
Simple Synchrony Networks : Learningto Parse Natural Language withTemporal Synchrony Variable Binding�Peter C.R. Laney and James B. HendersonDepartment of Computer Science, University of ExeterPrince of Wales Road, Exeter EX4 4PT, UKfpclane,jamieg@dcs.exeter.ac.ukAbstractThe Simple Synchrony Network (SSN) is a new connectionist architec-ture, incorporating the insights of Temporal Synchrony Variable Binding(TSVB) into Simple Recurrent Networks. The use of TSVB means SSNscan output representations of structures, and can learn generalisationsover the constituents of these structures (as required by systematicity).This paper describes the SSN and an associated training algorithm, anddemonstrates SSNs' generalisation abilities through results from trainingSSNs to parse real natural language sentences.1 IntroductionTemporal Synchrony Variable Binding (TSVB) [1] extends the representationalability of a connectionist network to include entities. The original motivationbehind TSVB was for a network to represent variables and so carry out symbolicreasoning [1]. Henderson [2] argues that this extension further gives connec-tionist networks an inherent ability to learn generalisations across entities. Thisability allows TSVB networks to learn the kinds of regularities that arise froma compositional generative grammar, which [3] uses to describe the propertyof systematicity. In particular, with tasks involving language, TSVB networkswill generalise information learned about one syntactic constituent to othersyntactic constituents.This paper begins by describing the basic idea behind TSVB, which is thatwith pulsing units entities can be represented using the timing of pulses. Thepulsing binary-threshold units of [1] provide a connectionist model of struc-tures and symbolic reasoning, but are not suitable for training with standardalgorithms such as backpropagation [4]. To develop an architecture for TSVBnetworks that can use backpropagation, we start with the Simple RecurrentNetwork (SRN) architecture [5] and extend it with units that pulse. The re-sulting Simple Synchrony Network (SSN) architecture has two SRN compo-nents, one standard SRN that represents overall context, and one TSVB SRNthat represents a set of entities. This information is combined to compute theoutput for each entity. As for SRNs, SSNs can be trained using Backprop-agation Through Time [4]. Finally, we demonstrate the ability of SSNs to0This paper appears in the Proceedings of ICANN 1998, Sk�ovde, Sweden.ySupported by the Engineering and Physical Sciences Research Council, UK.

represent structure and learn generalisations over structural constituents withresults from experiments training SSNs to parse a corpus of natural languagesentences.2 Temporal Synchrony Variable BindingTemporal Synchrony Variable Binding [1] is a connectionist technique for rep-resenting entities. We will adopt the following central characteristics of TSVB:� the division of each time period into discrete phases,� pulsing units, to compute within each phase independently of other phases,� non-pulsing units, to compute across all phases, combining informationabout several entities.Thus in each time step the network cycles through the set of entities, usingpulsing units to compute about each entity independently. To communicateinformation between entities there are also non-pulsing units, which computeacross all phases and thereby represent information about the overall context.Being able to compute in terms of entities, overall context, and their interac-tions is a crucial feature of the architecture proposed below.The use of TSVB in a connectionist network has two important conse-quences. The �rst is that the output can represent structure. The activation ofoutput units in a particular phase can represent information about a particularconstituent in the structure, including its structural relationships to other con-stituents. The second consequence is that TSVB networks inherently generaliseinformation learned about one entity to other entities. Because di�erent times(i.e. phases) are used to represent di�erent entities, and the same link weightsare used at every time, the same learned information is applied to every en-tity. This argument is used in [2] to demonstrate that TSVB networks possessinherent systematicity [3].3 Simple Synchrony NetworksRather than starting with an existing TSVB architecture and making it com-patible with backpropagation, we choose to start with an existing backpropa-gation architecture and add TSVB. A natural choice is the Simple RecurrentNetwork (SRN) architecture [5]. This architecture already handles temporalsequences. An SRN accepts a sequence of input patterns and produces a se-quence of internal and output patterns. TSVB requires such sequences bothfor each entity and for the overall context. The known e�ectiveness of learningin SRNs implies that each of these sequences can be learned e�ectively, butthis is not su�cient, since the sequences are not all independent. The SimpleSynchrony Network (SSN) architecture minimizes the amount of interactionbetween these sequences while maintaining the generality of the computationsthat can be performed. This approach preserves the e�ectiveness of learning inthese networks.3.1 The architecture and training algorithmFigure 1 illustrates a SSN architecture. The two recurrent components atthe bottom are each SRNs (minus their output layers). The lefthand SRN

Input
 Context
Entity

ContextInput
Gestalt

Combination

Output

Figure 1: A Simple Synchrony Network. The pulsing units are depicted asseveral units stacked on top of each other, because they store activations forseveral entities.(the entity component) consists of pulsing units, and computes a distributedrepresentation of each entity independently. The righthand SRN (the gestaltcomponent) uses nonpulsing (i.e. standard) units, and computes a distributedrepresentation of the overall context. Thus as a SSN processes a sequence ofinputs, it computes one sequence of representations for each entity plus onesequence of representations for the overall context. After each step, the upperhidden layer combines the overall context representation with each entity'srepresentation to produce the output pattern for each entity.What allows a SSN to learn e�ectively is the way it combines informationbetween the separate sequences of representations computed by its SRN com-ponents. One type of interaction is when information about entities is neededto compute the overall context. In [1] this is done with logical and and orcombinations across entities, but these cannot be used with backpropagation.Continuous combination operations, such as summation, do not in practice gen-eralise to greater or fewer numbers of entities, and thus cannot be used. Thesolution adopted in SSNs is to push these dependencies down into the inputlayer. Any information that is input about an entity and might be relevant tothe overall context must also be represented in the input to the gestalt compo-nent. As long as information about a �xed number of entities is input at anyone time (in our application this is one), there will be no need for the inputrepresentation to generalise over di�erent numbers of entities.Another type of interaction between sequences is when information aboutthe overall context is needed to compute information about entities. One ap-proach would be to allow this interaction to take place at every time step.However this would lead to many di�erent times at which any given piece ofinformation could be communicated. In practice these alternatives compete,leading to ine�ective learning. The remaining possibilities are communicationat the time when the information is input and/or communication at the timewhen the information is needed in the entity's output. All these options aresomewhat e�ective, but the latter appears to work the best, so that is the one

used in this paper. This is done with the combination layer shown above thetwo SRN components.The only remaining type of interaction is between the sequences of represen-tations for di�erent entities. Because we do not presuppose any organizationto the set of entities (such as a stack or a tape), it is su�cient for all suchinteraction to go through the representation of the overall context, as coveredabove.SSNs are trained using the same algorithm as can be used for SRNs, Back-propagation Through Time (BPTT) [4]. BPTT works by unfolding the networkinto one copy per time period, and then applying standard backpropagation tothe resulting feed-forward network, using weight sharing to keep the di�erentcopies of the network the same. For SSNs, within each time period's copyBPTT must also make a copy of the pulsing units for each entity. Therefore,each link to or from a pulsing unit will be duplicated once per time period andonce per entity. During backpropagation training the weight for each such copyof the link must be updated in an identical fashion.3.2 Representing structureOne of the strengths of the SSN architecture is its ability to identify entities inits output, and so output a representation of structure. To illustrate this weconsider a SSN computing the syntactic structure for the sentence \John lovesa woman", as shown in �gure 2. Each constituent in the syntactic structure isrepresented as an entity, and the structure is output as a set of relationshipsbetween these entities. The pattern of input-output discussed here is used inthe experiments reported in the next section.Firstly, we must de�ne what is to be input to the entity and gestalt compo-nents of the SSN. In language processing, every word is relevant to the overallcontext. Therefore, every word is input to the gestalt component of the SSN,one word per time period, as is done with a standard SRN. Further, each wordmay introduce a new syntactic constituent. Therefore each word is also inputto the entity component of the SSN in a previously unused phase.The syntactic structure for a sentence can be speci�ed incrementally usingthree output units, Grandparent, Parent and Sibling. This output format isillustrated in �gure 2 as a sequence of pieces of structure. When accumulatedtogether these pieces completely specify the entire syntactic structure, as shownat the bottom of �gure 2.There are two cases to this output format. If the current word's constituenthas already been introduced by another word, then the Parent output identi�esthat constituent from those that have been previously introduced, as shown for\woman" in �gure 2. Otherwise the Parent output identi�es the constituentthat was introduced with the current word. In this case the structural positionof this parent constituent must also be identi�ed. If the parent constituent ispart of a constituent that has already been introduced, then the Grandparentoutput unit identi�es that constituent during the current time period, as shownfor \a". If the parent constituent is part of a constituent that is introducedlater, then the Sibling output unit will identify the current parent constituentduring the time period when the later constituent is introduced. This is shownin the period for \loves", which identi�es the parent of \John" as the Sibling.

loves

y

aJohnloves

w

x

w

John loves

x

w

x

w

John womana

y

lovesJohn

John(w)
John

loves(x)
loves

yOutput

Accumulated
Output

entity:
gestalt:

Grandparent:

Sibling:
Parent:

Input

a

w

John

x

w

x

a(y)
a

woman(z)

y

woman

woman

Figure 2: The input and output information for \John loves a woman". Phasesare shown as variables (w,x,y, and z).4 Learning to parse natural languageAlthough connectionist networks have been applied to tasks involving languagelearning in the past, there has been no convincing application to learning toparse naturally occurring sentences. We have conducted experiments in train-ing SSNs to parse natural language using the Susanne1 corpus as a source ofpreparsed sentences taken from newspaper reports. This section describes theseexperiments and our current results.2We used the input format described above, but with part-of-speech tags asthe input instead of words. For example, the sentence \John loves a woman"would be input as \NP VVZ AT NN". This reduces the overhead of trainingbecause less data is required, since there are many fewer part-of-speech tagsthan words. Both the entity and gestalt inputs use a localist representationof each letter within a part-of-speech tag. Since the part-of-speech tags are atmost three letters long, we have three banks of input units per component. Thetarget output is an unlabeled parse tree, represented with the output formatalso described above. To convert from the continuous outputs of the networkto a discrete structure, we �rst take maximums across competing outputs, thenconvert the resulting structural relationships to a set of constituents.We compare our results to the current state-of-the-art for mapping wordtags to labeled parse trees, which are Probabilistic Context Free Grammars [7].The standard evaluation of performance compares the constituents output bythe model (the SSN in this case) to the constituents in the corpus, to determinethe percentage of the output constituents that are correct (precision), and per-centage of the correct constituents that are output (recall). Reported �guresfor both precision and recall are around 75% [7].We trained a range of SSNs on a training set formed from sentences of lengthless than thirty words (13,523 words in total). Each network was trained untilthe sum-squared error reached a minimum, and results obtained on a cross-validation set. The cross-validation set consisted of 4,700 words with an average1The Susanne corpus is sponsored by the Economic and Social Research Council (UK)with the University of Sussex as grantholder.2These and some related experiments are discussed in more detail in [6].

(unrestricted) sentence length of 21.6 words. The best two of these networkswere then selected for testing. They each had 20 units in their gestalt and entityhidden layers, but one had 10 units in its combination layer, and the other had20. The test set consisted of 4,602 words with an average sentence length of26.2 words. The average performance of these two networks on the training setwas 71.6% precision, 75.8% recall, on the cross-validation set, 68.2% precisionand 73.8% recall, and on the test set, 62.6% precision and 69.4% recall.5 ConclusionThis paper has presented a new connectionist architecture, Simple SynchronyNetworks (SSNs), which is trained using an extension of BackpropagationThrough Time. SSNs combine the characteristics of Simple Recurrent Net-works to learn about patterns across time with the characteristics of TemporalSynchrony Variable Binding to represent entities. We demonstrate the abil-ity of SSNs to represent structure and generalise learned information acrossentities with experiments training SSNs to parse natural language sentences.We conclude that the SSN is a simple but signi�cant new architecture extend-ing the impressive generalisation abilities of connectionist networks in patternmatching tasks to the more complex domains typical of higher level cognition.References[1] L Shastri and V Ajjanagadde. From simple associations to systematic rea-soning: A connectionist representation of rules, variables, and dynamicbindings using temporal synchrony. Behavioral and Brain Sciences, 16:417{494, 1993.[2] J Henderson. A connectionist architecture with inherent systematicity. Pro-ceedings of the Eighteenth Conference of the Cognitive Science Society, LaJolla, CA, 1996.[3] J A Fodor and Z W Pylyshyn. Connectionism and cognitive architecture:a critical analysis. Cognition, 28:3{71, 1988.[4] D E Rumelhart, G E Hinton, and R J Williams. Learning internal repre-sentations by error propagation. In D.E. Rumelhart and J.L. McClelland,(eds.), Parallel Distributed Processing, Vol 1. MIT Press, Cambridge, MA.,1986.[5] J L Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.[6] J Henderson and P Lane. A connectionist architecture for learning to parse.Proceedings of the Association of Computational Linguistics, 1998.[7] E Charniak. Statistical Techniques for Natural Language Parsing. AI Mag-azine, forthcoming.

