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Abstract

Previous results have shown disappointing
performance when porting a parser trained
on one domain to another domain where
only a small amount of data is available.

We propose the use of data-defined ker-
nels as a way to exploit statistics from a
source domain while still specializing a

parser to a target domain. A probabilistic
model trained on the source domain (and
possibly also the target domain) is used to
define a kernel, which is then used in a
large margin classifier trained only on the
target domain. With a SVM classifier and

a neural network probabilistic model, this

method achieves improved performance
over the probabilistic model alone.
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are specifically designed for porting parsers. Instead
they propose methods for training a standard parser
with a large amount of out-of-domain data and a
small amount of in-domain data.

In this paper, we propose using data-defined ker-
nels and large margin methods to specifically ad-
dress porting a parser to a new domain. Data-defined
kernels are used to construct a new parser which ex-
ploits information from a parser trained on a large
out-of-domain corpus. Large margin methods are
used to train this parser to optimize performance on
a small in-domain corpus.

Large margin methods have demonstrated sub-
stantial success in applications to many machine
learning problems, because they optimize a mea-
sure which is directly related to the expected test-
ing performance. They achieve especially good per-
formance compared to other classifiers when only
a small amount of training data is available. Most
of the large margin methods need the definition of a

In recent years, significant progress has been maliernel. Work on kernels for natural language parsing
in the area of natural language parsing. This rias been mostly focused on the definition of kernels
search has focused mostly on the development 6¥er parse trees (e.g. (Collins and Duffy, 2002)),
statistical parsers trained on large annotated corpotéhich are chosen on the basis of domain knowledge.
in particular the Penn Treebank WSJ corpus (Marcu8 (Henderson and Titov, 2005) it was proposed to
etal., 1993). The best statistical parsers have shoi@ply a class of kernels derived from probabilistic
good results on this benchmark, but these statistic&lodels to the natural language parsing problem.
parsers demonstrate far worse results when they areln (Henderson and Titov, 2005), the kernel is con-
applied to data from a different domain (Roark andtructed using the parameters of a trained proba-
Bacchiani, 2003; Gildea, 2001; Ratnaparkhi, 1999hilistic model. This type of kernel is called a data-
This is an important problem because we cannot exlefined kernel, because the kernel incorporates in-
pect to have large annotated corpora available fdormation from the data used to train the probabilis-
most domains. While identifying this problem, pre-tic model. We propose to exploit this property to
vious work has not proposed parsing methods whidnansfer information from a large corpus to a statis-



tical parser for a different domain. Specifically, weTitov, 2005). Given the trained parameters of a prob-
propose to train a statistical parser on data includingbilistic model of parsing, the method defines a ker-
the large corpus, and to derive the kernel from thiael over sentence-tree pairs, which is then used to
trained model. Then this derived kernel is used in eerank a list of candidate parses.
large margin classifier trained on the small amount In this paper, we focus on the TOP reranking ker-
of training data available for the target domain.  nel defined in (Henderson and Titov, 2005), which
In our experiments, we consider two differentare closely related to Fisher kernels. The rerank-
scenarios for porting parsers. The first scenario igg task is defined as selecting a parse tree from the
the pure porting case, which we call “transferring”list of candidate treesy;....,ys) suggested by a
Here we only require a probabilistic model trainedprobabilistic modelP (x, y|#), whered is a vector of
on the large corpus. This model is then reparametemodel parameters learned during training the prob-
ized so as to extend the vocabulary to better suit thabilistic model. The motivation for the TOP rerank-
target domain. The kernel is derived from this repaing kernel is given in (Henderson and Titov, 2005),
rameterized model. The second scenario is a mixtukeit for completeness we note that the its feature ex-
of parser training and porting, which we call “focus-tractor is given by:

ing”. Here we train a probabilistic model on both (2, u) =
o\t k) =

the large corpus and the target corpus. The kernel §y Pvlad) O0(.0) (1)
is derived from this trained model. In both scenar-  (V(@:¥k: ), =g == -, = 557);
ios, the kernel is used in a SVM classifier (Tsochaql-vhere (@, u é) _ log P(x yk\é) B

taridis et al., 2004) tra_lned on asma_ll_ arr?ount'of dat%g Sk P(w,ytlé). The first feature reflects
from the target domain. This classifier is trained t he score given to(x,y;) by the probabilistic
rerank the candidate parses selected by the asso S del (relative to the ’oytlrg]er candidates fo and

ated probabilistic model. We use the Penn Treebaq e remaining features reflect how changing the

Wall Street Journal corpus as the large corpus anp rameters of the probabilistic model would change

individual sections of the Brown corpus as the tar;, .
.- this score fof(x, y.).
get corpora (Marcus et al., 1993). The probabilis- (= yk)

; ) U The parameteré used in this feature extractor do
tic model is a neural network statistical parser (Hen- t have to be exactly the same as the parameters
derson, 2003), and the data-defined kernelisa T

: . rained in the probabilistic model. In general, we
reranking kernel (Henderson and Titov, 2005). can first reparameterize the probabilistic model, pro-

With both scenarios, the resulting parser demony,ing a new model which defines exactly the same
strates improved accuracy on the target domain OYEFObabiIity distribution as the old model, but with a

the probabilistic model alone. In Qdditional expe”'different set of adjustable parameters. For example,
ments, we evaluate the hypothesis that the primay, may want to freeze the values of some parame-

issue fpr porting pars_ers between _domains is differf-erS (thereby removing them froé), or split some
ences in thg dl_strlt_)utlons of words in structures, anﬂarameters into multiple cases (thereby duplicating
notin the distributions of the structures themselves,q;r a1es inf). This flexibility allows the features
We partition th'e parameters of _the. prqbablllty mOdel!Jsed in the kernel method to be different from those

rameters. The former model achieves virtually ident'he probabilistic model was trained for
tical accuracy to the full model, but the later model

does worse, confirming the hypothesis. 3 Porting with Data-Defined Kernels

2 Data-Defined Kernels for Parsing In this paper, we consider porting a parser trained on
a large amount of annotated data to a different do-

Previous work has shown how data-defined kernetmain where only a small amount of annotated data
can be applied to the parsing task (Henderson amslavailable. We validate our method in two different



scenarios, transferring and focusing. Also we verifyhe target domain vocabulary. As in other lexicalized
the hypothesis that addressing differences betwestatistical parsers, the probabilistic model we use
the vocabularies of domains is more important thatreats words which are not frequent enough in the
addressing differences between their syntactic strutraining set as ‘unknown’ words (Henderson, 2003).

tures. Thus there are no parameters in this model which
_ _ _ are specifically for these words. When we consider
3.1 Transferring to a Different Domain a different target domain, a substantial proportion

In the transferring scenario, we are given just a prot®f the words in the target domain are treated as un-
abilistic model which has been trained on a larg&nown words, which makes the parser only weakly
corpus from a source domain. The large corpus l€Xicalized for this domain.
not available during porting, and the small corpus To address this problem, we reparameterize the
for the target domain is not available during trainingorobability model so as to add specific parameters
of the probabilistic model. This is the case of purdor the words which have high enough frequency
parser porting, because it only requires the sourd@ the target domain training set but are treated as
domain parser, not the source domain corpus. B&nhknown words by the original probabilistic model.
sides this theoretical significance, this scenario hadiese new parameters all have the same values as
the advantage that we only need to train a singléeir associated unknown words, so the probability
probabilistic parser, thereby saving on training timélistribution specified by the model does not change.
and removing the need for access to the large coriowever, when a kernel is defined with this repa-
pus once this training is done. Then any number dmeterized model, the kernel’s feature extractor in-
parsers for new domains can be trained, using ongjudes features specific to these words, so the train-
the small amount of annotated data available for th@g of a large margin classifier can exploit differ-
new domain. ences between these words in the target domain. Ex-
Our proposed porting method first constructs ®anding the vocabulary in this way is also justified
data-defined kernel using the parameters of tHer computational reasons; the speed of the proba-
trained probabilistic model. A large margin clas-bilistic model we use is greatly effected by vocabu-
sifier with this kernel is then trained to rerank thdary size, but the large-margin method is not.
top candidate parses produced by the probabilistg
model. Only the small target corpus is used during’
training of this classifier. The resulting parser conln the focusing scenario, we are given the large cor-
sists of the original parser plus a very computationPus from the source domain. We may also be given
ally cheap procedure to rerank its best parses. @ parsing model, but as with other approaches to this
Whereas training of standard large margin mettroblem we simply throw this parsing model away
ods, like SVMs, isn't feasible on a large corpus, ignd train a new one on the combination of the source
is quite tractable to train them on a small target co@nd target domain data. Previous work (Roark and
pus! Also, the choice of the large margin classifieacchiani, 2003) has shown that better accuracy can
is motivated by their good generalization propertie§€ achieved by finding the optimal re-weighting be-
on small datasets, on which accurate probabilistiéveen these two datasets, but this issue is orthogonal
models are usually difficult to learn. to our method, so we only consider equal weighting.
We hypothesize that differences in vocabularf*fter this training phase, we still want to optimize
across domains is one of the main difficulties wittihe parser for only the target domain.
parser portability. To address this problem, we pro- Once we have the trained parsing model, our pro-
pose constructing the kernel from a probabilisti®0sed porting method proceeds the same way in this

model which has been reparameterized to better s§enario as in transferring. However, because the
- original training set already includes the vocabulary
Yn (Shen and Joshi, 2003) it was proposed to use an efrom the target domain’ the reparameteriza‘tion ap-

semble of SVMs trained the Wall Street Journal corpus, but we h defined in th di tion i t
believe that the generalization performance of the resulting clafroach dernea in the preceding section IS not nec-

sifier is compromised in this approach. essary so we do not perform it. This reparameter-

2 Focusing on a Subdomain



ization could be applied here, thereby allowing usng (Henderson, 2003), whose hidden units can be
to use a statistical parser with a smaller vocabularyjewed as approximations to latent variables. This

which can be more computationally efficient bothparsing modelis also a good candidate for our exper-
during training and testing. However, we would eximents because it achieves state-of-the-art results on
pect better accuracy of the combined system if thine standard Wall Street Journal (WSJ) parsing prob-
same large vocabulary is used both by the prob#&em (Henderson, 2003), and data-defined kernels de-

bilistic parser and the kernel method. rived from this parsing model have recently been
used with the Voted Perceptron algorithm on the
3.3 Vocabulary versus Structure WSJ parsing task, achieving a significant improve-

It is commonly believed that differences in vo-Ment in accuracy over the neural network parser
cabulary distributions between domains effects thglone (Henderson and Titov, 2005).

ported parser performance more significantly thaﬁ 1 The Probabilistic Model of Parsing
the differences in syntactic structure distributions. o o
We would like to test this hypothesis in our frame-The probabilistic model of parsing in (Henderson,

work. The probabilistic model (Henderson, 2003%003) has two levels of parameterization. The first
allows us to distinguish between those paramete}@Vel Of parameterization is in terms of a history-
responsible for the distributions of individual vocab-Pased generative probability model. These param-
ulary items, and those parameters responsible for tf€'S are estimated using a neural network, the
distributions of structural decisions, as described i¥€ights of which form the second level of param-
more details in section 4.2. We train two additionaftérization.  This approach allows the probability
models, one which uses a kernel defined in terms §fodel to have an infinite number of parameters; the
only vocabulary parameters, and one which useshgura! network only estimates the bounded number
kernel defined in terms of only structure parameter& Parameters which are relevant to a given partial
By comparing the performance of these models arRfse: We define pur.kernels in terms of f[he second
the model with the combined kernel, we can dradgvel of parameterization (the network weights).
conclusion on the relative importance of vocabulary A history-based model of parsing first defines a

and syntactic structures for parser portability. one-to-one mapping from parse trees to sequences
of parser decisiongl ,..., d,,, (i.e. derivations). Hen-
4 An Application to a Neural Network derson (2003) uses a form of left-corner parsing
Statistical Parser strategy, and the decisions include generating the

words of the sentence (i.e. it is generative). The
Data-defined kernels can be applied to any kindrobability of a sequenc®(d;,...,d,,) is then de-
of parameterized probabilistic model, but they areomposed into the multiplication of the probabilities
particularly interesting for latent variable models.of each parser decision conditioned on its history of
Without latent variables (e.g. for PCFG models), th@revious decisionsl; P(d;|d;,..., d;—1).
features of the data-defined kernel (except for the o
first feature) are a function of the counts used to estft-2  Deriving the Kemel
mate the model. For a PCFG, each such feature isThe complete set of neural network weights isn’t
function of one rule’s counts, where the counts fronused to define the kernel, but instead reparameteriza-
different candidates are weighted using the probabition is applied to define a third level of parameteriza-
ity estimates from the model. With latent variablestion which only includes the network’s output layer
the meaning of the variable (not just its value) isveights. As suggested in (Henderson and Titov,
learned from the data, and the associated features2ff05) use of the complete set of weights doesn'’t
the data-defined kernel capture this induced meatead to any improvement of the resulting reranker
ing. There has been much recent work on latertnd makes the reranker training more computation-
variable models (e.g. (Matsuzaki et al., 2005; Koally expensive.
and Collins, 2005)). We choose to use an earlier Furthermore, to assess the contribution of vocab-
neural network based probabilistic model of parsulary and syntactic structure differences (see sec-



tion 3.3), we divide the set of the parameters into vo- testing | training | validation
cabulary parameters and structural parameters. WeWSJ 2,416 39,832 1,346
consider the parameters used in the estimation of the (54,268)| (910,196)| (31,507)
probability of the next word given the history repre- | Brown F 1,054 2,005 105
sentation as vocabulary parameters, and the param- (23,722)| (44,928) | (2,300)
eters used in the estimation of structural decision Brown K 1,293 2,459 129
probabilities as structural parameters. We define the (21,215)| (39,823) | (1,971)
kernel with structural features as using only struc-| Brown N 1,471 2,797 137
tural parameters, and the kernel with vocabulary fea (22,142)| (42,071) | (2,025)
tures as using only vocabulary parameters. Brown P 1,314 2,503 125
(21,763)| (41,112) | (1,943)

5 Experimental Results

Table 1: Number of sentences (words) for each
We used the Penn Treebank WSJ corpus and ﬂaﬁtaset

Brown corpus to evaluate our approach. We used

the standard division of the WSJ corpus into tra'n\'/ocabulary of the parser, we included the unknown-

ing, validation, and testing sets. In the Brown COrpUS 0 items and the words which occurred in the
we ran separate experiments for sections F (inform?r-

i _ lar | K (i ati ) aining set at least 20 times. This led to the vo-
ive prose: popular or_e), . (imaginative prose: gené:abulary of 4,215 tag-word pairs.
eral fiction), N (imaginative prose: adventure an

o : L ] We derived the kernel from the trained model for
western fiction), and P (imaginative prose: romance . . o
) each target section (F, K, N, P) using reparameteriza
and love story). These sections were selected b{e- . . . ) . . i
th r Hiciently lar nd b ih ion discussed in section 3.1: we included in the vo
;au:lre;)t/oabg r?ﬁl;xicmeall y d;fgri’n?fromeecicuhsg the%%bulary all the words which occurred at least twice
aﬁg from WSJ text. In e;/ch Brown COrpuS sectionm the training set of the corresponding section. This
L - approach led to a smaller vocabulary than that of the
we selected every third sentence for testing. From

. initial parser but specifically tied to the target do-

the remaining sentences, we used 1 sentence out of . .
oo ) . main (3,613, 2,789, 2,820 and 2,553 tag-word pairs
20 for the validation set, and the remainder for train; ; i )
ing. The resulting datasets sizes are presented in {gr sections F, K, N and P respectively). There is no
blgll 9 P sense in including the words from the WSJ which do

. - not appear in the Brown section training set because
For the large margin classifier, we used the SVthe clgzsifier won't be able to learn thegcorrespond-
Struct (Tsochantaridis et al., 2004) implementation

s ’ ) ing components of its decision vector. The results
of SVM, which rescales the margin with; mea- g P

. . for the original probabilistic model (SSN-WSJ) and
sure of bracketed constituents (see (Tsochantari IS the kernel method (TOP-Transfer) on the testin
et al., 2004) for details). Linear slack penalty was g

Set of each section are presented in table 2.
employed? . N .
To evaluate the relative contribution of our porting
technique versus the use of the TOP kernel alone,
we also used this TOP kernel to train an SVM on the

To evaluate the pure porting scenario (transferring SJ corpus. We trained the SVM on data from the
evelopment set and section 0, so that the size of this

described in section 3.1, we trained the SSN pars-
. dataset (3,267 sentences) was about the same as for
ing model on the WSJ corpus. For each tag, there is . . o .,

. o gach Brown sectiofi. This gave us a “TOP-WSJ
an unknown-word vocabulary item which is used for

all those words not sufficiently frequent with thattag  2aji our results are computed with the evalb program fol-

to be included individually in the vocabulary. In thelowing the standard criteria in (Collins, 1999).

- “We think that using an equivalently sized dataset provides
2Training of the SVM takes about 3 hours on a standaré fair test of the contribution of the TOP kernel alone. It would

desktop PC. Running the SVM is very fast, once the probabilisalso not be computationally tractable to train an SVM on the full

tic model has finished computing the probabilities needed t#&/SJ dataset without using different training techniques, which

select the candidate parses. would then compromise the comparison.

5.1 Experiments on Transferring across
Domains



model, which we tested on each of the four Brown section|| LR | LP | Fs—;
sections. In each case, the TOP-WSJ model dig TOP-WSJ F 83.9| 84.9| 84.4
worse than the original SSN-WSJ model, as shown SSN-WSJ F 84.4| 85.2| 84.8
in table 2. This makes it clear that we are getting ng TOP-Transfer| F 84.5| 85.6| 85.0
improvement from simply using a TOP kernel alone| SSN-WSJ+Br|, F 84.2| 85.2| 84.7
or simply using more data, and all our improvement| TOP-Focus F 84.6| 86.0| 85.3
is from the proposed porting method. TOP-WSJ K 81.81 82.3] 82.1
SSN-WSJ K 82.2|82.6| 824
5.2 Experiments on Focusing on a Subdomain | TOP-Transfer] K 82.4]83.5| 83.0
SSN-WSJ+Br, K 83.1| 84.2| 83.6
To perform the experiments on the approach sugr TOP-Focus K 83.6| 85.0| 84.3
gested in section 3.2 (focusing), we trained the SSNT5p\vs3 N 833/ 845] 839
parser on the WSJ training set joined with the train- SSN-WSJ N 835846 841
ing set of the corresponding section. We included TOP-Transferl N 843 85.7| 850
in the vocabulary only words which appeared in the SSN-WSJI+Br N 8501865 857
joint training set at least 20 times. Resulting vocab- TOP-Focus N 850! 867! 858
ularies comprised 4,386, 4,365, 4,367 and 4,348 fo
sections F, K, N and P, respectivélyExperiments TOP-WSJ P 813)82.1) 817
were done in the same way as for the parser transfer-SSN'WS‘] P 82.3183.0| 82.6
ring approach, but reparameterization was not per: TOP-Transfer, P 82.7|83.8] 83.2
formed. Standard measures of accuracy for the orig- SSN-WSJ+Br P 83.1)|84.3| 83.7
inal probabilistic model (SSN-WSJ+Br) and the ker- | OP-Focus P 83.3]84.8| 840

nel method (TOP-Focus) are also shown in table 2 a6 2. percentage labeled constituent recall (LR),
For the sake of comparison, we also trained thgrecision (LP), and a combination of boths(R) on

SSN parser on only training data from one of thehe individual test sets.
Brown corpus sections (section P), producing a
“SSN-Brown” model. This model achieved dn 5.4 Discussion of Results

measure of only 81.0% for the P section testin . . .
set. which is worse than all the other models an%or the experiments which directly test the useful-

is 3% lower than our best results on this testing séiess of our proposed porting technique (SSN-WSJ

(TOP-Focus). This result underlines the need to pof'Sus TOP-Transfer), our technique demonstrated

parsers from domains in which there are large anng- provement ff" .each of the Brown .se(.:t_lons (ta-
tated datasets. le 2), and this improvement was significant for

three out of four of the sections (K, N, and eP’)‘his
demonstrates that data-defined kernels are an effec-
tive way to port parsers to a new domain.

For the experiments which combine training a

We conducted the same set of experiments with tHEW probability model with our porting techniq.ue
kernel with vocabulary features (TOP—Voc—TransfeFS_SN'WS‘]JrBr VErsus TOP-Focus), our _technlque
and TOP-Voc-Focus) and with the kernel with theotill demonstrated improvement over training alone.
structural features (TOP-Str-Transfer and TOP—St;I;here W‘ZS me_rovement for each (_Jf thf_e BI‘O\;VI’] sec-
Focus). Average results for classifiers with thesHONs, and this improvement was significant for two
lgemel_ls’ as well as fo:jt_he %ﬁ'g|gal kernel and the ®We measured significance i, measure at the 5%
aseline, are presented in table 3.

5.3 Experiments Comparing Vocabulary to
Structure

level
with the randomized significance test of (Yeh, 2000). We think
that the reason the improvement on section F was only signif-
- icant at the 10% level was that the baseline model (SSN-WSJ)

SWe would expect some improvement if we used a smallewas particularly lucky, as indicated by the fact that it did even
threshold on the target domain, but preliminary results suggebetter than the model trained on the combination of datasets
that this improvement would be small. (SSN-WSJ+Br).



LR | LP | Fs— not sufficiently exploit structural differences.
SSN-WSJ 83.1|83.8| 835 In this paper we concentrate on the situation
TOP-Transfer 835 84.7| 84.1 where a parser is needed for a restricted target do-
TOP-Voc-Transfer| 83.5| 84.7 | 84.1 main, for which only a small amount of data is avail-
TOP-Str-Transfer | 83.1| 84.3| 83.7 able. We believe that this is the task which is of
SSN-WSJ+Br 83.8|185.0| 844 greatest practical interest. For this reason we do not
TOP-Focus 84.1| 85.6| 84.9 run experiments on the task considered in (Gildea,
TOP-Voc-Focus || 84.1| 85.6| 84.8 2001) and (Roark and Bacchiani, 2003), where they
TOP-Str-Focus 83.9| 85.4| 84.7 are porting from the restricted domain of the WSJ

corpus to the more varied domain of the Brown cor-
Table 3: Average accuracy of the models on chaptebsgJS as a whole. However, to help emphasize the
F, K, N'and P of the Brown corpus. success of our proposed porting method, it is rele-

vant to show that even our baseline models are per-
out of four of the sections (F and K). This demonforming better than this previous work on parser
strates that, even when the probability model is wefortability. We trained and tested the SSN parser in
suited to the target domain, there is still room fotheir “de-focusing” scenario using the same datasets
improvement from using data-defined kernels to oms (Roark and Bacchiani, 2003). When trained
timize the parser specifically to the target domaimnly on the WSJ data (analogously to the SSN-
without losing information about the source domainwSJ baseline for TOP-Transfer) it achieves results

One potential criticism of these conclusions is thagf 82.99%/83.4% LR/LP and 83.2%), and when
the improvement could be the result of rerankingrained on data from both domains (analogously
with the TOP kernel, and have nothing to do withto the SSN-WSJ+Br baselines for TOP-Focus) it
porting. The lack of an improvement in the TOP-achieves results of 86.3%/87.6% LR/LP and 87.0%
WSJ results discussed in section 5.1 clearly shows,. These results represent a 2.2% and 1.3% in-
that this cannot be the explanation. The oppositerease inF; over the best previous results, respec-
criticism is that the improvement could be the resultively (see the discussion of (Roark and Bacchiani,
of optimizing to the target domain alone. The poop003) below).
performance of the SSN-Brown model discussed in
section 5.2 makes it clear that this also cannot b Related Work
the explanation. Therefore reranking with data de-
fined kernels must be both effective at preserviniylost research in the field of parsing has focused on
information about the source domain and effectivéhe Wall Street Journal corpus. Several researchers
at specializing to the target domain. have addressed the portability of these WSJ parsers
The experiments which test the hypothesis thdo other domains, but mostly without addressing the

differences in vocabulary distributions are more imissue of how a parser can be designed specifically
portant than difference in syntactic structure distrifor porting to another domain. Unfortunately, no di-
butions confirm this belief. Results for the classitect empirical comparison is possible between our
fier which uses the kernel with only vocabulary fea¥esults and results with other parsers, because there
tures are better than those for structural features if no standard portability benchmark to date where a
each of the four sections with both the Transfer angmall amount of data from a target domain is used.
Focus scenarios. In addition, comparing the results (Ratnaparkhi, 1999) performed portability exper-
of TOP-Transfer with TOP-Voc-Transfer and TOP-iments with a Maximum Entropy parser and demon-
Focus with TOP-Voc-Focus, we can see that addingirated that the parser trained on WSJ achieves far
structural features in TOP-Focus and TOP-Transfavorse results on the Brown corpus sections. Adding
leads to virtually no improvement. This suggest thaa small amount of data from the target domain im-
differences in vocabulary distributions are the onlyroves the results, but accuracy is still much lower
issue we need to address, although this result coulldan the results on the WSJ. They reported results
possibly also be an indication that our method didvhen their parser was trained on the WSJ training



set plus a portion of 2,000 sentences from a Browtmained on a small set of data only from the target do-
corpus section. They achieved 80.9%/80.3% ramain. This classifier is used to rerank the top parses
call/precision for section K, and 80.6%/81.3% fomproduced by the probabilistic model on the target do-
section N/ Our analogous method (TOP-Focus)main. Experiments with a neural network statistical
achieved much better accuracy (3.7% and 4.9% bgiarser demonstrate that this approach leads to im-
ter F, respectively). proved parser accuracy on the target domain, with-

In addition to portability experiments with the out any significant increase in computational cost.
parsing model of (Collins, 1997), (Gildea, 2001)
provided a comprehensive analysis of parser portla;z-

", - - - eferences
bility. On the basis of this analysis, a tech-
nique for parameter pruning was proposed |eadirkjichael Collins a_nd Nigel Du_ffy. 2002. New ra_nking algo-
ianifi t reducti in th del si ith rithms for parsing and tagging: Kernels over discrete struc-
to a significant reduction in the mo e' SIze WIN-  yres and the voted perceptron. Pnoc. ACL 2002, pages
out a large decrease of accuracy. Gildea (2001) 263-270, Philadelphia, PA.
only reports results on sentences of 40 or legdgichael Collins. 1997. Three generative, lexicalized models
words on all the Brown corpus sections combined, ;Oaf Sstzt;fgrcitpﬂ:w%é 'rfésc' ACL/EACL 1997 pages 16—
: 0 o - : : :
for WhICh_ he reports 80.3%/81.0% recalI/preC'SIOri\/lichael Collins. 1999. Head-Driven Statistical Models for
when training only on data from the WSJ corpus, Natural Language Parsing Ph.D. thesis, University of
and 83.9%/84.8% when training on data from the Pennsylvania, Philadelphia, PA.
WSJ corpus and all sections of the Brown corpus. Daniel Gildea. 2001. Corpus variation and parser performance.
.. . In Proc. EMNLP 2001 Pittsburgh, PA.

(Roark and Bacchiani, 2003) performed experi- _ )

. . James Henderson and Ivan Titov. 2005. Data-defined kernels
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