorization
Problems

Methods for estimating probability distributions with multi-
layer perceptrons are well understood. For multi-class cate-
gorization problems, the appropriate output function is the
normalized exponential (i.e. softmax) [8]:

P(Ck Ih) xp(0k) (16)j3exp(0j"h)'
where h is the hidden layer vector.

But for very large or unbounded categorization problems,
we need to allow for structure in the set of categories. Such
structure is manifested in a probability model where the prob-
ability of a category is computed from several more primitive
probabilities, which form the parameters of the probability
model. For example, in the parsing task we will discuss below,
the probability of a given output parse tree is the multiplication

of the probabilities for each decision made in constructing the
parse tree. The neural network's job is then to estimate the
probabilities of the individual decisions.

For structured domains such as natural language, issues of
structural locality mean that generative probability models can
be estimated more accurately [9], so for simplicity we will
restrict our attention to such models. In a generative model,
the probability of a category Ck is the joint probability of the
output y and the input x, so maximizing P(Ck) over categories
which generate x is the same as maximizing P(Ck IX)- Given a
category Ck which is decomposed into a sequence of decisions
dl,..., di,, we need to calculate

(17)P(Ck) " P(diIhi) , eXp(OTihi)

where h1,..., hm is the sequence of hidden layer vectors for
the decisions di,..., dm.
As mentioned in section II, the original TOP kernel requires

a probability conditioned on the input x, but to compute
this from the joint probability we need to normalize over all
categories ck which generate x. A computationally tractable
approximation to computing this normalization factor was
proposed in [9]. For each category Ck in the candidate list,
this method first computes all the P(d,i hi) required by
equation (17). These computed decision sequences represent
a sample of all possible decision sequences for the input
x. The remaining non-computed sequences all consist of
some (possible zero length) prefix d1,..., d, of a computed
sequence plus a postfix which generates the portion of x not
generated by d1,..., d.. The approximation assumes that the
probability of generating this remaining portion of x with
some non-computed sequence with prefix d1,..., di is the same
as the probability of generating this portion of x with some
computed sequence with prefix dl,..., d. Assuming that the
candidates have been selected to have high probabilities (and
thus to be particularly good at generating x), this is an over-
estimate of the probabilities of the non-computed decision
sequences. However, the success of a neural network training
method which uses this approximation [9] indicates that it is
a good basis for computing the derivatives of the conditional
probability, which determines most of the features for the TOP
kernel.

B. Mapping Network Weights to Parameters for a Kernel
When applying kernels with a large training corpus, we

face efficiency issues because of the large number of neural
network weights. Empirical results with parsing suggested
that usage of the parameters other than the network output
layer leads to a decrease in accuracy (see section VI). But
even the size of an output layer might be very large if
there are a large number of elementary decisions at each
step. In addition, the kernels presented in section II all lead
to feature vectors without many zero values. This happens
because P(d4lhi) depends on the output layer weights for all
the alternative decisions dj involved in its normalization factor
(see section III-A). Thus the derivatives with respect to these

939

weights are all nonzero, even if the decisions dj never appear
in the parse. This makes an application of the VP algorithm
infeasible in the case of a large number of decisions.
We can address this problem by freezing the normalization

factor when computing the feature vector. If we consider
output y as an output category for an input x, then we can
rewrite expression (17) as:

log P(x,yIo) = i log Ep(GTh)-Tb,exp(o hi) (8

Ei OT hi - Zi log (>:j exp(OT hi)).

We treat the parameters used to compute the first term
Si §T hi as different from the parameters used to compute
the second term, and we define our kernel only using the
parameters in the first term. This means that the second term
does not effect the derivatives in the formula for the feature
vector /(x, y). Thus the feature vector for the kernel will
contain non-zero entries only in the components corresponding
to the decisions actually made in the parse. We have applied
this technique to the TOP reranking kernel, the result of which
we will call the efficient TOP reranking kernel.

IV. THE PROBABILISTIC MODEL OF PARSING

We apply the above kernel derivation methods to a neural
network based probabilistic model of natural language pars-
ing, as proposed in [7]. The first level of parameterization
is a history-based probability model without independence
assumptions, giving it an infinite number of parameters. The
second level of parameterization is a recurrent neural network
specifically designed for processing structures, namely Simple
Synchrony Networks.
A history-based model of parsing decomposes a parse

tree into a sequence of decisions about the tree, and then
computes the probability of the tree as the multiplication of
the probabilities of each decision conditioned on the history
of previous decisions in the sequence:

P(di..,dm) =fliP(djIdid..-.)I (19)
Henderson [7] uses a form of left-corner parsing strategy to
define a one-to-one mapping from phrase structure trees to
parse sequences.
The number of parameters P(dild,,..., di-) in this proba-

bility model is infinite, since the length of the history sequence
is unbounded. In most models, independence assumptions
would be made to keep the information in the conditional
finite. We make no independence assumptions, making equa-
tion (19) an exact computation, and instead let the training
of a recurrent neural network probability estimator learn an
appropriate function for compressing the unbounded history.
The estimation of P(diId,,..., di-1) is done in two stages,

first computing a finite representation h(d1,..., dc-1) of the un-
bounded history, and then estimating a probability distribution
over d, given this representation. The output probabilities are
computed with the normalized exponential function, as was
discussed in section 111-A. The history representation is the

hidden layer activation vector from a neural network architec-
ture called Simple Synchrony Networks (SSNs). This hidden
vector is incrementally computed from pre-defined features of
the history (including the previous decision d4-_1) plus a finite
set of previous history representations h(d1,..., dj), j < i - 1.
As long as the history representation for position i-1 is always
included in the inputs to the history representation for position
i, any information about the entire sequence could be passed
from history representation to history representation and be
used to estimate the desired probability. However, learning is
biased towards paying more attention to information which
passes through fewer history representations.

To exploit this learning bias, structural locality between
parse tree nodes is used to determine which history repre-
sentations are input to which others. In this way, the number
of representations which information needs to pass through in
order to flow from history representation i to history represen-
tation j is determined by the structural distance between i's
tree node and j's tree node, and not just the distance between i
and j in the parse sequence. This provides the neural network
with a linguistically appropriate inductive bias when it learns
the history representations, as explained in more detail in [7].

Statistical parsers can be evaluated in a variety of ways, but
the standard measure by which statistical parsers are compared
is the F-measure over labeled constituents (i.e. the nonterminal
nodes of the parse tree). This measure is a combination of
recall and precision, where a constituent is correct if it has
the same label and spans the same portion of the sentence as
a constituent in the gold-standard parse. The method we use
for large-margin optimization, discussed in the next section,
allows us to incorporate a loss function, which indicates the
relative importaice of making one mistake versus making
another. Our loss function at each individual sentence is
defined as the difference of the F-measure of the best candidate
and the F-measure of the candidate selected by the model. The
best candidate has the largest F-measure, so the loss value is
always non-negative.

V. LARGE-MARGIN OPTIMIZATION

Once we have defined a kernel, general techniques for linear
classifier optimization can be used to learn the given task. The
most sophisticated of these techniques (such as Support Vector
Machines) are unfortunately too computationally expensive to
be used on large datasets like the Penn Treebank [10]. Instead
we use a method which has often been shown to be virtually
as good, the Voted Perceptron (VP) [11] algorithm.
The Voted Perceptron algorithm is an ensemble method

for combining the various intermediate models which are
produced during training a perceptron.
We modify the perceptron training algorithm by introducing

a classification loss function to make it more suitable for struc-
tured classification, where zero-one classification loss is not
the evaluation measure usually employed. This modification
enables us to treat differently the cases when the classifier
predicts a category with a large loss function value from the
cases where the predicted category incurs a small classification

940

loss. Our approach is very similar to slack variable rescaling
for Support Vector Machines proposed in [12].
We denote the k'th candidate output for the j'th data point

xi by y3k. Without loss of generality, let us assume that y1 is
the best candidate in the list. Let A(y3k, y3i) be the classification
loss for the candidate y3k. The learning algorithm we employ
is presented in figure 1.

w = O
for j =1 ..n
for k =2 .. s

if WTb(Xj, y3k) > WT4b(Xj,y)
w = w + 'A(yY,1)(O(X ,Y1) +(x YD)

Fig. 1. The modification of the perceptron algorithm

VI. THE EXPERIMENTAL RESULTS
To perform empirical"evaluations of the proposed kernels,

we considered the standard task of parsing the Penn Treebank
WSJ corpus [10].
The input to the neural network parser is a sequence of tag-

word pairs. The number of tag-word pairs in the vocabulary
has a large impact on computation time, because a generative
model needs an output for every tag-word pair for predicting
the next word. We report results for two different vocabulary
sizes, varying in the frequency with which tag-word pairs must
occur in the training set in order to be included explicitly in
the vocabulary. A frequency threshold of 200 resulted in a
vocabulary of 508 tag-word pairs and a threshold of 20 resulted
in 4215 tag-word pairs. We denote the probabilistic model
trained with the vocabulary of 508 by SSN-Freq>200, and the
model trained with the vocabulary of 4215 by SSN-Freq>20.

The same model was used for choosing the list of candidate
parses and for the generative probabilistic model used for
kernel feature extraction. For training and testing of the kernel
models, we provided a candidate list consisting of the top
20 parses found by the generative probabilistic model. When
using the Fisher kernel, we added the log-probability of the
tree given by the probabilistic model as a feature. This was not
necessary for the TOP kernels because they already contain
a feature corresponding to the probability estimated by the
probabilistic model (see section II).
We trained the VP model with five kernels using the

508 word vocabulary. Four of them were trained taking the
derivatives with respect to only the output layer weights:
the Fisher Kernel (Fisher-Out-Freq>200), the original TOP
kernel estimated by the method discussed in III-A (TOP-
Out-Freq>200), the TOP reranking kernel (TOP-Rerank-Out-
Freq>200), the efficient TOP reranking kernel (Eff-TOP-
Rerank-Out-Freq>200). Also we trained the reranking TOP
kernel using all the weights of the neural network (TOP-
Rerank-All-Freq>200). Only the efficient TOP reranking ker-
nel model (with features only for the output layer weights)
was trained with the vocabulary of 4215 words (Eff-TOP-
Rerank-Out-Freq>20). The non-sparsity of the feature vectors
for other kernels led to excessive memory requirements and

TOP-Rerank-AlI-Freq>200 86.8 88.4 87.6
SSN-Freq>200 87.2 88.5 87.8
TOP-Out-Freq>200 87.1 88.8 87.9
Fisher-Out-Freq>200 87.2 88.8 87.9
TOP-Rerank-Out-Freq>200 87.3 88.9 88.1
Eff-TOP-Rerank-Out-Freq>200 87.3 88.9 88.1
SSN-Freq>20 88.1 89.2 88.6
Eff-TOP-Rerank-Out-Freq>20 88.2 89.7 88.9

TABLE I
PERCENTAGE LABELED CONSTITUENT RECALL (LR), PRECISION (LP),
AND A COMBINATION OF BOTH (F3=1) ON VALIDATION SET SENTENCES

OF LENGTH AT MOST 100

larger testing time. In each case, the VP model was run for
only one epoch. We would expect some improvement if we
ran it for more epochs, as has been empirically demonstrated
in other domains [11].
To avoid repeated testing on the standard testing set, we

first compare the different models with their performance on
the validation set. Note that the validation set wasn't used
during learning of the kernel models or for adjustment of any
parameters.

Standard measures of accuracy are shown in table 1.1 First
note that taking into account non-output weights leads to
worse results. Among the models which used only the output
weights, both the Fisher kernel and all the TOP kernels show
better accuracy than the baseline probabilistic model, but only
the improvements of the TOP reranking kernels are statistically
significant.2 For the TOP reranking kernels, the improvement
over the baseline is about the same with both vocabulary sizes.
Also, note that the performance of the efficient TOP reranking
kernel is the same as that of the original TOP reranking kernel
for the same vocabulary. This kernel allows us to deal with
arbitrarily large output vocabularies without any substantial
increase in the kernel's computational costs.

In our opinion, the fact that the TOP reranking kernels are
specifically designed for the reranking task led to the better
results comparing both to the original TOP kernel based model
and the Fisher kernel based model.

For comparison to previous results, table II lists the results
on the testing set for our best model (Eff-TOP-Rerank-Out-
Freq>20) and several other statistical parsers [13], [1], [15],
[7], [16], [17], [4], [3], [9], [18]. First note that the parser
based on the TOP efficient kernel has 0.5% better accuracy
than [7], which used the same parsing method as our baseline
model, although the trained network parameters were not the
same. When compared to other kernel methods, our approach
performs better than those based on the Tree kernel [1], [15],
and is only 0.2% worse than the best results achieved by a
kernel method for parsing [3], [4].

I All our results are computed with the evalb program following the standard
criteria in [131, using the standard training (sections 2-22, 39,832 sentences.
910,196 words), validation (section 24, 1346 sentence, 31507 words), and
testing (section 23, 2416 sentences, 54268 words) sets [131.
2We measured significance with the randomized significance test of [14].

941

If LR LP F'3=1

Collins99 [13] 88.1 88.3 88.2
Collins&DuffyO2 [11 88.6 88.9 88.7
Collins&RoarkO4 [15] 88.4 89.1 88.8
HendersonO3 [7] 88.8 89.5 89.1
CharniakOO [16] 89.6 89.5 89.5
Eff-TOP-Rerank-Out-Freq>20 89.1 90.1 89.6
CollinsOO [17] 89.6 89.9 89.7
Shen&JoshiO4 [4] 89.5 90.0 89.8
Shen et al.03 [3] 89.7 90.0 89.8
HendersonO4 [9] 89.8 90.4 90.1
BodO3 [18] 90.7 90.8 90.7

I'/3=1 tor previous models may have rounding errors.

TABLE II
PERCENTAGE LABELED CONSTITUENT RECALL (LR). PRECISION (LP),
AND A COMBINATION OF BOTH (F,(3=1) ON THE ENTIRE TESTING SET

VII. RELATED WORK

Most of the work on kernels for structured domains has
focused on Convolution kernels [19], where the features of
the kernel correspond to parts of the structure, and a dynamic
programming approach is used to compute the inner product in
the feature space. To tackle the sparsity problem and eliminate
meaningless features, [3] and [20] both propose different
feature selection approaches and demonstrate improvements
over the corresponding baselines.
The first application of kernel methods to parsing was

proposed by Collins and Duffy [1]. They used the Tree kernel,
which is a Convolution kernel where the features of a tree are
all its connected tree fragments. The VP algorithm was used
to rerank the output of a statistical parser and demonstrated an

improvement over the baseline. Later several approaches were
considered to improve the Tree kernel and the optimization
algorithms [2], [3], [4].

Previous work on deriving kernels from probabilistic models
[5], [6] has demonstrated substantial improvement over their
baselines for a large number of problems. The application
of this approach to trees was suggested in [21], where an

extension of Hidden Markov Model is used as the probabilistic
model. Their kernel was applied to the problem of predicting
the boiling point of a group of alkanes. They achieved results
far worse than state-of-the-art results for the domain. This
might be explained by the fact that a Fisher kernel is designed
specifically for classification problems.

VIII. CONCLUSIONS

This paper proposes a method for deriving a kernel from
a probabilistic model, which is specifically designed to maxi-
mize the kernel's usefulness for reranking. A modification of
this method is also proposed, which enables efficient computa-
tion of the kernel when it is applied to a multi-layer perceptron
probability estimator. This modification makes it feasible to
apply the kernel to problems with very high dimensional
outputs, without any significant degradation of accuracy. As
an example of such a domain, we consider natural language
parsing. We performed experiments on parse reranking using a
neural network based statistical parser as both the probabilistic

model and the source of the list of candidate parses. The
kernel method significantly improved over the baseline model,
achieving results amongst the best current statistical parsers

and only 0.2% worse than the best current kernel-based parsing
method.

REFERENCES
[1] M. Collins and N. Duffy, "New ranking algorithms for parsing and

tagging: Kernels over discrete structures and the voted perceptron:' in
Proc. 40th Meeting ofAssociation for Computational Linguistics. 2002,
pp. 263-270.

[2] L. Shen and A. K. Joshi, "An SVM based voting algorithm with appli-
cation to parse reranking," in Proc. of the 7thz Conf on Computational
Natural Language Learning, Edmonton, Canada, 2003, pp. 9-16.

[3] L. Shen. A. Sarkar. and A. K. Joshi. "Using LTAG based features in
parse reranking." in Proc. of Conf: on Empirical Methods in Natural
Language Processing, Sapporo. Japan. 2003.

[4] L. Shen and A. K. Joshi. "Flexible margin selection for reranking with
full pairwise samples." in Proc. of the Ist Int. Joint Conf on Natural
Language Processing, Hainan Island, China, 2004.

[5] T. S. Jaakkola and D. Haussler, "Exploiting generative models in
discriminative classifiers." Advances in Neural Information Pmcesses
Systems 11, 1998.

[6] K. Tsuda. M. Kawanabe, G. Ratsch. S. Sonnenburg, and K. Muller. "A
new discriminative kernel from probabilistic models:' Neural Computa-
tion. vol. 14(10), pp. 2397-2414. 2002.

[71 J. Henderson, "Inducing history representations for broad coverage

statistical parsing," in Prc. joint meeting ofNorth American Chlapter of
the Association for Computational Linguistics and the Human Language
Technology Conf., Edmonton. Canada. 2003. pp. 103-110.

[81 C. M. Bishop. Neural Networks for Pattern Recognition. Oxford. UK:
Oxford University Press, 1995.

[91 J. Henderson, "Discriminative training of a neural network statistical
parser.' in Proc. 42nd Meeting of Association for Computational Lin-
guistics, Barcelona. Spain. 2004.

[101 M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, "Building a

large annotated corpus of English: The Penn Treebank:' Computational
Linguistics, vol. 19, no. 2. pp. 313-330, 1993.

[11] Y Freund and R. E. Schapire, "Large margin classification using
the perceptron algorithm," in Proc. of the 1lth Annual Conf on

Computational Learning Tleory, Madisson WI, 1998, pp. 209-217.
[Online]. Available: citeseer.ist.psu.edu/freund981arge.html

[12] 1. Tsochantaridis, T. Hofmann. T. Joachims, and Y Altun, "Support vec-

tor machine learning for interdependent and structured output spaces."
in Prc. 21st Int. Conf on Machine Learning, Banff, Alberta. Canada,
2004, pp. 823-830.

[131 M. Collins, "Head-driven statistical models for natural language pars-

ing," Ph.D. dissertation; University of Pennsylvania, Philadelphia, PA,
1999.

[14] A. Yeh, "More accurate tests for the statistical significance of the
result differences," in Proc. 17th Intemational Conf. on Computational
Linguistics, Saarbruken. Germany, 2000, pp. 947-953.

[15] M. Collins and B. Roark. "Incremental parsing with the perceptron
algorithm." in Proc. 42th Meeting of Association for Computational
Linguistics. Barcelona, Spain, 2004.

[161 E. Charniakl. A maximum-entropy-inspired parser," in Proc. Ist Meeting
of North American Chapter of Association for Computational Linguis-
tics, Seattle. Washington. 2000. pp. 132-139.

[17] M. Collins. "Discriminative reranking for natural language parsing," in

Pmc. 17th Int. Conf on Machine Learning, Stanford, CA, 2000, pp.

175-182.
[181 R. Bod. "An efficient implementation of a new DOP model," in Proc.

10th Conf of European Chapter of the Association for Computational
Linguistics. Budapest, Hungary, 2003.

[191 D. Haussler. "Convolution kernels on discrete structures." University of
Santa Cruz, Tech. Rep.. 1999.

[201 J. Suzuki. H. Isozaki, and E. Maeda. "Convolutional kernels with feature
selection for natural language processing tasks," in Proc. 42nd Meeting
of Association for Computational Linguistics. Barcelona, Spain. 2004.

[211 L. Nicotra. A. Micheli. and A. Starita, "Fisher kernel for tree structured
data." in Proceedings of International Joint Conference on Neural
Networks, Budapest, Hungary, 2004.

942

-URF LP

