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Abstract

We introduce a framework for syntactic

parsing with latent variables based on a form
of dynamic Sigmoid Belief Networks called

Incremental Sigmoid Belief Networks. We

demonstrate that a previous feed-forward
neural network parsing model can be viewed
as a coarse approximation to inference with
this class of graphical model. By construct-
ing a more accurate but still tractable ap-
proximation, we significantly improve pars-

ing accuracy, suggesting that ISBNs provide
a good idealization for parsing. This gener-
ative model of parsing achieves state-of-the-
art results on WSJ text and 8% error reduc-
tion over the baseline neural network parser.
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which we peopose, called Incremental Sigmoid Be-
lief Networks (ISBNs) have large numbers of latent
variables, which makes exact inference intractable.
However, they can be approximated sufficiently well
to build fast and accurate statistical parsers which in-
duce features during training.

We use SBNs in a generative history-based model
of constituent structure parsing. The probability of
an unbounded structure is decomposed into a se-
guence of probabilities for individual derivation de-
cisions, each decision conditioned on the unbounded
history of previous decisions. The most common ap-
proach to handling the unbounded nature of the his-
tories is to choose a pre-defined set of features which
can be unambiguously derived from the history (e.g.
(Charniak, 2000; Collins, 1999)). Decision prob-
abilities are then assumed to be independent of all
information not represented by this finite set of fea-
tures. Another previous approach is to use neural

Latent variable models have recently been of indetworks to compute a compressed representation of
creasing interest in Natural Language Processin§}e history and condition decisions on this represen-
and in parsing in particular (e.g. (Koo and Collinstation (Henderson, 2003; Henderson, 2004). It is
2005; Matsuzaki et al., 2005; Riezler et al., 2002))possible that an unbounded amount of information
Latent variables provide a principled way to in-Is encoded in the compressed representation via its
clude features in a probability model without needcontinuous values, but it is not clear whether this is
ing to have data labeled with those features in adictually happening due to the lack of any principled
vance. Instead, a labeling with these features cdfterpretation for these continuous values.

be induced as part of the training process. The Like the former approach, we assume that there
difficulty with latent variable models is that evenare a finite set of features which encode the relevant
small numbers of latent variables can lead to coninformation about the parse history. But unlike that
putationally intractable inference (a.k.a. decodingapproach, we allow feature values to be ambiguous,
parsing). In this paper we propose a solution t@and represent each feature as a distribution over (bi-
this problem based on dynamic Sigmoid Belief Nethary) values. In other words, these history features
works (SBNs) (Neal, 1992). The dynamic SBNsare treated as latent variables. Unfortunately, inter-



preting the history representations as distributionkrge networks, especially for the dynamic models
over discrete values of latent variables makes the erf the type described in section 2.2. Variational
act computation of decision probabilities intractablemethods have also been proposed for approximat-
Exact computation requires marginalizing out the laing SBNs (Saul and Jordan, 1999). The main idea of
tent variables, which involves summing over all posvariational methods (Jordan et al., 1999) is, roughly,
sible vectors of discrete values, which is exponentidb construct a tractable approximate model with a
in the length of the vector. number of free parameters. The free parameters are
We propose two forms of approximation for dy-set so that the resulting approximate model is as
namic SBNs, a neural network approximation andlose as possible to the original graphical model for
a form of mean field approximation (Saul and Jora given inference problem.
dan, 1999). We first show that the previous neural ) .
network model of (Henderson, 2003) can be viewea'l Mean Field Approximation Methods
as a coarse approximation to inference with ISBNsThe simplest example of a variation method is the
We then propose an incremental mean field methofijean field method, originally introduced in statis-
which results in an improved approximation oveitical mechanics and later applied to unsupervised
the neural network but remains tractable. The redeural networks in (Hinton et al., 1995). Let us de-
sulting parser achieves significantly higher accurachote the set of visible variables in the model (i.e. the
than the neural network parser (90.0% F-measure ¥3puts and outputs) by and hidden variables by
89.1%). We argue that this correlation between be# = h1, ..., k. The mean field method uses a fully
ter approximation and better accuracy suggests tht@ctorized distributior() as the approximate model:
dynamic SBNs are a good abstract model for natural -
language parsing. QUEV) = 1:[ @i(halV).

2 Sigmoid Belief Networks where each?); is the distribution of an individual
latent variable. The independence between the vari-
A belief network, or a Bayesian network, is a di-aplesp; in this approximate distributiorj) does not
rected acyclic graph which encodes statistical d‘?mply independence of the free parameters which
pendencies between variables. Each varighlen  §efine theQ;. These parameters are set to min-
the graph has an associated conditional probabilifize the Kullback-Leibler divergence (Cover and
distributions P(S;| Par(5;)) over its values given Thomas, 1991) between the approximate distribu-

the values of its parent®ar(S;) in the graph. A tion Q(H|V) and the true distributiod®( H|V'):
Sigmoid Belief Network (Neal, 1992) is a particu-

lar type of belief networks with binary variables and  k1.(Q|P) = 3" Q(H|V)In QHV) )
conditional probability distributions in the form of T

P(H|V)’
the logistic sigmoid function: or, equivalently, to maximize the expression:

B N ] P(H,V
PIS=1IPOr(S)) = st Ly = 2 QUIV)h W. @

where J;; is the weight for the edge from variable The expressionLy is a lower bound on the log-
S; to variableS;. In this paper we consider a gen-likelihood In P(V'). It is used in the mean field
eralized version of SBNs where we allow variablegsheory (Saul and Jordan, 1999) to approximate the
with any range of discrete values. We thus generalikelihood. However, in our case of dynamic graph-
ize the logistic sigmoid function to the normalizedical models, we have to use a different approach
exponential (a.k.a. softmax) function to define thevhich allows us to construct an incremental parsing
conditional probabilities for non-binary variables. method without needing to introduce the additional

Exact inference with all but very small SBNsparameters proposed in (Saul and Jordan, 1999).
is not tractable. Initially sampling methods wereWe will describe our modification of the mean field
used (Neal, 1992), but this is also not feasible fomethod in section 3.3.



2.2 Dynamics

Dynamic Bayesian networks are Bayesian networks
applied to arbitrarily long sequences. A new set of I

variables is instantiated for each position in the se-
guence, but the edges and weights for these variables
are the same as in other positions. The edges which
connect variables instantiated for different positions w
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.
Typically a dynamic Bayesian Network will only in-
volve edges between adjacent positions in the se-
quence (i.e. they are Markovian), but in our parsing 1 he Probabilistic Model of Parsing

models the pattern of interconnection is determineg1 this section we present our framework for syn-
by structural locality, rather than sequence |°Ca|'tytactic parsing with dynamic Sigmoid Belief Net-

as in the neural networks of (Henderson, 2003). works. We first specify the form of SBN we propose,
Using structural locality to define the graph in anamely ISBNs, and then two methods for approx-
dynamic SBN means that the subgraph of edges wittating the inference problems required for pars-
destinations at a given position cannot be determingdg. We only consider generative models of pars-
until all the parser decisions for previous positionsng, since generative probability models are simpler
have been chosen. We therefore call these modelsd we are focused on probability estimation, not
Incremental SBNs, because, at any given positiordecision making. Although the most accurate pars-
in the parse, we only know the graph of edges foing models (Charniak and Johnson, 2005; Hender-
that position and previous positions in the parse. F&on, 2004; Collins, 2000) are discriminative, all the
example in figure 1, discussed below, it would notost accurate discriminative models make use of a
be possible to draw the portion of the graph after generative model. More accurate generative models
because we do not yet know the decisitjn should make the discriminative models which use
them more accurate as well. Also, there are some

The incremental specification of model structure

) . applications, such as language modeling, which re-
means that we cannot use an undirected graphlcal? P guag 9

model, such as Conditional Random Fields. Witk generative models.
a directed dynamic model, all edges connecting th@1 The Graphical Mode

known portion of the graph to the unknown portionln ISBNSs, we use a history-based model, which de-
qf the graph are directed toyvard th_e unknown poréomposes the probability of the parse as:
tion. Also there are no variables in the unknown
portion of the graph whose values are known (i.e. n@(7y = p(p! ... D™) = HP(Dt|D1’ ...,DI™1y,
visible variables), because at each step in a history- {

based model the decision probability is conditioned _ o

only on the parsing history. Only visible variablesWhere 7' is the parse tree and', ..., D™ is its

can result in information being reflected backwardduivalent sequence of parser decisions. Instead of
through a directed edge, so it is impossible for an);_reating eaclD! as atomic decisions, it is convenient
thing in the unknown portion of the graph to affectto further split them into a sequence of elementary
the probabilities in the known portion of the graph.deCiSiO”SDt =di,....dy;

Therefore inference can be performed by simply ig- i -1 .

noring the unknown portion of the graph, and there P(DID",..., D7) = E[P(dkm(t’ k),

is no need to sum over all possible structures for the

unknown portion of the graph, as would be neceswhere h(t,k) denotes the parsing history
sary for an undirected graphical model. DY, ....Ddt .. For example, a

Figure 1: Illustration of an ISBN.



decision to create a new constituent can be divideshme left-corner parsing strategy, and the same set of
in two elementary decisions: deciding to create decisions, features, and states. We refer the reader to
constituent and deciding which label to assign to ittHenderson, 2003) for details.
We use a graphical model to define our proposed Exact computation with this model is not
class of probability models. An example graphicatractable. Sampling of parse trees from the model
model for the computation ofP(d.|h(t,k)) is is not feasible, because a generative model defines a
illustrated in figure 1. joint model of both a sentence and a tree, thereby re-
The graphical model is organized into vectorsjuiring sampling over the space of sentences. Gibbs
of variables: latent state variable vectof§ = sampling (Geman and Geman, 1984) is also impos-
st',..., s, representing an intermediate state of theible, because of the huge space of variables and
parser at derivation stef, and decision variable need to resample after making each new decision in
vectorsD' = dt ..., d", representing a parser de-the sequence. Thus, we know of no reasonable alter-
cision at derivation step/, wheret’ < t. Variables natives to the use of variational methods.
whose value are given at the current decisjork)
are shaded in figure 1, latent and output variables afe2 A Feed-Forward Approximation

left unshaded. o The first model we consider is a strictly incremental
As illustrated by the arrows in figure 1, the prob-compuytation of a variational approximation, which
ability of each state variable/ depends on all the e will call the feed-forward approximation. It can
variables in a finite set of relevant previous state angs viewed as the simplest form of mean field approx-
decision vectors, but there are doect dependen- imation. As in any mean field approximation, each
cies between the different variables in a single staigr the latent variables is independently distributed.
vector. Which previous state and decision vectorg ; unlike the general case of mean field approxi-
are connected to the current state vector is detefiation. in the feed-forward approximation we only
mined by a se_t of structural relations specified byjjow the parameters of the distributior to de-
the parser designer. For example, we could selegkng on the distributions of their parents. This addi-
the most recent state where the same constituent Wgsha| constraint increases the potential for a large
on the top of the stack, and a decision variable refipack-Leibler divergence with the true model,

rese_nting the_ constitue_nt_’s Iabel._ Each su_ch selecte@fined in expression (1), but it significantly simpli-
relation has its own distinct weight matrix for thefies the computations.

resulting edges in the graph, but the same weight The set of hidden variable& in our graphical
matrix is used at each derivation position where thg, el consists of all the state vect§é + < t

relation is relevant. N and the last decisiod,. All the previously observed
As indicated in figure 1, the probability of eachyecisionsh(t, k) comprise the set of visible vari-

elementary decision;, depends both on the current a5y, The approximate fully factorisable distri-
state vectorS® and on the previously chosen ele'butionQ(H|V) can be written as:

mentary actiont;, _, from D This probability dis-
tribution has the form of a normalized exponential: ¢ 1_gt’

7\ S; ! -,
o QUHIV) = gh(a) TT ()™ (1= uf) ™.
% ot D1y (d) 2o WS v
P(d :d’S,dk_l): : 7 (3)
S @ () 2" 0% ' . .

&' = h(t' k) wherey! is the free parameter which determines the
where &, 1) is the indicator function of a set of distribution of state variablé at positiont’, namely
elementary decisions that may possibly follow théts mean, and,(d},) is the free parameter which de-
parsing historyx(t', k), and thelW; are the weights. termines the distribution over decisiods.

For our experiments, we replicated the same pat- Because we are only allowed to use information
tern of interconnection between state variables about the distributions of the parent variables to
described in (Henderson, 2008)We also used the

map to their “units”, and our dependencies/edges map to thei
In the neural network of (Henderson, 2003), our variableslinks”.



compute the free paramethé, the optimal assign- we will call the mean field approximation. Again,

ment of values to th;ag' is: we are interested in finding the distributighwhich
) / maximizes the quantity.y in expression (2). The
pt =0 (nf ) , decision distributiong, (d% ) maximizesLy when it

has the same dependence on the state vector means
whgreo— d_enotes the logistic sigmoid_function and,! as in the feed-forward approximation, namely ex-
n; is aweighted sum of the parent variables’ meansgsression (5). However, as we mentioned above, the
o A7) () feed-forward computation does not allow us to com-
= _ Lyt > > Bid;c’/ » (4) pute the optimal values of state meaijs
VERS(Y) t"eRD(t') k Optimally, after each new decisiaty, we should

. . o .._recompute all the means! for all the state vec-
where t') is the set of previous positions with / 0 .
RS(t) P P tors S*, ¢ < t. However, this would make the

edges from their state vectors to the state vectdr at . o
g N . . . o; method intractable, due to the length of derivations
RD(t') is the set of previous positions with edges

. - ., In constituent parsing and the interdependence be-

from their decision vectors to the state vector’at . .
PN . .. _tween these means. Instead, after making each deci-
7(t',t") is the relevant relation between the pOSItlonsiondt and adding it to the set of visible variabli:
t" and the positiont’, and J7; and B, are weight k g 3

. we recompute only means of the current state vector
matrices.

t
In order to maximize (2), the approximate distri—S

bution of the next decisiong. () should be set to The denominator of the normalized exponential

function in (3) does not allow us to compulg- ex-
actly. Instead, we use a simple first order approxi-
(5) mation:

Eglln Z D4,k (d) exp(z desg-)]
as follows from expression (3). The resulting esti- d j

mate of the tree probability is given by: ~In Z D11 (d) eXp(Z de#p’ (6)
d J

P(T) ~ [ ] ai(d})-
t.k

¢ B 1) (d) 2215
qk(d) = Z W, t bl
Yo Prpy (d) e i

where the expectatioB|. . ] is taken over the state
: o _ vector S* distributed according to the approximate
This approximation method replicates exactly th%li stribution Q

_comeutztlon of ggggfeedr;foma;]rd nsural ”e‘V,Vork Unfortunately, even with this assumption there is
in (Henderson, ), where the above meafis no analytic way to maximizé,, with respect to the

are equivalent to the neural network hidden unit aCt'Eeansuz, so we need to use numerical methods.

vations. Thus, that neural network probability mode ssuming (6), we can rewrite the expression (2) as

can b_e regardeq as a simple approximation 0 ﬂ]‘8llows, substituting the true?(H, V') defined by
graphical model introduced in section 3.1. the graphical model and the approximate distribu-

In addition to the drawbacks shared by any meap L O(H (V). omitting parts independent af. -
field approximation method. this feed-forward ap- " (1Y) gp P ph

proximation cannot capture backward reasoning. ytk _ N~ _ 7.t (1 _ .t ot
By backward (a.k.a. top-down) reasoning we meanLV B XZ: palinp = (1= pi)In (1 Ml)
the need to update the state vector meahsafter
observing a decisiot, for t' < t. The next section
discusses how backward reasoning can be incorpo-

rated in the approximate model. _ Z In (Z 1.4 (d) exp(z deﬂ§)> .
3.3 A Mean Field Approximation W<k d J

iy + D Pugery (i) D Wae 511
k' <k J

This section proposes a more accurate way to apere,n! is computed from the previous relevant state
proximate ISBNs with mean field methods, whichmeans and decisions as in (4). This expression is



concave with respect to the parametgfs so the R P Fi
global maximum can be found. We use coordinateBikel, 2004 87.9| 88.8| 88.3
wise ascent, where eaghis selected by an efficient |Taskar et al., 2004 89.1|89.1| 89.1
line search (Press et al., 1996), while keeping otheNN method 89.1 | 89.2 | 89.1
1ty fixed. Turian and Melamed, 2006 89.3 | 89.6 | 89.4
o MF method 89.3 | 90.7 | 90.0
34 Parameter Estimation Charniak, 2000 90.0| 90.2| 90.1

We train these models to maximize the fit of therape 1. percentage labeled constituent recall (R),

approximatemodel to the data. We use gradienty o ision (P), combination of both {JFon the test-
descent and a maximum likelihood objective funcTng set.

tion. This requires computation of the gradient of
the approximate log-likelihood with respect to thethe MF approximation on the whole WSJ corpus, so
model parameters. In order to compute these derivinstead we use only sentences of length at most 15,
tives, the error should be propagated all the wags in (Taskar et al., 2004) and (Turian and Melamed,
back through the structure of the graphical modeR006). The standard split of the corpus into training
For the feed-forward approximation, computation o{sections 2—22, 9,753 sentences), validation (section
the derivatives is straightforward, as in neural net24, 321 sentences), and testing (section 23, 603 sen-
works. But for the mean field approximation, it re-tences) was performed.
quires computation of the derivatives of the means As in (Henderson, 2003; Turian and Melamed,
pt with respect to the other parameters in expres2006) we used a publicly available tagger (Ratna-
sion (7). The use of a numerical search in the meggarkhi, 1996) to provide the part-of-speech tag for
field approximation makes the analytical computaeach word in the sentence. For each tag, there is an
tion of these derivatives impossible, so a differentinknown-word vocabulary item which is used for all
method needs to be used to compute their values. those words which are not sufficiently frequent with

If maximization of Ly is done until convergence, that tag to be included individually in the vocabu-
then the derivatives oLi}"” with respect tou! are lary. We only included a specific tag-word pair in the

close to zero: vocabulary if it occurred at least 20 time in the train-
OLLF ing set, which (with tag-unknown-word pairs) led to
bk — 22V~ 0 forall i -
i T Tut & the very small vocabulary of 567 tag-word pairs.
(2

During parsing with both the NN method and the
This system of equations allows us to use implicifigF method, we used beam search with a post-word
differentiation to compute the needed derivatives. peam of 10. Increasing the beam size beyond this
value did not significantly effect parsing accuracy.
For both of the models, the state vector size of 40
In this section we evaluate the two approximationgvas used. All the parameters for both the NN and
to dynamic SBNs discussed in the previous sectiodF models were tuned on the validation set. A sin-
the feed-forward method equivalent to the neurayle best model of each type was then applied to the
network of (Henderson, 2003) (NN method) and théinal testing set.
mean field method (MF method). The hypothesis Table 1 lists the results of the NN approximation
we wish to test is that the more accurate approximand the MF approximation, along with results of dif-
tion of dynamlc? SBNs will result in _a more acguratemour MF method on this subset of WSJ took less
model of constituent structure parsing. If this is trueshan 6 days on a standard desktop PC. We would expect that
then it suggests that dynamic SBNs of the form proa model _for the entire_ \_NSJ_ corpus can pe train(_ad in about 3
posed here are a good abstract model of the natufosori. but a larger siate vector is needed to accommo-
of natural language parsing. date all the information. The long training times on the renti

We used the Penn Treebank WSJ corpus (MarcN!SJ would not allow us to tune the model parameters properly,
hich would have increased the randomness of the empirical

etal., 19_93) to perform the empirical eva!uation Ot\_évomparison, although it would be feasible for building a-sys
the considered approaches. It is expensive to traiem.

4 Experimental Evaluation



ferent generative and discriminative parsing methtional Random Fields, are the standard tools for shal-
ods (Bikel, 2004; Taskar et al., 2004; Turian andow parsing (Sha and Pereira, 2003). However, shal-
Melamed, 2006; Charniak, 2000) evaluated in théow parsing is effectively a sequence labeling prob-
same experimental setup. The MF model improvelem and therefore differs significantly from full pars-
over the baseline NN approximation, with an erroing. As discussed in section 2.2, undirected graph-
reduction in F-measure exceeding 8%. This imical models do not seem to be suitable for history-
provement is statically significadtThe MF model based full parsing models.
achieves results which do not appear to be signifi- Sigmoid Belief Networks were used originally
cantly different from the results of the best modefor character recognition tasks, but later a dynamic
in the list (Charniak, 2000). It should also be notednodification of this model was applied to the rein-
that the model (Charniak, 2000) is the most accuforcement learning task (Sallans, 2002). However,
rate generative model on the standard WSJ parsingeir graphical model, approximation method, and
benchmark, which confirms the viability of our gen-learning method differ significantly from those of
erative model. this paper.

These experimental results suggest that Incre-
mental Sigmoid Belief Networks are an appropriat®§ Conclusions
model for natural language parsing. Even approxi-
mations such as those tested here, with a very strofdis paper proposes a new generative framework
factorisability assumption, allow us to build quitefor constituent parsing based on dynamic Sigmoid
accurate parsing models. The main drawback of olelief Networks with vectors of latent variables.
proposed mean field approach is the relative compiExact inference with the proposed graphical model
tational complexity of the numerical procedure usedcalled Incremental Sigmoid Belief Networks) is
to maximizeLﬁ}k. But this approximation has suc- hot tractable, but two approximations are consid-
ceeded in showing that a more accurate approxim@l’ed. First, it is shown that the neural network
tion of ISBNs results in a more accurate parser. \Wearser of (Henderson, 2003) can be considered as a
believe this provides strong justification for more acsimple feed-forward approximation to the graphical

curate approximations of ISBNs for parsing. model. Second, a more accurate but still tractable
approximation based on mean field theory is pro-
5 Related Work posed. Both methods are empirically compared, and

_ the mean field approach achieves significantly better
There has not been much previous work on graphagyts, which are non-significantly different from
ical models for full parsing, although recently SeVyne results of the most accurate generative parsing
eral latent variable models for parsing have beep,gge| (Charniak, 2000) on our testing set. The fact
proposed (Koo and Collins, 2005; Matsuzaki et alyat 4 more accurate approximation leads to a more
2005; Riezler et al., 2002). In (Koo and Collins,gccjrate parser suggests that ISBNs are a good ab-

2005), an undirected graphical model is used 0ract model for constituent structure parsing. This
parse reranking. Dependency parsing with dynamigmirical result motivates research into more accu-
Bayesian networks was considered in (Peshkin and;qs approximations of dynamic SBNSs.

Savova, 2005), with limited success. Their model We focused in this paper on generative models

is very different from ours. .Roughl_y, it consider(_adof parsing. The results of such a generative model
thedwlhslg sentecr;cedat Z tlmﬁ’ A’V'th ;he graphicgl, | pe easily improved by a discriminative rerank-
mol € e'n% use to e‘fllhe Wh'c wor s(;:orrespcr)]niﬂg model, even without any additional feature en-
to eavefjsfo t e;]tree. ec c()jsehn Wordsl "_’Iret egﬂneering. For example, the discriminative train-
removed from the sentence and the model is recuirﬁg techniques successfully applied in (Henderson,

sively z_alpplied to the_ reduced ser_ltence_. .2004) to the feed-forward neural network model can
Undirected graphical models, in particular Condiy,, directly applied to the mean field model pro-

We measured significance of all the experiments in this pa{:-)oset_j in this pa_per. The Sam? IS tr!"e for rerank-
per with the randomized significance test (Yeh, 2000). ing with data-defined kernels, with which we would



expect similar improvements as were achieved witWMitchell P. Marcus, Beatrice Santorini, and Mary Ann
the neural network parser (Henderson and Titov, Marcinkiewicz. 1993. Building a large annotated cor-
2005). Such improvements should situate the result- PYS of English: The Penn Treebankomputational
. ) Linguistics 19(2):313-330.
ing model among the best current parsing models.
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