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1 IntroductionThis article explores the use of Simple Synchrony Networks (SSNs) for learning to parse En-glish sentences drawn from a corpus of naturally occurring text. The SSN has been de�nedin previous work [17, 23], and is an extension of the Simple Recurrent Network (SRN) [6, 7].The SSN extends SRNs with Temporal Synchrony Variable Binding (TSVB) [33], which en-ables the SSN to represent structures and generalise across structural constituents.We apply SSNs to syntactic parsing of natural language as it provides a standard taskon real world data which requires a structured output. Parsing natural language sentencesrequires taking a sequence of words and outputting a hierarchical structure representinghow those words �t together to form constituents, such as noun phrases and verb phrases.The state-of-the-art techniques for tackling this task are those from statistical languagelearning [2, 3, 5, 20]. The basic connectionist approach for learning language is based aroundthe SRN, in which the network is trained to predict the next word in a sentence [7, 8, 30]or else trained to assess whether a sentence is grammatical or not [24, 25]. However, thesimple SRN has not produced results comparable with the statistical parsers, because itsbasic output representation is 
at and unstructured.The reason the simple SRN does not produce structured output representations lies withthe required number of relationships which must be output to specify a structure such as aparse tree. For the SRN, only O(n) relationships may be output, where n is the number ofwords in the sentence. However, a parse tree may specify a structural relationship betweenany word and any other word, requiring O(n2) outputs. This is not possible with thesimple SRN because the length of a sentence is unbounded, but the number of output unitsis �xed. More fundamentally, even if a scheme is devised for bounding the required numberof outputs to O(n) (such as the STM mechanism discussed below), using large numbers ofoutput units means learning a large number of distinct mappings and thus not generalisingacross these distinctions. Thus this article will focus not only on the representation ofsyntactic structures in the network's output, but crucially on a demonstration that theresulting networks generalise in an appropriate way when learning.One example of a connectionist parser which uses multiple groups of output units torepresent the multiple structural relationships is the Hebbian connectionist network in [13].This network explicitly enforces generalisation across structural constituents by requiringeach group of output units to be trained on a random selection of the constituents. However,the amount of non-trainable internal structure required to enforce this generalisation andrepresent the possible forms of structure is a severe limitation. In particular, this componentof the network would need to grow with the length and complexity of the sentences. Thisnetwork has only been tested on a toy sublanguage, and has not been demonstrated to scaleup to the requirements of naturally occurring text.The two alternatives to increasing the number of output units are to increase the amountof information represented by each unit's activation level, and to increase the amount oftime used to output the structure. Both these approaches are exempli�ed by the Con
uentPreorder Parser [18]. As with other holistic parsers, the Con
uent Preorder Parser �rstencodes the sentence into a distributed representation. This representation uses a boundednumber of units, but the use of continuous activation values allows it to, in theory, encodea sentence of unbounded length. This distributed representation is then decoded into adi�erent sequence which represents the sentence's syntactic structure (in particular thepreorder traversal of the structure). This output sequence is as long as it needs to beto output all the required structural relationships, thereby avoiding the restriction on theSRN that there can be only O(n) outputs. But both this decoding stage and the previous2



encoding stage miss important generalisations that are manifested in an explicitly structuralrepresentation, and thus do not scale well to naturally occurring text. For the decodingstage, structural constituents which are close together in the structure may end up being farapart in the sequential encoding of that structure. Thus important regularities about therelationship between these constituents will not be easily learned, while other regularitiesbetween constituents which just happen to occur next to each other in the sequence willbe learned.1 For the encoding stage, as sentences get longer the ability of a �xed sizeddistributed representation to encode the entire sentence degrades. Indeed, [18] point outthat the representational capacity of such approaches is limited, preventing their scale upbeyond toy grammars.Our approach is to represent structural constituents directly, rather than using one ofthe above indirect encodings. Thus our connectionist architecture must be able to outputthe O(n2) structural relationships of a parse tree. To achieve this, the SSN extends the O(n)incremental outputs of the SRN with the O(n) entity outputs provided by TSVB. But it isnot enough to simply provide such a representation; the point of using a direct encoding isto enable the network to learn the regularities that motivated the use of a structured repre-sentation in the �rst place.2 For the SSN, the use of TSVB means that learned regularitiesinherently generalise over structural constituents [15, 17], thereby capturing important lin-guistic properties such as systematicity [15]. It is this generalisation ability which allowsthe SSN parser presented in this article to scale up to naturally occurring text.In this article we demonstrate how the SSN can represent the structured outputs nec-essary for natural language parsing in a way that allows the SSN to learn to parse from acorpus of real natural language text. To emphasise the generalisation ability required tolearn this task, we also introduce an extension to the SSN, namely a short-term memory(STM) mechanism, which places a bound on the number of words which can be involved inany further structural relationships at any given time. This improves the O(n2) speed of thebasic SSN architecture to linear time (O(n)), but it also means that only O(n) relationshipscan be output. However, unlike previous connectionist approaches to parsing, this bounddoes not a�ect the ability of SSNs to generalise across this bounded dimension, and thus togeneralise in a linguistically appropriate way. Indeed, the performance of the SSN parseractually improves with the addition of the STM.2 Simple Synchrony NetworksIn this section we provide a summary of Simple Synchrony Networks (SSNs) [17, 23]. We be-gin by describing the basic principles of Temporal Synchrony Variable Binding (TSVB) [33]which extend standard connectionist networks with pulsing units; pulsing units enable anetwork to provide output for each entity (word) encountered, and not just for the currentone, as with the standard connectionist unit. We brie
y summarise the main equationsde�ning the operation of TSVB networks and describe a training algorithm. Finally wegive three example SSN architectures; SSNs are de�ned by a restriction on the space ofpossible TSVB networks.1Methods such as Long Short-Term Memory [19] can help learn regularities between distant items in asequence, but they cannot totally overcome this unhelpful bias.2Note that this argument applies to any domain where structured representations have been found to beuseful to express important regularities. Thus, although this article focuses on the requirements of parsingnatural language, the SSN architecture would be relevant to any task which is best thought of as a mappingfrom a sequence of inputs to a structure. 3



2.1 Trainable TSVB networksTSVB [33] is a connectionist technique for solving the \binding problem" through the useof synchrony of activation pulses. The binding problem arises where multiple entities arerepresented each with multiple properties; some mechanism is required to indicate whichproperties are bound to which entities. For example, on seeing two objects with the prop-erties red, green, square and triangle, some mechanism is needed to indicate which colourrelates to which shape. One method is to provide for variables x and y to stand for the twoobjects. The scene may then be unambiguously described as: red(x) ^ green(y) ^ square(x)^ triangle (y). Another mechanism is to use synchrony binding, in which two units are rep-resenting properties bound to the same entity when they are pulsing synchronously. Thisproposal was originally made on biological grounds by Malsburg [36]. Earlier implemen-tations of TSVB [14, 33] used non-di�erentiable binary threshold units, and so could notbe trained using standard connectionist techniques. In this section we describe a di�erentimplementation of TSVB, one based on standard sigmoid activation units, which yields atrainable implementation of TSVB networks.In order to implement a TSVB network, the central idea is to divide each time period intoa number of phases; each phase will be associated with a unique entity. This correspondenceof phases and entities means phases are analogous to variables; all units active in the samephase are representing information about the same entity, just as if the units were predicateson the same variable. Through the analogy with variables, the phase numbers play no rolein determining unit activations within the network. There are two kinds of unit. The �rstis the pulsing unit, which computes in individual phases independent of other phases. Thenumber of phases in each time period, n(t), may vary, and so the pulsing unit's outputactivation is an n(t)-place vector, i.e. the activation, ~oj(t), of a pulsing unit j at time tis formed from n(t) values, fopj (t)j1 � p � n(t)g where opj (t) is the activation of unit j inphase p at time t. The second type of unit is the non-pulsing unit, which computes across allphases equally in the current time period; its output activation, oj(t), at time t is constantacross every phase in time t.We de�ne the net input and output activation separately for each type of unit withina TSVB network, based on the type of unit it is receiving activation from. We index thepulsing units in the network by a set of integers U�, and the non-pulsing units by a set ofintegers U� . Each non-input unit, j, receives activation from other units, indexed by the setInputsj. Recurrent links are handled, without loss of generality, by adding context units tothe network; each context unit's activation value is that which another unit had during theprevious time step. The function, C, maps each unit to its associated context unit. Unitsare linked by real-valued weights; the link from unit i to unit j having the weight wji.Given these de�nitions, the output activation of a pulsing unit, j 2 U�, in phase p attime t is de�ned as follows:netpj(t) = Xi2Inputsj wjiRp(i; t)where Rp(i; t) = ( oi(t) if i 2 U�opi (t) if i 2 U�opj(t) = 8>>><>>>: inpj (t) if j is an input unitopi (t� 1) if 9i:j = C(i) ^ t > 10 if 9i:j = C(i) ^ t = 1�(netpj(t)) otherwise4



With the standard sigmoid function: �(x) = 1=(1 + e�x). Note that the net function foreach phase p takes activation from other pulsing units only in phase p, or from non-pulsingunits, whose activation is the same across all phases. This is achieved by the functionRp(i; t)which represents the activation of unit i in phase p at time t: non-pulsing units (i 2 U� )have constant activation across each time period, so their activation is oi(t); pulsing units(i 2 U�) output a separate activation for each phase of the time period, so their activationis opi (t).The de�nition of the output activation of a non-pulsing unit is complicated by thepossibility of a non-pulsing unit having inputs from pulsing units. In this case activationsfrom an unbounded number of phases would have to be combined into a single input value.As discussed in [22], including such links is not necessary, and decreases the e�ectivenessof the architecture. Thus they are not allowed in Simple Synchrony Networks. Given thissimpli�cation, the output activation of a non-pulsing unit, j 2 U� , at time t is de�ned as:netj(t) = Xi2Inputsj wjioi(t)oj(t) = 8>>><>>>: inj(t) if j is an input unitoi(t� 1) if 9i:j = C(i) ^ t > 10 if 9i:j = C(i) ^ t = 1�(netj(t)) otherwiseNote that these non-pulsing units act just like a standard unit within an SRN.In order to train these TSVB networks, we use a novel extension of BackpropagationThrough Time (BPTT) [31]. When applying BPTT to a standard recurrent network, onecopy of the network is made for each time step in the input sequence. Extending BPTT toTSVB networks requires a further copy of the network for every phase in the time period.The unfolding procedure copies both pulsing and non-pulsing units once per time periodand the pulsing units are copied additionally once per phase. As with standard BPTT,the unfolded network is a feed-forward network, and can be trained using backpropagation.However, the unfolded network is a set of copies of the original and so, as training progresses,the changing weights must be constrained to ensure that each copy of a link uses the sameweight; this is achieved by summing all the individual changes to each copy of the link.2.2 SSN architecturesThree example SSN architectures are illustrated in Figure 1. The �gure depicts layers ofunits as rectangles or blocks, each layer containing however many units the system designerchooses. Rectangles denote layers of non-pulsing units, and blocks denote layers of pulsingunits. Links between the layers (solid lines) indicate that every unit in the source layer isconnected to every unit in the target layer. As discussed above, recurrence is implementedwith context units, just as with SRNs [7], and the dotted lines indicate that activation fromeach unit in the source layer is copied to a corresponding context unit in the target layer.All three architectures possess a layer of pulsing input units and a separate layer ofnon-pulsing input units. The procedure for inputting information to the SSNs is only alittle di�erent to that in standard connectionist networks. Consider a sequence of inputs`a b c ...'. A di�erent pattern of activation is de�ned for each di�erent input symbol, forexample activating one input unit to represent that symbol and having the rest of the inputunits inactive (i.e. a localist representation). With an SRN the sequence of input patternswould be presented to the network in consecutive time periods. Thus, in time period 1,5



Output
(C)

Non-Pulsing Pulsing 
Input

(A)

Input
Non-Pulsing Pulsing 

Output

Non-Pulsing Pulsing 
Input

(B)
Output

Figure 1: Three Simple Synchrony Networks. Rectangles are layers of non-pulsing units,and blocks are layers of pulsing units.the SRN would receive the pattern for symbol \a" on its input; in time period 2, it wouldreceive the pattern for symbol \b" on its input, etc. With the SSNs, the non-pulsing inputunits operate in just this way. The input symbol for each time period is simply presentedon the non-pulsing units. For the pulsing units, each input symbol is introduced on a newphase, i.e. one unused by the input sequence to that point. Thus, in time period 1, the SSNwould receive the pattern for symbol \a" on its pulsing inputs in phase 1; in time period 2,the pattern for the symbol \b" would be presented on its pulsing inputs in phase 2; and soon. The three architectures illustrated in Figure 1 cover three di�erent options for combiningthe information from the non-pulsing inputs with the information from the pulsing inputs.Essentially, the non-pulsing units contain information relevant to the sentence as a whole,and the pulsing units information relevant to speci�c constituents. This information can becombined in three possible ways: before the recurrence (type A), after (type B) and both(type C). Given the constraint discussed in Section 2.1 that SSNs do not have links frompulsing to non-pulsing units, these three types partition the possible architectures. Thecombination layer in types B and C between the recurrent layers and the output layer isoptional. We empirically compare the three illustrated architectures in the experiments inSection 4.3 Syntactic ParsingSyntactic parsing of natural language has been the center of a great deal of research becauseof its theoretical, cognitive, and practical importance. For our purposes it provides a stan-dard task on real world data which requires a structured output. A syntactic parser takesthe words of a sentence and produces a hierarchical structure representing how those words�t together to form the constituents of that sentence. In this section we discuss how thisstructure can be represented in a SSN and some of the implications of this representation.3.1 Statistical parsersTraditionally syntactic parsing was addressed by devising algorithms for enforcing syntacticgrammars, which de�ne what is and isn't a possible constituent structure for a sentence.More recent work has focused on how to incorporate probabilities into these grammars [2, 20]and how to estimate these probabilities from a corpus of naturally occurring text. Theoutput structure is taken to be the structure with the highest probability according to theestimates. For example, probabilistic context-free grammars (PCFGs) [20] are context-freegrammars with probabilities associated with each of the rewrite rules. The probability of6



an entire structure is the multiplication of the probabilities of all the rewrite rules used toderive that structure. This is a straightforward translation of context-free grammars intothe statistical paradigm. The rule probabilities can be simply multiplied because they areassumed to be independent, just as the context-free assumption means the rules can beapplied independently. Work in statistical parsing focuses on �nding good independenceassumptions, and it often takes as its starting point linguistic claims about the basic buildingblocks of a syntactic grammar.Our SSN parser can be considered a statistical parser, in that the network itself is aform of statistical model. However there are some clear di�erences. Firstly, there is no\grammar" in the traditional sense. All the network's grammatical information is heldimplicitly in its pattern of link weights. More fundamentally, there are fewer independenceassumptions. The network decides for itself what information to pay attention to and whatto ignore. Statistical issues such as combining multiple estimators or smoothing for sparsedata are handled by the network training.But as is usually the case with one-size-�ts-all machine learning techniques, more do-main knowledge has gone into the design of the SSN parser than is at �rst apparent. Inparticular, while very general, the input/output representation has been designed to makelinguistic generalisations easy for the network to extract. For example, the SSN incremen-tally processes one word at a time and the output required at each time is related to thatword. This not only re
ects the incremental nature of human language processing, it alsobiases the network towards learning word-speci�c generalisations. The word-speci�c natureof linguistic generalisations is manifested in the current popularity of lexicalised grammarrepresentations, as in [5]. Also, the short-term memory mechanism discussed later in thissection is motivated by psycholinguistic phenomena. Other particular motivations will bediscussed as they arise.3.2 Structured output representations for SSNsThe syntactic structure of a natural language sentence is a hierarchical structure represent-ing how the sentence's words �t together to form constituents, such as noun phrases andrelative clauses. This structure is often speci�ed in the form of a tree, with the constituentsas nodes of the tree and parent-child relationships representing the hierarchy; all the wordsthat are included in a child constituent are also included in its parent constituent. Thuswe can output a syntactic structure by outputting the set of constituents and the set ofparent-child relationships between them and between them and the words.The di�culty with outputting such a structure arises because of the number of parent-child relationships. On linguistic grounds, it is safe to assume that the number of con-stituents is linear in the number of words.3 Thus we can introduce a bounded number ofentities with each word, and have one entity for each constituent.4 The problem is that thisstill leaves O(n2) (quadratic) possible parent-child relationships between these O(n) (linear)constituents. The solution is to make full use of both the O(n) times at which words arepresented to the network and the O(n) entities at any given time. Thus we cannot waituntil all the words have been input and then output the entire structure, as is done witha symbolic parser. Instead we must incrementally output pieces of the structure such thatby the time the whole sentence has been input the whole structure has been output.3This simply means that there aren't unbounded numbers of constituents that contain the same set ofwords (unbranching constituents).4Alternatively, we could introduce one entity with each word, and have one entity represent a boundednumber of constituents. As will be discussed below, we are assuming that the bound is 1, so these twoalternatives are equivalent. 7



The �rst aspect of this solution is that new constituents are introduced to the SSN witheach word that is input. In other words, during each period new phases (i.e. entities) mustbe added to the set of phases that are being processed. As illustrated in Figure 1, SSNs havetwo banks of input units, pulsing and non-pulsing. The non-pulsing input units hold thepart of speech tag for the word being input during the current period. (For simplicity we donot use the words themselves.) Using the pulsing input units, this word-tag is also input tothe new phase(s) introduced in the current period. In this way the number of constituentsrepresented by the network grows linearly with the number of words that have been input toit. For the experiments discussed below we make a slightly stronger assumption (for reasonsdetailed below), namely that only one constituent is added with each word-tag. This meansthat the network can only output parse trees which contain at most as many constituents asthere are words in the sentence. This simpli�cation requires some adjustments to be madeto any preparsed corpus of naturally occurring text, but is not linguistically unmotivated;the result is equivalent to a form of dependency grammar [27], and such grammars havea long linguistic tradition. We will return to the adjustments required to the training setwhen considering the corpus used in the experiments in Section 4.Now that we have O(n) constituents, we need to ensure that enough information aboutthe structure is output during each period so that the entire structure has been speci�edby the end of the sentence. For this we need to make use of the pulsing output unitsillustrated in Figure 1. Our description of the parsing process refers to the example inFigure 2, which illustrates the sentence `Mary saw the game was bad'. This sentence isrepresented as a sequence of word-tags as `NP VVD AT NN VBD JJ', and the sentencestructure (S) contains separate constituents for the subject noun (N) and object clause(F), which contains a further noun phrase (N). Note that this parse tree has had someconstituents con
ated to comply with the constraint that there be only one constituent perword; its relation to standard parse-tree representations is covered in Section 4.The pulsing units in the network, during the nth time period, provide an output foreach of the n constituents represented by the SSN at that period. As mentioned above, weobviously want these outputs to relate to the nth word-tag, which is being input during thatperiod. So one thing we want to output at this time is the parent of that word-tag withinthe constituent structure. Thus we simply have a parent output unit, which pulses duringeach period in the phase of the constituent which is the parent of the period's word-tag.Examples of these parent relationships are shown in Figure 2, and examples of these outputsare shown in Table 1. For the experiments discussed below we assume that each constituentis identi�ed by the �rst word-tag which attaches to it in this way. So if this is the �rst word-tag to attach to a given constituent, then its parent is the constituent introduced with thatword-tag, as for the NP, AT, VVD and VBD in the example. Otherwise the word-tag'sparent is the constituent introduced with its leftmost sibling word, as for the NN and JJin the example. In these cases the newly introduced constituent simply does not play anyrole in the constituent structure.The parent output unit is enough to specify all parent-child relationships between con-stituents and word-tags, leaving only the parent-child relationships between constituents.For these we take a maximally incremental approach; such a parent-child relationship needsto be output as soon as both the constituents involved have been introduced into the SSN.There are two such cases, when the parent is introduced before the child and when thechild is introduced before the parent. The �rst case is covered by adding a grandparentoutput unit. This output speci�es the grandparent constituent for the current word-tag,as illustrated in Figure 2 and Table 1 for the VBD. This grandparent constituent must bethe parent of the constituent which is the parent of the current word-tag. In other words,8
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the combination of the parent output and the grandparent output speci�es a parent-childrelationship between the word-tag's grandparent and its parent. The second case is coveredsimilarly by a sibling output unit. This output speci�es any constituent which shares thesame parent as the current word-tag, as illustrated in Figure 2 and Table 1 for the VVDand VBD. The combination of the parent output and the sibling output speci�es a parent-child relationship between the word-tag's parent and each of its siblings (possibly more thanone). In the experiments below the grandparent and sibling outputs are only used duringthe period in which the word-tag's parent is �rst introduced.The interpretation of the outputs is best described with reference to a detailed traceof activation on the input and output units, as provided in Table 1 for the structure inFigure 2. The �rst two columns of the table (other than the period numbers) show theinputs to the SSN. The �rst column shows the activation presented to the bank of pulsinginput units. Each row of the column represents a separate time period, and the columnis divided into separate phases, 6 being su�cient for this example. Each cell indicates theinformation input to the network in the indicated time period and phase; the word-tagappearing in the cell indicates which of the pulsing input units is active in that time periodand phase. The second column shows the activation presented to the bank of non-pulsinginput units. No phase information is relevant to these units, and so the word-tag givensimply indicates which of the non-pulsing input units is active in each time period.The third column in the table shows the activation present on the output units. Inevery period the parent (P) output is active in the phase for the constituent which theperiod's word-tag is attached to. In period 1 an NP (proper noun) is input and this isattached to constituent number 1. This is the constituent which was introduced in period1, and it is speci�ed as the word-tag's parent because no previous word-tags have the sameparent (there being no previous word-tags in this case). The same thing happens with theparent outputs in periods 2, 3, and 5. In period 4 the word-tag NN (noun) is input andattached to constituent 3, which is the constituent which was introduced during the inputof AT (article) in the previous period. This speci�es that this AT and NN have the sameparent, namely constituent 3. The same relationship is speci�ed in period 6 between the JJ(adverb/adjective) being input and the preceding VBD (verb).Given the set of constituents identi�ed by the parent outputs, the grandparent (G) andsibling (S) outputs specify the structural relationships between these constituents. Becausewe only specify these outputs during the periods in which a new constituent has beenidenti�ed, only periods 2, 3, and 5 can have these outputs (period 1 has no other constituentsto specify relationships with). In period 2, constituent 1 is speci�ed as the sibling of theVVD word-tag being input. Thus since constituent 2 is the parent of VVD, constituent2 must also be the parent of constituent 1. Constituent 2 does not itself have a parentbecause it is the root of the tree structure. In period 3 no siblings or grandparent arespeci�ed because constituent 3 has no constituent children and its parent has not yet beenintroduced. In period 5 the parent of constituent 3 is speci�ed as constituent 5 throughthe sibling output, as above. Also in period 5 the grandparent output unit pulses in phase2. This speci�es that constituent 2 is the grandparent of the VBD word-tag being inputin period 5. Thus constituent 2 is the parent of constituent 5, since constituent 5 is theparent of VBD. Note that the use of phases to represent constituents means that no specialmechanisms are necessary to handle this case, where one constituent (F) is embedded withinanother (S).In addition to structural relationships, natural language syntactic structures typicallyalso include labels on the constituents. This is relatively straightforward for SSNs to achieve.We use an additional set of pulsing output units, one for each label. The network indicates10



the label for a given constituent by pulsing the label's unit in phase with the new constituentwhen it is introduced to the parse tree.So far we have described the target output for a SSN, in which units are either pulsingor not. Being based on SRNs, the actual unit outputs are of course continuous valuesbetween 0 and 1. There are a variety of ways to interpret these patterns of continuousvalues as a speci�cation of constituency. In the experiments discussed below we simplythreshold them; all units with activations above 0.6 are treated as `on'. The indicated setof structural relationships is then converted to a set of constituents, which may then beevaluated using the precision and recall measures standard in statistical language learning;precision is the percentage of output constituents that are correct, and recall the percentageof correct constituents that are output.The important characteristic of SSNs for outputting structures is that just three outputunits, grandparent, parent, and sibling, are su�cient to specify all the structures allowed byour assumptions that at most one constituent needs to be introduced with each word.5 Wecall this the GPS representation. As the SSN proceeds incrementally through the sentence,at each word-tag it outputs the word-tag's parent and (if it is the parent's �rst word-child)all the parent-child relationships between that parent and the previous constituents in thesentence. By the time the SSN reaches the last word of the sentence, its cumulative outputwill specify all the parent-child relationships between all the constituents, thus specifyingthe entire hierarchical structure of the sentence's constituency.3.3 Inherent generalisationsIn Section 2 we described the SSN, its training algorithm and a variety of possible SSNarchitectures. Because the de�nition of TSVB units retains and augments the properties ofstandard feed-forward and recurrent connectionist networks, SSNs retain the advantages ofdistributed representations and the ability to generalise across sequences. The SSN has alsobeen shown to support a class of structured representation. Although this representationin itself is important in extending the range of domains to which connectionist networksmay be applied, the SSN's use of phases to identify structural constituents also confers apowerful generalisation ability, speci�cally the ability to generalise learnt information acrossstructural constituents.As an example of this kind of generalisation, consider what is required to generalise fromthe sentence \John loves Mary" to the sentence \Mary loves John". In both sentences thenetwork needs to output that \John" and \Mary" are noun phrases, that the noun phrasepreceding the verb is the subject, and that the noun phrase after the verb is the object. Inorder to generalise, it must learn these four things independently of each other, and yet forany particular sentence it must represent the binding between each constituent's word andits syntactic position.The SSN achieves this generalisation ability by using temporal phases to represent thesebindings, but using link weights to represent these generalisations. Because the same linkweights are used for each phase, the information learned in one phase will inherently begeneralised to constituents in other phases. Thus once the network has learned that theinput \Mary" correlates with being a noun phrase, it will produce a noun phrase outputregardless of what other features (such as syntactic position) are bound to the same phase.5As mentioned above, the set of allowable structures can be expanded either by increasing the numberof entities introduced with each word, or by expanding the number of structural relationships so as to alloweach entity to represent more than one constituent. In either case the number of constituents still must belinear in the number of words. This constraint could only be relaxed by allowing unbounded computationsteps per word input. 11



Similarly the network will learn that a noun phrase preceding a verb correlates with thenoun phrase being the subject of the verb, regardless of what other features (such as theword \Mary") are bound to the same phase. Then, even if the network has never seen\Mary" as a subject before, the application of these two independent rules in the samephase will produce a pattern of synchronous activation that represents that \Mary" is thesubject. Henderson [15] has shown how this inherent ability of TSVB networks to generaliseacross constituents relates to systematicity [9].3.4 Short-term memoryIn learning-based systems it is the system's ability to generalise from training sets to testingsets that determines its value. This implies that the real value of the SSN is in its abilityto generalise over constituents, and not its ability to output O(n2) structural relationships.This suspicion is con�rmed when we consider some speci�c characteristics of our domain,natural language sentences. It has long been known that constraints on people's ability toprocess language put a bound on constructions such as centre embedding [4], which are theonly constructions which would actually require allowing for O(n2) structural relationships.For example, `the rat that the cat that the dog chased bit died' is almost impossible tounderstand without pencil and paper, but `the dog chased the cat that bit the rat thatdied' is easy to understand. The basic reason for this di�erence is that in the �rst case allthe noun phrases need to be kept in memory so that their relationships to the later verbscan be determined, while in the second case each noun phrase can be forgotten as soon asthe verb following it has been seen.Motivated by this observation, and by work showing that in many other domains peoplecan only keep a small number of things active in memory at any one time [28], we haveadded a \short-term memory" (STM) mechanism to the basic SSN architecture. Thismechanism improves the SSN's e�ciency to O(n) time. The de�nition of the SSN so farhas stated that each word-tag input to the network will be input into a new phase of thenetwork. Information is then computed for all of these phases in every subsequent timeperiod. However, the bound on the depth of centre embedding implies that, in any giventime period, only a relatively small number of these phases will be referred to by later partsof the parse tree. The trick is to work out which of the phases are going to be relevant tolater processing, and only compute information for these phases. The idea we use here is asimple one, based on the idea of the audio-loop proposed by Baddeley [1].Instead of computing all phases in the current time period, we instead compute onlythose in a STM queue. This queue has a maximum size, which is the bound on STM referredto above. When a new phase is introduced to the network, this phase is added to the headof the queue. When a phase is referred to by one of the output units, that phase is moved tothe head of the queue. This simple mechanism means that unimportant phases, i.e. thosewhich are not referred to in the output, will move to the end of the queue and be forgotten.Note that, in training, the target outputs are used to determine which phases are moved tothe head of the queue, and not the actual outputs, thereby ensuring that the network learnsonly about the relevant phases. Also, information held by the network about word-tags andconstituents are speci�c to phases, not position in STM or the input word order. Therefore,items cannot be confused during the reordering process which occurs in the STM. Indeed,it is precisely this use of phases to represent constituents which allows the SSN to keep itsability to generalise over constituents and still to parse in O(n) time.
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4 Experiments in Syntactic Parsing with SSNsIn this section, we describe some experiments training a range of SSNs to parse sentencesdrawn from a corpus of real natural language. The experiments demonstrate how the SSNmay be used for connectionist language learning with structured output representations.Also, the fact that the SSN's performance is evaluated in terms of the precision and recallof constituents means that the SSN's performance may be directly compared with statisticalparsers. We �rst describe the corpus used, provide some results, and then give some analysisof the training data.4.1 A natural language corpusWe use the SUSANNE corpus as a source of preparsed sentences for our experiments. TheSUSANNE corpus is a subset of the Brown corpus, and is preparsed according to theSUSANNE classi�cation scheme described in [32]. In order to use the SUSANNE corpus,we convert the provided information into a format suitable for presentation to our parser.The SUSANNE scheme provides detailed information about every word and symbolwithin the corpus. We use the word-tags as input to the network, due to time constraintsand the limited size of the corpus. The word-tags in SUSANNE are a detailed extensionof the tags used in the Lancaster-Leeds Treebank [12]. In our experiments, the simplerLancaster-Leeds scheme is used. Each word-tag is a two or three letter sequence, e.g. `John'would be encoded `NP', the articles `a' and `the' are encoded `AT', and verbs such as `is' areencoded `VBZ'. Each word-tag is input to the network by setting one bit in each of threebanks of input; each bank representing one letter position, and the set bit indicating whichletter or space occupies that position.In order to construct the set of constituents forming the target parse tree, we �rstneed to extract the syntactic constituents from the wealth of information provided by theSUSANNE classi�cation scheme. This includes information at the meta-sentence level,which can be discarded, and semantic relations between constituents.Finally, as described above, the GPS representation used in our experiments requiresthat every constituent have at least one terminal child. This limitation is violated by fewconstructions, though one of them, the S{VP division, is very common. For example, inthe sentence `Mary loves John', a typical encoding would be: [S [NP Mary] [VP [V loves][NP John]]]. The linguistic head of the S (the verb \loves") is within the VP, and so theS does not have any tags as immediate children. To address this problem, we collapse theS and VP into a single constituent, producing: [S [NP Mary] [V loves] [NP John]]. Thesame is done for other such constructions, which include adjective, noun, determiner andprepositional phrases. With the corpus used here, the number of changes is fairly minor6.4.2 ResultsOne of the SUSANNE genres (genre A for press reportage) was chosen for the experiments,and training, cross-validation and test sets were selected at random from the total in theratio 4:1:1. Sentences of fewer than 15 word-tags were selected from the training set, toform a set of 265 sentences containing 2834 word-tags, an average sentence length of 10.7.Similarly, a cross-validation set was selected, containing 38 sentences of 418 word-tags,6Out of 1,580 constituents, 265 have been lost to the S{VP change, 28 similar changes were made torelative clauses, and only 12 adjustments were required to other non-verb constructions { most of the verbclauses could be arti�cially reintroduced on output, which leaves around 30 irrecoverable changes to thecorpus structure. 13



average sentence length of 11.0, and a test set with 34 sentences, containing 346 words,with an average sentence length of 10.2.The three SSN types A, B and C were all tested. Twelve networks were trained fromeach type, consisting of four sizes of network (between 20 and 100 units in each layer), eachsize was tested with three di�erent STM lengths (3, 6 and 10). Each network was trainedon the training set for 100 epochs, using a constant learning rate � of 0.05.Table 2 gives �gures for �ve networks. For each network, the performance on the threedatasets (training, cross-validation and test) are given under three categories: the numberof correct sentences, a measure of the number of correct constituents (precision and recall)and the percentage of correct responses on each output unit. The measure of precision andrecall used for constituent evaluation is a standard measure used in statistical languagelearning [20]. The precision is the number of correct constituents output by the parserdivided by the total number of constituents output by the parser. The recall is the number ofcorrect constituents divided by the number in the target parse. Each constituent is countedas correct if it contains the same set of words as the target, and has the same label.7 Thepresence of this measure in our results is signi�cant because it con�rms the similarity of theinput-output representations used by the SSN with those used by statistical parsers, andtherefore some direct comparisons can be made: we return to this point in Section 5.Considering the �gures in the table, the type A networks are not particularly successful,with only the rare sentence being correctly parsed. Results for the best performing type Anetwork are given in the �rst row of the table. The type B and C networks were much moresuccessful. For each type, the results from two networks are given: the �rst having the bestaverage precision/recall measure, and the second having better results on the individualoutputs (i.e. G, P, S and label). Both the type B and C networks produce similar rangesof performance: around 25% of sentences are correct and between 70-80% is scored inaverage precision/recall by the better networks. In particular, the percentage correct forthe constituent labels and the P output exceed 90%. Also notable is that the percentageresults of the networks are similar across the three datasets, indicating that the networkhas learnt a robust mapping from input sentences to output parse trees. This level ofgeneralisation (around 80% average precision/recall) is similar to that achieved by PCFGparsers [20], although for a fair comparison identical experiments must be performed witheach algorithm: again, we return to this point in Section 5.4.3 Analysis of resultsThe basic experimental results above have provided both detailed values of the performanceof the network with speci�c output relationships as well as their combined performance interms of the constituent-level measures of precision and recall. Here, these results arebroken down and compared to see the progress of learning of the networks over time with acomparison of the e�ect of the STM queue, and a table of the actual dependencies presentin the data itself.4.3.1 E�ects of STM lengthThe e�ects of STM length can be seen by plotting the performance of one type of networkwith varying sizes of STM. This is done in Figure 3, in which the performance of a type Cnetwork with 80 units in every hidden layer is shown for the three sizes of STM, i.e. 3, 6 and7Precision may be compared with the standard measure of `errors of commission', and recall with thestandard `errors of omission'. 14



Test Sentences Precision Recall G P S LabelType A : STM of 10, 100 unitsTrain 1/265 (0%) 34.7 31.3 35.6 65.9 20.8 89.3Cross 0/38 (0%) 31.8 29.7 30.5 65.2 18.7 84.7Type B : STM of 3, 80 units in each layerTrain 63/265 (24%) 69.9 68.7 74.1 94.3 73.0 97.5Cross 10/38 (26%) 71.5 71.2 74.8 95.6 70.7 96.4Test 9/34 (25%) 71.2 70.8 82.0 94.6 64.6 98.3Type B : STM of 6, 80 units in each layerTrain 62/265 (24%) 66.0 64.4 75.2 92.3 84.6 97.5Cross 12/38 (32%) 65.3 64.2 82.4 92.6 85.3 96.2Test 8/34 (25%) 67.4 65.2 83.0 93.3 83.1 98.3Type C : STM of 3, 80 units in each layerTrain 64/265 (24%) 72.6 71.7 70.8 95.7 72.1 98.4Cross 9/38 (24%) 74.4 73.8 71.8 97.3 70.7 97.8Test 13/34 (38%) 80.3 80.3 85.0 96.0 66.1 99.1Type C : STM of 6, 80 units in each layerTrain 56/265 (15%) 65.5 63.7 68.1 92.8 82.3 97.1Cross 8/38 (21%) 63.6 61.1 68.7 91.5 81.3 95.5Test 10/34 (29%) 71.4 70.2 76.0 93.9 84.7 98.3Table 2: Comparison of network types in learning to parse10. The separate graphs show the constituent-level performance of the network, in termsof average precision/recall, and the performance of the separate output units, grandparent,parent, sibling and constituent label (this latter, though a group of units, is treated asa single output). The graphs demonstrate that, at the constituent-level, the shorter STMlengths perform better. However, the longer STM lengths can achieve greater accuracy withspeci�c outputs, in particular with respect to the sibling output. This is to be expected, asthe longer lengths preserve more information and so have a greater likelihood of containingthe phase referred to by the speci�c output.4.3.2 Dependency lengths in the data setAn important concern in connectionist language learning has been the length of dependencywhich the SRN can learn [8]. In this section we provide an analysis of our data set to seeexactly what dependency lengths are present in a corpus of naturally occurring text.Table 3 contains an analysis of the lengths of each dependency contained in sentenceswith a maximum length of 30 words. The length of a dependency is the number of wordsbetween the current word and that indicated by each output. The table lists separately thelengths for each of the output units, with the �nal two columns providing a total numberand percentage for that dependency length across the whole corpus. The surprising resultof this table is that most of the dependencies (almost 70%) relate to the current word orits predecessor. There is a sharp tailing o� of frequency as we consider longer dependencies{ the table only shows the shortest lengths; the lengths tail o� gradually to a length of 25words.With the STM, the network can only process a limited number of words at any one time,15
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Figure 3: Comparison of the e�ects of STM length on a type C network with 80 units inevery hidden layer.
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Dependency Length G P S total %=length %<length0 0 7354 0 7354 38.0% 38.0%1 2268 3134 763 6165 31.8% 69.8%2 1018 1037 502 2557 13.2% 83.0%3 568 350 211 1129 5.8% 88.8%4 351 173 106 630 3.3% 92.0%5 225 101 78 404 2.1% 94.1%Mean length 2.7 0.8 3.3 1.6Table 3: Dependencies by type and length in sentences with fewer than 30 words. Notall dependencies are shown, the greatest length is 25 words. Number of sentences: 716,Number of words: 13,472, Average length: 18.8STM Dependency Length G P S total %=length %<length0 0 7354 0 7354 38.0% 38.0%1 2614 3011 1128 6753 34.9% 72.8%2 1394 1513 310 3217 16.6% 89.4%3 397 252 150 799 4.1% 93.5%4 284 127 78 489 2.5% 96.1%5 135 42 68 245 1.3% 97.3%Mean length 2.0 0.7 2.7 1.2Table 4: Dependencies by type and length across the STM for the sentences from Table 3.and so the length of dependency which the network can handle is altered. With a STM,the length of dependency will be the number of places down the queue which each phasehas progressed before being required. So, in Table 4, we provide a similar analysis to thatabove, but this time, instead of counting the length as the number of intervening phases, wecount the length of each dependency as the position which that phase occupies in the STM.Thus, if a phase is in the third position of the STM when it is required, then the lengthof the dependency will be given as three. This table shows similar e�ect in the range ofdependency lengths to that in the Table 3, although there is a greater concentration in theshortest lengths, as desired. The limited number of longer dependencies (not shown) stillextend to length 25; these are isolated words or punctuation symbols which are referred toonly once.4.3.3 Conclusions on experimentsThe impact of the STM is quite considerable in respect to training times, reducing them byat least an order of magnitude. As discussed above, the actual lengths of dependencies en-countered by the network are not changed much by the addition of a STM. The experimentsshow that longer STMs achieve better performance on some speci�c outputs of the network,however the shorter STM still yields the best level of constituent accuracy. This di�erenceis of interest, as the choice of STM length depends on one's measure of performance. Abetter performance is achieved on speci�c outputs with a longer STM, because your desiredoutput is more likely to appear in the STM. But a better performance is achieved at the17



constituent level, based on a competition between di�erent outputs, because the smallerSTM reduces the likelihood of spurious outputs competing with the correct ones. Notealso the domain speci�city of this last point: the smaller STM only works because naturallanguage itself has a bias towards shorter dependencies.5 DiscussionThis article has focussed on how SSNs can use an incremental representation of constituentstructure in order to learn to parse. In addition, we have shown that arguments aboutthe generalisation abilities necessary to learn to parse are distinct from arguments aboutbounds on those abilities through the introduction of the STM mechanism, which enhancesthe e�ciency of the basic SSN without harming its ability to learn to parse. In this section weconsider in brief the importance of these results for connectionist language learning, and howour model compares with other extensions to SRNs for handling structured representations.First, the experiments described above demonstrate how a connectionist network cansuccessfully learn to generate parse trees for sentences drawn from a corpus of naturallyoccurring text. This is a standard task in computational language learning using statisticalmethods. Because the same performance measures (precision/recall) can be applied to theoutput of the SSN as with a typical statistical method, such as the simple Probabilistic Con-text Free Grammar (PCFG), direct comparisons can be made between the two approaches.For instance, the simple PCFG can achieve around 72% average precision/recall [20] onparsing from sequences of word-tags. In comparison, the SSN in the above experimentsachieves 80% average precision/recall when trained and tested on sentences with fewer than15 words. However, this is not a fair comparison, as the corpora sizes and contents aredissimilar.In an extension to the work here, Henderson [16] has presented a slight variant of thebasic SSN model and compared its performance directly with that of PCFGs on identicalcorpora. In those results, the PCFG, due to the restricted size of the training set, wasonly able to parse half the test sentences, with a precision/recall �gure of 54%/29%. Incomparison, the SSN was able to parse all the sentences, and yielded a performance of65%/65%. Even if we only count the parsed sentences, the PCFG only had a performance of54%/58%, compared to the SSN's performance of 68%/67% on that subset. The variationsintroduced by Henderson [16] to the SSN mostly a�ect the input layer. In this article,the pulsing inputs to the SSN receive input only for newly introduced phases, requiringthe network to remember the previous periods' input. In [16], the pulsing input from theprevious period is carried forward in its particular phase. An additional pulsing input unitis then used to distinguish the newly introduced phase from the others. Because of thischange in input representation, the results in [16] have been achieved with a type A SSN.As noted in the Introduction to this article, experiments with natural language usingSRNs have typically used a restricted form of input representation, either predicting the nextword in a sentence [6, 8, 30] or assessing whether it is grammatical [24, 25]. Our extensionto the SRN, the SSN, corrects this limitation by enhancing the range of output representa-tions to include structured parse trees. Our approach is designed to generate a structuredrepresentation given a sequence of input data. The generation aspect of this task largelydistinguishes our approach from other extensions to SRNs for handling structured data. Forexample, the Backpropagation Through Structure (BPTS) algorithm [35, 11] assumes thatthe network is being trained to process structured input data, either for classi�cation [10]or for transformation [11]. The transformation task is closer to that of training a parser,but, as the conclusion of [11] makes clear, the use of BPTS relies on the input and output18



having the same structural form, which prevents such networks being directly applicable tothe task of generating a parse tree from a sequence of input word-tags. However, there isa relationship between the BPTS and the SSN in terms of the SSN's temporal structure.The SSN is trained using an extension of Backpropagation Through Time, where the net-work is unfolded over its two temporal dimensions, period and phase. This is one speci�cinstance of BPTS, where the structure in question is the temporal structure. However, themapping from this temporal structure to the structures in the domain is done as part ofthe interpretation of the network's output activations (using the GPS representation), andthus does not fall within the BPTS framework. In the broader context of transformingstructured data, the SSN and the incremental parse tree representation described in thisarticle thereby o�er one way for a connectionist network to generate structured output datafrom an unstructured input.Apart from models based on SRNs, other forms of connectionist network have beenproposed for handling the types of structured information required for language learning.For instance, Hadley and Hayward [13] propose a highly structured network which learnsto generalise across syntactic structures in accordance with systematicity [9]. However,this approach is limited due to the amount of non-trainable internal structure required toenforce the appropriate generalisations. As discussed in Section 3.3 (and Henderson [15]),the SSN relies on temporal synchrony to produce a similar e�ect, which renders the gen-eralisation ability of SSNs largely independent of its speci�c architectural details. Indeed,in experiments training a type B SSN on the same recursive grammar to that of Hadleyand Hayward [13], a similar ability to generalise across syntactic structures was demon-strated [21, 22].As the above discussion makes clear, the identical SSN network learns e�ectively withboth a speci�c toy grammar and a corpus of naturally occurring text. This is because theadded ability to generalise over constituents allows the SSN to generalise in a more lin-guistically appropriate way, and thus deal with the high variability in naturally occurringtext. This transfer from a toy domain to a real corpus of sentences sets the SSN apartfrom a number of other proposals for connectionist language learning, which tend to belimited to applications involving toy grammars alone. These include the approaches thatencode sentences recursively into a distributed representation, such as holistic parsers [18]or labelled-RAAMs [34]. The number of cycles in this recursive encoding depends on thesize of the parse tree, which means that the performance degrades as the complexity of thesentences increases. This makes it di�cult to apply these approaches to naturally occurringtext. In our SSN we address this speci�c problem by not attempting to encode everythinginto a distributed representation prior to extracting the parse tree, but by incrementallyoutputting pieces of the parse tree. This incremental approach to parsing presents a di�er-ent model of connectionist parsing, one more similar to classical deterministic parsers, asdescribed in Marcus [26], for example.6 ConclusionThis article has described the use of Simple Synchrony Networks (SSNs) for learning toparse samples of English sentences drawn from a corpus of naturally occurring text. Wehave described an input-output representation which enables the SSN to incrementallyoutput the parse tree of a sentence. This representation is important in demonstrating how aconnectionist architecture can manipulate hierarchical and recursive output representations.We have also introduced an important mechanism for improving the O(n2) speed of the basicSSN architecture to linear time. This mechanism, based on the concept of a short-term19
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