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AbstractDescription Based Parsing in a Connectionist NetworkJames Brinton HendersonMitchell MarcusRecent developments in connectionist architectures for symbolic computation have made it pos-sible to investigate parsing in a connectionist network while still taking advantage of the largebody of work on parsing in symbolic frameworks. This dissertation investigates syntactic pars-ing in the temporal synchrony variable binding model of symbolic computation in a connectionistnetwork. This computational architecture solves the basic problem with previous connectionist ar-chitectures, while keeping their advantages. However, the architecture does have some limitations,which impose computational constraints on parsing in this architecture. This dissertation arguesthat, despite these constraints, the architecture is computationally adequate for syntactic parsing,and that these constraints make signi�cant linguistic predictions. To make these arguments, thenature of the architecture's limitations are �rst characterized as a set of constraints on symboliccomputation. This allows the investigation of the feasibility and implications of parsing in the ar-chitecture to be investigated at the same level of abstraction as virtually all other investigations ofsyntactic parsing. Then a speci�c parsing model is developed and implemented in the architecture.The extensive use of partial descriptions of phrase structure trees is crucial to the ability of thismodel to recover the syntactic structure of sentences within the constraints. Finally, this parsingmodel is tested on those phenomena which are of particular concern given the constraints, andon an approximately unbiased sample of sentences to check for unforeseen di�culties. The resultsshow that this connectionist architecture is powerful enough for syntactic parsing. They also showthat some linguistic phenomena are predicted by the limitations of this architecture. In particular,explanations are given for many cases of unacceptable center embedding, and for several signi�cantconstraints on long distance dependencies. These results give evidence for the cognitive signi�canceof this computational architecture and parsing model. This work also shows how the advantagesof both connectionist and symbolic techniques can be uni�ed in natural language processing appli-cations. By analyzing how low level biological and computational considerations inuence higherlevel processing, this work has furthered our understanding of the nature of language and how itcan be e�ciently and e�ectively processed.
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Chapter 1IntroductionSeveral properties of connectionist networks have made them popular for both cognitive modelingand technological applications. They have e�ective learning algorithms, can combine multiple softconstraints, perform massively parallel computation, are sometimes biologically motivated, andoften exhibit other desirable characteristics such as graceful degradation. However, traditionalconnectionist architectures are unable to capture the generalizations that arise as a result of thecompositional nature of many phenomena (i.e. systematicity) (Fodor and Pylyshyn, 1988). Theparadigmatic example of such a phenomena is natural language syntax. Because of this limitation,previous e�orts to use connectionist networks for parsing natural language have not made muchprogress. Fortunately, recent work on extending traditional connectionist architectures to supportsymbolic computation (Shastri and Ajjanagadde, 1993) has produced a connectionist computa-tional architecture that can directly express generalizations over constituents, thereby capturingsystematicity within the connectionist architecture. This dissertation investigates using this con-nectionist computational architecture for recovering the syntactic structure of natural languagesentences. The extension (temporal synchrony variable binding) is shown to be su�cient to makeconnectionist networks powerful enough for syntactic parsing. This demonstration makes it possibleto apply the advantages of connectionist networks to natural language processing. In addition, thearchitecture is constrained in ways that make signi�cant predictions about the nature of language.Thus the investigation of natural language processing in this computational architecture is not amere question of implementation.Like other purely connectionist architectures, Shastri and Ajjanagadde's architecture (1993) usesmany simple computing units that communicate with each other using only an output activationvalue. The pattern of activation over these units represents the predications that are being stored(or their probabilities), and the interconnection pattern (i.e. the links) implements the rules of thesystem. Since a given link connects a �xed pair of units, the rules of the system are speci�c tothe information represented by di�erent units, but generalize across information represented bydi�erent times. As in recurrent connectionist networks, this property can be used to implementrules that are independent of absolute position in the input sequence by presenting the inputsequentially in time. For example, the same link can be used to test whether the next word is anoun whether that word is the �rst or tenth word in the sentence. Unfortunately, other recurrentnetworks only use time to represent input and computation sequence, so rules do not generalizeover any other type of information. This is a problem because rules must be able to generalize overphrase structure constituents in order to capture the compositional aspects of natural languagesyntax. For example, a rule which computes the e�ect of an adjective on its noun phrase shouldn't1



care if the noun phrase is the subject or the object of the sentence. To capture these generalizations,a network needs to represent constituent identity using time, not space. Shastri and Ajjanagadde(1993) provide exactly such a mechanism, called temporal synchrony variable binding. Coursegrained temporal distinctions are still used to represent the sequence of inputs and computations,but in this architecture, �ne grained temporal distinctions are used to represent variables. Sincein the parser variables refer to phrase structure constituents, temporal synchrony variable bindingallows the compositional aspects of natural language syntax to be directly expressed.Shastri and Ajjanagadde (1993) show how this connectionist architecture (henceforth the S&Aarchitecture) can be used to perform the very fast common sense reasoning they call reexive rea-soning. They argue that the S&A architecture is biologically motivated, supports the massivelyparallel use of knowledge, supports evidential reasoning, has psychologically plausible limitations,and supports symbolic computation. This dissertation investigates how this same architecture canbe applied to recovering the syntactic constituent structure of natural language sentences. Thereare two basic questions to be asked about syntactic parsing in the S&A architecture: are the ar-chitecture's abilities adequate to account for what people are able to do, and and do its limitationshelp explain what people are not able to do. In other words, is the S&A architecture computation-ally adequate for syntactic parsing, and does it impose linguistically signi�cant constraints? Thisdissertation provides an a�rmative answer to both these questions.At the current stage of this investigation, the question of computational adequacy is the mostimportant one. For no other connectionist parser has a convincing argument been made that itis powerful enough to handle the complexities of natural language. In addition, a demonstrationof computational adequacy is a prerequisite to a demonstration of linguistically signi�cant con-straints. If the constraints of the architecture prevent it from being able to parse good sentences,then its inability to parse any bad sentences is not very signi�cant. Thus the primary concern ofthis document is to show that the S&A architecture is computationally adequate for syntactic pars-ing. Because of the computational characteristics and biological motivations of this connectionistarchitecture, such a demonstration is interesting in and of itself.A demonstration of computational adequacy would ensure that a syntactic parser could be imple-mented in the S&A architecture, but it would not by itself be informative for higher level theoriesof language. To demonstrate that connectionist networks can be more than mere implementations,the limitations of the architecture have to be shown to make signi�cant predictions about the natureof language. While the linguistic implications of the constraints imposed by the S&A architecturehave not been investigated to the same extent as the issue of the architecture's computational ad-equacy, some linguistic phenomena can be explained in terms of constraints on the parsing modelwhich are motivated by the limitations of the architecture. This dissertation lays the ground workfor more such investigations in the future.The arguments for the computational adequacy and linguistic signi�cance of the S&A architectureare based on an analysis of the limitations of the architecture. Because temporal synchrony variablebinding allows computation in this architecture to be characterized in terms of traditional symboliccomputation,1 the limitations of the architecture can be characterized as a set of computationalconstraints on symbolic computation. This method prevents the irrelevant details of connectionistnetworks from interfering with the discussion, and it allows previous work on computationally1By symbolic computation I mean the use of abstract representations of entities, their properties, and the general-izations about these properties, as in, for example, predicate calculus. I do not mean to exclude the use of continuousvalued parameters (such as probabilities), or the use of feature decompositions to describe entities (as in distributedconnectionist representations). 2



constrained parsing to be used. Given this set of computational constraints, a parsing model isdeveloped which is designed to comply with these constraints. This parsing model is then testedon its ability to handle the phenomena which are of particular concern given these constraints.Showing how a parser can handle each of these phenomena demonstrates that the limitations of thearchitecture do not prevent syntactic parsing, and thus that the architecture is computationallyadequate for syntactic parsing. To ensure that the analysis of what phenomena to include in thesetests is not awed, a test on an essentially unbiased data set is also analyzed. The results fromthe phenomena-speci�c tests also indicate what kinds of sentences the computational constraintsprevent the parser from being able to handle. These results show that the limitations of thearchitecture make signi�cant linguistic predictions.The remainder of this chapter starts with a discussion of the motivations for this work. This isfollowed by an overview of the other chapters in this dissertation. Section 2 starts with a briefdiscussion of the limitations of previous connectionist architectures. Then the S&A architecture isdescribed, and the constraints which it imposes on the parser are characterized. These constraintsare combined with constraints on the parser's input and output to form the basic requirementsfor the parsing model, which are then compared to previously proposed computational constraintson natural language. In section 3 the parsing model is described. First the parser's grammaticalframework is given, then the parser's design, and then the connectionist implementation is brieydescribed. Section 4 outlines the argument that this parser demonstrates the adequacy and lin-guistic signi�cance of the S&A architecture for syntactic parsing. This argument involves testingthe parser on data pertaining to expressing phrase structure analyses, recovering long distancedependencies, representing local ambiguities, staying within the parser's resource bounds, and thediversity of phenomena in language. The last section summarizes this chapter and gives an outlineof the rest of this dissertation.1.1 MotivationsThere are two types of motivations for the work done in this dissertation. One is that this workuses independently motivated architecture-level constraints to make predictions about the nature oflanguage. The di�culty in justifying one set of computational constraints over another has limitedthe signi�cance of investigations of computationally constrained parsing. The other is that this workanswers technological questions about combining connectionist architectures with symbolic theoriesof sentence processing. Previous investigations of connectionist parsing have typically ignored, oreven denied the signi�cance of, the substantial body of existing work on natural language.1.1.1 Investigating Architecture-Level ConstraintsWhile most investigations of natural language have concentrated on the nature of grammars, thereare undoubtedly some characteristics of language which are best described in terms of the compu-tations which people perform to process language. Unfortunately, the nature of these computationsis relatively unknown. This is largely because we have known so little about the nature of the com-putational device (namely the brain) on which these computations are performed. Without makingassumptions about the nature of this device, any investigation of the computational constraints onlanguage is limited to using asymptotic complexity arguments. Asymptotic complexity measuresare too course grained to be adequate for investigating these constraints. Church (1980) showed3



that natural language2 is �nite state. This is the strongest claim one can make using asymptoticcomplexity arguments, and it still does not make any predictions about speci�c natural languagesentences. Thus any further progress requires making assumptions about the nature of the com-putational mechanisms our brains use to process language. While such assumptions have beeninvestigated, it is di�cult to decide which of the large variety of possible constraints to investigate.Also, when a linguistically signi�cant computational constraint is found, it is di�cult to argue thatthe constraint is due to the limitations of the human language processor, and not due to otherfactors.This dissertation makes a very speci�c assumption about the computational device used in pro-cessing language, namely that it functions in the manner described in the Shastri and Ajjanagadde(1993) connectionist computational architecture. In addition to supporting symbolic computation,this architecture is computationally constrained. It is these constraints which form the basis ofthis investigation of the computational constraints on language. While the constraints themselvescould be assumed independent of this particular architecture, the architecture provides a basis forselecting one set of constraints over another. Because there are a number of motivations for thisarchitecture which are independent of the linguistic consequences of its constraints, the linguisticconsequences can be said to be explained by these computational constraints. Without such in-dependent motivations, computational constraints become just another mechanism for describinglinguistic data.Investigating independently motivated architecture-level constraints is not only important for thestudy of the nature of language, it is also important for natural language processing applications.People are extremely fast and accurate in recovering the syntactic structure of sentences, even ifthe sentence's conceptual content is di�cult to understand. Currently, the properties of naturallanguage which make this e�ciency and accuracy possible are not well understood. While it istheoretically possible to discover these properties using only considerations of current arti�cialcomputation technology and asymptotic complexity measures, such e�orts have not been fullysuccessful to date. Because natural languages have undoubtedly evolved (genetically or historically)to allow them to be e�ciently and accurately processed by our brains, a promising alternativeapproach is to use biological considerations to investigate these properties. This is the approachtaken here. The use of biological considerations in this investigation does not limit the applicabilityof its results to biologically motivated computational architectures. Once we have discovered theproperties of natural language which make e�cient and accurate processing possible, these insightscan be applied to natural language processing applications implemented in any computationalarchitecture.31.1.2 Combining Connectionism with Linguistic TheoriesThe kinds of problems which connectionist models have been successful with are largely orthogonalto the kinds of problems which symbolic theories of language have been successful with. Con-nectionist architectures have been successful at modeling processes which involve learning, andcombining, multiple sources of soft constraints. Linguistic theories have been successful at model-ing phenomena which involve manipulating complex, discrete representations. Processing naturallanguage involves both these types of problems. Recently the natural language processing (NLP)2By \natural language" I mean pretheoretic observable communication via language. I do not mean the competenceabstraction of language which is prevalent in most linguistic work.3The argument made in this paragraph is analogous to one made by Shastri to motivate the investigation ofreexive reasoning in the S&A architecture (personal communication).4



community has been very interested in statistical models, precisely because the hardest remainingissues in language processing are those which have not been addressed with symbolic methods.Most connectionist researchers have not come to the reciprocal realization. The lack of work com-bining connectionist methods with traditional NLP methods has prevented research on NLP frommaking use of the strengths of connectionism. The work presented in this dissertation lays thegroundwork for making connectionist methods available for NLP researchers.The work in this dissertation concentrates on the those aspects of syntactic parsing which otherconnectionist approaches have had trouble with. Because of this, this investigation does not takefull advantage of the abilities of connectionist networks. It does, however, make it possible to takeadvantage of these abilities in future work. In particular, the ability of connectionist networks tolearn how to combine multiple sources of soft constraints would be very useful in both grammarinduction and disambiguation. Grammar induction can be done by starting with a broad class ofgrammar entries, and removing or keeping them based on their usefulness in parsing a trainingset. Connectionist learning algorithms do exactly this, except they decrease or increase weightsrather than removing or keeping grammar entries. Decreasing the weight of a grammar entryto zero removes it from the grammar. Such training also subsumes the parameter estimationneeded to do disambiguation. Thus both grammar induction and disambiguation can be done byapplying connectionist learning techniques to train that portion of the network which implementsthe grammar. More discussion of this future work is given in section 7.4.1.2 Overview of the Computational ConstraintsAs discussed above, this dissertation argues for the computational adequacy and linguistic sig-ni�cance of the Shastri and Ajjanagadde connectionist computational architecture. While thesearguments involve the development of a speci�c parsing model which is implemented in the prim-itive computational devices of the architecture, that level of description is too detailed to providea useful basis for discussing the motivations for, and implications of, many aspects of the parser'sdesign. Fortunately, computation in this architecture can be characterized in terms of symboliccomputation, which has been found to be an appropriate level of abstraction for this type of investi-gation. This prevents the irrelevant details of the architecture from interfering with the investigationof parsing issues.4 However, in order to do the investigation at the level of symbolic computation,the characteristics of the architecture which are relevant for parsing need to be characterized atthat level. These characteristics form a set of constraints on symbolic computation. These com-putational constraints, plus the constraints from the nature of the parsing task, form the set ofcomputational constraints on syntactic parsing which will be investigated in this dissertation.This section is an overview of the discussion in chapter 2. It outlines the computational constraintson the syntactic constituent structure parsing model. The discussion starts with a brief character-ization of the computational constraints imposed by the architectures used in other investigationsof connectionist parsing, and what empirical investigations would be needed to argue that theseconstraints do not prevent such parsers from ever being adequate. Then a description of how theS&A architecture supports symbolic computation is given. This mechanism has some limitationswhich constitute the primary constraints on the parsing model developed in this dissertation. Theseconstraints are characterized and then combined with constraints on the parser's input and output.4This approach represents a departure from standard connectionist methodology. Even if the reader is not con-vinced by the above argument, hopefully they will �nd the results of this investigation su�cient to justify thisdivergence. 5



The resulting set of constraints require that the parser use bounded memory, not use disjunc-tion, limit the storage and processing of relations, produce incrementally interpretable output, andparse in quasi-real time. The feasibility and implications of parsing within this set of constraintsare the central concern of this dissertation. This section concludes with a discussion of how theseconstraints relate to previously proposed computational constraints on natural language.1.2.1 Constraints on Previous Connectionist ParsersWhile it is unreasonable to expect an argument for the adequacy of a computational architectureto include a complete natural language parser implemented in that architecture, it is reasonable toexpect such an argument to address those parsing issues which are of particular concern given theconstraints imposed by the architecture. Unfortunately, previous investigations of connectionistparsing have not met this criteria. All these investigations use connectionist architectures with twomajor limitations: they are �nite state, and they can not factor the representation of constituentidentity from the representation of constituent features.The �rst limitation requires that a parser be able to parse in bounded memory. While there areseveral ways to do this, it is not clear how it could be done for the representations used in theseparsers. In particular, since the representations do not distinguish constituent identity informationfrom constituent feature information, they can not take advantage of the fact that the set of featuresneeded during a parse is �xed, while the set of constituents needs to be dynamically determined.Since these parsers have not been tested with sentences which are too long for the whole analysisto be represented in the network, we don't have any evidence that such sentences could be parsede�ectively.The constraint that the representation of constituent identity can not be factored from the repre-sentation of constituent features is a more serious challenge than the previous one.5 There are twoimplications of this constraint. First, conating these two dimensions of information results in avery large number of primitive features. While it is theoretically possible for a network to supportthis many primitive features, none of the previous connectionist parsers have been tested on asu�ciently diverse or complex set of sentences to determine whether it is tractable. The secondimplication of not being able to factor features from constituents is that constraints or rules whichare learned for a pattern of features for one constituent do not generalize to the same pattern of fea-tures for another constituent. Some researchers claim this as an advantage, because these networksalways take the \context" of each constituent into consideration. However, it is the di�culty thesenetworks have with abstracting away from irrelevant context information which prevents them fromtaking advantage of the compositional aspects of natural language. This inability to generalize inthe optimal way also means that they must be trained using a very large and particularly wellbalanced set of sentences. Perhaps there are solutions to this problem, but until connectionistparsers implemented in architectures with this limitation have been tested on a large enough andcomplex enough set of sentences, there is little reason to believe that they can be adequate forparsing natural language. A discussion of speci�c parsing models is given in section 2.1.5This constraint is due to the lack of a mechanism for doing dynamic variable binding. This process will bediscussed in the next section. 6



1.2.2 The Connectionist ArchitectureThe Shastri and Ajjanagadde connectionist computational architecture has several characteristicswhich make it well suited for investigating natural language parsing. As argued in (Shastri andAjjanagadde, 1993), the architecture is biologically motivated, supports the massively parallel useof knowledge, supports evidential reasoning, has psychologically plausible limitations, and supportssymbolic computation. For our purposes the last of these properties is the most important. It isthis ability which allows the representation of constituency to be factored from the representationof features.To support symbolic computation, it must be possible to represent, and compute with, multipleproperties of multiple things. Such a representation must have a mechanism for distinguishingwhich properties are for which things. This is called the variable binding problem. For example, torepresent the situation on the top left of �gure 1.1, we need to represent that the square is stripedand the triangle is spotted. This can be done with the following logical formula.9x; 9y; striped (x) ^ square (x) ^ spotted (y) ^ triangle (y)In this formula, the variables are used to represent the bindings between predications. The name\x" does not mean anything in and of itself, but the sharing of it represents that the thing whichis striped is the same as the thing which is square, and possibly di�erent from the thing which isspotted and a triangle. This information can be represented in the S&A architecture as shown in therest of �gure 1.1. As in many connectionist architectures, di�erent predicates are represented withdi�erent units.6 The pattern of activation over these units represents the predications which aretrue (or the probability of their truth). The problem with this simple representation is that there isno representation of which predicates are true of which thing. To represent the depicted situation,all four units would have to be active, but then we would not know whether it is the square or thetriangle which is striped. The S&A architecture solves this problem by using units which, ratherthan producing sustained output, produce a pulse train of activation.7 If two units are pulsingsynchronously, then they are representing predications about the same thing, and if they are notpulsing synchronously, then they are representing predications about possibly di�erent things. Thusthe temporal synchrony of unit activation is used to represent the bindings between predications,just as variables are used to do this in logical formulae. This mechanism is called temporal synchronyvariable binding, and it is the core feature of the S&A architecture. For the purposes of thisinvestigation I will be assuming that these units all �re at the same frequency, so temporal synchronyreduces to having the same phase in the periodic pattern of activation. These phases, then, areequivalent to variables, as shown in �gure 1.1. In the parsing model discussed below, variables referto phrase structure constituents, so these phases represent constituent identities.As in other connectionist architectures, computation in the S&A architecture is done using linksbetween units. Links multiply the output value of their input unit by their weight to get theiractivation. Some links provide this activation as input to another unit, where it is summed withthe activation from other input links. The S&A architecture also allows links which use theiractivation to inhibit the activation of another link. A primary link's activation is multiplied by oneminus the activation of each inhibiting link.8 Sets of interconnected links are used to implement6To prevent confusion, I will refer to nodes in a connectionist network as \units", and nodes in a phrase structuretree as \nodes".7There are other kinds of units which do produce sustained output. These units represent predications about thesituation as a whole, rather than information about individual entities.8The use of inhibitory links is necessary to implement signal gates that don't introduce signi�cant propagationdelays, and to allow dynamically calculated probabilities to be multiplied.7
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bounded precision, and units can only maintain periodic �ring for a bounded range of frequen-cies, so only a bounded number of distinguishable phases can �t in one period. Thus predicationscan only be stored for a bounded number of variables. From biological evidence this bound is atmost ten, probably a little less (Shastri and Ajjanagadde, 1993). For this investigation the boundwill be assumed to be ten.10Another signi�cant limitation of the S&A architecture is that it has no explicit representation oflogical connectives. Thus only the default logical connective can be used. Conjunction is the mostuseful connective for syntactic parsing, so it will be used as the default connective. This means thearchitecture cannot explicitly represent a disjunction of predications. However, it can implicitlyrepresent disjunctive information, and disjunction can be manifested in parallel computations. Therules of the network or an external observer can give a disjunctive interpretation to a predicate,but in terms of the explicit representation, the predications will still simply be conjoined withother predications. Also, the lack of a predication can be interpreted as a disjunction between thatpredication and other incompatible predications, but again the predications which are speci�ed aretreated as conjoined. The parallel computation of pattern-action rules can also manifest disjunction,in that di�erent patterns can be doing tests which pertain to di�erent possible continuations of thecomputation. Thus if a bounded amount of disjunction is needed for a bounded amount of time,it can be eliminated by compiling all that computation into one pattern-action rule for each of thedisjuncts. These computations, however, must be atomic, in that they cannot store intermediatestate, and thus cannot be composed of multiple steps. This limits the feasibility of this method toonly short computations, although there can be a large number of disjuncts. As will be discussedbelow, the inability to explicitly represent disjunction means a parser must be deterministic, asMarcus (1980) proposed.The remaining limitations of the S&A architecture are due to the fact that temporal synchronyvariable binding only adds one additional dimension for representing information. This dimension(�ne grained temporal synchrony, or phase) allows the e�cient storing and processing of informa-tion about individual variables, but relations between variables require additional representationaldimensions for each additional argument position in the relation. This is analogous to the situationwhich traditional connectionist architectures are in when they try to represent unary predications.The solution to the need for additional representational dimensions is to use the dimensions whichare available more than once. Traditional connectionist architectures (implicitly or explicitly) usethe space dimension (i.e. unit identities) more than once. This technique was formalized by Smolen-sky in his tensor product variable binding mechanism (Smolensky, 1990). This is also the techniqueused in the S&A architecture for representing relations between variables. This means that theS&A architecture has the same problems with storing and processing relations between variablesas traditional architectures have with storing and processing all predications over variables. Theseproblems are characterized in two additional constraints imposed by the S&A architecture, one onstoring relations, and one on processing relations.The problem with storing relationships between variables using multiple spatial dimensions is thatit requires more units and it adds complexity in modifying and accessing the stored relations. Tocontrol these costs, Shastri and Ajjanagadde (1993) propose that at most three instantiations ofa relation can be stored at any one time. This adds one additional dimension with three distinctvalues. This dimension represents bindings between sets of variables, where each variable in each10For the data addressed and representations used in this dissertation, this bound could be reduced to nine. Thisis interesting because nine is the maximum of the robust bound on human short term memory of seven plus or minustwo (Miller, 1956). However, some additional data needs to be found and used for testing before such a precise claimis made. 9



set is related to each variable in the other sets. The constraint requires that no more than threesuch bindings be stored at any one time. For example, r(a; b) ^ r(c; d) ^ r(e; f) ^ r(g; h) couldnot be stored, but r(a; b) ^ r(a; d) ^ r(e; f) ^ r(g; h) could, because the �rst two relationships canbe represented with a single binding between the sets fag and fb; dg. In the general case, binaryrelations would require ten such bindings, since ten is the maximum number of variables in thememory.It is possible to implement rules that manipulate relationships between variables using one copy ofthe rule for each of the three bindings for the relation, but this would require an additional mech-anism to be added to the architecture. Because rules (unlike storage) have adjustable parameters,and connectionist learning algorithms are spatially local, implementing a rule in multiple copieswould require a mechanism for ensuring that the weights of the links in the di�erent copies are thesame. While such weight sharing is easy to do from outside the the architecture, currently thereis no biologically motivated way to do it within the architecture. Thus a single rule needs to beimplemented with a single pattern of links. It is possible to time-multiplex these links across arelationship's bindings (as is done for variables), but such rules would then take up to three timesas long to apply, and this would require circuitry to sequence through the bindings. If we don'tallow this method either, then rules cannot directly manipulate relationships between variables.Information about variables is available one variable at a time, and rules are implemented withlinks, which have no memory, so rules must apply to each variable independently. Thus relationsmust be set and accessed via unary predicates. For example, calculating long distance dependen-cies requires information about what phrase structure nodes are possible \gap" sites for \trace"nodes. Because (as it turns out) only one trace node needs to be involved in this calculation at anygiven time, this information can be accessed using one unary predicate identifying this unique tracenode, and one unary predicate specifying what nodes might be the gap for the unique trace node.The calculation itself must be done using these unary predicates. Calculations, such as this one,which involve multiple variables can be done despite the fact that individual rules must apply toeach variable independently. In addition to information about variables, the network's activationpattern represents information about the situation as a whole. Calculations which involve multiplevariables can be done using di�erent rules to set and test predications about the situation as awhole. This was illustrated in �gure 1.1, where danger was set based on information about x, andthen tested to determine information about y. Because communicating information between vari-ables using constant predicates does not allow the identity of a variable to be communicated, thistechnique still does not permit computations which require the manipulation of pairs of variables.This requirement that rules apply to each variable independently is a form of locality constraint oncomputations. While this constraint has no precedent in work on syntactic parsing, it turns out tohave a number of signi�cant linguistic implications.A model of syntactic parsing in the S&A architecture needs to comply both with the constraintsfrom the architecture, and with requirements from the nature of the parsing task. The laterconstraints are imposed by the environment which provides the input to the parser, and by themodules which interpret the output of the parser. The words which are input to the parser becomeavailable one at a time, in the order in which they appear in the sentence. Thus the parser mustaccept incremental input. For spoken language, and to a large degree in reading, the time betweenthe input of each word is bounded. Thus the parser must only take a bounded amount of time perword. In other words, the parser must parse in quasi-real time.1111Because of the relationship between the architecture and biological mechanisms, biological evidence can be usedto determine whether the parser can parse in real time, not just quasi-real time. Such a claim requires estimates ofparsing time in terms of actual seconds, not just computation steps. The link between computation steps and seconds10



The modules which receive the output of the parser need to compute the sentence's interpreta-tion incrementally. In order to provide for incremental interpretation, the parser's output must beincremental and monotonic. If the output isn't monotonic, then the interpreter can't make commit-ments on the basis of the output without risking having to retract those commitments. While suchretractions do occur under some circumstances, I assume that there is always some evidence thatsomething has gone wrong. Typically the person will be consciously aware of a problem, althoughother evidence (such as regressions in eye movements) can also be used to determine these cases.Since we are concerned here with the normal case in which nothing goes wrong, the parser's outputmust be monotonic.Combining the externally imposed constraints with the constraints from the architecture, we get thefollowing complete list of the constraints on a model of syntactic parsing in the S&A architecture.The constraints from the architecture (1{4) are discussed in more detail in section 2.2.4, and theexternally imposed constraints (5{8) are discussed in more detail in section 2.3. As will be discussedin the next section, constraints 2, 7, and 8 mean the parser must be deterministic (in the senseof (Marcus, 1980)), and in subsequent discussion they will often be referred to as the determinismconstraint.1. at most ten variables stored at a time2. no explicit representation of disjunction3. at most three instantiations of relations4. rules apply to each variable independently5. incremental input6. quasi-real time7. incremental output8. monotonic output1.2.4 The Relationship to Previously Proposed ConstraintsIn additional to being consequences of using a particular independently motivated computationalarchitecture, these computational constraints are interesting because of their relation to previouslyproposed computational constraints on natural language. The �rst constraint is an example of abounded memory requirement. It has generally been assumed that at some level of abstraction thesyntactic parser has a bounded memory (Chomsky, 1959). Church (1980) showed that this con-straint applies at a level which takes into consideration performance constraints, such as restrictionson the depth of center embedding and on the availability of phrases for posthead modi�cation. Theparticular form of the bounded memory constraint given above has not previously been successfullyapplied to syntactic parsing, but it has extensive precedence in other investigations of cognition.Miller (1956) proposed a bound of seven plus or minus two on the number of things which can bestored in short term memory, and this result has been replicated for a surprising number of tasks.The bound given above is precisely the same form of constraint, and although here I'm assumingten things can be stored, Miller's results are within the resolution of the biological arguments whichis provided by the theory of how the primitives of the architecture are realized in neurons. This kind of extremely�ne grained prediction makes the potential of working in this architecture great. The parser presented here complieswith this real time constraint, but since the estimates of real speed are rather rough, I will concentrate on the clearerconstraint of quasi-real time. 11



are used to derive that bound. See (Shastri and Ajjanagadde, 1993) for a more extensive discussionof this relationship.Another interesting correlation with previously proposed computational constraints on naturallanguage is due to the restriction on disjunction and the requirement for incremental monotonicoutput. These constraints imply that the syntactic parser must parse deterministically. Thisconstraint was �rst proposed by Marcus (1980), and has been argued for by several researcherssince ((Church, 1980), (Marcus et al., 1983), (Berwick and Weinberg, 1984)). It requires thatthe parser deterministically pursue a single analysis. This means that multiple analyses can't bepursued in parallel, and that once the parser commits to an aspect of the analysis it can't retractthat commitment. Explicitly pursuing multiple analyses in parallel is equivalent to having explicitdisjunction in the representation of the analysis, which is ruled out by the second constraint above.The retraction of commitments is ruled out because all commitments must be immediately outputin order for the output to be maximally incremental, and once information has been output itcan't be retracted or the output would not be monotonic. Thus the determinism constraint can bederived from the independently motivated constraints that there be no explicit representation ofdisjunction and that the parser's output be incremental and monotonic.1.3 Overview of the Parsing ModelThe previous section identi�ed the characteristics of the Shastri and Ajjanagadde connectionistarchitecture which are signi�cant for syntactic parsing in terms of a set of constraints on symboliccomputation. Given this characterization, it is possible to make the argument for the adequacyand signi�cance of this architecture at the level of symbolic computation. This greatly simpli�esthe discussion of the relevant parsing issues, and it allows results from work in linguistics, com-putational linguistics, and psycholinguistics (which has almost all been done in terms of symbolicrepresentations) to be applied to this investigation. Because it is the computational constraints thatare relevant for determining adequacy and signi�cance, the need to comply with these constraintsdetermines what parsing issues are the focus of this investigation.The argument for the adequacy and linguistic signi�cance of the S&A architecture is made using aspeci�c example of a parser implemented in this architecture. This section gives an overview of thisparsing model, called a Neural-network Node Equating Parser (NNEP). This material is discussedin detail in chapters 3 through 5. The above constraints on the parser require that NNEP'srepresentation of phrase structure trees have certain characteristics. A grammatical frameworkwhich has these characteristics is described in the �rst subsection. Then the design of NNEP itselfis outlined. NNEP computes derivations from the grammar formalism, but the above constraintslimit what derivations can be computed. The connectionist implementation of this parsing modelis briey characterized in the fourth subsection.1.3.1 Representing Phrase Structure TreesThe constraints outlined in the previous section place several requirements on the parser's rep-resentation of grammatical information.12 First, because the parser must be deterministic, the12Since the constraints being investigated are computational in nature, the grammatical representation used here isdesigned primarily to support the needs of the parser. While it would be nice to have a single level of representationfor investigating both grammar speci�cations and parser representations, �nding a representation that merges the12



representation should allow the parser to avoid saying what it doesn't know. Following DescriptionTheory (Marcus et al., 1983), partial descriptions of phrase structure trees are used to satisfy thisrequirement. Partial descriptions allow the parser to underspecify phrase structure information,rather than either overcommitting or using a disjunction of more completely speci�ed alternatives.In addition, in order to produce incremental output and only allow syntactically well-formed anal-yses, the parser must be able to say what it does know. Again the use of partial descriptions isimportant for this requirement, because they allow di�erent kinds of information to be speci�edindependently of each other. To satisfy both these requirements, the grammatical representationmust allow information which the parser does know at a given time to be speci�ed independently ofthe information which the parser does not know. The grammatical representation used here allowsdi�erent kinds of grammatical features (e.g. +nominative, +plural), expectations (e.g. obligatoryarguments), iteration restrictions (e.g. one determiner per NP), and structural constraints (e.g.linear order) to all be speci�ed independently of each other.The locality constraint on rules (constraint number 4 above) and the parser's bounded memoryboth place another requirement on the parser's representation of grammatical information. Be-cause of the locality constraint on rules, the representation should allow as much information aspossible to be local to individual phrase structure nodes. This helps avoid the need to implementcomputations with multiple rules that set and test predications about the situation as a whole.Thus we want a relatively at phrase structure representation, provided it still expresses the com-positional nature of syntax. This compact representation also makes it easier to stay within theparser's bounded memory, because it reduces the number of nodes in a tree's representation. Thegrammatical representation used here allows exibility in the grouping of information into nodesbecause multiple kinds of expectations and iteration restrictions can be speci�ed for a single node.In many formalisms this is not true. For example, in Context Free Grammars, the node on the leftside of a rule cannot have any more nodes attached to it (thereby restricting iteration), and thenodes on the right side of the rule must have other nodes attached to them (thereby expressingexpectations). For constituents which can iterate, like optional modi�ers, Chomsky adjunctionneeds to be used. This results in multiple copies of the modi�ed node. Also, in order to controlthe iteration of words such as determiners separately from controlling the iteration of, for example,head nouns, Context Free Grammars have to have separate nodes for these two purposes (i.e. NPand N, or DP and NP). These problems also apply to the expression of expectations. Optionalarguments require two grammar rules, one with the argument and one without, and expressing theexpectation for a determiner separately from expressing the expectation for a head noun requirestwo separate nodes for these purposes.The locality constraint on rules and the parser's bounded memory interact in another interestingway to constrain the parser's representations. Not only should as much information as possiblebe local to individual nodes, as little information as possible should be expressed as relationshipsbetween nodes. This minimization also helps compliance with the constraint on the number ofinstantiations of a relation that can be stored. Of the four kinds of information mentioned above,only structural constraints involve multiple nodes. By allowing most ordering constraints to bestated with respect to terminals (rather than other nonterminals), many structural constraints canalso be localized to individual nodes.13 By identifying the minimal set of relations that are neededto parse, special mechanisms which avoid rules that must manipulate pairs of nodes can be devisedrequirements of these two activities must be left for later work. Thus the representation discussed here is not beingproposed as a replacement for those used in investigations of the nature of grammar.13Only nonterminal nodes are represented as entities in the parser's memory. Information about terminals isrepresented with features and constraints on the use of grammar entries.13



for these few cases. This localization of computation in turn makes it possible to stay withinthe parser's bounded memory. Because computations which do not directly involve a node areindependent of the information about that node, a node which will not be directly involved in anymore parser operations can be safely removed from the parser's memory. By removing nodes as theyare completed during a parse, the parser can parse arbitrarily long sentences using only a boundednumber of nodes at any given time. The grammatical representation used here allow relationshipsbetween nodes to be minimized because structural constraints are speci�ed independently of otherkinds of grammatical information. Grammar formalisms based on Context Free Grammars do nothave this property because expectations and iteration restrictions are speci�ed in terms of a node'sstructural position in the grammar rule, as discussed above.Structure Uni�cation GrammarIn order to comply with the above requirements, NNEP uses Structure Uni�cation Grammar (Hen-derson, 1990) as its grammar formalism. Structure Uni�cation Grammar (SUG) is a formalization ofaccumulating partial information about the phrase structure of a sentence until a complete descrip-tion of the sentence's phrase structure tree is constructed. As such it is similar to other uni�cation-based or constraint-based grammar formalisms. These include Description Theory (Marcus et al.,1983), Head-driven Phrase Structure Grammar (Pollard and Sag, 1987), Construction Grammar(Fillmore et al., 1988), and Segment Grammar (de Smedt and Kempen, 1991), among others. Likethese other formalisms, SUG allows multiple kinds of grammatical features to be speci�ed indepen-dently of each other. Unlike these other formalisms, SUG allows multiple kinds of expectations,iteration restrictions, and structural constraints to also be speci�ed independently of each other. Inaddition, SUG's derivations are only constrained by the semantics of the declarative representation,so any valid parsing strategy can be characterized in terms of valid SUG derivations.The exibility of SUG derivations is due to its simple mechanism for combining partial descriptionsof phrase structure trees. An SUG derivation takes partial descriptions from the grammar (which issimply a set of partial descriptions), conjoins them, and equates some of their nonterminal nodes.Any order of conjoining descriptions and equating nodes is possible, so the parser can use anyparsing strategy and still be following an SUG derivation. The only restrictions on derivations arethat the �nal description be consistent and completely describe some phrase structure tree. Thismeans that each equation done in the derivation needs to be between nodes which have consistentdescriptions. The grammar can limit the possible equations by specifying inconsistent informationabout any two nodes which shouldn't be equated. Unlike consistency, completeness is only necessaryfor the �nal description. By not satisfying completeness requirements locally, a grammar entry canexpress expectations about what kinds of information other grammar entries will contribute tothe �nal phrase structure. Because of the complete exibility of SUG derivations, SUG grammarentries have no procedural import, and the grammar is free to group information into grammarentries in a way which expresses exactly the information interdependencies which the parser needsto know.14The language which SUG provides for specifying partial descriptions of phrase structure trees isillustrated in �gure 1.2. As in many formalisms, the grammatical features of nodes are described14The computational constraints on the parser restrict the set of derivations which can be computed. Thus grammarentries do have procedural import when they are interpreted by the parser. At later stages of this investigation itwould be good to express this di�erent interpretation in the semantics of the grammar formalism, but here theprimary concern is identifying the nature of this di�erence. Thus exibility is the desired property for a formalismfor this investigation. 14
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Figure 1.2: Some example grammar entries. They can be combined to derive the sentence \Whoate my white pizza" by equating the two I's, the second and third N's, and the last four N's.with feature structures. The use of feature structures allows multiple kinds of grammatical featuresto be speci�ed independently of each other. For example, \know" can either take a noun phrase ora sentence as its object. Rather than giving \know" a di�erent grammar entry for each case, theentry for \know" can specify its object as �A (noun or sentence) but not specify the value of theI feature (sentence or preposition, versus noun, adjective, or adverb). Expectations and iterationrestrictions are speci�ed with a di�erent kind of feature, shown in �gures as letter superscripts andsubscripts, respectively. Expectations express what information will be speci�ed before the parseis �nished. Superscripts specify these expectations in that before a parse can be �nished, any nodewith a superscript must equate with a node that has the same letter as a subscript. For examplein �gure 1.2, the subject node for \ate" must be equated with a node which has its head noun,thereby expressing the fact that \ate" obligatory subcategorizes for a subject. The object node hasno such feature, since the object of \ate" is optional. Iteration restrictions prevent grammar entriesfrom being repeatedly attached at a node, even if the grammatical features of the grammar entriesare compatible. Subscripts specify these restrictions in that any node with a subscript cannot beequated with another node which has the same subscript. For example in �gure 1.2, \my" has asubscript to prevent other determiners from attaching to the same noun phrase, while \white" hasno such subscript, thereby allowing adjectives to iterate.Like all the above features, structural constraints can be speci�ed partially and independently ofother constraints. In addition to the immediate dominance relation for specifying parent-childrelationships15 and the linear precedence relation for specifying ordering constraints,16 SUG allowschains of immediate dominance relationships to be partially speci�ed using the dominance relation.15In the grammar, the solid lines in �gures represent immediate dominance, but when these descriptions areinterpreted by NNEP, solid lines do not specify the actual identity of the immediate parent for the dominated node.The reason is that the forgetting operation to be discussed below does not allow such identity information to be kept.16In order to simplify �gures, linear precedence constraints will not in general be shown. Most such constraints arebetween words and either nonterminals or their head terminals. These can be inferred from the lateral position ofthe nodes relative to the words. 15



A dominance constraint between two nodes speci�es that there must be a chain of zero or moreimmediate dominance relationships between the two nodes, but it does not say anything aboutthe chain. This relation is necessary to express long distance dependencies in a single grammarentry. For example in �gure 1.2, the grammar entry for \who" expresses the fact that its gap issomewhere within its sentence, but does not say where. Because the �nal description of a derivationmust specify a single tree, the N \trace" node in this grammar entry must �nd a \gap" node toequate with, thereby expressing the fact that the existence of a gap is obligatory.SUG's ability to describe phrase structure using a minimal number of nodes is due to the abovemechanisms for expressing expectations and controlling iteration. Because more than one featurecan be used in these mechanisms, more than one type of expectation or iteration restriction can beexpressed for a single node. For example in �gure 1.2, the N node for \my" can't equate with otherdeterminer nodes but can equate with noun nodes, while the node for \pizza" allows the oppositepossibilities. This is not possible when iteration is controlled using structural con�guration, asis done in practically all other formalisms. As was discussed for Context Free Grammars above,using structural con�guration requires a di�erent node for each type of expectation or iterationrestriction. This is why the di�erent features used here correspond to the di�erent projections ingrammatical frameworks such as Government Binding theory.Node ClosureIn addition to providing the necessary exibility in the speci�cation of the phrase structure ofthe sentence, Structure Uni�cation Grammar localizes information in a way that allows completednodes to be closed from further access by the syntactic parser. Closed nodes can be removed fromthe phrase structure representation, thereby reducing the number of nodes which NNEP needs tostore information about, and allowing it to stay within its memory bounds. Because NNEP outputsall the information about the phrase structure of the sentence as it computes it, forgetting nodesdoes not interfere with the interpretation of the output. The mechanism for closing nodes, calledthe forgetting operation, does not imply any particular node closure strategy; it simply provides asound mechanism for implementing such a strategy.For the forgetting operation to be sound, its use cannot allow the forgotten information to becontradicted later in the parse. Because forgetting a node prevents any future parser actions atthat node, soundness can be guaranteed as long as all the information about a forgotten nodewould only be needed to test the consistency of parser actions at that node. The only informationin an SUG description which is a problem for this requirement is immediate dominance. Someparser actions need to test whether a node has an immediate parent, but if that parent has beenforgotten, then this information would not be available. Since no parser actions need to knowthe actual identity of the immediate parent, this problem can be easily solved by representingimmediate dominance in two parts, dominance (for ordering constraints), and having an immediateparent. The later information is a property of an individual node, so forgetting the parent willnot interfere with accessing this information. With this change in representation, forgetting a nodewill never allow the parser to compute an analysis which would otherwise be impossible. It may,however, prevent the parser from �nding an analysis which would otherwise have been possible.Thus the parser wants to avoid forgetting nodes which have a signi�cant chance of being involvedin a parser action. In particular, it never wants to forget nodes which must be equated with inorder for the parse to be completed. 16



The Parser's GrammarsBecause the constraints being investigated in this dissertation are computational in nature, theprimary concern is the nature of the parser, not the nature of the grammar. This was manifestedin the design of the notation used to specify grammars, given above. It is also manifested inthe grammars themselves. The grammars partition their information according to how the parserwants to access that information. For example, most grammar entries are lexicalized. A lexicalizedgrammar entry speci�es all the information about the phrase structure of the sentence which canbe determined given the presence of a single word. This allows the parser to easily access allrelevant grammatical information about a word in the input. It does not, however, result inthe most compact or most easily learned representation of the grammatical information. Somegrammatical investigations have addressed this conict between the needs of a parser and theneeds of simple grammatical speci�cation. The �rst was Generalized Phrase Structure Grammar(Gazdar et al., 1985), which uses meta-rules to specify the grammar, and then compiles these metarules into a set of Context Free Grammar rules, which can be easily parsed. Meta-rules have alsobeen used in the speci�cation of Tree Adjoining Grammars (Becker, 1993). Head-driven PhraseStructure Grammar (Pollard and Sag, 1987) addresses this issue using an inheritance hierarchy. Theinheritance hierarchy approach would probably be more e�ective for a uni�cation based grammaticalframework such as the one used here, but this issue has not yet been addressed. It would be bestaddressed in an investigation of grammar learning, since that is when capturing generalizationsacross lexical grammar entries is most important.As will be discussed in more detail in section 4.2, NNEP uses grammars speci�ed in StructureUni�cation Grammar, but not all SUG grammars are supported by NNEP. As just mentioned, thegrammars used in this document are for the most part lexicalized. Each lexicalized grammar entryis a rooted tree fragment with exactly one phonetically realized terminal, which is the word of theentry. Di�erent uses of a word are speci�ed using separate grammar entries. All the grammar entriesshown above in �gure 1.2 are lexicalized. Nonlexical grammar entries are rooted tree fragmentswith no words. They can be used to express constructions for which no speci�c lexical evidence isnecessary, such as relative clauses without overt wh- words. Other forms of grammar entries arepossible, but for the purposes of this investigation, these types are adequate.Because NNEP imposes some constraints which are not imposed at the level of the SUG grammar,the meaning of a given description in SUG is sometimes more general than the meaning of the samedescription in NNEP. This di�erence is just the traditional split between competence and perfor-mance. The SUG interpretation of the grammar is the competence grammar, and the possibilitieswhich are ruled out by NNEP are the performance constraints. In general, constraints should beexpressed in the competence grammar unless they receive a simpler treatment in terms of parsingconstraints. In NNEP the traditional division of data into competence or performance phenomenais for the most part maintained. The only exception is that some constraints on long distancedependencies are enforced through constraints on NNEP's ability to recover these dependencies,while they are traditionally treated at the level of the grammar.It should also be noted that the information speci�ed in the parser's grammar is only for the in-ternal use of the parser; it is not the output of the parser. These grammar entries and the phrasestructure nodes in them are assumed to be linked to structures at other levels of representation.The output of this syntactic constituent structure parser identi�es what grammar entries are usedin the parse, and how the nodes in these grammar entries overlap in the �nal phrase structure tree.Given this information, the associated structures at other levels of representation can be combinedin the associated ways, producing (or helping to produce) the �nal structures for those levels. This17



assumption about how the syntactic level of representation is related to other levels of represen-tation subsumes the relationship between constituent structure and functional structure in LexicalFunctional Grammar (Kaplan and Bresnan, 1982), and the relationship between syntactic structureand predicate-argument structure in Combinatory Categorial Grammar (Steedman, 1987).1.3.2 Recovering Phrase Structure TreesThe purpose of proposing a parsing model in this dissertation is to use it in the argument thatthe S&A architecture is computationally adequate and makes linguistically signi�cant predictionsfor syntactic parsing. This means that the parser must be able to comply with the computationalconstraints outlined in section 1.2.3, and it must adequately address the linguistic issues which areof particular concern given those constraints. It does not have to be a complete model of syntacticparsing. However, future research on parsing in the S&A architecture will want to develop sucha complete model. The model presented here can be seen as a �rst step in this direction, and assuch it provides some indication of what such a complete model of syntactic parsing in the S&Aarchitecture would look like. However, the discussion here will concentrate on the narrower concernsof this particular investigation. The design of this parsing model is discussed more thoroughly inchapter 4.The basic characteristics of this Neural-network Node Equating Parser (NNEP) were presentedabove in the discussion of Structure Uni�cation Grammar. NNEP uses SUG's phrase structuredescriptions as its representation of phrase structure information, and computes SUG's derivationsin recovering that phrase structure information from the words of a sentence. NNEP's parser staterepresents an SUG description which speci�es the information that has been determined so farabout the phrase structure of the sentence. NNEP's operations compute the SUG derivation stepswhich combine this intermediate description with descriptions from the grammar and perform nodeequations. NNEP outputs each of these derivation steps as they are computed, thereby outputtingall the information which NNEP adds to its parser state as soon as the information is inferred.When the parse is done, NNEP checks to make sure it has produced a complete description, therebyensuring that NNEP will only accept sentences which the grammar speci�es as grammatical.The set of SUG derivations which NNEP can compute is limited by the computational constraintsdiscussed in section 1.2.3. Because NNEP must produce incremental output, the phrase structureinformation which is implied by the presence of a word must be added to the parser state (andtherefore output) when the word is input. This information is precisely the grammar entry for theword, provided there is no lexical ambiguity. If there is more than one grammar entry that couldbe used for a word, then because no disjunction is allowed in the parser state, one of them mustbe chosen.17 In some cases this forced choice can result in a mistake, thereby predicting a gardenpath.18 The parse shown in �gure 1.3 gives examples of three parser operations which add theinformation in a grammar entry to the parser state (attaching, double attaching, and equationlesscombining).17It is possible that predicates could be de�ned which represent a bounded disjunction between grammar entries,or portions of grammar entries, thus allowing lexical disambiguation to be delayed. However, this would greatlycomplicate the parser, since such predicates would require a very complex interpretation which is rather di�erentfrom the node-local features represented by most other predicates. Thus this alternative has not been pursued,although perhaps the constrained use of such predicates would be feasible.18This discussion is a slight simpli�cation. In the complete model (discussed in chapter 4), the parser can wait forinformation about the immediately following word in cases where it isn't sure which grammar entry to pick. Also,not all grammar entries are associated with words, so some ambiguities can be handled by delaying the addition ofone of these nonlexical grammar entries. 18
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Figure 1.3: An example parse of \Who ate the pizza".19



In contrast to the information in grammar entries, the equations between nodes in the grammarentry and nodes already in the parser state do not necessarily have to be speci�ed. For example in�gure 1.3, when the grammar entry for \who" is added, its root is equated with the sentence nodewhich initialized the parser state, but when \the" is processed, it's grammar entry is not attachedto the tree fragment from the previous portion of the sentence. Such delays in attachment decisionsare necessary when there is not enough information available at that time to make a commitmentto one equation, since the determinism requirement prevents the retraction of commitments. Inthis case, NNEP can't be sure that \the" is the start of the object of \ate", since it might also bethe start of the possessor of the object of \ate", as in \Who ate the pizza's crust". If an equationdecision is delayed, one of the possible equations can be performed later in the parse when there isenough information available. In this example, the equation is done when the end of the sentenceis reached, at which point there can be no forthcoming possessive marker. After this equation,NNEP has speci�ed a single immediate dominance tree, and there are no remaining superscripts,so the parse has been completed successfully.The SUG derivations which can be computed by NNEP are also constrained by the S&A architec-ture's bounded memory capacity. In NNEP's implementation, variables refer to nonterminal nodesin the current phrase structure description. Thus this description can have at most ten nontermi-nals in it at any one time. The forgetting operation discussed in the previous section is used tostay within this bound. For example in �gure 1.3, after \ate" is processed, the two NP's on the leftare no longer on the right frontier of the sentence. Thus no other nodes will be equated with them,and NNEP can safely close them o� from further consideration. Since this level of representation isonly being used for syntactic parsing, forgetting these nodes does not interfere with processes whichmight involve their associated nodes at other levels of processing. The resulting parser state onlyrequires two variables; the terminals are only shown for readability. In other cases, such as longright branching sentences, it may be necessary to close nodes which could conceivably be involvedin further equations. For the purposes of this investigation, any closure strategy can be used inthese cases, as long as the only eliminated parses are for readings which people do not get. Thememory capacity of the parser is also bounded by the fact that at most three instantiations of eachrelation can be stored, and that the set of predicates used in the implementation is �xed. Thismeans that any data structures used by the parser must be of bounded size. As will be discussedin section 6.4, these turn out to be the signi�cant bounds for constraints on center embedding, notthe bound on the number of nonterminal nodes.The constraint that rules must apply to each variable independently also limits the set of SUGderivations that NNEP can compute. It limits the ways that grammar entries can be added to theparser state, the equation of nodes within the parser state, and the calculation of binary relations.In the parser's implementation, grammar entries are represented in rules. For each grammar entry,rule patterns look for ways that the grammar entry can be combined with the phrase structuredescription in the parser state. Because these rules must apply to each variable independently,the only combinations that can be computed are those whose consistency can be tested based oninformation about one phrase structure node and the tree as a whole. Other nodes can be involvedin the combination, but only if they can be uniquely identi�ed at the time, and therefore can havetheir information represented as information about the tree as a whole. The simplest example ofa combination is given at the top of �gure 1.3. The only node in the parser state that is involvedin this combination is the matrix root, where the grammar entry for \who" is attached. All theinformation about the nodes in the grammar entry is compiled into the rule, so the rule does nothave to refer to them with variables. The equationless combining operation, shown in the middle of�gure 1.3, does not involve any nodes in the parser state. It does need to know about the existence20



of certain nodes in the parser state, but since the actual identities of these nodes does not needto be known to choose this operation, this information can be represented as information aboutthe tree as a whole. The only other simple combination that is possible is shown at the bottom of�gure 1.4, where a tree fragment in the parser state is attached to a grammar entry. However, themechanisms that are needed for calculating long distance dependencies makes a fourth combinationoperation possible. As illustrated in the second line of �gure 1.3, this operation (double attaching)simultaneously attaches the grammar entry to a node in the parser state, and attaches a node inthe parser state to the grammar entry. This operation involves two nodes in the parser state, butbecause the lower attached node must be \the public node", all the information about this uniquenode can be represented as information about the tree as a whole, and therefore this combinationcan be calculated in terms of one variable referring to the node where the grammar entry is attached.The role of the public node in calculating long distance dependencies will be discussed next.
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the constraint that the rules which manipulate these binary relations must apply to each variableindependently still has signi�cant implications. The only explicitly stored relations that are requiredrepresent possible equations between nodes and possible dominance relationships between nodes.These are shown in �gures with scattered dotted lines and dotted lines, respectively. Both theserelations are needed for calculating long distance dependencies. As mentioned in section 1.3.1, longdistance dependencies are represented using a trace node, which must equate with the node forthe gap site. Finding the correct gap node for the trace node to equate with involves recursively�nding what nodes might dominate the trace node and what nodes might be equated with the tracenode. These relationships can be stored with NNEP's two binary relations. Figure 1.5 illustratesthe application of the rules which calculate new instances of these relationships (the movementrules). In this example, the object of \bought" could either dominate the trace node for \which"or be equated with it. These calculations require information about both the trace node and thecandidate node. To do this calculation with rules that apply to each node independently, all therelevant information about one of the two nodes must be represented as information about the treeas a whole, and therefore one of the nodes must be uniquely identi�able. Since a given grammarentry may have multiple possible gap sites, the candidate node is not uniquely identi�able. Thuswe must assume that at any given time there is only one trace node for which these relationshipsneed to be calculated. Since testing equatability requires virtually all the information about thetrace node to be represented as information about the tree as a whole, this unique node is called thepublic node (its information is publicly available). In English, the most recently introduced tracenode is always the public node, so NNEP needs a stack data structure to keep track of which tracenode was introduced most recently. This stack is called the public node stack. The need to restrictaccess to trace nodes using a stack predicts a number of interesting constraints on long distancedependencies (discussed in section 6.2), and an independently motivated bound on the depth ofthis stack predicts some constraints on center embedding (discussed in section 6.4). In order toallow the e�cient processing of subjects, they are sometimes also placed on the public node stack.This allows the double attaching operation to apply to them.Possible dominance relationships and possible equality relationships are also needed for the rootsof unattached tree fragments in the parser state. Because of the nested nature of English, theserelationships only need to be accessed for the rightmost tree fragment root.19 Thus these binaryrelations can be accessed using unary predicates identifying the nodes that might dominate or mightbe equated with this unique tree fragment root. These relationships are set when the grammarentry for the tree fragment root is added to the parser state, as is illustrated when equationlesscombining is used in �gure 1.3.Ordering constraints are an area that might seem to require binary relations, but unary predicatesturn out to be adequate. In most cases ordering constraints can be expressed between a nonterminaland a terminal (e.g. prehead, post-determiner, etc.), thus allowing them to be represented withunary predicates for the nonterminals. For the grammatical representations used here, orderingconstraints between nonterminals are only needed for the objects of ditransitive verbs. Using abinary relation to represent this ordering constraint can only be avoided if at any given timethere is only one such ordering constraint that needs to be stored. Under these circumstances therelationship can be represented with two unary predicates, preceding and preceded. This requirement19For languages, such as Dutch, which do not have a nested structure, other access orders could be used, as long asat any given time only one tree fragment needs to be considered. It is also possible that such languages use structuresthat do not require the use of the tree fragment list in these cases. For example, arguments could be adjoined into averb's projection (like English prepositional phrases can be), rather than the verb subcategorizing for the arguments.These possibilities also apply to calculating long distance dependencies for other languages. These relationships alsodo not always respect a nested structure. 23



predicts a strict constraint on center embedding with ditransitive verbs, which will be discussedin section 6.4. The dominance relationships that are needed to calculate the inheritance of thesepredicates are also represented with unary predicates. These predicates identify which nodes arein each tree fragment in the parser state, and which nodes are in a newly added grammar entry.Operations which attach a tree fragment or grammar entry also propagate ordering constraintsfrom the site of the attachment to all the nodes in the attached tree fragment or grammar entry.As discussed above, the need to delay attachment decisions means that sometimes two nodes alreadyin the parser state must be equated. Since the rules that choose and perform these equations mustapply to each node independently, only one of the two equated nodes can be chosen by the rule,and the other must be uniquely identi�able. The pairs of nodes which these rules might need toequate are exactly those for which the equatable relationship is stored in the parser state, and theconstraints which apply to the calculation of these relationships also apply to these rules. Thusonly the rightmost tree fragment can be attached to its adjacent tree fragment, and only the mostrecently introduced trace node (the public node) can be equated with its gap site. The implicationsof these restrictions are the same as for the calculation of the relations. The attachment of a treefragment is illustrated at the bottom of �gure 1.3, where the delayed attachment of \pizza" as theobject of \ate" is performed. The equation of a trace node with its gap site is illustrated at thebottom of �gure 1.5, where the trace node for \which" is equated with the object of \bought".1.3.3 The Connectionist ImplementationWhile it is important to be able to investigate parsing issues at the level of symbolic computation,there are some issues which need to be addressed at the level of connectionist computation. Most ofthese issues were discussed in the analysis of the constraints imposed by the Shastri and Ajjanagaddeconnectionist architecture, but an actual implementation of the parser is still needed to test thevalidity of that analysis, and to address issues which are not relevant at the level of symboliccomputation. This section gives an overview of NNEP's implementation in the S&A connectionistarchitecture. Chapter 5 discusses this implementation in more detail.The S&A architecture was developed for modeling fast common sense reasoning (called reexivereasoning) (Shastri and Ajjanagadde, 1993), and here it is used to implement a special purposemodule for syntactic constituent structure parsing. It is a module in that the predicates andvariable bindings of the network are speci�c to the network's particular task. It is not currentlyclear whether this network is part of a larger module which includes things such as the calculationof predicate-argument structure, or whether it is a distinct module that interacts highly with otherstages of language processing.The network has three basic parts, input units, predicate units, and grammar units. The temporalpattern of activation over the predicate units represents the information the parser needs to knowabout its parser state. The phases in this pattern of activation represent variables that refer tononterminal nodes in the phrase structure of the sentence, and the predicates represent propertiesof these nodes and of the phrase structure tree as a whole. Since these predicate units representa feature decomposition of the types of nodes, and these features are only interpreted withinthis module, the predicate units are analogous to hidden units in Parallel Distributed Processing(Rumelhardt and McClelland, 1986) networks.The network's input units are just a stand-in for the word recognition component of a complete24



system. There is one input unit per word.20 When the next word is input, that word's unit becomesactive and stays active (across all phases) until a grammar entry for that word is combined withthe parser state. Links from these units go to units for the grammar entries of the word. Theseprimary links are inhibited by links from the units that represent predicates. These inhibitorylinks �lter out all the phases for phrase structure nodes which cannot be sites for a combinationwith the grammar entry. Thus primary links from the input units and inhibitory links from thepredicate units implement the patterns for the pattern-action rules that calculate what action theparser should take given the parser state and the next input word. For example, when the parseris in the state shown in the second line of �gure 1.3, the input unit for \ate" is active acrossthe phases for all three nonterminal nodes, but an inhibitory link from the �I predicate (amongothers) blocks this activation in the phases of the two N nodes. The activation for the I node makesit through the �lter, because this node is compatible with the requirements on possible sites fordouble attaching with the grammar entry for \ate". Note that since the trace node is the publicnode, the relevant information about it is represented with predicate units that are active across allphases (i.e. predications about the tree as a whole), so that if that information was not compatiblewith the combination, then no phases would make it through the �lter. Other such sets of linksimplement the patterns for parser actions that do not require the input of a word (such as internalattaching, or using a nonlexical grammar entry). Using link weights and continuous valued unitoutput, these patterns of links can be used to estimate the probability that the pattern's action isthe right thing to do.21The input activation provided to the grammar units by the above patterns is used to choose whatparser action to perform next. The nature of the arbitration network that should be used to makethis disambiguation decision has not been signi�cantly addressed in this work, but see (Stevenson,1994) for an investigation of these issues. Once this choice has been made, the grammar unit forthe chosen parser action �res in the phase of the chosen site. This is the output of the parser, sincethis is the earliest indication of what the parser has decided, and the sequence of parser actionscompletely determines the information that the parser recovers about the phrase structure of thesentence. This output is also used to trigger the action component of the pattern-action rule thatcalculates the chosen parser action. This action changes the states of the predicate units to reectthe new information that is implied by the chosen parser action. An action is implemented withlinks from the grammar unit to the units for new predications about the site of the parser action,plus a unit that gates (using inhibitory links) links to units for the new predications about othernodes in the grammar entry. These gated links may introduce new nodes into the parser state, andmay add information about uniquely identi�able nodes. Continuing the above example, the outputof the unit for the grammar entry of \ate" would set the new information about the I node, andcause its gate unit to temporarily become inactive. The inactive gate unit would allow activationto ow across links that add the new information about the trace node and introduce a new nodefor the object of \ate".The forgetting operation, which removes nodes from the parser state, is implemented with a pattern-action rule that looks for nodes which have at most a small chance of ever being involved in any20The complete model, discussed in chapter 5, also includes input units for the word after the next word. Theseunits are used to allow one word lookahead to help with some cases of lexical disambiguation.21Estimating this probability is sometimes more complicated than this description would suggest. Since some ofthe actions that the parser can perform (for example equationless combining) are more general than multiple otherpossible actions, the probabilities for the later actions need to be summed to get the probabilities for the formeractions. This sum then needs to be adjusted for the probability that the more general action will lead to an overowof the parser's resource bounds. Only preliminary work on estimating these probabilities will be presented in thisdocument. 25



future parser actions, suppresses all the predications about these nodes, and makes their phasesavailable for future use.In addition to the pattern-action rules for parser actions, there are some rules for calculating theindirect implications of the predications that are directly added by the above rule actions. Theseare implemented with links that propagate activation from the directly set predicate units to theunits for the implied predications. These rules include those that calculate possible long distancedependencies, and rules that transfer information about the public node to predications about thestructure as a whole.1.4 Overview of the EvaluationThe previous section described a model of syntactic parsing (NNEP) which is designed to complywith the constraints imposed by the S&A architecture and the nature of the parsing task. In thissection, NNEP will be used to argue that the S&A architecture is computationally adequate forsyntactic parsing, and that it makes linguistically signi�cant predictions. These arguments andthe tests used to make them are discussed in more detail in chapters 6 and 7. To argue for theadequacy of an architecture, it is not su�cient to perform tests simply on a small set of examples,or on phenomena which the architecture is well suited for. The phenomena which are likely tobe di�cult for the architecture need to be identi�ed, and empirical tests need to be performedon these phenomena. Because the limitations of the S&A architecture which are signi�cant forsyntactic parsing have been characterized at the same level of abstraction (symbolic computation)as has traditionally been used in the study of linguistic phenomena, it is fairly easy to identifythe phenomena which are of particular concern. To argue that an architecture makes linguisticallysigni�cant predictions, it is simply necessary to provide examples of such predictions. Since thepredictions are due to the computational constraints imposed by the architecture, they pertain tothe same phenomena that need to be tested to determine the architecture's adequacy. Thus boththese arguments will be made by testing NNEP's ability and inability to parse sentences pertainingto the phenomena that are of particular concern given the computational constraints imposed bythe S&A architecture and the nature of the parsing task.While it is important to pay particular attention to phenomena where the limitations of the archi-tecture are likely to be signi�cant, it is also necessary to guard against errors in the identi�cation ofthese phenomena. There is no complete proof that the relevant limitations of the S&A architectureand the relevant phenomena for these limitations have been completely identi�ed. For this reason,NNEP is also tested on a set of randomly selected, naturally occurring sentences. This providesan essentially unbiased test of the parser's ability to handle the diversity of phenomena in naturallanguage. While it is not necessary for the parser to handle every phenomena in this test set,speci�c arguments need to be made that any excluded phenomena can be handled by extensionsto the parser.The primary concern of this investigation is to demonstrate the adequacy and signi�cance of theS&A connectionist architecture for syntactic parsing, but the parsing model developed here hassome additional characteristics that may be of signi�cance for future work in this area. Thesecharacteristics are summarized at the end of this section, and are discussed in more detail insection 7.3. 26



1.4.1 Phenomena of Particular ConcernFour types of phenomena are of particular concern given the limitations of the S&A architecture.As discussed in section 1.2.3, the parser must be deterministic, must be implemented with rules thatapply to each variable independently, cannot store more than three instantiations of any relation,can use only a bounded number of variables, and must parse in quasi-real time. The determinismconstraint requires testing with locally ambiguous sentences. The parser needs representationswhich don't use disjunction but still allow the resolution of a local ambiguity to be delayed longenough for disambiguating information to be found. The issue of whether the parser can make theright choice given disambiguating information is not of particular concern here, given the generalsuccess of connectionist networks in disambiguation tasks.22 This representational requirement inturn places constraints on the representation of grammatical analyses. Thus we also need to testthe parser's ability to express phrase structure analyses that accurately characterize the language.If the parser doesn't have accurate information about the language, the inaccuracies may introducefalse ambiguities that mislead the parser.In NNEP, binary relations and the rules that manipulate them always involve phrase structurenodes which are looking for an immediate parent. These nodes include trace nodes, so testing onlong distance dependencies is necessary. They also include subject nodes and delayed attachmentdecisions, but these phenomena are adequately covered in the local ambiguity and phrase structureanalysis data. The data structures which are used to comply with the locality constraint on rulesalso introduce constraints. These data structures are of bounded size, so they require testing oncenter embedded sentences. These bounds guarantee that no more than three instantiations of anyrelation ever need to be stored. There can be at most three unattached tree fragments (other thanthe matrix root), and there can be at most two nodes on the public node stack. Since the rules thatmanipulate the relationships involving these two types of nodes are disjoint, these relationships arealso stored in disjoint relations. Thus at most three bindings for the tree fragments' relations andat most two bindings for the public node stack's relations need to be stored. This guarantees thatthe constraint on the storage of relations will never be violated, so no additional testing is neededfor this constraint.The bound on the number of variables that the parser can use at any one time also requires testingon center embedded sentences. These are the sentences which necessarily involve remembering arelatively large number of nodes, and therefore require using a relatively large number of variables.The question of how many nodes could possibly, but not necessarily, need to be remembered has notbeen tested, since no suitable set of data has been found. For example, according to the grammar,a long right branching sentence could have a modi�er attached to any one of the nodes on the rightfrontier, and thus all of these nodes would need to be stored. However, as discussed in section 4.1.3,it is well known that the set of nodes which are available for such modi�cation is severely restricted((Church, 1980), (Gibson et al., 1993)). Theories of these performance constraints indicate thatthe parser's bounded number of variables is not a problem for such sentences.23Each operation that NNEP performs takes a bounded amount of time, so to show that NNEP can22NNEP does have a plausible mechanism for making disambiguation decisions, but because it is not a central issuefor this dissertation, and because fully addressing this problem would be a large project in and of itself, the proposedmechanism has not been adequately developed or tested. See sections 4.5 and 7.4 for discussion of this mechanismand future work in this area.23This is an example of how the resources necessary for maintaining local ambiguities can interact with the boundson these resources. In general, these interactions have not been investigated here. Acquiring the data necessary forsuch an investigation would be di�cult, since it is hard to control when people make disambiguation decisions andwhen they delay them. 27



parse in quasi-real time, it is su�cient to show that only a bounded number of operations needto be performed between combining any two words. The only operations which can be performedbetween two words are internal attaching, internal trace equating, and combinations that involvenonlexical grammar entries. Both the internal operations remove an unparented node from theparser state. Since at most �ve such nodes (two nodes on the public node stack and three non-matrix tree fragment roots) can be in the parser state, at most �ve of these operations can beperformed between any two words. In practice, the number of such operations can probably bebounded to one or two, but this question hasn't been adequately addressed. Nonlexical grammarentries are only needed for certain cases of ambiguity, so locally ambiguous sentences need to beused to test this constraint as well.From this analysis we see that NNEP needs to be tested on center embedded sentences, localambiguities, long distance dependencies, and phrase structure analyses. This analysis is presentedin more detail in chapter 7.1.4.2 Testing for Adequacy and Signi�canceTo test NNEP on the speci�c phenomena identi�ed above, papers were selected from the literaturewhich discuss a representative sample of the data on these phenomena. NNEP was then testedon its ability to at least parse the data in the papers, if not adopt the same analyses.24 Foran approximately unbiased sample of sentences, a set of sentences randomly selected from theBrown Corpus was used. All of these tests deal only with English data, except to the extent thatthe analyses inherited from the papers generalize to other languages. Chapter 6 gives a detailedpresentation of the results of these tests.To test NNEP's ability to express phrase structure analyses that accurately characterize the lan-guage, the phrase structure analyses in (Kroch, 1989) were used. In (Kroch, 1989), constraintsfrom Government Binding theory are expressed in the Tree Adjoining Grammar (TAG) framework.The similarity between SUG and TAG made this paper particularly appropriate for this task. Asis the case in the examples given above, NNEP's grammars represent each lexical projection andall its associated functional projections as a single SUG nonterminal node. All the informationabout these projections are expressed in the feature structures which label the node. This compactrepresentation is possible because SUG can represent multiple types of expectations and iterationrestrictions on a single node. Ordering constraints within these projections can be speci�ed withrespect to the distinguished terminal nodes (constituent head, functional head, and verb).25 Anyschematized local collection of nodes can be represented in this way, so the test was successful.Section 6.1 discusses this test further.The analyses in (Kroch, 1989) were also used to test NNEP's ability to recover long distance de-pendencies. Again the use of TAG in this paper was useful, because NNEP's rules for calculatinglong distance dependencies factor the local component of that dependency from the recursive com-ponent, just as is done in TAG. The local rule calculates what constituents could be the gap fora trace node, and the recursive rule calculates what constituents could have the gap somewherewithin them. Because the relevant trace node is always uniquely identi�able as the public node,24While each of these areas deserve a more detailed analysis, a broad and shallow test is appropriate for this stageof the investigation. A demonstration of the feasibility of addressing all of these issues is necessary to justify thedetailed investigation of any one of them.25Ordering constraints involving subjects are enforced by limiting the parser operations that can be used with thegrammar entry, since the presence of a subject in the parser state changes how the subject's sentence can be attachedto. 28



all the relevant information about this node can be represented as information about the phrasestructure tree as a whole. In this way the two rules can apply to each candidate node independently,and thus the locality constraint on rules does not need to be violated. Most of the constraints onlong distance dependencies are simply compiled into features on nodes in grammar entries (i.e.extractable and not barrier), and enforced by the long distance dependency rules. However, someof the constraints are predicted by the need to restrict these rules' access to trace nodes. Since thepublic node is the top node on the public node stack, these rules can only access the most recentlyintroduced trace node. This constraint is used to explain the that-trace e�ect, the cases of subjectislands that precede inection, and the limited possible extractions out of wh- islands. The laterphenomena are particularly interesting, because accounting for this data required Kroch to go out-side the power of TAG. Thus by accounting for this phenomena with a computational constraint,the competence theory of long distance dependencies can be simpli�ed. This explanation for wh-island constraints is also interesting in that it subsumes Pesetsky's path containment condition(Pesetsky, 1982). In summary, all the data in (Kroch, 1989) was correctly categorized, mostlyby adopting the same analyses, and some of the phenomena were predicted by the computationalconstraints imposed by the S&A architecture. Section 6.2 gives an extensive discussion of theseresults.To test NNEP's ability to handle local ambiguities, the data from the chapters on ambiguity res-olution in (Gibson, 1991) were used. (Gibson, 1991) is particularly well suited for this purposebecause Gibson surveys the literature on ambiguity resolution and discusses the relevant data. Ifa given sentence pre�x can be continued in more than one way, then at that point NNEP needsa representation of the sentence's phrase structure which is compatible with both continuations.Because NNEP can delay attachment decisions, ambiguities in the way two grammar entries areconnected can be represented for as long as necessary. Because SUG's partial descriptions allowNNEP to avoid specifying information which it doesn't yet know, NNEP can use grammar entrieswhich are compatible with all the acceptable continuations after a lexical ambiguity. This mayinvolve leaving some structure unspeci�ed. For example, the ambiguity between a sentential com-plement and a relative clause requires that the relative clause's modi�cation relationship and tracenode not be speci�ed until the gap is found. This can be handled with grammar entries whichspecify the delayed structure information, but which are not associated with a word. The additionof such nonlexical grammar entries can be delayed until there is disambiguating information. Inthe test sentences, no more than one such combination ever needed to be done between any twowords, so this mechanism does not pose a problem for parsing in quasi-real time. Because SUG'spartial descriptions allow NNEP to specify the information it does know independently of the in-formation it needs to leave unspeci�ed, the information which is necessary to resolve an ambiguityis available for decision making. In a few cases the information which NNEP must have for makinga disambiguation decision also includes the word immediately following the current word. If theparser has to make a decision and it can't decide based on the left context and the next two words,then a garden path is predicted in one of the alternatives. There is one pair of sentences for whichthis prediction may be a problem, given below. Since \found" is obligatorily transitive, looking atthe immediately following word to see if it could be the start of an object would ordinarily allowsthis reduced relative/main verb ambiguity to be resolved, but because of the heavy NP shift, thisis not possible for these sentences. Gibson (personal communication) agrees that experiments areneeded to determine whether in any given context one of the sentences is a garden path, as thismodel predicts. With this one caveat, all the acceptable data is parsable. NNEP accounts for theunacceptability of \The horse raced past the barn fell" (Bever, 1970), but otherwise no attemptwas made to account for the unacceptable data. Some of the unacceptable data is probably due29



to the disambiguation mechanism's e�orts to conserve resources, but this possibility has not beeninvestigated. Section 6.3 discusses the results of this test in detail.(247a) The bird found in the room was dead.(249a) The bird found in the room enough debris to build a nest.The test of NNEP's ability to handle center embedded sentences used the data from the chapterson processing overload in (Gibson, 1991). Again, (Gibson, 1991) is particularly well suited for thispurpose because it surveys the literature. In addition, some example sentences involving nestedditransitive verbs were constructed and used. Since the interaction between ambiguity and resourcerequirements is not being tested here, nodes were closed as soon as possible, using the forgettingoperation. None of the acceptable sentences required more than ten nonterminals to be stored atany one time, so the architecture's bounded memory was not a problem. In fact, the maximumnumber of nonterminals required was nine, given the compact phrase structure representation usedhere. This is interesting because nine is the maximum of the robust bound on human short termmemory of seven plus or minus two (Miller, 1956). The data structures which are used to handlethe locality constraint on rules also result in some bounds. The public node stack can be at mosttwo deep, there can be at most three unattached tree fragments in the parser state, and there canbe at most one �rst posthead argument node for a ditransitive verb (usually the direct object).None of these constraints need to be violated to parse any of the acceptable sentences in this dataset. In addition, much of the unacceptable data is ruled out, mostly due to the bound on the depthof the public node stack and a particular (independently motivated) strategy for when to specify atree fragment root as the public node. Not all the unacceptable data, however, is predicted by theseconstraints. Some of this data is probably due to interactions between the resources necessary formaintaining ambiguities and these resource bounds, but this possibility has not been investigated.Section 6.4 presents the results of this test in more detail.To make sure the above phenomena-speci�c tests did not miss anything which would be di�cultfor the S&A architecture, NNEP was also tested on an essentially unbiased sample of sentences.This set of �fty thirteen word sentences were randomly selected from the Brown corpus by EzraBlack in 1991. Since the issue being addressed is the adequacy of the S&A architecture, and not theadequacy of NNEP as it is currently designed, incompleteness in NNEP's coverage of the phenomenain this data set is only a problem to the extent that extensions to NNEP aren't likely to be ableto handle the phenomena. Indeed there are some phenomena which NNEP is not yet equipped tohandle, but none of these are expected to be any more di�cult for this architecture than they arein general. In particular, NNEP cannot parse coordinations, or gapping in comparatives, and itcannot make many disambiguation decisions. As argued above, this architecture is well suited fordoing disambiguation. I expect that the relationship between SUG and Combinatory CategorialGrammar (Steedman, 1987) will make the analyses of coordination and gapping easier for thisparsing model than for most phrase structure based parsers. Due to the scope of these topics, theywill have to be left for future work. These topics are discussed further in section 6.5.1.4.3 Advantages of the ArchitectureBecause the primary concern here is the adequacy of the S&A architecture for syntactic parsing, thiswork has concentrated on the problems associated with parsing using such a connectionist network.However, there are several advantages to parsing in this computational architecture. Some of theseadvantages are manifested in the current parsing model. First, the biological motivations for the30



S&A architecture provide independent motivations for its computational constraints, and thereforegive them explanatory power. This architecture's relationship to the biological substrate of humanlanguage processing also gives work in this architecture predictive power, since the link between anabstract model and real time and space data can be made on the basis of independent biologicalevidence. NNEP is compatible with the real time constraints on language processing given thisrelationship, but work taking full advantage of this predictive power has only begun. The S&Aarchitecture's use of massively parallel computation is also important for NNEP. Because NNEP'sgrammar is implemented with a set of pattern-action rules that compute in parallel, NNEP's speedis independent of the size of its grammar. This property is very important given the size of any realgrammar for a natural language. Also, the ability to interpret the units of an S&A architecture atthe level of symbolic computation makes it possible to structure the network to take advantage ofknown generalization about the task. In NNEP, di�erent words whose grammar entries have thesame e�ect on the parser state share the same grammar units. This means the number of unitsin NNEP's implementation is proportional to the number of di�erent types of descriptions in thegrammar, not the number of words. The number of di�erent description types in a grammar ismuch smaller than the number of words. Also, the ability to capture such generalizations would beimportant for learning new words, since (in most cases) only link weights to existing units need tobe learned. These characteristics are discussed further in section 7.3.Most of the advantages of parsing using the S&A architecture will only be utilized in future work.By demonstrating the feasibility of syntactic parsing in the S&A architecture, the work done herejusti�es future work that uses this architecture to investigate issues for which connectionist networksare particularly well suited. In particular, previous connectionist investigations of grammar learningand ambiguity resolution have been hampered by representational inadequacies. With the abovework, the success connectionist models have had on similar problems in other areas is likely to berepeated for natural language. The emphasis in this work on segmenting grammatical informationinto independent components (by kind of information and by phrase structure node) is likely tobe signi�cant in this investigation, since statistical independence is very important in controllingthe complexity of the grammar induction task. These issues are discussed further (although stilltentatively) in section 4.5.1.5 SummaryThis chapter has given an overview of this dissertation, which discusses syntactic parsing usinga model of symbolic computation in a connectionist network recently proposed by Shastri andAjjanagadde (Shastri and Ajjanagadde, 1993). This connectionist model of computation extendsprevious connectionist architectures by using temporal synchrony variable binding to represent theidentities of entities in a way that allows rules to generalize over entities. Because of this addedability, the architecture can take advantage of the systematicity of natural language, while keepingthe properties of connectionist networks which have made them important tools for cognitive mod-eling and applications. However, the S&A architecture has some limitations. These limitations canbe characterized as a set of constraints on symbolic computation, thereby allowing the signi�canceof using the S&A architecture to be studied at the same level of abstraction as other investigationsof syntactic parsing. Most of these computational constraints have previously been proposed onthe basis of linguistic and psychological evidence.The primary claim of this dissertation is that the Shastri and Ajjanagadde connectionist computa-tional architecture is adequate for recovering the syntactic constituent structure of natural language31



sentences. In addition, it is claimed that the computational constraints of this architecture makesigni�cant predictions about the nature of language. To make these arguments, a speci�c parsingmodel has been implemented in the architecture which is designed to address the architecture'scomputational constraints. The central characteristic of this parser which allows it to comply withthese constraints is its extensive use of partial descriptions of phrase structure trees. This parserhas been tested on all the phenomena which are of particular concern given the limitations of thearchitecture (phrase structure analyses, long distance dependencies, local ambiguities, and centerembedding). The results of these tests and a test on a random sample of sentences indicate thatthe S&A architecture is powerful enough for recovering the syntactic structure of natural languagesentences, and that the computational constraints imposed by the architecture make some signi�-cant linguistic predictions. These predictions are mostly in the areas of long distance dependenciesand center embedding.In the remaining chapters of this dissertation, the argument given above will be made in more detail.The �rst four chapters investigate parsing in the S&A architecture. They start with Chapter 2,which characterizes computation in the S&A architecture in terms of symbolic computation undera set of constraints. Chapter 3 presents a grammatical formalism which is designed to help aparser comply with these constraints. Chapter 4 then uses this formalism as the grammaticalframework for a speci�c parsing model which complies with the constraints. Chapter 5 describeshow this parsing model has been implemented in the S&A architecture. The last two chapters usethe parsing model developed in the previous chapters to demonstrate the adequacy and linguisticsigni�cance of the S&A architecture for syntactic parsing. First Chapter 6 tests the parser's abilityto handle various natural language phenomena, and argues that some linguistic constraints areexplained by the constraints from the architecture. Then Chapter 7 summarizes the computationaland linguistic characteristics of the parsing model, and discusses their signi�cance.
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Chapter 2The Computational ConstraintsThis dissertation discusses parsing in the Shastri and Ajjanagadde connectionist computationalarchitecture. While the parser presented here has been implemented in the primitive computa-tional devices provided by this architecture, that level of description is too speci�c to provide auseful basis for discussing the motivations for and implications of aspects of a parser's design. Thelevel of abstraction which has been found to be the most useful for discussing parsing issues isthat of symbolic computation. By symbolic I do not mean categorical. Many problems in parsingrequire the use of probabilistic information, continuous valued parameters, and soft constraints.By symbolic I mean the use of abstract representations of entities, their properties, and the gener-alizations about these properties. The prototypical symbolic representation is predicate calculus,which uses variables as abstract representations of entities, predicates as abstract representationsof properties, and formulae as abstract representations of generalizations. One of the things thatmakes the S&A architecture so interesting for this investigation is that there is a clear mappingfrom the level of activations, units, and links to the level of variables, predicates, and formulae.Because of this relationship, the important characteristics of the architecture can be expressed atthe level of symbolic computation, thereby allowing the investigation of parsing issues to be doneat the appropriate level of abstraction. While it is important to make sure that the resulting parserdesign can be implemented at the level of units and links, the irrelevant details of this level shouldnot be allowed to interfere with the investigation of parsing issues.Symbolic computation by itself makes no assumptions about the computational architecture. Ifwe made no such assumptions, then any desirable computational properties which we want wouldbe available to us, but we would have no motivation for imposing any computational constraints.Because this investigation is about the implications of assuming the S&A architecture, it is the ar-chitecture's limitations, and not its desirable characteristics, which are our primary concern. Thusthis chapter is primarily concerned with characterizing the computational constraints imposed bythe S&A architecture. These constraints, plus the constraints imposed by the nature of the parsingproblem itself, form the basis of this investigation. By demonstrating that these constraints donot prevent the syntactic parsing of natural language, we demonstrate that the S&A architectureis computationally adequate for this process. By demonstrating that these constraints make inter-esting predictions about the nature of language, we demonstrate that the S&A architecture makessuch predictions. While a parser has been implemented in the primitives of the S&A architecture,most of the discussion will be at the level of constrained symbolic computation.33



In order to further motivate the departure from nonsymbolic connectionist architectures, this chap-ter starts with a discussion of previous work on connectionist natural language parsing. The com-putational constraints imposed by the architectures used in these investigations are characterized,along with the implications of these constraints for parsing. None of these investigations havedone the empirical investigations which would be necessary to argue that these constraints do notprevent such parsers from ever being adequate. After this motivation, this chapter discusses howcomputation in the Shastri & Ajjanagadde architecture can be characterized as symbolic compu-tation under a set of computational constraints. Other proposals for doing symbolic computationin a connectionist network are also discussed, along with the advantages of the S&A model. Thecomputational constraints imposed by the architecture are then combined with constraints imposedby the input to the parser and the needs of the modules which interpret the parser's output, to formthe set of computational constraints on parsing to be investigated in this dissertation. Chapters 3and 4 discuss how a parser can comply with these constraints, chapter 5 demonstrates that such aparser can indeed be implemented in the S&A architecture, and chapter 6 provides the empiricalinvestigations necessary to show that the proposed techniques allow such a parser to be adequatefor syntactic parsing.2.1 Constraints on Previous Connectionist ParsersSome previous investigations of connectionist natural language parsing have claimed that connec-tionist architectures are adequate for parsing, but they all use connectionist architectures whichimpose formidable constraints on any such parser. To date, none of these investigations have ad-equately addressed the problems which arise due to these constraints. The fundamental source ofthese di�culties is that these architectures do not distinguish between constituent identity infor-mation and constituent feature information. In symbolic representations, this distinction is madeby using di�erent variables to refer to di�erent constituent identities, and using di�erent predicatesto refer to di�erent constituent features. This distinction is important because these two typesof information have very di�erent properties. First, the set of features which a parser needs torepresent during the course of a parse is �xed, while the set of constituents needs to be dynamicallydetermined. Making use of this di�erence is crucial to a connectionist parser's ability to complywith its inherently bounded memory. Second, investigations of natural language have consistentlyfound that it is important to express generalizations over constituents in terms of subsets of theirfeatures.1 For example, adjectives can modify noun phrases, regardless of where the noun phraseoccurs in the sentence. To express these generalizations it must be possible to determine whethera given constituent has a given set of features, without having to make use of other features to doso. This is the role that variables play in symbolic representations. They are used to representwhich predicates apply to which entities, without themselves specifying any information about theentities. Thus the use of variables to express the bindings between di�erent predications allows theexpression of exactly the generalizations which need to be stated.The reason the connectionist architectures used in previous investigations of connectionist parsingdo not distinguish between constituent identity information and constituent feature informationis that they represent these two types of information in the same way. These architectures use1The existence of these kinds of generalizations is the property that Fodor and Pylyshyn (1988) call systematicity.It is directly related to compositionality in that, for representations to be productively constructed from separatelyspeci�ed representations, the later representations can't know everything about the resulting representation. Thusthey must be able to specify only a subset of the features of the resulting representation. This can't be done if theyhave to uniquely identify the resulting representation. 34



di�erent units to represent both di�erent features and di�erent constituents. Localist networksconcentrate on representing what constituents are in the phrase structure tree, but (in the extremecase) they only represent one feature for each constituent. This one feature has a rather complexinterpretation, but it is not decomposed in the network's representation. Distributed networksconcentrate on representing what features the phrase structure tree has, but (in the extreme case)these features all apply to a single constituent, namely the whole tree. Again, that constituent maybe interpreted as a rather complex structure, but that structure is not decomposed in the network'srepresentation. In practice, networks mix these two dimensions of information, but because theydon't distinguish between them, they have di�culty taking advantage of their di�erent properties.An early investigation of connectionist parsing was done by Cottrell in his dissertation on wordsense disambiguation, published in (Cottrell, 1989).2 While it was not the central concern of thiswork, he did implement a syntactic parser. This parser's grammatical framework uses context freegrammars which include both syntactic category and semantic role information. The network usesa localist representation of this information. There are dedicated units for each possible category-role pair, and dedicated units for each list of roles which can form a constituent of a given category.There are multiple copies of each of these types of units, to allow for multiple constituents of thesame type. While this representation speci�es each of the context free productions used in the parsetree of the sentence, it is possible for this representation to be ambiguous as to how these pieces�t together in the complete structure. Cottrell tries to use the temporal order in which these unitsbecome active to represent which constituents have already been �nished and bound to a positionin the phrase structure tree, but he reports errors. He refers to (Fanty, 1985) for a solution to thisproblem. In addition to this problem, this parser does not represent features of constituents otherthan their major category. Representing these features would require the network to be intractablylarge. He also doesn't address the issue of reclaiming copies of constituent recognizers when thesentence has too many constituents of the same type. Since syntactic parsing is not Cottrell's majorfocus, he only tests his parser on its ability to handle simple sentences.Fanty (1985) also investigated context free parsing, using the chart parsing method. He recognizedthat if the input is limited to sentences of less than a �xed length, then a �xed chart could bespeci�ed which includes the parses for all possible input sentences. He used a localist representationof this chart. A combination of bottom up and top down activation are used to determine whichconstituents in the chart are parts of possible parses, and winner-take-all networks are used toselect among the possible parses. Because the chart shares common constituents between parses,this representation is more e�cient than listing each possible parse separately. However, it stillrequires a very large network for sentences of reasonable length, and is inherently unable to dealwith arbitrarily long sentences. The size of the network will also increase as �ner distinctions aremade between di�erent nonterminal categories, which is exactly the problem mentioned above withrepresenting features besides major categories.Selman and Hirst (1987) also use a localist connectionist representation, and they also map theinput sequence into space. Their network uses the Boltzmann machine method of connectionistcomputation, also known as simulated annealing. While this parser was the �rst to make systematicuse of connectionist networks' ability to do evidential reasoning, it su�ers from the same basicproblems of the previous two. Because the input sequence is mapped onto space, the parser isinherently limited to sentences of a bounded length. Because a localist representation is beingused, �ne distinctions between constituent categories will make the network intractably large.2The dissertation itself was �nished in 1985, which is why I count this work as early, even though the book cameout four years after Fanty's work (Fanty, 1985). 35



The remaining connectionist parsers to be discussed here solve the problem of representing theordering of input words using recurrent links. These links put cycles in the spread of activationthrough the network, thereby allowing the network to store state information. Words are then in-put to the network sequentially, and the parser's state is used to represent how the previous wordsconstrain the processing of the current word. In principle this should give these parsers the abilityto parse arbitrarily long sentences, but in practice this ability has not been achieved. These parsersalso di�er from the previous ones in that they use distributed, rather than localist, connectionistrepresentations. This allows them to express generalizations in terms of subsets of features, butthese features tend not to generalize across embedded constituents. The researchers claim this asan advantage, because these networks take the \context" of each embedded constituent into con-sideration. However, it is the di�culty these networks have with abstracting away from irrelevantcontext information which prevents them from being adequate for parsing natural language.Elman (1991) applies his work on simple recurrent networks to natural language parsing and getsreasonable results for simple sentences. Simple recurrent networks are a form of Parallel DistributedProcessing (PDP) model (Rumelhardt and McClelland, 1986). They have a layer of input units,a layer of output units, and a layer of hidden units, but unlike plain PDP models, they have anadditional set of input units whose values are the values of the hidden layer units after the lastword was processed. An extension of the backpropagation learning algorithm is used to train thenetwork to predict the subsequent word given the next word of the sentence and the previous stateof the hidden units. He trains and tests the network on sentences with up to three embeddings ofrelative clauses. The results show that the network has learned to expect gaps in relative clauses, toexpect verbs to agree with their extracted subjects, and to expect one clause to be completed once anembedded clause is �nished. In addition, an inspection of the internal representations of the networkreveals that there is some generalization from one level of embedding to another. However, thisgeneralization is not su�cient to allow the network to parse large numbers of embeddings. Peopleare not able to parse large numbers of embeddings when they are nested, but they have no troubleparsing arbitrarily many embeddings when they are not nested. While in theory a su�cientlylarge network like Elman's could learn to generalize in the way necessary for parsing arbitrarilylong sentences, the work done so far does not provide evidence that this would be tractable.3In addition, the sentences which are used have a very restricted syntax, and a very small set ofwords. While he does address some linguistic phenomena (such as verb subcategorization, subject-verb agreement, and limited cases of wh- movement), it is the shear quantity of grammaticalinformation that a parser must know which poses the greatest challenge to parser's implemented inElman's architecture. Because these networks have a hard time abstracting away from contextualinformation in their representations, they will end up representing a much greater quantity ofgrammatical information than the already large quantity which is needed. The training sentencesdid not require any such contextual information, and yet the network still represented it. AsElman (1991, page 220) puts it \even when the network's behavior seems to ignore context ([: : :]),the internal representations reveal that contextual information is still retained." While Elmanregards this property as an asset, it is likely to prevent such networks from being able to scale upfrom the simple linguistic domains which they have been tested on so far.St. John and McClelland (1992) do not technically do parsing, since the input to the network is3Servan-Schreiber, Cleeremans, and McClelland (1991) show that simple recurrent networks can be trained tomimic �nite state automata. However, encoding a natural language grammar as a �nite state automata would resultin a huge automata, so these results do not demonstrate that training such a network would be tractable for naturallanguage. 36



position-constituent pairs and not ordered words, but since they use terms like \sentence com-prehension" their work will be discussed here. Their network takes constituents for up to fourpositions in a clause and maps them to a representation of the semantics of the clause. Anothernetwork is then used to decode the �rst network's output representation into semantic role-�llerpairs. Both these components are PDP networks. The �rst component processes the constituentsof the clause sequentially. It has input units for each word that can be in a constituent, for the fourpositions (preverbal, verbal, �rst-post-verbal, and other-post-verbal), and for the output represen-tation produced by the last constituent. These input units are connected to a layer of hidden units,which are connected to a set of output units. The output units do not have a �xed interpretation.Instead, the second component of the system is used to translate whatever representation the �rstcomponent comes up with into the �xed representation of semantic role-�ller pairs. Along with theoutput units from the �rst component, the second component has input units for the semantic rolesand �llers. The output of the second component is the role-�ller pair for the input role or �ller inthe input representation. The two networks are trained together to produce the correct role-�llerpairs for the input roles and �llers after processing each constituent of the sentence.The only syntactic phenomena which St. John and McClelland (1992) tested was the ability todi�erentiate between active and passive sentences. In a domain of 10 names, 10 transitive verbs,\was", and \by", after 100,000 training sentences the network produced the correct result on 97%of the testing data. This test leads them to claim (page 115): \As demonstrated by learning therule for the passive voice construction, it can learn syntactic regularities". The network was alsotrained on a slightly more complicated set of sentences which also included both active and passivesentences, but the result was not tested on its ability to generalize to new sentences. While it isunderstandable that they would need to restrict their attention to such simple single clause sentencesgiven their desire to map (pregrouped) words directly to semantic structures, such demonstrationshardly merit the use of terms like \sentence comprehension". Indeed, the very intractability ofdoing more complicated testing is indicative of the intractability of doing broad coverage naturallanguage parsing with the kind of system they propose. In addition, as they themselves say (page118), their representation of both input constituents and output role-�ller pairs are inadequatefor sentences with multiple clauses. They propose using head-role-�ller triples to solve the laterproblem, but even this is inadequate for sentences such as \John said that Mary said to go",where John and Mary have the same head and role. This problem is precisely the problem ofrepresenting constituency information, which distributed connectionist representations can onlydo by integrating it with feature information. The space of features necessary to map words tosemantic representations is already so large that compiling constituency information into it wouldmake training the network intractable. Solving this problem requires partitioning the task intomultiple pieces, most likely along the lines found to be useful by researchers in symbolic naturallanguage processing, namely separating constituent identity information from constituent featureinformation, and separating syntactic information from semantic information.There are a number of other investigations which relate to connectionist parsing, but they do notdirectly address the issue of the adequacy of connectionist networks for natural language parsing.Some of these systems perform computations which are related to parsing, but use a more structuredform of input than is available to a parser ((McClelland and Kawamoto, 1986), (Miikkulainen andDyer, 1991)). Others use hybrid architectures, which are only part connectionist. Some of the laterinvestigations may be signi�cant for future work on the parsing model developed in this dissertation.These investigations complement this one, in that they investigate the strengths of connectionistnetworks, but not their weaknesses. Kempen and Vosse (1989) use a grammatical frameworkvery similar to that used here (Segment Grammar, see section 3.3.3), and they use simulated37



annealing to make attachment decisions. Their system successfully models several psycholinguisticresults. Jain (1991) uses a combination of PDP networks and C code to parse spoken language.The system is hand structured to reect knowledge about the nature of the task. PDP networksare used for the various stages of processing. These modules are trained separately to performthose computations that require the particular abilities of connectionist networks. Simple, wellunderstood computations, such as transformations from the format appropriate for the output ofone module to the format appropriate for the input to another module, are computed with C code.By taking this approach, Jain is able to demonstrate that connectionist networks generalize wellfrom training examples, tolerate noise well, and can e�ectively use multi-modal input. These resultsshould also apply to an entirely connectionist parser, such as the one developed here, as discussedin section 7.4. Stevenson (1994) makes use of activation decay and parallel constraint satisfactionin a hybrid connectionist/marker passing network to model a variety of psycholinguistic results. Asa sentence is input, a network is constructed which encodes the ways the principles of Government-Binding theory apply to the sentence. Marker passing and parallel constraint satisfaction are usedto converge on a single (partial) analysis. If evidence is received which contradicts the chosenanalysis, the network can reconverge to a new analysis. Activation decay is used to model recencye�ects in both attachment and gap �lling ambiguities. This research helps answer questions aboutthe nature of the human parser's disambiguation mechanism, and should be applicable to futureresearch on such a mechanism for the parser developed here.2.2 Connectionist Symbolic ComputationThe Shastri and Ajjanagadde connectionist architecture di�ers from those used in previous investi-gations of connectionist parsing in that it supports symbolic computation. Symbolic computationinvolves abstract representations of entities and their properties. For our purposes, the entities arethe constituents of the phrase structure of the sentence, and the properties are the features of thoseconstituents. In order to allow the representation of constituent identities to be factored from therepresentation of constituent features, the S&A architecture uses the �ne grained temporal syn-chrony of unit activation to represent the binding between di�erent properties of the same entity.This mechanism is called temporal synchrony variable binding, and it is the core feature of the S&Aarchitecture. This mechanism also allows the set of constituents to be dynamically speci�ed. Otherconnectionist architectures have been proposed for representing the bindings associating propertieswith entities, but none of them have all the properties which make the S&A architecture so wellsuited for this investigation. In addition to supporting symbolic computation, the S&A architec-ture supports the massively parallel use of knowledge, supports evidential reasoning, is biologicallyplausible, and has psychologically plausible limitations. The limitations of this architecture are theprimary computational constraints to be investigated in this dissertation. The architecture has abounded memory capacity, no explicit representation of logical connectives, and in the general casehas di�culty in representing, and computing with, relationships between entities.2.2.1 Temporal Synchrony Variable BindingIn order to support symbolic computation, an architecture needs to be able to represent the truthvalues of multiple predicates for multiple entities. The architectures used in previous investigationsof connectionist parsing have not been able to do this e�ectively because they only have twodimensions for representing state information, unit activation and unit identity. The key insight of38



the S&A architecture is that in addition to activation and identity, neurons have available a thirddimension for representing information. When a neuron is active, it is not simply on, it pulses. Apulse has an activation, a neuron identity, and a time. This temporal dimension is what is usedto provide the third dimension which is needed for symbolic representations. Activation levels areused to represent truth values,4 unit identities are used to represent predicates, and the time of aunit's activation pulse is used to represent which entity the predicate is true of. Typically, symbolicrepresentations use variables to represent which entity a predicate is true of. The identity of avariable does not itself specify any information about the entity, but it serves to bind together thedi�erent predicates which are true of the entity. This process is called variable binding. The S&Aarchitecture uses the temporal synchrony of unit activation pulses to represent these bindings. Iftwo units are �ring synchronously, then they are representing predications over the same entity,and if they are �ring out of phase, then they are representing predications over potentially di�erententities. This technique is called temporal synchrony variable binding, and it is the core feature ofthe S&A architecture.Figure 2.2 illustrates how temporal synchrony variable binding is used to represent informationabout the phrase structure of a sentence. The predicates listed on the left of the �gure are repre-sented with sets of units. The collective output of these units are shown in the timing diagram.The left side of the timing diagram (labeled \step 1") shows the representation of the �rst parserstate shown in �gure 2.1. In the �rst time slice, units are active for all the predicates which aretrue of the node labeled x in �gure 2.1, namely the root node of the sentence. Similarly, the secondand third time slices represent the bindings between predications that are represented with thevariables y and z in �gure 2.1, respectively.All of these predicates in �gure 2.2 are unary predicates, except the last one (complete), which isa constant predicate. This last predicate does not apply to individual nodes, but to the phrasestructure description as a whole. Thus its output is constant across all the time slices. Binary(or higher arity) predicates can be represented using multiple pairs (or triples, etc.) of unarypredicates. These unary predicates represent which nodes are in the di�erent roles of the binarypredicate, and the �xed pairings between the unary predicates represent which nodes in the �rstrole go with which nodes in the second role. Just as variables only represent the bindings betweenpredications, the di�erent pairs do not represent any information in and of themselves, but onlythe bindings between the di�erent entities involved in the relation. In the general case for binarypredicates, this method requires as many pairs of unary predicates as there are variables in thememory. For higher arity predicates, it requires as many tuples as the number of variables timesone minus the arity of the predicate.The information represented with temporal synchrony needs to be maintained across the steps ofa computation. To simplify the maintenance of synchronous �ring, units will be assumed to �reperiodically at a �xed frequency. For example, the activation shown in �gure 2.2 for the predicate+I is the activation of a single unit. This assumption means that the activation of these units canbe described with a phase and a range of periods. Just as a time slice represents a variable within aperiod, a phase represents a variable across periods. Thus �gure 2.2 labels the di�erent time slicesfor the same phase with the same variable name.Temporal synchrony variable binding uses �ne grained temporal distinctions to represent variablebindings, which leaves course grained temporal distinctions to represent the sequence of stepsin a computation. The architecture cycles through variables, and each period of this cycle is4Actually, activation level will be used to represent the probability of (or evidence for) a predicate being true. Inthe categorical case this reduces to the truth value itself.39
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analogous to a computation step. Thus �gure 2.2 labels the di�erent periods with di�erent stepnumbers.5 The information represented in the temporal pattern of activation can be modi�edfrom one period to another using links between units. As in other connectionist architectures,activation owing across links produce new patterns of activation from old ones. Patterns of linkshave the e�ect of testing the pattern of activation, and modifying it if a match is found. Thus linksimplement pattern-action rules. Because the architecture cycles through variables, the links aretime-multiplexed across variables, and thus their pattern-action rules inherently generalize acrossvariables. For the same reason, links only have access to information about one variable at atime. However, links also have access to information about the structure as a whole, which isrepresented with constant predicates. Pattern-action rules which involve more than one variablecan be implemented by setting and testing these constant predications. Thus constant predicationsare used to communicate information about one variable or set of variable to all the other variables.This allows any pattern-action rule to be implemented, but some rules are signi�cantly harder toimplement than others.Figure 2.2 shows the e�ects of the rule that implements the parser action shown in �gure 2.1. Thepattern of this rule matched in the phase of z, and in \step 1" the rule's action sends activation tothe units which represent the predicates which are newly true (or false) about z. In the subsequentperiod (step 2) these units begin outputting activation in this phase, thereby representing the newinformation about z which resulted from the parser action. After this new state of the parser isrepresented in the parser's memory, another rule detects that none of the nodes in the tree have anymore expectations that need ful�lling. In step 2 this rule sends activation to the unit for constantpredicate complete, which starts being active in step 3.2.2.2 Other Characteristics of the S&A ArchitectureShastri and Ajjanagadde (1993) give a number of important characteristics of their architectureother than its ability to do symbolic computation. Perhaps most importantly, the architecturesupports the massively parallel use of knowledge. This property is crucial for parsing because ofthe huge size of any real grammar for a natural language. In order to parse with the incrediblespeed necessary for real time speech understanding, the human parser must access this knowledgein a massively parallel fashion. The parsing model developed here takes advantage of this ability.The parser's speed is independent of the size of its grammar.Another crucial property for natural language processing is the ability to do evidential reasoning.Problems such as lexical disambiguation, syntactic disambiguation, thematic role disambiguation,pronoun reference, �lling in implicit arguments, and others require representing and reasoning withprobabilistic information, continuous valued parameters, and soft constraints. Connectionist net-works are good at this kind of reasoning, because link weights, unit thresholds, and activation levelscan all be continuous valued. Thus both long term and short term knowledge can be probabilisticor soft. Long term knowledge includes parsing rules and grammatical information. Here, shortterm knowledge is the information about the phrase structure of the sentence. It is expected thatthese abilities will be very important in the long range success of parsing models such as the onedeveloped in this dissertation. This dissertation takes a more categorical approach to parsing issuesin order to simplify the investigation, and because the ability of connectionist networks to deal with5The choice of x as the start of a period is arbitrary. It could have been y or z. In this sense there aren't reallydiscrete steps in the computation. The key point is that temporal distinctions at the resolution of periods correspondto distinctions between steps in the sequence of computation.41



soft constraints is fairly uncontroversial, while the ability of connectionist networks to deal withthe issues associated with symbolic processing is much more controversial.Although they are less directly relevant to the study of language, two other characteristics ofthis architecture help motivate adopting it. First, there is a plausible and fairly direct relationshipbetween the primitives of the architecture and neurons. Because of this relationship, the work in thisdissertation can be viewed as part of an e�ort to explain how higher level linguistic generalizationsare manifested in biological mechanisms, although the scope of such a study goes far beyond whatis discussed here. For a detailed argument for the neurological plausibility of this architecture see(Shastri and Ajjanagadde, 1993). That document also argues for the psychological plausibility ofthe architecture's various limitations. The limitations which are relevant for syntactic parsing willbe discussed in section 2.2.4..2.2.3 Other Models of Connectionist Symbolic ComputationOther models have been proposed for doing symbolic computation in a connectionist network,but none of them have all the advantages of the Shastri & Ajjanagadde architecture. Each ofthese solutions can be characterized in terms of what physical dimensions they use for the variousrepresentational dimensions needed for symbolic computation. The physical dimensions of a con-nectionist network are time, unit identity (i.e. space), and activation level. All these solutions usedi�erent unit identities to represent di�erent properties, those that consider sequential computationuse time to represent the di�erent stages in the computation, and those that consider evidential rea-soning use activation level to represent di�erent degrees of evidence. Where these proposals di�eris in how they represent entities. Tensor product variable binding (Smolensky, 1990) and relative-position encoding (Barnden and Srinivas, 1991) use the space dimension; signatures (Lange andDyer, 1989), CONSYDERR (Sun, 1992), and pattern-similarity association (Barnden and Srinivas,1991) use the activation level dimension; and temporal synchrony variable binding (Shastri andAjjanagadde, 1993) uses the time dimension. In each of these architectures, the space dimension isused to represent whatever distinctions remain after entities have been represented.Smolensky's work on tensor product variable binding formalizes an approach to representation thathas been used in a number of connectionist investigations (see (Smolensky, 1990)). Tensor productvariable binding organizes the space dimension into multiple representational dimensions, one forproperties, and the rest for entities. In general, representing properties which have multiple rolesrequires as many additional representational dimensions as there are roles. Thus tensor productvariable binding uses as many dimensions for entities as the maximum number of roles for anyproperty (i.e. the maximum arity of any predicate). Barnden and Srinivas (1991) generalize thismethod by using relative spatial information, rather than absolute spatial information, and callthis form of representation relative-position encoding. As discussed in section 2.1, the use of spaceto represent di�erent entities has the problem that links can't help but be sensitive to spatialdistinctions, and thus rules can't generalize across entities. Such generalizations must be explicitlyencoded using multiple sets of links. This poses a problem for connectionist learning algorithms,which are spatially local unless an external mechanism is used to enforce the equality of weights.Several researchers have proposed variable binding mechanisms that use activation level to rep-resent entities. Lange and Dyer (1989) call di�erent activation levels \signatures", and use themto represent variable bindings. Sun uses the same method in his CONSYDERR system (1992).Barnden and Srinivas (1991) call this form of representation pattern-similarity association. In con-trast to the way space is used to represent entities, none of these proposals compile both degree42



of evidence and variable binding into the same activation levels. Because these two dimensionswould have to be separated to be interpreted, such a representation would require more complexcomputation by units than most researchers are willing to assume. Instead, some units' activationlevels represent degree of evidence, and others' represent variable bindings. This requires the use ofspatial associations to represent which degrees of evidence are for which variable bindings, and itrequires two parallel computation paths for the two kinds of information. The need to coordinatecomputation at these two levels complicates the network signi�cantly. Otherwise, the ability oflinks and unit computations to generalize over activation levels makes this representation similarto temporal synchrony variable binding. Each of the above researchers recognize the similaritybetween the two approaches, and suggests that temporal synchrony might be an alternative im-plementation for the variable binding technique they propose. The advantage of using time ratherthan activation level to represent variable bindings is that compiling both stage in the sequentialcomputation and variable binding into the time dimension does not require very complex unitcomputations. Units simply need to be sensitive to both relative phase (precisely synchronous ornot) and relative period (occurring within a certain time or not). By representing both degree ofevidence and variable binding in the temporal pattern of activation, a single level of the networkcan process all the relevant information, and there is no need to coordinate computation at di�erentlevels.As mentioned in the discussion of tensor produce variable binding, in general adding a singleadditional representational dimension in not adequate. Representing properties that have multipleroles requires as many additional dimensions as there are roles. Rather than having a di�erentrepresentational dimension for each role's variable binding (as in tensor product variable binding),temporal synchrony variable binding represents each role's variable binding separately using thetime dimension, and then uses space to represent the di�erent groupings of these bindings intopropositions. While this doesn't reduce the size of the representational space in principle, inpractice the number of such groupings that need to be stored at a given time is rather small. Theuse of the space dimension to represent these groupings means that rules do not generalize acrossdi�erent groupings, but in practice this is also not a problem. These two claims will be made moreprecise in the next section, and, for the case of syntactic parsing, will be argued for in the rest ofthis dissertation.2.2.4 Limitations of the S&A ArchitectureUsing temporal synchrony variable binding, the S&A architecture supports variables, predicates,and pattern-action rules. This allows the abstract representation of multiple entities and theirproperties, and the statement of generalizations over entities in terms of arbitrary subsets of theseproperties. These abilities provide a rather general purpose framework for symbolic computation,but the architecture does have some limitations. By making clear the relationship between symboliccomputation and computation in the S&A architecture, the above analysis allows these limitationsto be characterized and analyzed in terms of a set of computational constraints which are conceptu-ally distinct from the mechanisms of symbolic computation. In this way our investigation of parsingnatural language can capture the abstract generalizations about the nature of language, and stillexpress the exceptions imposed by the computational abilities of the architecture. Although it is thegeneralizations plus the exceptions that determine the ultimate interpretation of the parser's repre-sentations, making this conceptual distinction allows this investigation to incorporate results frominvestigations which abstract away from computational constraints, which make up the majorityof the work on natural language. That said, it is the implications of the computational constraints43



that are the primary concern of this investigation, and not the instantiation of any particular the-ory of linguistic competence. This section continues the analysis of the relationship between theS&A architecture and symbolic computation by characterizing the set of computational constraintswhich it's limitations impose.One important limitation of the S&A architecture is that the memory capacity of any module isbounded. Neurons are only capable of sustaining periodic �ring for periods within a certain range, sothe length of a period is bounded. Also, the ability of a neuron to distinguish between synchronousand asynchronous input pulses has �xed precision. Thus there is a bound on the maximum numberof distinguishable phases that can �t in one period, and thus a bound on the number of variablesthat a module can store information about at any one time.6 Biological evidence on the maximumperiod length and the width of an activation spike can be used to estimate this bound. Shastri andAjjanagadde (1993) do this estimation and determine that the bound on the number of variablesis at most ten, probably a little less. For the data addressed in this dissertation, any bound of nineor greater would be �ne, but to avoid the impression that I am making a more precise claim than Iam warranted in making, I will assume this bound to be ten. Some additional linguistic data needsto be found and addressed before a precise bound can be determined on that basis. Nevertheless,it is interesting to have this degree of agreement between the biological data, the linguistic data,and the robust bound on human short term memory of seven plus or minus two (Miller, 1956).Another important limitation of the way the architecture stores information is that there is noexplicit representation of logical connectives. Thus only the default logical connective can be usedin the representation of phrase structure information. Either conjunction or disjunction couldbe used as the default connective, but using disjunction would require a very large number ofprimitive predicates. Conjunction is used as the default connective so that feature decompositionscan be used to represent node types. Representing categories as a conjoined set of more primitivefeatures is a common practice in grammatical representations. This form of representation has alsobeen widely adopted in connectionist work, where it is called a distributed representation.7 Suchrepresentations have been found to be quite e�ective in capturing relevant similarities between theproperties of di�erent entities. Because only one logical connective can be the default, the use ofconjunction means that the parser cannot explicitly represent a disjunction of predications. Thisconstraint on parsing has been proposed previously and was argued for on the basis of linguisticevidence. Marcus (1980) proposed that natural language parsing can be done deterministically, inthe sense that the parser does not have to simulate a nondeterministic machine. Marcus (1980)proposed a parsing model which complied with this constraint, and showed that it could handlea variety of linguistic phenomena. The model also predicts some di�culties with disambiguationwhich people have. There are two techniques which can be used to simulate a nondeterministicmachine: pursuing multiple analyses in parallel, and using backtracking to pursue multiple analysesserially. The prohibition against pursuing multiple analyses in parallel is equivalent to not allowingthe use of disjunction in the representation of phrase structure information. As will be discussed inthe next section, the prohibition against backtracking falls out of constraints on the parser's output.Thus these constraints together require that the parsing model developed here be deterministic.This is another interesting convergence between previously proposed computational constraints andthe limitations of the S&A architecture.6The architecture allows for many di�erent computational modules. Storing information in the constituent struc-ture parsing module does not use up resources in other modules.7Normally distributed representations use a feature decomposition which is produced by a learning algorithm, andwhich does not correspond to the feature decompositions which have been manually devised by other investigators.I take this to be an orthogonal issue to the distinction between using an atomic predicate or a conjunction ofpredications to describe an entity. 44



The remaining limitations of the S&A architecture are due to the fact that temporal synchronyvariable binding only adds one additional dimension for representing information. This dimension(phase) allows the e�cient storing and processing of information about individual variables, butrelations between variables require additional representational dimensions for each additional argu-ment position in the relation. As discussed in the last section, the solution to the need for additionalrepresentational dimensions is to use the dimensions which are available more than once. Tensorproduct variable binding explicitly uses the space dimension more than once, and most other con-nectionist architectures also use this method, although there may not be any clear mapping fromunits to points in the multidimensional space. Although the S&A architecture uses time insteadof space for the representation of information about individual variables, it uses space more thanonce for representing relations between variables. This means that the S&A architecture has thesame problems with storing and processing relations between variables as traditional architectureshave with storing and processing all predications over variables. These problems are characterizedin two additional constraints imposed by the S&A architecture, one on storing relations, and oneon processing relations.The problem with storing relations between variables using multiple spatial dimensions is that itrequires more units and it adds complexity in modifying and accessing the stored relations. Asdiscussed in section 2.2.1, relations can be stored in the S&A architecture using multiple tuples ofunary predicates, where the di�erent unary predicates represent the di�erent roles of the relationand the di�erent tuples represent which entities in the roles are related to which entities in theother roles. Because the di�erent tuples do not represent any information in and of themselves,the allocation of tuples can't be determined by features of the entities, but must be determinedby speci�c control structures. To control the complexity of these control structures and to controlthe number of units required to implement the multiple unary predicates, the implementationof relations is constrained to use at most three tuples of unary predicates. This is essentiallyequivalent to the constraint proposed by Shastri and Ajjanagadde (1993), who require that at mostthree instantiations of a relation can be stored at any one time. It is slightly di�erent in thatmultiple instances of a relation can be stored in a single tuple, as long as all the entities in each roleare related to all the entities in each other role, but in the case where no such distributivity holds itreduces to the same constraint. For this investigation only binary predicates will be needed, whichin the general case would require ten pairs of unary predicates, since ten is the maximum numberof variables in the memory.Processing with relations between variables is di�cult because such rules involve more than oneentity. As discussed in section 2.2.1, since rules only have access to information about one entityat a time, information that the rule needs about other entities must be represented as propertiesof the structure as a whole. If the identity of the other entities isn't important, then this is not aparticular problem. Such entities appear either only in the antecedent or only in the consequent ofthe rule. If the identity of another entity is important, then to avoid losing the identity informationin the conversion to information about the structure as a whole, the other entity must be uniquelyidenti�able at the time when the rule applies. Thus it must be possible to refer to such entities withconstants, rather than variables. Thus rules are constrained to only use at most one variable thatappears in both the antecedent and consequent of the rule. It is possible to simulate a rule whichinvolves multiple variables by introducing arbitrary distinctions between entities, but this requiresmultiple copies of the same rule. Introducing completely arbitrary distinctions is undesirable, andthe duplication of the rule violates the locality assumptions of connectionist learning algorithms.It would also be possible to time-multiplex rules across the tuples which store relations, as is donewith individual variables. For a rule involving a single relation, the rule's application would take45



up to three times as long, since three is the maximum number of tuples. This would slow downthe system and result in additional complexity for sequencing through the tuples. These additionalcosts turn out not to be necessary for syntactic parsing. While the constraint that at most onevariable appear in the antecedent and consequent of a rule has no precedent in work on syntacticparsing, this investigation shows that it has a number of signi�cant linguistic implications.The locality constraint on rules just discussed is stated in a di�erent form from the locality con-straint on rules given in chapter 1, but the class of computations that are allowed is the same. Inchapter 1, this constraint was stated as requiring that all rules apply to each variable independently,but accessing and setting relations was allowed, as long as this was done through unary predicates.The above form of the constraint allows the accessing and setting of relations to be incorporatedinto the notation for rules. This makes it easier to write down rules, but it glosses over a costassociated with such rules that should be kept in mind. The core computation in these rules takesplace in the phase of the one variable that occurs in both the antecedent and consequent, and thiscomputation is independent of information about other variables. The remaining computations nec-essary to implement such rules take place independently in the phases of the other phrase structurenodes mentioned in the rule, and they communicate with the core computation using predicationsabout the structure as a whole (i.e. constant predications). While there is no theoretical limit tothe number of constant predicates that can be used to coordinate computation between variables,each such predicate and the rules necessary to manipulate it does constitute a cost in both networksize and complexity. Also, learning these predicates and computations is relatively complicatedcompared to unary predicates and computations over them, since they involve information aboutmultiple nodes, and thus the space of possible computations is much larger. Thus, although it isnot a strict constraint, this investigation will be concerned with minimizing the number of constantpredicates.The above discussion concludes the characterization of computation in the S&A architecture. TheS&A architecture performs symbolic computation using variables, predicates, (probabilities of)truth values, and pattern-action rules, under the following set of computational constraints.1. information about at most ten entities stored at a time2. no explicit representation of disjunction between predications3. at most three tuples of unary predicates for storing relations4. at most one variable can appear in both a rule's antecedent and consequent2.3 Constraints on the Parsing ModelAs discussed above, the most e�ective level of abstraction for investigating natural language parsingis that of symbolic computation. In order to investigate parsing in the S&A architecture at thelevel of symbolic computation, the nature of computation in this architecture needs to be expressedat this level. The previous section did this by specifying a set of constraints on the architecture'sability to represent and reason with variables, predicates, truth values and rules. To completethe set of requirements on a syntactic parser implemented in the S&A architecture, we have toconsider the constraints imposed by the nature of the task of recovering the constituent structureof a sentence. This section discusses the constraints imposed by the nature of the input to theparser and by the requirements of the modules which receive the output of the parser, then itsummarizes these constraints and the constraints from the previous section.46



The nature of the input to the parser imposes two constraints on the parser design. First, the wordswhich are input to the parser become available one at a time, in the order in which they appear inthe sentence. Thus the parser must accept incremental input. Second, the time between the inputof each word is bounded, as is the time between the input of the last word and the completion ofthe parse. This is certainly true for speech, and in the normal case is also true in reading. Thusthe parser must only take a bounded amount of time per word. In other words, the parser mustparse in quasi-real time. The actual bound on the amount of time the parser should take can bedetermined, but in order to test compliance with this constraint there has to be a clear relationshipbetween the number of computation steps performed at the level of symbolic processing and thenumber of seconds required at the level of biological processing. The relationship between theprimitives of the S&A architecture and neurons provides a connection to biological processing, andbiological evidence provides an estimate of the speed of this processing, but both these steps arerather approximate. Because precise estimates of the real speed of a biological implementationof a parsing model can't be made at this stage of our understanding, I will concentrate on theclearer quasi-real time constraint, rather than the stricter real time constraint. However, even theimprecise estimates which can be made provide some guidance for the design of the parser. Inchapter 5 it is argued that the parser developed below is consistent with the real time constraint,given what we do know about biological processing. As our understanding of biological processingimproves, these estimates will become more precise, and future work can use them to con�rm andrefute many aspects of parsing models.The modules which receive the output of the parser need to incrementally compute the sentence'sinterpretation. Thus the output of the parser needs to be as incremental as possible, and imme-diately interpretable. To be as incremental as possible, the parser needs to output everything itthinks it knows about the phrase structure of the sentence. To be immediately interpretable, theoutput has to be monotonic. If the output isn't monotonic, then the interpreter can't make com-mitments on the basis of the output without risking having to retract those commitments. Whilesuch retractions do occur under some circumstances, I assume that there is always some evidencethat something has gone wrong. Typically the person will be consciously aware of a problem,although other evidence (such as regressions in eye movements) can also be used to determinethese cases. Since we are concerned here with the normal case in which nothing goes wrong, theparser's output must be monotonic. The requirement that the parser produce incremental mono-tonic output prevents it from backtracking. Once the parser determines something about the phrasestructure of the sentence, it must be output, and once information is output, it can't be retracted.Thus the parser can't backtrack without something going wrong. As discussed in section 2.2.4,the combination of this prohibition against backtracking and the inability to use disjunction inthe representation of phrase structure information implies that the parser must be deterministic.Thus Marcus' (1980) determinism constraint can be derived from the requirements on the parser'soutput and the limitations of the S&A architecture.In summary, the design of a parsing model implemented in the S&A architecture needs to complywith four constraints from the architecture, two constraints from the input, and two constraintsfrom the modules which interpret its output. This set of eight computational constraints, listedbelow, can now be used to investigate the feasibility and implications of using the S&A architecturefor constituent structure parsing. 47



1. information about at most ten nodes stored at a time2. no explicit representation of disjunction between predications3. at most three tuples of unary predicates for storing relations4. at most one variable can appear in both a rule's antecedent and consequent5. input is incremental6. parse in quasi-real time7. produce maximally incremental output8. produce monotonic output
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Chapter 3The Grammatical FrameworkThe problem of syntactic parsing can be divided into two parts, characterizing what syntactic struc-ture (or structures) should be produced for each sentence, and characterizing how that syntacticstructure will be produced. The �rst part is the grammar, and the second part is the parsing al-gorithm. Both these parts need a notation for representing information about syntactic structure.The formal characterization of this notation is called a grammar formalism. The choice of a notationis important both for specifying a grammar and for specifying a parser's data structures. Becausethe constraints identi�ed in the last chapter are computational in nature, the grammar formalismthat will be used is designed primarily to be good for representing a parser's data structures.1 Thisis in contrast to most work on grammar formalisms, which are designed primarily to be good forrepresenting grammars. Fortunately, these concerns are similar enough that there is a signi�cantamount of overlap in the desired properties for a grammar formalism. Nonetheless, the grammarformalisms which are most similar to the one used here are those that have taken into considerationthe concerns of parsing.To investigate the implications of the computational constraints derived in the last chapter, thegrammar formalism needs to provide the parser with the expressive abilities that it needs to com-ply with the constraints. The grammar formalism presented in this chapter (Structure Uni�cationGrammar) does this using partial descriptions of phrase structure trees. This makes SUG similarto other uni�cation based or constraint based formalisms, but none of these formalisms have allthe properties which are needed to comply with the computational constraints. In particular, SUGallows each grammatical feature, expectation, iteration restriction, or structural constraint to bespeci�ed independently, SUG has very exible derivation structures, and there is a simple abstrac-tion operation (\forgetting") for SUG which allows unneeded information to be forgotten. Theparser de�ned in the next chapter will use SUG plus the abstraction operation as its grammaticalframework.To simplify the analysis of the implications of the computational constraints derived in the lastchapter, the grammar formalism should not impose any additional constraints. This means we wanta relatively unconstrained grammar formalism at this stage in the research. Once the implicationsof the constraints have been determined, the grammar formalism should manifest all the constraintsthat can be simply stated declaratively. This is because the empirically testable interpretation of1For this same reason, the discussion of grammars in this dissertation will be minimal. The analyses given in thischapter are only for illustrative purposes. Chapter 6 discusses how some results from the investigation of grammarscan be used by the parser presented in the next chapter. What signi�cance the results from this investigation dohave for grammatical theory will also be discussed in chapter 6.49



a grammar is the interpretation provided to it by the parser, not the interpretation provided to itby the grammar formalism. Thus a grammar writer who (or which) uses the grammar formalism'sinterpretation is being deceived about the true interpretation of their grammar. Sometimes thisimprecision is justi�ed because it greatly simpli�es the grammar formalism, but when the di�erencecan be speci�ed declaratively, it should be included. This rede�nition of the grammar formalismhas not yet been done, but the di�erences are not very signi�cant. Mostly the di�erences are in therange of grammars which can be de�ned by the formalism, versus the range that can be parsed.These di�erences will be discussed in the next chapter.The rest of this chapter begins with a discussion of what properties the grammatical frameworkused in this investigation should have, and what existing approaches to grammatical representationhave some of these properties. The second section describes a grammar formalism (SUG) which isspeci�cally designed to comply with all the requirements, and which will be used for grammaticalrepresentations in this dissertation. The third section discusses how SUG can be used to expressgrammatical information. For a more extensive discussion of expressing grammatical constraintsin SUG, including formal and informal comparisons with a variety of other investigations intonatural language, see (Henderson, 1990). The fourth section de�nes the abstraction operationthat can be used with SUG. This operation allows information to be forgotten without risking theviolation of the forgotten information. The combination of SUG and this abstraction operation isthe grammatical framework which will be used in the next chapter to specify the parser's grammarsand how the parser recovers the syntactic structure of natural language sentences.3.1 Related Approaches to Grammatical RepresentationIn the last chapter, computation in the Shastri and Ajjanagadde architecture was characterized assymbolic computation under a set of constraints. This allows the investigation of parsing using theS&A architecture to be done at the level of symbolic computation. Many symbolic grammaticalframeworks have been developed that can be used for parsing, but the particular set of constraintswe are investigating place important requirements on the grammatical framework which should beused here. This section characterizes these requirements, and discusses previous work on grammat-ical representation that has addressed these requirements. The grammatical framework presentedin the next section and used in later chapters synthesizes ideas from all of these approaches.3.1.1 Requirements for the Grammatical FrameworkChapter 2 identi�ed the following set of constraints on parsing in the S&A architecture.1. information about at most ten nodes stored at a time2. no explicit representation of disjunction between predications3. at most three tuples of unary predicates for storing relations4. at most one variable can appear in both a rule's antecedent and consequent5. input is incremental6. parse in quasi-real time7. produce maximally incremental output8. produce monotonic output 50



As was discussed, constraints 2, 7, and 8 mean the parser must be deterministic, in the sense of(Marcus, 1980). Also, some e�ort should be made to minimize the use of rules that involve multiplephrase structure nodes.Because the parser must be deterministic, the representation should allow the parser to avoid sayingwhat it doesn't know. Following Description Theory (Marcus et al., 1983), partial descriptions ofphrase structure trees are used to satisfy this requirement. Partial descriptions allow the parser tounderspecify phrase structure information, rather than either overcommitting or using a disjunc-tion of more completely speci�ed alternatives. For example, \she" has nominative case, and \her"has accusative case, but \Barbie" is ambiguous as to its case. Rather than having two di�erentgrammar entries for \Barbie", one for each case, partial descriptions allow a single grammar entrywhich simply does not specify the case. On the other hand, in order to produce incremental outputand only allow syntactically well-formed analyses, the parser must be able to say what it does know.Again the use of partial descriptions is important for this requirement, because they allow di�erentkinds of information to be speci�ed independently of each other. In the same example, there is noproblem with stating the \Barbie" is a noun, even though all nouns have case, and we don't yetknow \Barbie"'s case. To satisfy both these requirements, the grammatical representation mustallow information which the parser does know at a given time to be speci�ed independently ofthe information which the parser does not know. What the basic units of grammatical informa-tion are such that this independent speci�cation can be done is an empirical issue, but previousinvestigations of this issue give us a good idea about the nature of these representational primitives.The locality constraint on rules (constraint number 4 above) and the parser's bounded memoryboth place another requirement on the parser's representation of grammatical information. Becauseof the locality constraint on rules, the representation should allow as much information as possibleto be local to individual phrase structure nodes. This helps avoid the need for computationsthat manipulate pairs of nodes. It also minimizes the need for computations which involve multiplenodes. Thus we want a relatively at phrase structure representation, provided it still expresses thecompositional nature of syntax. This compact representation also makes it easier to stay withinthe parser's bounded memory, because it reduces the number nodes in a tree's representation.Previous investigations of grammatical representation give us a good idea about what domains intheir phrase structure representations have large amounts of dynamically interacting information,even though they tend not to use the compact representation needed here.The locality constraint on rules and the parser's bounded memory interact in another interestingway to constrain the parser's representations. Not only should as much information as possiblebe local to individual nodes, as little information as possible should be expressed as relationshipsbetween nodes. This minimization also helps compliance with the constraint on the number ofinstantiations of a relation that can be stored. As will be argued in chapter 6, each of the fewparsing issues that actually require the use of relations can be handled with special mechanismsthat avoid the use of rules that manipulate pairs of nodes. Isolating the few cases when relationsare required also makes it possible to stay within the parser's bounded memory. Given that theuse of relations has been minimized, the only information represented in relations is about how achange in the information about one phrase structure node a�ects future computations involvinganother node. Thus if no future computations are going to be necessary for a node, then relationswith it are no longer needed. Information speci�cally about a node also isn't needed if there willbe no more computations directly involving it, so under these circumstances all the informationabout the node can safely be forgotten. Thus such nodes can be removed from the parser's memorywithout risking contradicting the information about these nodes. By removing nodes as they arecompleted during a parse, the parser can parse arbitrarily long sentences using only a bounded51



number of nodes at any given time, as is required by the S&A architecture's bounded memory.One particular class of grammar formalisms uses representations that stay bounded in size evenfor unbounded input (Categorial Grammar based formalisms), and these formalisms show whatrelations can be used to allow this property.Because this investigation is interested in the implications of precisely the above set of constraints,the grammatical framework should not impose any additional constraints on either the representa-tion or processing of grammatical information. This ensures that the limitations of the parser thatis developed in this framework are due to the constraints, and not due to the framework. By usinga very exible representation, the parser can use whatever strategies it needs to compensate for theconstraints, without having to use representations that are outside the framework. Unfortunately,this approach is in contrast to most work on grammar formalisms, which seeks the most restrictedrepresentation that still allows the speci�cation of the range of phenomena in natural language. Asdiscussed above, developing such a tight match between the formalism power and the empiricallyrequired power will have to wait for later investigations. However, previous work on grammarformalisms does point to certain expressive abilities the grammatical framework should have. Inparticular, work on Tree Adjoining Grammar (Joshi, 1987) shows that the grammar formalismshould allow grammar entries which specify grammatical information over a fairly large domain ofthe tree. This domain is called the formalism's domain of locality, and it should include the abilityto specify information across multiple levels in the phrase structure tree, and should include theability to specify long distance dependencies.3.1.2 Specifying Independent Information IndependentlyGrammatical representations that allow partial information from di�erent sources to be speci�edindependently and then combined in the �nal representation have been studied by quite a numberof researchers. Such representations are often called uni�cation-based or constraint-based grammarformalisms. They include Description Theory (Marcus, Hindle, and Fleck, 1983), Head-DrivenPhrase Structure Grammar (Pollard and Sag, 1987), PATR-II (Shieber, 1986), Feature Struc-ture Based Tree Adjoining Grammars (Vijay-Shanker, 1987), the system de�ned in (Rounds andManaster-Ramer, 1987), Construction Grammar (Fillmore et al., 1988), and Segment Grammar(de Smedt and Kempen, 1991). Shieber (1986) discusses other such formalisms. In this section,Head-Driven Phrase Structure Grammar and Description Theory will be discussed, because theyembody the features to be developed in the discussion of the grammar formalism used in thiswork (Structure Uni�cation Grammar, (Henderson, 1990)). After the presentation of StructureUni�cation Grammar, section 3.3.3 discusses most of the other formalisms listed above.Of the well-developed linguistic theories, Head-Driven Phrase Structure Grammar (HPSG) mostdirectly embodies the uni�cation-based approach. The data structures of the theory are all featurestructures, and uni�cation is the central operation for combining these data structures. Some partsof these feature structures, such as the SUBCAT list, have special interpretations by virtue of asmall set of universal principles, but these can be interpreted as notational mechanisms that allowthe speci�cation of constraints, such as linear order, that are not directly speci�able in featurestructures alone. The use of feature structures allows each of a phrase structure node's grammati-cal features to be speci�ed independently of the others. This allows a wide variety of phenomenato be handled using the interaction of grammatical constraints that are speci�ed independently inlexical entries. The mechanisms for specifying long distance dependencies make it possible to alsohandle these phenomena with information speci�ed independently in lexical entries (although seethe discussion in section 6.2). However, the mechanisms for specifying constituent structure inherit52



most of the problems of Context Free Grammars (CFGs) from the preceding work on GeneralizedPhrase Structure Grammar (Gazdar et al., 1985). These formalisms each use structural con�gura-tion to specify when a constituent needs more information speci�ed about it (expectations), andwhen a constituent can't have more information (directly) speci�ed about it (iteration restrictions).Thus expectations and iteration restrictions cannot be speci�ed independently of the speci�cationof constituent structure. Since the S&A architecture's computational constraints place require-ments on how constituent structure is speci�ed, we want a grammar formalism which allows theserequirements to be satis�ed without interfering with the speci�cation of expectations and itera-tion restrictions, and therefore we want to be able to specify these di�erent kinds of informationindependently. Also, although some mechanisms, such as the Head Feature Principle, have beenadded to extend HPSG's domain of locality beyond that of CFGs, there are still constraints onwhat groups of structural constraints can be speci�ed in a single grammar entry. Thus di�erentconstituent structure speci�cations are not completely independently of each other.2Description Theory (D-Theory) also embodies the idea that partial descriptions are central togrammatical speci�cation, but it takes a more computational perspective than HPSG. In particular,D-Theory is concerned with parsing deterministically. This leads Marcus, Hindle, and Fleck (1983)to address the problems that were just discussed for CFG-based formalisms. Rather than using arepresentation of constituent structure that directly parallels that structure, they use unstructuredsets of statements about the nodes in the constituent structure. This representation allows thespeci�cation of grammatical information about di�erent nodes to be independent of the structuralrelationship between the nodes. To allow such a representation, they use variables to refer tonodes, rather than feature structures to represent nodes. It is possible to delay the statement ofequality between two variables, thus allowing the resolution of many ambiguities to be delayed.This technique will be very important in the work presented here. (Hence the name \Neural-network Node Equating Parser".) Another change they make is to specify structural constraintswith dominance relationships, rather than immediate dominance relationships. Dominance is therecursive, transitive closure of immediate dominance, so every node dominates itself, and any nodethat x dominates is dominated by all the nodes that dominate x. This allows the direct speci�cationof long distance dependencies, and it allows the resolution of many attachment ambiguities to bedelayed by attaching high and lowering later. While dominance relationships will be used belowto specify long distance dependencies, attachment ambiguities will be handled by delaying theequation of variables. This points to a property of D-Theory that will not be adopted here. Theytake the concept of partial description to the point where there is no concept of a description everbeing complete. The parser simply �nds out as much information as it can about the structure, andleaves the rest up to later stages of language processing. While this may be an appropriate modelfor parsers that need to handle the ungrammaticalities and incompleteness of real natural languageutterances, it makes it impossible for a formal characterization of the parser's grammars to expressexpectations. Without having a notion of the parse not being �nished, there can be no notion ofsomething being needed for the parse to be acceptable. For example, there can be no speci�cationof obligatory arguments. Thus the formal characterization of the parser's grammars requires thatthere be a de�nition of when the description of the sentence's phrase structure tree can be calledcomplete. For the parser, the only signi�cance of this notion of completeness is the expectations2These problems should not be taken as criticisms of HPSG, since the objectives of that investigation are verydi�erent from the objectives of the one discussed here. HPSG is a linguistic theory which is predominantly concernedwith competence phenomena. This investigation is far from a linguistic theory, and it is predominantly concernedwith computational issues in language. There are certainly aspects of the formalism used here which would need tobe changed to make it appropriate for an enterprise such as HPSG's. However, given the large amount of overlapbetween the two frameworks, future work should be able to synthesize insights from both of them.53



that it has. If we allow these expectations and other grammatical constraints to be of varyingdegrees, then we are again in a position to handle \unexpected" input, such as ungrammaticalityand incompleteness.3.1.3 Computational LocalityGiven a grammatical formalism that allows constituent structure information to be speci�ed inde-pendently of expectations and iteration restrictions, it is possible to associate grammatical infor-mation with phrase structure nodes in a way that allows as much computation as possible to belocal to individual nodes.3 Because the information about a single node is unstructured, the desireto localize computation needs to be balanced against the need to express how the di�erent wordsin the sentence relate to each other (i.e. the sentence's compositional structure). Thus each nodeshould represent a portion of phrase structure which other grammatical investigations describe witha consistent structure. In this section, Government Binding theory will be used to to determinethe largest such domain. The other issue discussed above that involves computational locality isthe need to be able to remove nodes from the parser's bounded memory. This requires a particularrepresentation of the relationships between nodes. To determine this representation, CombinatoryCategorial Grammar (Steedman, 1987) will be discussed.In Government Binding theory (GB), X-bar theory provides a consistent structure for all projec-tions. Thus given predicates for each of the distinguished roles in this structure, each projection canbe represented in an unstructured fashion. The X-bar structure can be unambiguously recoveredfrom the unstructured representation, given the roles and the universal principles of X-bar theory.Similarly, the relationship between a given lexical projection (headed by a noun, verb, adjective,adverb, or preposition) and its associated functional projections (headed by a determiner, comple-mentizer, or inection) is universal, so these relationships can also be unambiguously determinedfrom an unstructured representation. Beyond this domain there is much more variability in thepossible structures. For example, a noun's projections may be immediately dominated by either averb's projections or a preposition's projection, and it may be in the speci�er role or the comple-ment role. Therefore, the largest domain of phrase structure information that can be associatedwith a single node in the parser's grammatical representations includes a lexical projection and allits associated functional projections. This is the representation that is used in this investigation.It results in a much atter phrase structure tree than is used in most investigations. While at-ter representations than that used in GB are common, it is very rare to go so far as to not evenrepresent the distinction between the sentence and the verb phrase. While this distinction may beimportant at other levels of representation, it does not need to be made at the level of syntacticconstituent structure, for the reasons just discussed. These issues are discussed in more detail insection 6.1.As discussed above, localizing most computation to individual nodes allows those nodes that willnot be directly involved in the rest of the parse to be forgotten, provided the right set of relationsis used. To determine what relations should be used, we can look at a grammar formalism which is3Because it is only the information that needs to be dynamically manipulated that is important for the requirementsimposed by the S&A architecture, this computational domain of locality is di�erent from the domain of locality forgrammatical speci�cation. Grammar entries need to specify all the grammatical dependencies that exist in thelanguage, but, as will be argued in this section, violations of these dependencies can be checked much more locallyusing multiple independent computations. For example, the grammar entry for \of" needs to specify both that itmodi�es a noun phrase and that it takes a noun phrase object, but checking each of these constraints does not requirethe information about the other. 54



already capable of representing parses of arbitrarily long sentences using structure speci�cations ofbounded size, namely Combinatory Categorial Grammar (Steedman, 1987). Like other formalismsbased on Categorial Grammar, Combinatory Categorial Grammar (CCG) represents grammaticalinformation in categories which can be viewed as abstract types for tree fragments.4 For example,the category NP is the type for tree fragments which have an NP node as their root and have nomissing constituents. The categories of the form X/Y are types for tree fragments which wouldbe tree fragments of type X if they were to combine with a tree fragment of type Y. Becausethese categories only represent the root node and the missing constituents, they abstract awayfrom the completed constituents which tree fragment contains. CCG even provides a mechanismfor abstracting away from nodes before their constituent is completed, as long as the node itself iscomplete. This mechanism is the composition operation, which combines a category of the formX/Y with a category of the form Y/Z to produce the category X/Z. For example, the categoryfor \Barbie said" (S/S) can be composed with the category for \Ken likes" (S/NP) to produce asingle category for \Barbie said Ken likes" (S/NP). Because the internal structure of this phrase isnot represented, this single category is no larger than the category for \Barbie said". In this way,CCG can represent the parse of an arbitrarily long sentence using only categories of bounded size.Section 3.4 discusses these issues further.Since CCG has this property, its categories must show how the relationships between nodes in aphrase structure tree can be represented while still allowing completed nodes to be removed from therepresentation of that tree. Since the innermost result of a category is the root of any tree fragmentit describes, and the arguments are missing constituents within such tree fragments, these categoriesrepresent dominance relationships between nodes. They do not represent immediate dominance,since there may be completed nodes between the result node and the argument nodes. However,they do represent whether a node has an immediate parent. The innermost result of a category isthe tree fragment root, so it does not have an immediate parent. The arguments of a category (ortheir innermost results) do not need to be taken as arguments to another category, so they havean immediate parent. As discussed in (Henderson, 1992), arguments of arguments do not haveimmediate parents, and higher order functions do not need to be considered for our purposes. Theproperty of having an immediate parent is a property of an individual node, not a relationshipbetween nodes. Relationships in the semantics of the category do not have to be representedat the level of processing being investigated here. The only other relationships represented inCCG categories are ordering constraints. Thus the only information that actually needs to berepresented as explicit relationships is dominance and ordering constraints, and these relationshipsdo not prevent removing completed nodes from the parser's representation of the sentence's phrasestructure tree. As will be discussed in section 3.4, the grammatical representation also needs theability to leave nodes that appear to be completed in the representation, which makes CCG itselfinappropriate for this investigation.3.2 Structure Uni�cation GrammarStructure Uni�cation Grammar is a formalization of accumulating information about the phrasestructure of a sentence until this structure is completely described. This section will expand the4In some Categorial Grammar based formalisms, the categories can't strictly speaking be viewed as types for treefragments. However, I take Lambek Calculus (Lambek, 1961) to de�ne the core meaning of categories, and underthis de�nition they can be viewed in this way. See (Henderson, 1992) for a formal explication of this relationshipbetween Lambek Calculus categories and phrase structure tree fragments.55



description given in the introduction by giving the details of SUG's de�nition.5The �rst subsection below discusses the language which SUG uses to describe phrase structure trees.These trees are ordered trees of feature structures. The tree relations are immediate dominance,linear precedence, and dominance. Immediate dominance is the relationship between a node andeach of its immediate children. Linear precedence is the ordering relation used here. Dominance isthe recursive transitive closure of immediate dominance. Its addition is necessary in order to expresslong distance dependencies in a single grammar entry. The nodes of the trees are feature structures.They are divided into nonterminals, which are arbitrary feature structures, and terminals, whichare atomic instances of strings. These feature structures are allowed to share values, includinghaving the value of a feature be another node. Examples of how this descriptive language is usedto express grammatical information are given below and in section 3.3.The second subsection below speci�es what constitutes an SUG derivation. The objects used inthese derivations are partial descriptions in SUG's language for specifying phrase structure trees.Each step in a derivation combines one or more descriptions by conjoining them and equatingzero or more pairs of nonterminal nodes. These equations are not allowed to make the resultingdescription unsatis�able. A derivation must start with entries from the grammar, and must �nishwith a complete description. A complete description implies all and only what is true about aunique phrase structure tree. This tree is the result of the derivation. The tree set generatedby a grammar is the set of trees resulting from some derivation for the grammar. The languagegenerated by a grammar is the yields of these trees. Examples and more complete de�nitions willbe given below.To make the de�nition of SUG precise, the third section below gives a concise formal speci�cationof SUG. The reader may want to skip that section.3.2.1 Describing Phrase StructureThe central concept in Structure Uni�cation Grammar is the partial description of phrase structuretrees. It allows for great exibility in both the speci�cation of grammatical information and theprocessing of that information. This section presents the language which SUG uses to describephrase structure trees.The NotationIn recent years many linguistic formalisms have been developed which use partial descriptions oflinguistic information. These formalisms usually use feature structures to represent this informa-tion. The problem with feature structures is that the relationships which they can represent arerestricted to being functional, in the sense that a feature structure label must represent a func-tion from feature structures to feature structures. This causes trouble when specifying informationabout phrase structure, since many of the relations which we wish to state, such as linear precedenceand dominance, are not functions. Formalisms like PATR-II (Shieber, 1986) and FTAG (Vijay-Shanker, 1987) solve this problem by using separate mechanism for specifying phrase structure.PATR-II uses a context free skeleton for this purpose, and FTAG uses Tree Adjoining Grammar(Joshi, 1987) skeleton. Description Theory (Marcus et al., 1983) takes a di�erent approach. It5The description of SUG given in this section has been taken from chapter 2 of (Henderson, 1990), with onlyminimal modi�cation. It is included here for completeness.56



extends feature structures to allow structural relations to be expressed in the same manner as theinformation usually expressed in feature structures.6 This later approach gives the description ofthe structural relations the same degree of partiality given the other information. For this reasonthis is the approach which will be taken here.There have been several suggestions for how to add arbitrary relations to feature structures. Onewas proposed in (Rounds, 1988), where set values are added to feature structures. This would allowlinear precedence, for example, to be expressed by giving a node a feature with a set value containingall the nodes which precede it. However, this approach would force an unwanted asymmetry inthe representation between preceding and being preceded by. Instead I will not use the automatabased conception of feature structures used by Rounds, but use a representation espoused byJohnson (1990). In this representation feature structures are speci�ed using quanti�er-free �rst-order formulae with equality. In these formulae, variables range over feature structures, atomsare represented as constants, and labels are speci�ed as unary functions from feature structures tofeature structures. In (Johnson, 1990), the characteristics of atoms and a treatment of incompleteinformation are axiomatized. This axiomatization will be discussed below. The advantage of thissystem over Rounds' representation of feature structures is that quanti�er-free formulae alreadyhave a mechanism for specifying arbitrary relations, namely predicates. For example, if node xprecedes node y this can be expressed as precedes(x,y)7.The shift to using quanti�er-free formulae as the notation for feature structures suggests a fewchanges which I will adopt. Since a typical formula will contain many variables, none of themdistinguished from the others, I will treat a formula as describing a set of entities, rather than asingle one. This has the consequence that our phrase structure descriptions no longer need to beroot centered. Given that we are talking about sets of entities, it is also natural to remove therestriction that they all be connected. These choices increase the formalism's exibility, and thusmake it more appropriate for investigating parsing strategies.First-order formulae not only provide us with a natural representation for our descriptions, they alsoprovide a way to axiomatize the characteristics of the relations we wish to add. Stating relationsbetween nodes will have no causal role in a parse if we do not restrict these relations in accordancewith their intended meaning. These axioms can simply be added to the set already introduced byJohnson to de�ne the nature of atoms and unde�ned information. In order to do this the notationwill have to be expanded to �rst-order formulae with quanti�ers. The only problem with this is thatthe satis�ability problem for �rst-order formulae with quanti�ers is undecidable. However, Vijay-Shanker (1987) showed that the unrestricted use of feature structures combined with the abilityto generate arbitrarily large structures results in an undecidable system, so we already know thatSUG is in general undecidable. Quanti�ers will still be excluded from grammar entries. Constraintsimposed by the parser ensure that the parser's grammars are decidable.6Rounds and Manaster-Ramer take a similar approach in (Rounds and Manaster-Ramer, 1987). This will bediscussed in section 3.3.3.7The problem with Johnson's representation of feature structures is that he uses the usual classical semanticsfor �rst-order formulae. This means that, unlike in Rounds' system, in his system subsumption does not respectentailment, where subsumption is as de�ned in (Rounds and Kasper, 1986). In other words, given two featurestructure models, A and B, such that the nonnegative information in A is a subset of that in B (A subsumes B),there may be descriptions which are satis�ed by A but not by B. This is because a description may have a negativeconstraint which is incompatible with information which is in B but not in A. This will not be a problem here becausethe use of negation is limited to axioms in the de�nition of SUG which either are true in all phrase structure treemodels, or are simply predicating something's existence. Thus this problem can not arise, and in SUG subsumptiondoes respect entailment, with the models restricted to those speci�ed in the next section.57



The Structure ModelsBefore discussing how to describe phrase structure trees, it is necessary to specify the objects to bedescribed. I will restrict the set of models for the descriptions to ordered trees of feature structures.The nodes of these trees are divided into two types, terminals and nonterminals. The nonterminalsare models of arbitrary feature structures.8 Terminals are all instances of strings. The terminalsmust be instances of strings rather than strings because otherwise the phrase structure of a sentencewith the same word occurring twice would not be a tree. Values in the feature structures can corefer,both within a single node and between the feature structures for di�erent nodes. This includes theability to have a node be the value of a feature in another node.The only components of the allowable structures other than the above feature structures are thetwo ordered tree relations, immediate dominance and linear precedence. Immediate dominance isthe relationship between a node and each of its immediate children. The graph of the immediatedominance relation must be a single tree. Linear precedence is the ordering relation. It is a partialorder on nodes which is transitive and antisymmetric. Also, if a node x linearly precedes a node y,then everything in the subtree below x linearly precedes everything in the subtree below y.9The DescriptionsAs discussed above, the language SUG uses to describe models of phrase structure trees uses �rst-order logic as its notation. In this representation variables range over feature structures and theconstant ?, constants represent atomic feature structures, unary function symbols and equalityare used to represent feature-value relationships, and binary predicates are used to represent treerelations. Johnson (1990) shows how to represent the feature structures in this way. If a featurestructure x has y as its f feature's value, this is represented as the statement f(x)�y. The constant? is used to represent nonexistent values of functions, since �rst-order logic requires functions tobe total.10 The use of functions to specify feature values enforces the fact that a given featurestructure can have only one value for each of its features. The characteristics of constants areenforced with the following axioms, taken from (Johnson, 1990).111. For all constants c and feature labels f, f(c)=?2. For all distinct pairs of constants c1 and c2, :(c1=c2)The characteristics of ?, which represents nonexistent information, are axiomatized as follows, alsotaken from (Johnson, 1990).8Any models of simple feature structures will do here, as long as they must be single feature structures and mustbe connected. One such set of models is given in (Rounds and Kasper, 1986).9There are a couple other constraints which could be imposed on the allowable models, which I have not chosento include. One is that the root of the tree have category S, but this seems better incorporated at the level of alinguistic theory. Another is that the linear precedence relations completely order the terminals, since the words ofa sentence are always completely ordered in either time or space. I have not included this constraint because thereseem to be sentences in some languages for which some of this ordering is not signi�cant to the sentence's phrasestructure.10Johnson says this symbol is for unde�ned information, but I will use the term \nonexistent" because it is lesseasily confused with the term \unspeci�ed". A feature structure can be completely unspeci�ed and yet still exist.11Unlike in Johnson's system, the fact that terminal nodes are instance unique atomic feature structures meansthat there are an in�nite number of constants. That means that there are an in�nite number of axioms of the form1 and 2. Thus these axioms should really be universally quanti�ed for c, c1, and c2.58



3. For all feature labels f, f(?)=?4. For all constants c, :(c=?)Finally, when the value of a feature is speci�ed then it must exist. This means that the speci�cationcan not be done simply using equation, since f(x)=y is consistent with y=?. Thus Johnson de�nesanother operator \�" to be used for specifying features, which is de�ned as follows.For all terms u,v, u�v , (u=v ^ :(u=?))This is not an axiom, since there are an in�nite number of instantiations of it, but a de�nition ofwhat � is an abbreviation for.The axiomatization of the tree relations are done similarly to the above axioms, only tree relationsare speci�ed using predicates rather than functions. The predicates idom and prec specify immediatedominance and linear precedence relations between nodes, respectively. Formulae may also specifydominance relations between nodes using the predicate dom. Dominance is the recursive, transitiveclosure of immediate dominance. Thus a node x dominates a node y either if x equals y or if thereare a series of nodes z1, : : :, zn such that x=z1, y=zn, and for all i, 1� i� n�1, zi immediatelydominates zi+1. Nodes are distinguished from other feature structures using the predicate node,and terminals are distinguished from nonterminals using the predicate terminal. These predicatesare axiomatized as follows, where strings is the set of instances of strings.8 x,y,z,w,5. :(idom(x,x))6. idom(x,y) ^ idom(z,y) ) x�z7. idom(x,y) ) dom(x,y)8. :(prec(x,x))9. prec(x,y) ^ prec(y,z) ) prec(x,z)10. prec(x,y) ^ dom(x,w) ^ dom(y,z) ) prec(w,z)11. dom(x,y) ^ dom(y,z) ) dom(x,z)12. dom(x,y) ^ dom(y,x) ) x�y13. dom(x,y) ) (x�y _ 9z(idom(z,y) ^ dom(x,z)))14. (a) prec(x,y) ) (node(x) ^ node(y))(b) dom(x,y) ) (node(x) ^ node(y))(c) terminal(x) ) node(x)15. node(x) ) dom(x,x)16. terminal(x) , (9s2strings, x�s)17. terminal(x)^ dom(x,y) ) x�yFigure 3.1 gives an example of how phrase structure is speci�ed in this descriptive language. Not allthe information about the structure is explicitly speci�ed in the formula, but the rest is derivablegiven the above axioms. 59
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unique tree for a description is to take the circumscriptive closure. In other words, assume thatanything which is not entailed by this description is false. This de�nition can only �nd such a treefor a subset of the descriptions, called complete descriptions. All descriptions in this subset mustspecify a single immediate dominance tree which includes all the nodes, and must specify the stringassociated with every terminal. This section will go into the above discussion in more detail.Grammar EntriesAn SUG grammar simply consists of a set of partial descriptions of phrase structure trees. Thesedescriptions specify what con�gurations of information are allowed by the grammar. If a particulardescription is in the grammar, then that description's information can be added to a descriptionin a derivation, as long as all its information is added and the result is satis�able and complete.For example, the grammar entry (cat(x)�S ^ cat(y)�NP ^ cat(z)�VP ^ idom(x,y) ^ idom(x,z)^ prec(y,z)) allows two nodes whose cat features are compatible with NP and VP, respectively, toattach under a node with a cat feature compatible with S, but in the resulting description the NPnode must precede the VP node. This example could equally well be described with the precedenceinformation being the precondition and the category information being the result, but regardlessthe requirement is the same; all the information can be included as long as all the information isincluded. Other examples will be given throughout the rest of this document. This meaning ofgrammar entries may be clearer in the case of a lexicalized grammar. In this case the presence ofa word in a sentence can \license" the portion of the complete structure which is speci�ed in oneof the word's grammar entries, as long as the rest of the structure is compatible with this portion.The entries in an SUG grammar are not arbitrary partial descriptions of phrase structure trees.They are restricted to a subset of SUG's language for describing phrase structure trees. First, SUGgrammar entries must be satis�able, since using an unsatis�able grammar entry in a derivation willalways result in an unsatis�able resulting description. More interestingly, SUG grammar entries canonly have existentially quanti�ed variables and the only logical connective allowed is conjunction.They cannot use universally quanti�ed variables, disjunction, or negation. Because all variablesin a grammar entry are existentially quanti�ed, the quanti�ers are not explicitly speci�ed. Theserestrictions are imposed for several reasons. First, they ensure that in SUG subsumption respectsentailment. Second, they greatly simplify determining if a description is complete. If negation ordisjunction were allowed in the grammar entries, then a grammar entry could specify grammarspeci�c characteristics which need to be uniquely determined for the description to be complete.15Third, it restricts the domain of locality of grammar entries. If universal quanti�cation was allowedin grammar entries then they could directly constrain nodes which are not mentioned in theirdescription. Fourth, the intuitive characterization of SUG as simply constructing a picture of thederived phrase structure tree by overlaying pictures of the grammar entries, would not be possiblewithout these restrictions on the language used to specify SUG grammar entries. In addition tothese formalism level motivations, these restrictions are necessary in order to store SUG descriptionsin the Shastri and Ajjanagadde connectionist computational architecture, since these constraintson SUG grammar entries are also restrictions on the S&A architecture's memory mechanism.Grammar entries are the leaves of SUG derivation trees. However, if the same grammar entry isused twice in the same derivation, then the two instantiations of the grammar entry cannot be15Other than this complication there are no problems with allowing disjunction in grammar entries. Not permittingdisjunction does not restrict the languages generable by SUG, since any disjunction can be speci�ed with a grammarentry for each possible choice in the disjunction. 61



identical. First, the two instances must use disjoint sets of variables. This is simply a technique foravoiding variable capture during the derivation due to changing the scope of the implicit existentialquanti�ers. Second, the two instances must have distinct terminals. When the same word occurstwice in a sentence it must be manifested as two distinct terminals in the phrase structure, otherwisethe phrase structure is not a tree. Thus whenever a grammar entry is introduced into a derivation,all its terminals are replaced with new unique instances of their words. This has the e�ect ofpreventing any two terminals with their words speci�ed from ever equating.Combining Structure DescriptionsThe combination operation in SUG derivations is very simple. A set of descriptions are combined byconjoining them and adding zero or more statements of equality between their nonterminal nodes.Simply taking the conjunction of the descriptions would not be su�cient, since the fragments wouldnever become connected, and thus would never form a complete description of a tree. Permittingarbitrary information to be added would not permit the grammar to constrain the set of derivablephrase structure trees. By only allowing coreference information to be added SUG avoids boththese problems, and it conforms to the intuitive characterization of SUG as simply constructinga picture of the derived phrase structure tree by overlaying pictures of the grammar entries. Anexample of this combination operation is given in �gure 3.2. The only restriction on what equationscan be added is that the resulting description be satis�able. This is exactly analogous to uni�cationin normal feature structures, which is also speci�ed in this notation as equation under the conditionthat the result be satis�able. Thus the equation of two nodes results in their feature structures beinguni�ed in the resulting description. It is worth noting that the set of equations used in combiningtwo descriptions is not determined uniquely. The de�nition of a combination is nondeterministic.Descriptions S and T can combine to produce a satis�able description U if there exists a conjunctionof equations of nonterminals, E, such that U = S ^ T ^ E. Also note that the fact that onlythe equation of nonterminals can be added does not prevent terminals from equating, since theuni�cation of features in nonterminals can cause the equation of terminals as a side e�ect.
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specify everything which is true about the thing being described. Under this assumption, anythingwhich is not entailed by the description is false. However, this will not produce a satis�able setof constraints if the original description contains disjunctive information. If the description entailsf_g but does not entail f and does not entail g, then this assumption will produce a descriptionwhich entails (f _g) ^ :f ^ :g, which is unsatis�able.In SUG descriptions the above problem arises in two ways. First, if a node x is dominated by adistinct node and x does not have an immediate parent speci�ed, then there is an ambiguity as towhat the immediate parent of x is, as is manifested in axiom 13 in section 3.2.1. This ambiguitymeans that after taking the circumscriptive closure there will be no tree models which satisfy thedescription. In other words, for any description which has some nonroot node without its immediateparent speci�ed, the closed world assumption will produce an unsatis�able description. The otherway this problem arises is when a terminal is speci�ed to exist but no word is speci�ed for it.When the circumscriptive closure is applied to such a description, the terminal will be assumedto be unequal to every instance of a string. Because in phrase structure tree models all terminalsare instances of strings, no models will satisfy the resulting description. These facts imply theonly way circumscriptive closure will produce a satis�able description is if all the terminals whichare known to exist have their word speci�ed and all nodes except the root have an immediateparent speci�ed. Thus in order to use this method for determining the resulting phrase structuretree, the resulting description must have all the terminals' words speci�ed and must specify asingle immediate dominance tree which includes all the nodes. In SUG such a description is calleda complete description, because it completely speci�es a unique phrase structure tree under theassumption that anything which is not entailed by the description is false.The above approach to �nding a unique phrase structure tree for a given description only worksfor complete descriptions. Since we do not want to make arbitrary choices when determining theresulting tree of a derivation, the only derivations which can be allowed are those which result insuch a complete description. This is precisely the requirement for �nished SUG derivations; theresulting description must be complete.The fact that there are conditions on the �nal resulting description of a derivation allows grammarentries to express what needs to be true in the �nal description by violating the completion condi-tions locally. A simple example is that the root(s) of any grammar entry do not have immediateparents, and thus must either be the sentence root or �nd some place in the rest of the sentence'sstructure to attach. Not specifying the immediate parent of a node can also be used with nodeswhich are dominated by some other node in a grammar entry. Such nonredundant dominance con-straints express the need for a chain of immediate dominance constraints in their place. For longdistance dependencies this can be used to express the need for a gap in the subsequent sentence,as is illustrated in the structure for `who' in �gure 3.6 on page 71. It can also be used to attach asubject to its S node while still expressing the need for a verb which subcategorizes for the subject.The need to have a string speci�ed for all terminals provides a more exible mechanism for ex-pressing the need for information. In �gure 3.3 below, and throughout this document, nodes havea feature head which speci�es a terminal. If this terminal's string is unspeci�ed then it needs toequate with another terminal which has a string speci�ed. Since only nonterminals can be equatedin derivations, the only way for this underspeci�ed terminal to equate is if the node whose head itis equates with another node which has a word speci�ed for its head. When the feature structuresof the two nonterminals are uni�ed, the head features will cause the terminals to be equated, andthus the underspeci�ed terminal will receive a string. By using underspeci�ed head terminals thegrammar can express the requirement that a given node must get a head. If such an unheadednode is a leaf in the structure, then this expresses the obligatory subcategorization for a phrase of63



the node's type. If such an unheaded node is the root of the grammar entry, then this speci�esthat the structure must attach as an adjunct to a phrase of the root's type. In this way unheadedroots are used to express modi�cation relationships. Underspeci�ed terminals can be used withother features, such as determiner, to express similar constraints. This discussion will be expandedin section 3.3.The DerivationsAs discussed above, an SUG derivation starts with descriptions taken from the grammar, combinesthem by conjoining them and adding equations between nodes, and ends with a complete descriptionwhich speci�es the resulting tree of the parse. Each of these components of a derivation are discussedat length in the previous sections. Such a derivation can be described as a tree, the leaves of whichare the initial descriptions, the internal nodes of which are the intermediate descriptions, and theroot of which is the resulting description. The leaves of an SUG derivation tree are entries fromthe grammar, except their variables have been replaced with fresh variables and their instances ofstrings have been replaced with fresh instances of strings. This replacement is done in such a waythat all the leaves of a derivation tree have disjoint sets of variables and disjoint sets of instances ofstrings. This process is done to prevent two instantiations of the same grammar entry from gettingtheir variables or terminals unintentionally conated. Each internal node of an SUG derivationtree is the result of a combination of its children. Thus an internal description is the conjunctionof its children, plus a conjunction of zero or more equations between nonterminal nodes in itschildren. The sets of equations are limited to those which result in satis�able descriptions. Thereare no other restrictions on these equations. Because the grammar entries must be satis�able andthe result of each combination must be satis�able, all the descriptions in an SUG derivation treewill be satis�able, including the resulting description. The root of an SUG derivation tree is theresulting description and thus must be a complete description. This means this description mustspecify a single immediate dominance tree which includes all its nodes, and must specify an instanceof a string for all its terminal nodes. This requirement guarantees that the resulting description willspecify a unique phrase structure tree after taking the circumscriptive closure. This unique tree isthe resulting tree of the derivation. The sentences whose words and ordering are compatible withthe terminals of the resulting tree are the resulting sentences of the derivation. Note that theremay be more than one such sentence, since the ordering of the terminals may be underspeci�ed.An example derivation is shown in �gure 3.3. The leaves of the derivation tree are toy grammarentries for `Barbie', `dresses', and `fashionably', and are given at the top of the �gure. The �rst stepof the derivation combines the �rst two structure descriptions with the equation y1�y2. The secondstep combines the resulting structure description with that for `fashionably' with the equation z1�z2,thus forming the complete description shown at the bottom of the derivation. This �nal descriptionis then interpreted as implying everything which is true about the resulting tree, thus specifying aunique tree, namely the tree depicted at the bottom of the �gure. The only sentence compatiblewith the ordering constraints on this resulting tree is \Barbie dresses fashionably". Note that manyother derivation structures are possible, including the one step derivation which combines all threestructures with both equations at the same time. In fact, all derivations will have an equivalentderivation for each possible way of combining the grammar entries.64



1 2
y    y~~

b   :dresses

y :NP

a   :Barbie

1

t

h

1

x:S

y :NP z :VP
2

t

1

a   :[]t

h

h

2

h

1

b   :[]

c  :fashionably

t2

t

w:AP
h

z :VP2h

z    z1 2~~

x:S

y =y :NP z :VP

b   :dresses

1 2

t

1

a =a   :Barbiet1 2

h
h

h

1

c  :fashionablyt

w:AP
h

x:S

y =y :NP z =z :VP

b =b   :dresses

1 2

ta =a   :Barbiet1 2

h
h

h

1 2

1 2

x

y
idom(x,y)

x

y
dom(x,y)

x y prec(x,y)

x:C cat(x)   C

x :w x   "w"

x

y

h head(x)   y

Key:

~~

~~

~~

x terminal(x)t

t

[] empty feature
    structureFigure 3.3: A derivation of the sentence \Barbie dresses fashionably". The descriptions shown inthe top row are grammar entries and the tree depicted at the bottom is the result of the derivation.3.2.3 A Formal Speci�cation of SUGTo clarify the above discussion, the following is a formal speci�cation of an SUG grammar andthe sentences it generates. An SUG grammar is a tuple hS, L, A, V i, where V is the variables,A[strings is the constants, L is the function symbols, fidom, prec, dom, terminal, nodeg is thepredicates, and S is a �nite set of �rst order formulae in these primitives. The formulae in S donot use disjunction or negation, and all their variables are implicitly existentially quanti�ed. Thearity of all functions is one. Strings is a set of instances of strings. The arities of terminal, andnode are one. The arities of idom, prec, and dom are two. What satis�es a formulae and what aformulae entails are always determined with respect to the axioms given in section 3.2.1.A description F is generated by a grammar hS, L, A, V i if and only if F is satis�able, F is complete,and F = F1^ : : :^Fn^E, where the variables and instances of strings in F1 through Fn are disjoint,there exits a substitution � for variables and instances of strings such that F1[�],: : :,Fn[�]2S, andE is a conjunction of equations between nonterminals in F. A formula F is complete if for everyterminal x in F, F entails x�s where s is an instance of a string, and for every node x in F, F eitherentails x�r, or there is a node y such that F entails idom(y,x), where r is a unique node in F. x is aterminal in F if F entails terminal(x), x is a node in F if F entails node(x), and x is a nonterminalin F if x is a node in F but not a terminal in F.A tree is generated by a grammar if it is the subsumption minimal phrase structure tree for somedescription generated by the grammar. A tree T is the subsumption minimal phrase structuretree for a description F if T satis�es F, and, for all trees T 0 which satisfy F, T subsumes T 0.Such a tree will always exist and be unique for any description generated by a grammar, since allsuch descriptions are complete descriptions. A tree T subsumes a tree T 0 if and only if all thedescriptions which T 0 satis�es are also satis�ed by T (Rounds and Kasper, 1986). This de�nitionof the resulting tree is equivalent to the one using circumscriptive closure given above.65



S ={ ,

x :S

y :NP z:VP

a :poses

0

y :NP

b :Barbie

1 h

, }
y :NP

c :Ken

2 h

,
1 w:NP

d :who

h

v:S'

x :S2

y :NP3

h

f :_

h

h

tg

t

t

h t

t t

k

h

t

x :S

y =y :NP z:VP

a :poses

0

1

g=b :Barbie

1h

, ,

x :S

y =y :NP z:VP

a :poses

0

1

2

g=c :Ken

h

w:NP

g=d :who

v:S'

2x =x :S

y =y :NP
3

h

f :_

z:VP

k=a :poses

0

1

tt t t

t t t

h

h

h

h

h

h

h

h

hFigure 3.4: The second row of structure descriptions are those generated by the grammarG=hS, L, A, V i with S as shown in the �rst row, L=fcat, headg, A=fS0,S,NP,VPg, andx1,x2,y0,y1,y2,y3,z,w,v,a,b,c,d,f,g,k2V.A list of strings s is generated by a grammar G=hS, L, A, V i if and only if s is a sentence for atree generated by G. A list of strings s is a sentence for a tree T if there is a bijection g from wordsin s to nonempty terminals in T such that, g(w) is an instance of w and, if g(u) precedes g(v) in Tthen u precedes v in s. Nonempty terminals are those which are not instances of the empty string.An example of a simple grammar and the formulae generated by it is shown in graphical form in�gure 3.4.3.3 Expressing Grammatical Information in SUGStructure Uni�cation Grammar is well suited for the investigation of parsing in the Shastri & Aj-janagadde architecture because it has the properties discussed in section 3.1. SUG has a largedomain of locality for expressing grammatical information, which makes it expressive enough toallow the necessary grammatical information to be directly stated. SUG's use of instance uniqueterminals allows expectations and iteration restrictions to be speci�ed independently of structuralconstraints. SUG's use of partial descriptions allows known information to be speci�ed indepen-dently of that which isn't yet known. In this section, the signi�cance of these characteristics forexpressing grammatical information in SUG are demonstrated through a series of examples.16 The�rst subsection gives several examples of how SUG's large domain of locality allows the perspicuousrepresentation of lexically speci�c information within a word's grammar entry. The second sub-section discusses how the partial speci�cation of information can be used to express ambiguities.16Throughout this section I will be giving particular analyses, but these analyses are not the point of this section.The objective is to demonstrate how to express in SUG analyses of the types discussed. Many other analyses arepossible within SUG, with varying degrees of naturalness. In particular, these analyses give each phrase multiple barlevels, X, X, and sometimes X. This makes the analyses more similar to some standard linguistic analyses. In latersections these di�erent bar levels will be collapsed into a single node.66



In the �nal subsection the importance of these characteristics is supported with a short discussionof some other grammar formalisms which can be viewed as accumulating partial descriptions ofphrase structure trees, but which are missing some of these characteristics.17Before discussing speci�c examples some general techniques for expressing grammatical informationin SUG need to be discussed. Any grammatical formalism needs mechanisms for expressing ingrammar entries both information which must not be contradicted and information which mustbe provided by other grammar entries in the derivation. The former is needed for stating thingslike \this word is a verb", and the later is needed for expressing things like \this word musthave an object". All information stated in an SUG grammar entry is of the type which cannot becontradicted. By leaving certain information out, an SUG grammar entry can also express expectedinformation. This is because there are restrictions on what descriptions can be the result of an SUGderivation. Recall that the �nal description of a derivation must be a complete description of somephrase structure tree, and such complete descriptions must specify a single immediate dominancetree which includes all mentioned nodes and specify words for all mentioned terminals. By notsatisfying these restrictions locally, a grammar entry can require that some other grammar entryprovide the necessary information to satisfy the restrictions. This was mentioned in the last sectionand, as promised, it is expanded on here.The most straightforward mechanism for expressing expectations is to introduce a terminal whichdoes not have its word speci�ed. Because all terminals must have their words speci�ed beforethe derivation is �nished, such an underspeci�ed terminal must equate with a terminal whichhas its word speci�ed. But, derivations cannot equate terminals directly; they can only equatenonterminals. Terminals can, however, be equated as a side e�ect of the uni�cation of the featurestructures of two equated nonterminals. Thus an underspeci�ed terminal must be referred to in thefeature structure of some nonterminal, and the terminal which it equates with must be referred to inthe same way in the feature structure of some other nonterminal. An example of this speci�cationis the head feature used in the examples of the previous section and throughout the rest of thisdocument (later renamed constituent head). A nonterminal node with a head feature which refersto an underspeci�ed terminal expresses the nonterminal's expectation for a head. A nonterminalwith a head feature referring to a word expresses that the nonterminal has a head which can beused to ful�ll other nodes' expectations for a head. As a consequence of using this technique, anytwo nodes which can both ful�ll the same expectation cannot equate, since this would require theuni�cation of two distinct terminal strings, which is never possible.18 Thus, in this example, a givennode can only have one head. Nodes which expect heads are used to express two di�erent kinds ofgrammatical requirements. If the unheaded node is a leaf, then this expresses the subcategorizationfor an obligatory argument of the node's type. If the unheaded node is a root, then this expressesthe modi�cation of a phrase of the node's type. The unheaded root can equate with a node withoutinterfering with other unheaded roots also equating to the same node, thus allowing the iteration ofmodi�ers. The optionality of such modi�ers follows from the fact that the unheaded root does not17The subsections of this section are taken with little modi�cation from (Henderson, 1990). That documentalso illustrates how grammatical information can be expressed in SUG through a series of comparisons with othergrammar formalisms. These comparisons take analyses and insights from other investigations into natural languagegrammar, and show how they can be perspicuously translated into SUG. The investigations discussed are LexicalFunctional Grammar (Kaplan and Bresnan, 1982), Description Theory (Marcus et al., 1983), Abney's licensing parser(Abney, 1986), Tree Adjoining Grammar(Joshi, 1987), Lexicalized Tree Adjoining Grammar (Schabes, 1990), andCombinatory Categorial Grammar (Steedman, 1987).18When SUG is used for parsing, the property of having a word as the value of a feature can be speci�ed proba-bilistically. This allows a node with a nonzero nonone probability of having this property to ful�ll an expectation andyet also equate with a node which also has this property, contrary to the generalization just stated for the categoricalcase. 67



ful�ll any expectations on the node with which it is equated. The other feature which is used in thisway in this chapter is the determiner feature. In the next chapter this feature will be generalizedto the functional head feature, and the verb feature will also be used in this same way.The other way to express an expectation is to mention a node which does not have an immediateparent. Since the �nal description of a derivation must specify a single immediate dominance tree,all nodes must either be the root or have an immediate parent. Thus an unparented node expressesits expectation to either be the root or be equated with another node which has a parent. Thismeans that the root or roots of any grammar entry express the requirement that their grammarentry be incorporated into the phrase structure of the sentence. Another circumstance when anode is unparented is when it is dominated but not immediately dominated. In this case there isa nonredundant dominance constraint between the lowest node which dominates the unparentednode and the unparented node. Such nonredundant dominance constraints are shown in �guresas dashed lines. This constraint must be made redundant by a chain of immediate dominanceconstraints in its place. Thus the unparented node must �nd a parented node to equate with in thephrase of its lowest dominating node. This constraint is primarily used for expressing long distancedependencies. The unparented node is the trace, the dominating node is the root of the phraseout of which the extraction occurs, and the node which the trace node equates with is the gap.19The category of the gap can be restricted with the category of the trace node. The fact that thegap's argument position becomes �lled is expressed by giving the trace node a head. Assuming theanalyses of modi�ers which was given above, if the extracted item is an adjunct rather than anargument, then the trace node has the category of the modi�ed node (rather than the modi�er)and is not headed. In this case the trace equates with the node which the extracted item \wouldhave" adjoined to. Nonredundant dominance constraints can also be used to require immediatedominance chains which are not expected to be arbitrarily long. For example, a subject can beattached to an embedded S before the embedded verb by stating that the S dominates but does notimmediately dominate the subject. This places the subject within the structure but still expressesthe requirement that the verb subcategorize for the subject. The same technique can be used toincrementally combine other prehead constituents with the partial structure of the sentence. Manyexamples of each of these mechanisms will be given in the subsequent subsections.3.3.1 Using SUG's Large Domain of LocalityStructure Uni�cation Grammar's large domain of locality for expressing grammatical informationpermits an interdependent set of grammatical information to be expressed in a single grammarentry.20 To demonstrate this ability this section will give examples of lexicalized grammar entries.Each of these entries will include a terminal for the word item and the fragment of structurenecessary to express the grammatical information associated with that word. This grammaticalinformation is simply what we know about the phrase structure given the presence of the word.The signi�cance of SUG's domain of locality can be demonstrated by contrasting it with that ofContext Free Grammars. In CFGs, even the enforcement of subcategorization constraints needsto be coordinated between multiple grammar entries. The structure for `rolls' in the middle of19As is well known, there are other constraints on long distance dependencies other than that expressed by thedominance constraint here. Ways of further limiting the domain of extraction for a trace will be discussed insection 6.1.20SUG's domain of locality is very similar to that of Tree Adjoining Grammar. The development of SUG washeavily inuenced by work on TAG, especially that concerning the importance of a formalism's domain of locality((Joshi, 1987), (Vijay-Shanker, 1987), (Schabes, 1990)). 68



�gure 3.5 shows how several such constraints can be expressed in a single SUG grammar entry. Thewhole projection of the verb is present, the subcategorization for an N subject is expressed,21 andthe agreement information is expressed on this subject. To express the interdependence betweenthe lexical item and these constraints in a CFG would require introducing several features innode labels whose sole purpose would be to enforce this interdependence across the boundaries ofgrammar entries. There will be several other examples in this chapter which demonstrate how suchnode features can be eliminated given SUG's large domain of locality.
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Figure 3.5: Some example grammar entries used to derive the sentence \the quick tonka rolls veryquickly".The structures for `quick', `quickly', and `very' in �gure 3.5 show how modi�cation information canalso be expressed within SUG's domain of locality. The roots of these structures all have under-speci�ed terminal heads, and thus must be equated with some headed node. This way of expressingmodi�cation relationships permits the constraints on the modi�ed node to be expressed in the samegrammar entry as the modi�er which is imposing the constraints. As for subcategorization rela-tionships, this ability eliminates the need to introduce node features to coordinate the constraintsacross grammar entries. For example, features are no longer needed to distinguish between thecategories adjective and adverb, since the distinction can be expressed within the word's structureby specifying the category of the modi�ed node. Adjectives are A's which modify N's and adverbsare A's which modify either V's or sometimes other A's. This in turn permits a single entry for`very' which can modify both adjectives and adverbs simply by modifying A's. By specifying ad-juncts in this way, multiple adjuncts can attach to a single node. The root node of each adjunctstructure can equate with the node being modi�ed without interfering with the attachment of the21Remember that the presence of the underspeci�ed head terminal for the N makes it an obligatory argument.69



other adjuncts. This iteration is possible because each adjunct brings with it the link necessary tobe attached. In contrast, subcategorized arguments cannot iterate because the link for attachmentis supplied by the subcategorizing structure, not the argument, and thus only one argument canattach. This technique for attaching adjuncts eliminates the need for Chomsky adjunction.22The structure for `the' in �gure 3.5 is like the modi�cation structures in that the terminal is not thehead of the root, but it cannot iterate because the terminal is the determiner of the root. The linkbetween the N and the N is there in case the head of the N is not a full N by itself, such as is thecase for `tonka' in �gure 3.5. The structure for `who' in �gure 3.6 has a similar basic con�guration.Again in these structures, SUG's ability to express information within the structure associatedwith a word, rather than just in its category, permits node features to be eliminated. Given thisanalysis there is no need for the nonterminal category determiner. In fact the only categories whichappear to be needed are the major categories, N, V, A, and P, with their bar levels.23 This is anindication of how much more expressive a formalism with a large domain of locality, like SUG, isthan a formalism like CFGs, in which much of the work in writing a grammar is working out asystem of features to enforce constraints across grammar entry boundaries.Because SUG allows the speci�cation of dominance relations, long distance dependencies can alsobe expressed in its domain of locality. An example of this is given in the structure for `who' in�gure 3.6. In this structure, node w1 acts as a trace, since it needs to �nd an argument position togive it an immediate parent, and it will �ll an obligatory argument position by giving the argumentnode a �lled head. The dominance relation restricts w1 so it must equate to a node within the lowerV, thus enforcing that `who' must c-command its trace,24 but it also allows w1 to move arbitrarilyfar from `who'. Other constraints on where a trace can equate can be enforced using node features,as will be shown in section 6.1.Gerunds are a particularly good test for the domain of locality of a formalism because they actlike noun phrases but have the internal structure of verb phrases. Figure 3.7 gives one possiblestructure for the gerund `riding'. This structure includes the usual structure of a V, including thesubcategorization for the object of `ride'. However, the root of the structure is an N, thus makingit �ll N argument slots.The two possible structures for `wants' in �gure 3.8 give another example of the advantages ofSUG's domain of locality. The verb `wants' is followed by an N and an in�nitival V. The N issemantically the subject of the V, but the N gets its Case25 from `wants'. This leads to two possiblestructures for `wants', one which follows the semantic structure and one which follows the Case22If Chomsky adjunction is desired, then it can be accommodated by splitting X nodes into two X nodes with adominance link between them. This allows a series of intermediate X nodes to be inserted between them to producea Chomsky adjunction structure. If nothing is inserted the two X nodes can simply equate, since dominance isrecursive, giving the usual unmodi�ed structure. I do not adopt this analysis because I think Chomsky adjunctionis an artifact of the inadequacies of CFG, not an insight of that investigation. In terms of the adjunct/argumentdistinction just discussed, CFGs only have the ability to specify subcategorized arguments.23There are other features, such as tense and agreement, which could be argued to be part of the category of anode. Nevertheless, all nodes can be subcategories of N, V, A, or P and there is no need for any \extracategorial"nodes, such as determiner.24C-command is a relationship often used in Government Binding Theory. The exact de�nition is not always agreedupon, but it always involves there existing a node which is a short distance above the c-commanding node and anarbitrary distance above the c-commanded node. In this case this node is the V.25In Government Binding Theory, Case is a formal notion closely related to case. All overt N's must receive Case,even if their case is not overtly marked. `Wants' is an exceptional Case marking verb because it assigns Case to thesemantic subject of its object, rather than having the subordinate verb assign Case, as is true for `said'.70
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Figure 3.6: An example of using dominance to express long distance dependencies.structure, as shown in the �rst and second structures in �gure 3.8, respectively.26 In either structurethe relationship not expressed in the structure can be expressed over the nodes in the structure,and the case of the N can be expressed. I will use the second of these structures because semanticinformation will have to be expressed separately anyway,27 so it seems unnecessary to have thesyntactic structure mimic the semantic structure. Also, Case seems like an inherently syntacticphenomena, so it is not clear what role it would play if not to determine the syntactic structure.Thus it is natural to assume that providing a node with an immediate parent acts analogouslyto Case assignment, only extended to all the categories. This is the de�nition of the constituentstructure which NNEP produces. Under this interpretation the adjunct structures discussed abovecan be interpreted as saying that adjuncts assign themselves Case. This interpretation of Case issimilar to Abney's (1986) notion of licensing, as is discussed in (Henderson, 1990).3.3.2 Trading Ambiguity for Partial Speci�cationSUG not only provides the domain of locality necessary to state what constraints are known wherethey are known, it also allows those things which are not known not to be said. This is a naturalconsequence of using partial descriptions. By only partially specifying information, what would26There are other possible analyses. One common analysis is to express the subcategorization for the subject withthe in�nitival verb, in the same way as would be done for tensed verbs, except the subject would be marked asneeding Case. Given this, the structure for `wants' would still need to mention the subject in its structure in orderto say that it gives the subject Case. In accord with the idea that the grammar entry should say everything known,the subcategorization and subjecthood relationship would also be expressed in the structure for `wants'. Given thisand the fact that in�nitival verbs do not always have overt subjects, it is not clear why the subcategorization for thesubject should also be in the structure for the in�nitival verb. For this reason I have not included this analysis in theexample, but that is not to say it could not be done.27The need to express semantic information separately from syntactic structure relations is argued for in section 3.2in (Henderson, 1990), which compares SUG to Lexical Functional Grammar.71
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discussed above for CFGs. In fact, the only problem it solves is CFGs' inability to partiallyspecify node labels. Through the use of feature passing techniques, this ability in turn helps inthe encoding of constraints which span more than one level in the tree, but such feature systemsstill lose the perspicuity of the encoded constraint. PATR-II still can't underspecify orderingconstraints and can't modularize the speci�cation of parent-child relationships according to co-occurrence restrictions.A formalism which is formally similar to PATR-II, but which has much of the exibility argued forabove, is Segment Grammar (de Smedt and Kempen, 1991). A grammar entry in SG is a connectedcollection of node-arc-node triples, called segments. The nodes are labeled with feature structures,and the arcs correspond to immediate dominance relationships, plus a label specifying the role ofthe lower constituent in the upper one. Grammar entries are combined by equating nodes, whichallows the children of a given node to come from more than one grammar entry. This makes SGvery similar to SUG, which is not too surprising since the formalisms were developed (indepen-dently) to address similar issues, such as the incremental speci�cation of syntactic information. SGdi�ers from SUG in that it does not provide for the speci�cation of dominance constraints, andlinear precedence constraints are speci�ed separately from grammar entries. As was argued above,dominance constraints are necessary for a formalism's domain of locality to be su�cient to directlyexpress long distance dependencies.The formalism described in (Rounds and Manaster-Ramer, 1987), A Logical Version of FunctionalGrammar, adds to feature structures the ability to specify dominance and linear precedence re-lations. The resulting logic is used in �xed point formulas to specify grammars. The process ofinstantiating the type variables in a �xed point formula provides the same kind of structure as CFGderivations, but this structure is not used to enforce ordering constraints. Ordering constraints areenforced using the dominance and linear precedence constraints, which may be unrelated to thevariable instantiation structure. This system is less expressive than SUG because it does not haveimmediate dominance relations or instance unique terminals, but the most important problemarises from the use of �xed point formulas to specify grammars. Just as the instantiation of typevariables has the same structure as CFG derivations, the speci�cation of type variables in �xedpoint formulas has the same restricted domain for specifying grammatical constraints as CFG rules.Any constraint which spans more than one level in the instantiation structure can only be statedwith the use of feature passing techniques. The other problems discussed above are avoided inthis system because of the extensive use of partial information, including the unrestricted use ofdisjunction.Tree Adjoining Grammars (Joshi, 1987) and its variants do have a su�ciently large domain oflocality for expressing grammatical constraints. In these formalisms, the adjoining operation pro-vides a mechanism by which two pieces of a grammar entry can be stretched arbitrarily far apart,thereby allowing long distance dependencies to be expressed within grammar entries. In (Hender-son, 1990), the adjoining operation for Feature Structure Based Tree Adjoining Grammars (FTAG,Vijay-Shanker, 1987) is simulated in SUG using dominance constraints and a set of feature restric-tions. The relationship between adjoining in tree rewriting systems and dominance constraints indescription accumulating systems was discussed in detail in (Vijay-Shanker, 1992), where FTAGis cast in terms of accumulating partial descriptions of a tree. In that article Vijay-Shanker alsodiscusses how this description based view of FTAG naturally generalizes to Multi-Component TreeAdjoining Grammar, which allows grammar entries and adjoinings to involve sets of trees. Theresult of this generalization is extremely similar to SUG. The only di�erences appear to be thatFTAG has no instance unique feature values, and that the basic combination operation in FTAGis tree substitution, not node equation. Vijay-Shanker de�nes tree substitution in a way which is74



equivalent to nonterminal node equation under the condition that one of the nodes have no im-mediate parent and the other have no immediate children. The restriction against equating twonodes which have immediate parents is not part of the de�nition of SUG, but it must be imposed inorder to allow nodes to be forgotten, and it appears to be linguistically justi�ed. This requirementwill be discussed in the next section. The restriction against equating two nodes which have im-mediate children provides a mechanism for preventing equations even when the feature structuresare compatible. For example, without this restriction a grammar entry could attach to the rootof another instance of itself an arbitrary number of times. Thus, this restriction plays the samerole as instance unique feature values in SUG. However, conating a restriction against iterationwith a structural property doesn't allow su�cient exibility in the speci�cation of these restric-tions. While this conation doesn't e�ect the formal power of the formalism, it requires multiplenodes to be used in cases where SUG can use a single node.28 A clear example of this is TAG'sneed for Chomsky adjunction in those cases where arbitrary iteration is allowed. This forces twonodes to be represented at any site where a modi�er could attach, and it prevents the formalismitself from distinguishing between Chomsky adjoining structures and what in the linguistic work onTAG are called complement auxiliary trees. Another example is the need for multiple nodes in thestructure of noun phrases and clauses. In the structure of noun phrases there needs to be a nodewhose children prevent the iteration of the determiner and another node whose children preventthe iteration of the noun head. In the structure of clauses there need to be such nodes for thecomplementizer, the inection, and the verb. Because of the extremely limited memory capacity ofthe S&A computational architecture, the need to use multiple nodes for these two purposes makessuch a formalism inappropriate for use in the parser. In contrast, SUG allows constituent structureto be represented using only one node per N, V, A, or P head. The ability to not specify a wordas the value of the head feature avoids the need for Chomsky adjunction, and the ability to usemultiple features with terminal values (e.g. head, determiner, complementizer, inection) allowsthe iteration of multiple things to be controlled at a single node. This compact representationwill be discussed in depth in section 6.1. Sections 6.1 and 6.2 directly address how to adapt thelinguistic work which has been done in the TAG formalisms to SUG.3.4 Forgetting Grammatical Information in SUGOne of the constraints on symbolic computation in the Shastri and Ajjanagadde architecture is thatat most ten variables can be used at any one time. Since the parser proposed in the next chapteruses variables to refer to nonterminal nodes in the phrase structure of the sentence, the numberof nonterminals which the parser needs information about at any one time needs to be bounded.Since arbitrarily many nonterminals are needed to represent complete phrase structure trees fornatural language sentences, the parser needs the ability to abstract away from the existence of somenodes during the course of a parse. The use of partial descriptions in SUG provides for abstractingaway from information. In SUG this abstraction ability is used to keep from having to specifyinformation which has not yet been determined. This abstraction ability can also be used to keepfrom having to represent information which is no longer needed. The forgetting operation describedin this section is used to abstract away from the existence of nodes which are no longer needed tocomplete the parse. This provides a mechanism which the parser can use to stay within the boundson the number of nonterminal nodes which can be represented at any one time.28Note that Context Free Grammars and all the formalisms based on them have this same property, so it is notsurprising that the techniques for working around it are common practice in linguistics.75



One class of grammar formalisms which can be used to parse arbitrarily long sentences with boundedresources are those based on Categorial Grammar. As discussed in section 3.1, this is becausethese formalisms represent grammatical information in categories which can be viewed as abstracttypes for tree fragments. For example, the category NP is the type for tree fragments which havean NP node as their root and have no missing constituents. The categories of the form X/Yare types for tree fragments which would be tree fragments of type X if they were to combinewith a tree fragment of type Y. Because these categories only represent the root node and themissing constituents, they abstract away from the completed constituents which the tree fragmentscontain. Combinatory Categorial Grammar (CCG, Steedman, 1987) even provides a mechanismfor abstracting away from nodes before their constituent is completed, as long as the node itselfis complete. This mechanism is the composition operation, which is illustrated in �gure 3.10. Forconcreteness, consider the example given in the second line of that �gure. Under the tree buildinginterpretation of this operation, it equates the IP argument of \said" with the IP node for \like"to ful�ll the expectations of these nodes. In the resulting structure the constituent for \like" isstill incomplete, since it still needs a tree fragment with root N. But since the local expectationsof \like" 's IP node have been ful�lled through the equation, this node can be removed from theCCG syntactic category of the sentence fragment. In this way, sentences with an arbitrary numberof nodes in their phrase structure can be derived using categories with only a bounded number ofbasic categories in them, as long as at any given point in the sentence the number of nodes whichhave local expectations is bounded.
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determined. The second case could not be done deterministically, since the decision of whetherto introduce the expectation for the modi�er would have to be done well before the presence orabsence of such a modi�er could be determined. Thus we need to separate the process of equatingnodes from the process of forgetting nodes whose local expectations have been ful�lled.SUG descriptions can also be viewed as types for tree fragments. Like CCG categories, an SUGdescription is a type for all those tree fragments which have all the characteristics speci�ed inthe description, and have exactly the expectations speci�ed in the description. SUG uses theopposite strategy from CCG for removing nodes from the syntactic type of a sentence fragment.SUG never forgets nodes, even when it is impossible for those nodes to be involved in any moreequations. Parsing in the S&A architecture requires that it be possible to forget nodes which willnot be involved in any more equations. To have such forgetting, the language SUG uses to describephrase structure trees needs to be slightly altered. As was determined in the discussion of CCGin section 3.1, rather than specifying immediate dominance relationships, the descriptions need tospecify that a node has an immediate parent without explicitly specifying what node that parentis. Dominance relationships can still be used to specify the structure of a tree, so the immediatedominance relationships can still be recovered from a complete description of a tree. The only e�ectthis change has on the formalism is that now two nonterminal nodes which both have immediateparents can never be equated. Such an equation would require that the immediate parents of thenodes also be equated, but since the immediate parents can't necessarily be identi�ed, this equationcan't be done.29 This di�erence has no impact on the generative capacity of SUG, and none ofthe SUG examples given above require the equation of two nodes with immediate parents. Withthis change to SUG's descriptive language, an SUG description which has the same informationas a given CCG category is a type for the same tree fragments as the CCG category is a typefor. Thus these descriptions have the same ability to represent arbitrarily large trees in a boundedrepresentation as does CCG.The advantage of these descriptions over CCG categories is that nodes don't have to be forgottenwhen their expectations are ful�lled. Both the minimally informative CCG representation and themaximally informative SUG representation of a given tree fragment can be used. To change to arepresentation which has less information, the forgetting operation is used. Once a node has beenforgotten it can't be equated with, so only nodes which do not need to be equated with in order forthe description to be complete can be forgotten. Forgetting a node simply abstracts away from theexistence of that node and all the information about it. This information can safely be forgottenwithout allowing future operations which are incompatible with this information, because all theforgotten information is speci�c to the forgotten node, and no future equations can be done withthat node. This operation is illustrated in �gure 3.10, and is de�ned in section 4.3.3.It should be stressed that the forgetting operation only applies to the representation used by thesyntactic constituent structure parser. Forgetting a node in this representation does not necessar-ily mean that the associated node(s) in higher level representations are also forgotten. Becausethe parser's output is incremental, all the information which the constituent structure parser hasdiscovered about that node has already been output to other modules before the node is forgotten.Thus forgetting will not interfere with the interpretation of the output of the parser. Forgettingnodes will also not interfere with determining whether the parser has produced a complete descrip-tion at the end of a parse, since only locally complete nodes can be forgotten, and a description iscomplete if and only if each node is locally complete.29Such equations need to be ruled out by the parse anyway, because in general zipping up a structure like this canrequire an arbitrary number of equations to be checked and done for a single combination of two structures.77



The addition of the forgetting operation to Structure Uni�cation Grammar results in a grammaticalframework which has the properties needed for parsing in the S&A architecture. SUG is su�cientlypartial and su�ciently expressive to allow the parser to store all and only what it knows aboutthe phrase structure of the sentence, specifying expectations and iteration restrictions separatelyfrom structural constraints allows a compact phrase structure representation, and the forgettingoperations allows the parser to store only what it needs to know about that phrase structure. Theseproperties are possible because of the extensive use of partial descriptions.
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Chapter 4The Parsing ModelThe argument being made in this dissertation is that the Shastri and Ajjanagadde connectionistcomputational architecture is computationally adequate and linguistically signi�cant for recoveringthe constituent structure of natural language sentences. Chapters 2 and 3 developed a level ofrepresentation which is appropriate for investigating parsing in the S&A architecture. This chapteruses that framework to present a speci�c parser, and to argue that it has the necessary propertiesto be implemented in the S&A architecture. Chapter 5 then shows how this implementation hasbeen done. In chapter 6, this parser will be tested in various ways to argue for the adequacy of thearchitecture, and the mechanisms the parser uses to compensate for the architecture's limitationswill be used to argue for the linguistic signi�cance of the architecture.The model of parsing presented in this chapter computes Structure Uni�cation Grammar deriva-tions. Descriptions of phrase structure trees are taken from the grammar and combined using nodeequations so as to produce a complete description of a phrase structure tree for the input sentence.Because the primary job of the parser is to �nd and perform node equations, it is called the Neural-network Node Equating Parser, or NNEP. NNEP can only compute one derivation at a time, butSUG is designed for deterministic parsing. Also, only one SUG description can be stored in NNEP'smemory at a time, but since SUG descriptions can have multiple unconnected tree fragments, thisisn't really a constraint. NNEP's operations compute SUG derivation steps, plus forgetting. Mostof these operations combine the description in the parser state with a description from the gram-mar. Some of these operations equate nodes which are already in the parser state. To successfullyparse a sentence, grammar entries for each word in the sentence need to be combined with theparser state in the order in which the words appear in the sentence, and the �nal description mustbe a complete description. NNEP's output is the sequence of derivation steps which it computes.This output conveys all the information which would be conveyed by the total �nal description. Inaddition, this output is maximally incremental, and forgetting information does not interfere withit. During the course of a parse, NNEP may need to make choices, and these choices may requireinput from other language modules. A plausible disambiguation mechanism has been designed andimplemented for this parsing model, but it has not yet been adequately tested.As discussed in chapter 2, parsing in the Shastri and Ajjanagadde connectionist computationalarchitecture must be done under some constraints. These constraints have a number of implicationsfor the parsing model. Some of these implications are due to the constraint that only one variablecan be in both the antecedent and consequent of each of the rules which implement the parser.This restricts the set of operations which the parser can use to calculate SUG derivation steps.Some operations the parser needs require more than one nonterminal node to be involved, but they79



can be implemented by requiring all but one of these nodes to be uniquely identi�able. Rules canrefer to a uniquely identi�able node using a constant, and thus these operations' rules only needto propagate information about one variable. In order to make all but one nonterminal involved inan operation uniquely identi�able, a stack needs to be introduced, and some operations need to beconstrained to only apply to the top node on this stack. The rules which calculate possible longdistance dependencies also need to use this stack. This mechanism imposes some of the linguisticconstraints on long distance dependencies, as discussed in chapter 6. The constraint that the S&Aarchitecture can only use a �xed set of predicates means that the depths of this stack is bounded.For the same reason, the length of the list of tree fragments in the parser state is also bounded.These bounds have implications for NNEP's ability to parse center embedded sentences, which willbe discussed in chapter 6. The resource bounds of the architecture also mean that at most tennonterminals can be stored in the parser state at any one time. Because the grammatical frameworkdiscussed in the last chapter allows certain nodes to be forgotten during a parse, NNEP has themechanism necessary to stay within this bound. The linguistic implications of this constraint willalso be discussed in chapter 6.This chapter describes the parsing model in detail. It begins with a discussion of what properties theparsing model should have, and what existing approaches to syntactic parsing have some of theseproperties. The second section characterizes the grammars which NNEP supports. Not all SUGgrammars can be used by NNEP, not all SUG derivations for a given grammar can be computedby NNEP, and some additional assumptions are made for the purposes of this investigation. Thethird section de�nes NNEP's operations. There are four operations for combining descriptions fromthe grammar with the current description, two operations for equating nodes within the currentdescription, and one operation for forgetting nodes. The fourth section then presents how thegrammatical information needed by the operations is represented in the parser state, and how thatinformation is kept up to date as the description changes. In the �fth section, the mechanismNNEP is currently designed to use to make disambiguation choices is discussed. The last sectionde�nes NNEP's output, which is simply the derivation structure that was followed in the parse.4.1 Related Approaches to Syntactic ParsingIn chapter 2, computation in the Shastri and Ajjanagadde architecture was characterized as sym-bolic computation under a set of constraints. This allows the investigation of parsing using the S&Aarchitecture to be done at the level of symbolic computation. Chapter 3 presented a grammaticalframework for parsing within the constraints, but because these constraints are computational innature, that representation does not fully reect the constraints' signi�cance. This section charac-terizes what additional requirements these computational constraints impose on a syntactic parserimplemented in the S&A architecture, and discusses previous work on syntactic parsing that hasaddressed some of these requirements. The parsing model discussed in the rest of this chapterembodies these requirements.4.1.1 Requirements for the Parsing ModelChapter 2 identi�ed the following set of constraints on parsing in the S&A architecture.80



1. information about at most ten nodes stored at a time2. no explicit representation of disjunction between predications3. at most three tuples of unary predicates for storing relations4. at most one variable can appear in both a rule's antecedent and consequent5. input is incremental6. parse in quasi-real time7. produce maximally incremental output8. produce monotonic outputIn addition, some e�ort should be made to minimize the use of rules that involve multiple phrasestructure nodes. As was discussed in chapter 2, constraints 2, 7, and 8 mean the parser must bedeterministic, in the sense of (Marcus, 1980).Chapter 3 identi�ed two requirements for the parser's grammatical framework that inuence thedesign of the parsing model. First, the grammatical representation must allow information whichthe parser does know at a given time to be speci�ed independently of the information which theparser does not know. This allows compliance with constraints 2, 7, and 8 (i.e. determinism).Second, the representation should allow as much information as possible to be local to individualphrase structure nodes, and as little information as possible to be expressed as relationships betweennodes. This allows compliance with constraints 1, 3, and 4, and with the desire to minimize theuse of rules that involve multiple nodes.The determinism constraint (constraints 2, 7, and 8) also places requirements on the process ofconstructing a representation of the sentence's phrase structure tree. The parser must �gure outwhat can be inferred about the phrase structure of the sentence, and store it. To �gure out what canbe inferred, the parser needs access not only to its own state information, but also to informationfrom other modules of the language processing system. Altmann and Steedman (1988) showed thatthe expectations of the anaphora resolution process can a�ect decisions about syntactic structure.The extent to which other kinds of nonsyntactic information is necessary for making decisionsabout syntactic structure is not yet clear, but it is clear that there needs to be some mechanismfor allowing input from other modules to inuence the parser's decisions. Also, to simplify theaddition of information to the parser state, the grammar needs to be organized according to theinferences that the parser can make. Because new information comes to the parser in the form ofwords, the parser's grammar entry for a word should include all the information which is impliedby the presence of the word. Thus the parser should have a predominantly lexicalized grammar.The only cases where information should be placed in grammar entries which do not include wordsare those where no words reliably imply the information, such as relative clauses that have no overtcomplementizers. Given such a grammar, the parser can simply add the grammar entries thatcorrespond to the chunks of information that it can infer. Because the construction of the phrasestructure description has to be information driven in this way, the parser cannot expand phrasestructure nodes in any �xed order. Many parsing algorithms traverse the tree in a �xed order(bottom up, top down, left corner, etc.), considering what information to add to each node one ata time. A deterministic parser needs to add information according to information dependencies,not according to structural con�guration. The nature of these information dependencies is anempirical issue, but previous investigations of deterministic parsing and lexicalized grammars givean indication.The need to localize computation to individual phrase structure nodes (constraints 1, 3, and 4)has a number of implications for the design of the parser. The two tasks of the parser are decidingwhat grammar entries to use and deciding what pairs of nodes in these grammar entries need to81



be equated. The later task is highly constrained by the need to localize computation to individualnodes. One way to equate nodes without violating this constraint is to use rules that are speci�cto grammar entries. This allows information about nodes in the grammar entry to be compiledinto the rules, so this information can be accessed without using either variables, or predicationsabout the situation as a whole. For example, the rule that calculates whether a given grammarentry can attach to a node in the parser state only needs to test predications about the node in theparser state, because the information about the root of the grammar entry is compiled into the rule.However, even with this technique, the number of ways that a grammar entry can be combinedwith the phrase structure description in the parser state is limited. In general only a single nodein the parser state can be equated with a node in the grammar entry, but because of a mechanismintroduced for calculating long distance dependencies, subjects can sometimes be attached to theirsentences at the same time as the sentence is attached. This limitation may help explain somedi�erences between head �nal/case marked languages and head initial/non-case marked languages,but since the scope of this dissertation is being limited to English, no literature on this (ratherbroad) subject will be discussed.When two nodes that are both already in the parser state need to be equated, then one of the twonodes needs to be uniquely identi�able at the time. Given this property, only the identity of oneof the nodes needs to be propagated from the pattern to the action of the rule that equates thenodes, and thus constraint 4 does not need to be violated. The two cases when nodes in the parserstate need to be equated are when an unattached tree fragment needs to be attached, and when agap for a long distance dependency needs to be equated with its trace node. For English, the wayto restrict these equations to make one of the nodes uniquely identi�able is clear. Because Englishdependencies are nested, attachment equations can be restricted to only involve the rightmosttree fragment root. Following Pesetsky's path containment condition (Pesetsky, 1982), gap �llingequations can be restricted to only involve the most recently introduced trace node. The calculationof the candidate equations obeys these same constraints.The only other calculation that the parser needs to do that in general would involve multiplenodes is the enforcement of ordering constraints. Most ordering constraints can be expressed withrespect to a word (e.g. prehead, post-determiner), so they don't involve more than one nonterminalnode. The one case where this cannot be done is the ordering constraint between the objects of aditransitive verb. In terms of competence grammar, there are situations where more than one suchrelationship would have to be inherited down the tree at the same time. In general, this wouldrequire rules that violate constraint 4. However, constraints on the nesting of ditransitive verbsprevent exactly these situations from occurring, so these ordering constraints can be enforced withrules that don't involve multiple nodes. I know of no previous investigations that address this issue.The S&A architecture's bounded memory capacity also a�ects the design of the parser. Informationabout only a bounded number of phrase structure nodes can be stored, the parser has a �xed setof predicates, and only a bounded number of bindings for representing binary relations can bestored. The �rst constraint requires the parser to close o� nodes from further consideration, sothat they can be removed form the memory (through the use of the forgetting operation, discussedin section 3.4). This investigation does not propose any speci�c node closure strategy, but previousinvestigations of this issue indicate what such a strategy should be like. The fact that the parser'spredicates are �xed means that all data structures are of bounded size. The two data structuresthat would naturally be of unbounded size are the list of unattached tree fragments and the stackof trace (and sometimes subject) nodes. The list of tree fragments is needed to keep track of wordorder information, and the stack of trace nodes is needed to keep track of which one was introducedmost recently. Bounding the size of these data structures places constraints on center embedding,82



which has been investigated by several researchers. The bounds on these data structures turn outto subsume the bound on the number of bindings that can be stored for representing relationsbetween nodes, so this later constraint doesn't have any additional e�ect on the design of theparser. However, some recent work on modeling center embedding phenomena proposes a verysimilar general constraint that covers some of the data that is not ruled out by this account.4.1.2 Inferring New InformationDeterministic parsing requires new information to be added to the parser state based on the infor-mation dependencies in the language. As discussed above, this requires the use of a predominantlylexicalized grammar, since words are the primary source of new information to the parser. Sch-abes (1990) investigated lexicalized grammars, particularly Lexicalized Tree Adjoining Grammars(LTAG). LTAG has two combination operations, substitution and adjunction. Substitution allowsthe arguments of a phrase to be speci�ed independently of the phrase itself. Adjunction allowsadjuncts and long distance dependencies to be speci�ed independently of the phrases they modifyor span. These mechanisms allow all the information in a natural language grammar to be asso-ciated with individual words (i.e. grammars can be lexicalized). Schabes argues that a parser canbe more e�cient using a lexicalized grammar, because it can restrict its attention to that portionof the grammar that is relevant to the sentence at hand. This division of grammatical informationinto groupings that are convenient for the parser is the same argument that was given above forlexicalized grammars, and the relevance of information is determined by the information dependen-cies discussed above. Thus the grammar entries Schabes and his colleagues use in their lexicalizedgrammar of English (Abeill�e et al., 1990) are an indication of how grammatical information shouldbe grouped in NNEP's grammar. This grammar obeys the generalizations from linguistic workin TAG, namely that long distance dependencies and semantic dependencies should be local togrammar entries. For example, a predicate and all its argument phrases can be speci�ed in a singlegrammar entry, as can a modi�er and its modi�ed phrase. Unfortunately some properties of ad-junction in TAG prevent the information about a long distance dependency from being associatedwith its wh- word, but these dependencies can still be localized within the grammar entry for thewh- word's sentence's verb.The problem just mentioned with associating information about long distance dependencies withtheir wh- word is an example of a general problem LTAG has with expressing information depen-dencies involving words other than the semantic head of a phrase. There is a general tendencyin linguistic work to assume that semantic dependencies are the core dependencies (e.g. \ThetaCriterion" versus \Case Filter" in GB), but since this investigation is concerned with syntacticconstituent structure, and not predicate-argument structure, case and other primarily syntacticdependencies are the central concern here. The importance of information dependencies other thanthose arising from semantic heads was recognized in work on Description Theory (Marcus et al.,1983). D-Theory has two mechanisms for specifying grammatical information, a form of contextfree grammar and a set of templates that trigger parser actions. The later mechanism is used forsuch things as starting the construction of an NP when a determiner is found. This mechanismallows the parser to take advantage of the fact that the leading edge of a phrase is often veryinformative, even when it carries relatively little semantic information. For example, the seman-tically vacuous complementizer \that" is often used to start an embedded clause, especially if thesubcategorizing verb can also take a noun phrase object that the subject of the sentence could beconfused with (Trueswell, personal communication). The importance of information dependenciesother than those arising from semantic heads was also recognized by Kimball in his New Nodes83



principle: \The construction of a new node is signalled by the occurrence of a grammatical functionword" (Kimball, 1973). From these other investigations we see that it is important for the parser touse grammar entries that express the information available from words other than semantic heads.The nature of the output produced by a D-Theory parser is also informative for determining whatkinds of information dependencies are needed to infer new phrase structure information. A D-Theory parser does not necessarily output a complete phrase structure tree. As in work doneearlier on parsing spontaneous speech (Fidditch, (Hindle, 1983)), the output is only a partialspeci�cation of the sentence's phrase structure tree. In Fidditch, the output can be a sequence ofsubphrases of the sentence, and in D-Theory later stages of processing are allowed to add statementsto the description that change the standard interpretation of the sentence. In the domain ofspontaneous speech, this partial output is necessary because there may not be a complete analysis,since people don't always speak in complete sentences. In more controlled domains or for moreabstract investigations, the use of partial output is justi�ed because of the need for semanticinformation to make some disambiguation decisions. Because these investigations assume thatno semantic information is available to the syntactic parser, they must take this approach. Inthis investigation I am assuming that semantic information is available to the syntactic parser,through input from other language processing modules. Thus the syntactic parser is in a positionto make these disambiguation decisions before it is �nished its output. Thus since only completesentences are being considered here, NNEP is required to output a complete description of thephrase structure of the sentence. This issue was also discussed in section 3.1. As mentioned there,it is possible to loosen the requirement for a complete analysis through the more extensive use ofsoft constraints, thus allowing NNEP to handle less idealized domains, such as spontaneous speech,without losing the formal basis for expressing expectations.4.1.3 Modeling Memory BoundsMost of the work on modeling memory bounds has been concerned with sentences where it isclear what information needs to be kept in the memory, but the human parser is still not able toprocess the sentence. This phenomena only occurs in center embedded sentences, which are also theonly sentence structures that cannot be parsed using only a bounded amount of memory (Chomsky,1959). The question that research on this subject has tried to address is the nature of these bounds.Kimball (1973) proposed the simplest theory of these bounds in his Two Sentences principle: \Theconstituents of no more than two sentences can be parsed at the same time". Unfortunately, muchof the data now available is incompatible with this simple statement (Gibson, 1991). The greatestempirical coverage has been achieved with a rather more complicated theory proposed by Gibson(1991). He associates load with three kinds of locally unsatis�ed linguistic requirements, andbounds the sum of this load. Given the di�erences in parser design, grammatical representation,and form of resource bound, it is di�cult to compare this theory with the constraints on NNEP'sresources. However, the types of nodes that require the use of NNEP's bounded resources (subjectsand trace nodes) are also associated with load in Gibson's theory, so it is possible that a thoroughcomparison between the two would reveal NNEP's bounds to be a subset of the resource boundsthat underlie Gibson's success. Since this investigation is concerned with the implications of aparticular set of constraints, and not with the coverage of a particular set of phenomena, the factthat NNEP's constraints don't rule out all the unacceptable sentences identi�ed by Gibson is notof great concern here. It is also interesting that Gibson associates load with locally unsatis�edlinguistic requirements that all involve relationships between nodes. This property is even moreapparent in Lewis' work on center embedding. Lewis (1993) proposes that unacceptable center84



embedded sentences are due to interference between multiple instances of the same unsatis�edgrammatical relation. If more than two of the same kind of node are looking to assign or to receivethe same relation, then the parser cannot store them all. While this and other work using the S&Aarchitecture assume that up to three instances of relations can be stored, the similarity betweenthese two constraints is very interesting. There seems to be a general convergence, from bothcomputational and linguistic perspectives, on modeling center embedding through bounds on theresources necessary to identify relationships between nodes, although the precise nature of all theseresources and bounds is still unclear.Memory bounds can also a�ect the behavior of the parser in cases where it isn't clear what in-formation needs to be kept in the memory. In particular, a long right branching sentence couldconceivably have a modi�er at the end that modi�ed any one of the nodes on the right frontier.If such modi�cation were possible in practice, the parser would have to store all these nodes justin case such a modi�er occurred. This would require more than the ten nodes that NNEP hasspace to store. Fortunately, such posthead modi�cation is highly restricted. Church (1980) pro-poses the A-over-A early closure principle as a theory of these restrictions. It closes a node whenthere is another node of the same category below it and both nodes have their parents, have alltheir obligatory children, and don't immediately dominate the next phrase to be parsed. Once anode is closed, it isn't available for further syntactic processing, so it can be removed from theparser's memory. Assuming only the four major categories, this principle results in a maximumof six unclosed nodes for right branching structures, well within the bound of ten. This principleessentially closes a node whenever there is a more recent node that will compete for the same post-head modi�ers, and the next word doesn't attach to either node. One exception is that the matrixroot of the sentence is never closed, since it never has a parent. The need for a preference for bothhigh and low attachments is also shown in recent work by Gibson, Pearlmutter, Canseco-Gonzalez,and Hickok (1993). They argue for two interacting attachment preferences, one for more recentnodes of a given type, and one for the arguments of verbs. For the sentences they investigate(subject NP, followed by two PPs and a relative clause), this has the e�ect of preferring high andlow attachments over middle attachments. Assuming the parser's strategy for forgetting nodesis approximately optimal, it would always forget the nodes which are least likely to be attachedto. Thus the results of (Gibson et al., 1993) support the same type of node closure strategy asproposed by Church (1980). Given the compact representation of phrase structure used by NNEP,these results indicate that the bound on the number of nodes that NNEP can store is not likely tobe a problem for maintaining possible attachment sites.4.2 NNEP's GrammarsThe parsing model proposed in this chapter does not support the full range of grammars providedfor in Structure Uni�cation Grammar, but it does support a substantial subset. All the examplesdiscussed in this document are either within this subset, or could be translated into an appropriateform. In addition, not all derivations allowed in SUG can be calculated by NNEP. There may besome sentences which are in the language of an SUG grammar, but which can not be parsed byNNEP using that grammar. This di�erence between the interpretation given to a grammar by thegrammar formalism and the interpretation given to the same grammar by the parser is the usualcompetence performance distinction, but there are some di�erences between the way the distinctionhere divides phenomena and the division traditionally attributed to that distinction. This sectiondiscusses in what ways the grammars and derivations are restricted by the parser.85



4.2.1 Restrictions on the GrammarsThe constraints on the parser impose some de�nite constraints on the grammars which NNEP cansupport, but mostly they just make some grammatical speci�cations easier for a parser to deal withthan others. Thus most of the restrictions on possible grammars are the result of a compromisebetween what is easy for a parser and what is needed for specifying natural language grammars.The �rst restriction on grammars is required in order to represent feature structures with a �xedset of predicates. No grammars are allowed for which some node's feature structure could growarbitrarily large during a derivation. This restriction is commonly used to prevent a formalismwhich mixes feature structures with structural information from being undecidable. Because withthis restriction there is a maximum to the size of a feature structure and there are only a �nitenumber of labels and atoms1, there are only a �nite number of possible feature structures producibleby a derivation. This allows feature structures to be represented with a �nite set of predicates overnodes, thus eliminating the need to represent each embedded feature structure as an entity.Another restriction is that no grammars are allowed for which one equation may cause as a sidee�ect the equation of another pair of nonterminal nodes. This constraint is motivated by the localityconstraint on rules. In order to perform an equation which has another equation as a side e�ect,both these equations need to be checked and done at the same time, which would in general requirerules which propagate information about multiple variables. There are two ways one equation couldcause another equation, through the constraint that only one node can immediately dominate agiven node, and through the uni�cation of the feature structures of the equated nodes. The �rstcase is already ruled out because two nodes which both have immediate parents can't be equated,as was discussed in section 3.4. The prohibition against the second case in general excludes theuse of features with nonterminal nodes as values. Features may still have terminals as values,since terminals are not represented with variables. Most cases which seem to require features withnonterminals as values can be handled by representing both nonterminals as a single nonterminalwith a more complicated feature structure. This technique is used extensively in the grammarswhich are used in testing NNEP, in part for this reason and in part because it reduces the numberof nonterminals which need to be stored in the parser's memory.The remaining restrictions on grammars are less well motivated, but do make the parsing modelsimpler. A grammar entry can contain at most one phonetically realized terminal. Otherwisedecisions about when to use grammar entries in the course of parsing would be complicated. Also,no node can have two nodes which both dominate it but neither of which dominates the other. Sucha con�guration implies that one of the dominating nodes dominates the other, and the implicationsof this disjunction are hard for NNEP to reason about. In addition, any node which does not have animmediate parent can not have nonredundant linear precedence constraints between it and anothernonterminal. In other words, any linear precedence constraints between a nonterminal and anunparented node must be inherited from nodes which dominate the unparented node. The exclusionof such linear precedence constraints simpli�es the calculation of long distance dependencies, sincethese constraints don't need to be checked when �nding possible equations for an unparentednode. This restriction also means the parser does not have to calculate the inheritance of theconstraints, and thus does not have to represent some dominance information which would otherwise1Because instance unique strings are used as atoms, there are actually an in�nite number of atoms. However,because instance unique atoms are unique for each time they are introduced into a derivation, the identity of theseatoms is not needed, only their existence. Replacing the instance unique string `Barbie342' with `Barbie343' in a setof feature structures will not in any way change the functionality of that set of feature structures to the parser. Thusthere are only a �nite number of inequivalent feature structures, which is all that is necessary.86



be needed. The last restriction on grammars is that only nodes which dominate a word can have animmediate child. Thus the parent for any immediate dominance relationship in a grammar entrymust dominate a word. This eliminates the need for the parser to inherit the property of dominatinga word, which again frees the parser from having to represent some dominance information.2 Thisset of constraints is su�cient to ensure that a given grammar can be e�ectively used by NNEP.4.2.2 Restrictions on the DerivationsBecause of the exibility of SUG derivations, the parsing process described below can follow SUGderivations directly. Each change to NNEP's partial structure description corresponds to a deriva-tion step, and each parser state corresponds to a description in a derivation. However, not allderivations can be followed by NNEP. Because NNEP only stores one description in its memory,the derivation must consist of a single sequence of descriptions, each of which is combined with atmost one grammar entry to produce the next description.3 The order in which grammar entriesare combined with this sequence must respect the incrementality of the parser. Thus the gram-mar entries which contain words must be combined in the same order as these words appear inthe sentence. Grammar entries which do not contain words can be combined at any time. Theserestriction on derivation structures by themselves do not actually limit the possible derivations inany signi�cant sense. In SUG two descriptions can be combined without equating any nodes andequations can be done in a description without combining it with any other descriptions, so the ac-tual structure of a derivation may have little connection to the phrase structure being built. Theserestrictions by themselves do not restrict the trees which can be built from any given grammar.Although grammar entries which do not include words can be combined at any time in a derivation,the need to parse in real time means that only a bounded number of such nonlexical grammarentries can be combined between any two lexical grammar entries. This means that the number ofnonlexical grammar entries used in a derivation can not exceed some linear function of the lengthof the sentence. This restriction does limit the power of the system. Any analysis which requiresthe size of a resulting structure to grow more than linearly with the length of the sentence can notbe handled. However if there are no such constructions in a grammar, then the actual bound onthe number of nonlexical grammar entries which can be combined between any two words does note�ect the structures which can be built. This is because an equivalent grammar can be producedby precombining any �nite number of nonlexical grammar entries with lexical grammar entries. Inthe extreme case where the bound is set to zero, this process results in a completely lexicalizedgrammar. Whether to make a cluster of information a nonlexical grammar entry or part of somelexical grammar entries is part of the larger question of how generalizations in the grammar shouldbe represented and used in parsing. In this investigation generalizations are generally compiledout, and therefore the grammar entries are generally lexicalized. Compiling generalizations makesparsing more straightforward, but it does not have to be done in all cases. Compiling generalizationsfails to explain a number of phenomena, for example our ability to handle words we have neverseen before. Since these issues are outside the scope of this work, I will not impose any particular2This restriction technically prevents the parser from using nonlexical grammar entries with more than one nodein them, but such grammar entries can still be used if the immediately dominating nodes are speci�ed as dominatinga word, despite the fact that there is no word in the grammar entry. NNEP will interpret this to mean that theempty \word" is in the current position in the sentence, but it will still try to �nd a grammar entry for the next wordin the sentence.3The information about grammar entries are compiled into the rules which implement NNEP's operations. Thusgrammar entries do not have to be stored in the memory to be used.87



bound on the number of nonlexical grammar entries which can be combined between two words.For the data addressed in chapter 6, this bound could be one.The limited set of operations used by NNEP to equate nodes restricts the derivations which can becomputed. These operations never equate more than two pairs of nodes at a time. The implicationsof this restriction for the set of phrase structure trees which can be built will be discussed after thespeci�c operations have been given.The derivations which can be followed by NNEP are also restricted by the bound on NNEP'smemory. The exact nature of this restriction depends on the strategy the parser uses to decidewhat nodes to forget and when to forget them. Regardless of the strategy, in any descriptionin a derivation tree, there can be only a bounded number of nonterminals which are involvedin equations subsequently in the derivation. This bound is the bound on the number of entitieswhich the memory can store information about. Any particular memory conservation strategy willrestrict derivations more than this, but no such strategy is presented in this document, as this issueis orthogonal to other concerns. For the data addressed in chapter 6, it is su�cient to forget nodeswhich have no chance of being equated in the future.For the current version of the parsing model it is assumed that it will only be parsing sentences. Toexpress the parser's expectation for a sentence, it initializes its parser state with a descriptioncontaining only an IP (inection phrase) node which expects a head. Thus, for this version,all derivations must start with a description containing an IP node with an underspeci�ed headterminal, and that node must be the root of the �nal description. Eliminating this restriction wouldallow NNEP to handle input other than sentences.44.3 NNEP's OperationsNNEP's operations calculate steps in SUG derivations. Some of these operations combine thecurrent description with a description from the grammar, some simply state equations betweenpairs of nodes already in the current description, and one removes nodes from the parser state so asto conserve memory. The sequence of parser states, grammar entries, and operations in a successfulparse specify a complete SUG derivation.The set of operations which can be used to calculate derivation steps is limited by the constraint thatthese operations be implemented with rules which only have one variable in both their antecedentand consequent. Three operations can be implemented simply within this constraint. One equatesthe root of a grammar entry with a node in the parser state, one equates the root of a tree fragmentin the parser state with a node in a grammar entry, and one simply adds a grammar entry to theparser state without doing any equations. A fourth operation can be implemented using the list oftree fragments which are stored in the parser state. A list, rather than a set, is needed to representthe ordering between the terminals of the tree fragments. Given this list, the root of the rightmosttree fragment can be uniquely identi�ed, so it can be referred to as a constant in a rule whichattaches the rightmost tree fragment to a node in the adjacent tree fragment. Unfortunately, thisset of operations isn't adequate. In order to recover long distance dependencies, NNEP needs amechanism which identi�es a unique trace node for which relationships with other nodes must becalculated. This mechanism is a stack containing nodes which have no immediate parent. All4However, the matrix root has special linguistic properties, so perhaps this requirement should really be incor-porated into the speci�cation of SUG grammars, rather than being eliminated from the parser for SUG. Such amodi�cation would not change the power of the formalism.88



trace nodes are on this stack, and sometimes tree fragment roots are also put on it. Only the topnode on the stack can be used in the rules which calculate long distance dependencies. Two newoperations can be implemented with this stack. One simply equates the node on top of the stackwith another node in the parser state. It is used for equating trace nodes with posthead gap sites.The other operation simultaneously equates the unparented node on top of the stack with a nodein a grammar entry, and equates the root of that grammar entry with another node in the parserstate. This operation is used both for equating trace nodes with subject gaps, and for attachingsubjects to their clauses while at the same time attaching the IP of the clause. The rules whichcalculate what nodes are eligible to be equated with a trace node also use this stack, as will bediscussed in the next section. This set of six operations is adequate for parsing natural languagesentences.5The stack discussed in the last paragraph is called the public node stack, and the top node on thatstack is called the public node. Because of the locality constraint on rules, a rule which is testinginformation about one node does not generally have access to information about any other node.In this sense the information about most nodes is private, and not available with the informationabout other nodes. The public node is distinct in that virtually all the information about that nodeis available along with the information about each other node, in the form predications about thetree as a whole (i.e. constant predications). In this sense the information about the public nodeis public. Other uniquely identi�able nodes have some of their information available in constantpredications, but most of their information is still private. Representing information as publicrequires a distinct constant predicate for each uniquely identi�able node and each predicate whosevalue for that node is part of the public information. Given the large number of predicates which areneeded to represent the information about a node, it is very costly to have all a node's informationbe public. The node on the top of the public node stack needs its information to be public becauserules need to be able to test this node's equatability with other nodes based solely on the publicinformation about it. No other nodes need to be fully public. Provided no other nodes are madefully public, and given the constraint that all operations be implemented with rules which onlyhave one variable in their antecedent and consequent, the only other operations which are possibleare ones which attach tree fragments other than the rightmost one. These don't appear to benecessary, so NNEP's six operations form a complete set under the imposed constraints.4.3.1 Combination OperationsThere are four operations NNEP can use to combine grammar entries with the parser state, shownin �gure 4.1. These operations can be implemented within the locality constraint on rules becausethe rules are speci�c to grammar entries. There is a distinct rule for each way each grammar entrycan participate in each combination operation.6 The patterns of these rules look for nodes in theparser state where the rule's combination operation could combine the rule's grammar entry by5In the implementation there is actually a seventh operation for dealing with appositives and parentheticals. Ihave not included this operation in the general discussion because appositives and parentheticals are generally notconsidered part of the constituent structure of the sentence. These constructions are handled in the implementation bybuilding them as tree fragments in which all nodes are purported to have immediate parents. The seventh operationsimply removes from the parser state, tree fragments which have no remaining needs and no unparented nodes. Thesetree fragments are always completed appositives or parentheticals.6In the actual implementation some parts of these rules are shared across operations, but they can be thought ofas completely distinct. Also, because these operations are compiled out with the grammar entries, and because noother combination operations are possible given the constraints and the available data structures, the operations canbe thought of as derived schema, rather than primitive operations.89
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Figure 4.1: The operations which combine grammar entries with the parser state.equating the rule's node(s). The actions of these rules add the information to the parser statewhich results from the chosen combination. By making rules speci�c to grammar entries, all theinformation about a rule's grammar entry can be compiled out into the rule, and thus all nodes inthe grammar entry can be referred to with constants. Therefore the only variables which need to beused in these rules are the ones which range over nodes in the parser state. The only combinationoperation which involves more than one node in the parser state is double attaching. As wasmentioned above and will be discussed further below, this rule can be implemented by restrictingits application to only the cases where the unparented node is the public node. This restrictionallows the implementation rules to access information about this node via constant predicates.Thus all these combination operations can be implemented within the constraints on the parser bycompiling them out with the grammar into a set of massively parallel pattern-action rules. Givenonly this one public node, no other combination operations can be implemented within the localityconstraint on rules.The �rst operation shown in �gure 4.1 is called attaching. It adds a grammar entry to the parserstate and equates the root of the grammar entry with some node in the parser state. This operationis used to attach modi�ers to the nodes they modify, and to attach posthead arguments to theirsubcategorized argument positions. If y doesn't have a head then this is modi�er attachment, andif y is headed then this is an argument attachment. As with all equations, the resulting structuredescription must be satis�able. Thus the feature structures of the two equated nodes must unify,and the x node must be on the right frontier of the rightmost tree fragment in the parser state.The x node must be on the right frontier because any words in the parser state's description mustprecede any words in the grammar entry, and thus x cannot precede words in the parser state.This combination operation also needs to be restricted so that it does not produce a structurewhich NNEP cannot complete. Particularly, nodes which have unful�lled expectations should notbe removed from the right frontier due to the combination. Thus x can not be preceded by anynode which needs a parent or has unful�lled expectations, and the grammar entry can not haveany nodes which precede any words in the grammar entry and need parents or have unful�lled90



expectations. Also, un�lled terminals in the grammar entry can not precede any words, unless thatterminal will have its word speci�ed by the equation. This last restriction only applies to postheadmodi�ers. A posthead modi�er has an unheaded root because it is a modi�er, and the un�lledhead terminal of the root precedes the word of the grammar entry because it is posthead. Thusthis restriction simply requires that posthead modi�ers can not attach to a node before that nodehas a head, as desired. Prehead modi�ers are handled similarly. When a prehead modi�er attachesto a node, the node must not have a head.7Prehead arguments must be added to the parser state before they can be attached to anything.This is also true for grammar entries with several possible attachment sites which NNEP cannotimmediately choose between. In both these situations the equationless combining operation is used.It adds the grammar entry to the end of the list of tree fragments, and stores in the parser state allthe potential dominance relationships (which represent the possible prehead argument positions)and all the potential equations (which represent the possible attachment sites) with the root ofthe grammar entry. These relationships are added because calculating them within the parserstate would be much more complicated than simply storing the values of pattern matches from thegrammar entry's rules.8 In order for the resulting parser state to be completable, the root of thegrammar entry must have at least one potential dominance or equation relationships with a node inthe adjacent tree fragment.9 Since subjects are prehead arguments, a subject's �rst grammar entryis combined with the parser state using equationless combining. The IP node for the subject isspeci�ed as potentially dominating the subject node. Two examples of when an ambiguity betweenpossible attachment sites might cause equationless combining to be used are prepositions and the�rst NP after a verb like \give". In the former case, the preposition may have several phraseswhich it could modify, and NNEP may need to wait for information about the preposition's objectbefore it can make a decision. In the later case, the �rst NP after \give" could attach to eitherargument position, and information about subsequent constituents may be necessary to resolve thisambiguity. It is also possible that an ambiguity may exist between an attachment site and being aprehead argument. This is the case for the �rst word in most posthead NP arguments. That wordcould be starting the argument NP, or it could be starting an NP for the possessor of the argumentNP. In all these cases, the equationless combining operation can be used to delay the decision untildisambiguating information can be found. An operation to be discussed in the next subsection isused to commit to an attachment when there is enough evidence.When a prehead argument phrase is added to the parser state using equationless combining, oneway it can be attached to its argument position is with the leftward attaching operation. Thisoperation is the symmetric case of attaching. It adds a grammar entry to the parser state andequates the root of the rightmost tree fragment in the parser state with a node in the grammar7This mechanism isn't quite adequate for expressing prehead constraints, since the linear precedence constraintwith the head terminal is not added to NNEP's representation of the current structure. In the few cases whenprehead modi�ers can have subsequent modi�ers, the grammar can take advantage of the way precedence constraintsare enforced by the parser. In these cases the modi�er node can be speci�ed as preceding the modi�ed node. This istechnically an inconsistent parser state, but since these constraints are only checked when operations are performed,it will have the e�ect of requiring any constituents which attach to the modi�er to precede all subsequent terminalswhich are attached to the modi�ed node. In the cases where this constraint is needed (namely wh- words), this hasthe right e�ect.8This method also has the advantage that the relative values of the predications can be speci�c to the word,and not just dependent on the features assigned to the root node. These values are used for later disambiguationdecisions.9Checking for the existence of potentially dominating or equatable nodes does not violate the locality constrainton rules because the existence of such a node can be represented as a property of the structure as a whole, and testingfor such nodes can be done independently for each candidate node.91



entry. It also stores in the parser state all the potential dominance relationships and all the potentialequations with the root of the grammar entry, for the same reason as this was done in equationlesscombining. Also as in equationless combining, the root of the grammar entry must have at least onepotential dominance or equation relationships with a node in the adjacent tree fragment. Figure 4.1shows more than one tree fragment in the parser state, because the x node can't be the root ofthe leftmost tree fragment. The root of the leftmost tree fragment is always the matrix root, andthe matrix root must be the root of the �nal description produced by the parser. As for attaching,the feature structures of the two equated nodes must unify, and the y node must be on the leftfrontier of the grammar entry. To make sure the resulting structure can lead to a successful parse,the grammar entry can't have any nodes which precede a word and either need a parent or haveunful�lled expectations. Also, all un�lled terminals in the grammar entry which precede a wordmust be �lled by the equation. Usually the y node precedes a word in the grammar entry. In thiscase, there can't be any nodes which need parents or have unful�lled expectations in the rightmosttree fragment, unless they aren't preceded by any words.The last combination operation shown in �gure 4.1 is double attaching. This operation equates anunparented node in the parser state with a node in a grammar entry, and equates the root of thegrammar entry with a node which could potentially dominate the unparented node. In order toimplement this operation within the locality constraint on rules, the unparented node in the parserstate (y) is restricted to be the public node. If the public node is the root of the rightmost treefragment, then this operation attaches a prehead constituent of a phrase at the same time as itattaches the phrase. If the public node is a trace, then this operation equates the trace with its gapsite at the same time as it attaches the phrase which contains the gap site. This operation is oftenused to attach subjects, regardless of whether the subject is a phonetically realized constituent ora trace. Because the public node is the top node on a stack, the restriction that y be the publicnode has some interesting linguistic implications, which will be discussed in section 6.2. The otherconstraints on the applicability of this operation are simply a combination of those on the attachingoperation and the leftward attaching operation. Nodes x and z are constrained as are x and y inthe attaching operation, and nodes y and w are constrained as are x and y in the leftward attachingoperation. Constraints on the existence of other types of nodes in the parser state and the grammarentry map analogously from the attaching and leftward attaching operations to this operation.4.3.2 State Internal OperationsThere are two operations which NNEP can use to equate nodes already in the parser state, shownin �gure 4.2. Since the nodes involved in these state internal operations are all in the parser state,one node in each operation needs to be referred to with a constant. For the internal trace equatingoperation this can be done in the same way as was done for double attaching. This operation isrestricted to only apply when y is the public node. Thus the y node is always unique, and it can bereferred to with a constant. For the internal attaching operation, the list of tree fragments needsto be used. This operations is restricted to only apply when y is the root of the rightmost treefragment. Since this node is always unique, it can be referred to with a constant. Thus both ofthese state internal operations can be implemented within the constraints on the parser, using onlyone rule each. No other state internal operations can be implemented within the locality constrainton rules given just these two uniquely identi�able nodes. Other versions of internal attaching couldbe de�ned which apply to other roots in the list of tree fragments, but they don't seem to benecessary.The �rst operation shown in �gure 4.2, called internal attaching, is just like attaching, except the92
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is called forgetting. The forgetting operation removes nonterminal nodes from the parser state,thereby abstracting away from the existence of that node in the SUG description being built. SinceNNEP's output is incremental, forgetting does not interfere with the ability of other modules tointerpret the results of a parse. Forgetting a node does prevent NNEP from equating it with anyother nodes during the remainder of the parse, so only nodes which don't need to be equated in orderfor the parse to produce a complete description can be forgotten. Thus there are circumstanceswhere even with the forgetting operation, NNEP cannot stay within the bounds on its memory.The linguistic implications of this fact will be discussed in section 6.4.
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needs to store is represented with unary predicates. Predications are added to the parser stateby operation actions and by a set of rules that calculate the indirect implications of informationadded by actions. The �rst subsection below presents the information stored in the parser state andits representation. The second subsection discusses what rules are necessary to calculate indirectimplications of added information.4.4.1 The Representation of State InformationNNEP's representation of its state information is designed to provide the information NNEP'soperations need without violating the constraints on the parser's memory. The parser's memorycan only hold a small number of entities, but can store an arbitrary (but bounded) number ofpredications over those entities. Thus the representation of NNEP's state information should useas few entities as possible. The entities in SUG descriptions are the feature structures, but luckilynot all feature structures need to be represented as entities. For example, the feature structurex�[cat:[V:+, A:�]] has four feature structures in it, x, cat(x), the +, and the �. However onlyx needs to be represented as an entity. The rest of the information can be represented with thepredications cat-V+(x) and cat-A�(x), assuming suitable interpretations of these predicates. Suchtechniques can be used to eliminate the need for feature structures other than the nodes themselves.In addition, the need to represent terminals as entities can be eliminated with the addition of thepredicates anchored and nonfrontier. A node is anchored if it dominates a terminal with its wordspeci�ed. A node is nonfrontier if it precedes a terminal with its word speci�ed. The use ofterminals in feature structures can be represented with special purpose predicates. For example, anode with a head feature specifying an underspeci�ed terminal would have needs head predicatedof it, and if the head terminal was a word it would have headed predicated of it. Such information isall that NNEP needs to know about terminals in the structure description, and thus the terminalsthemselves do not have to be stored. Thus feature structures other than nonterminals do not haveto be represented as entities.In NNEP all nonterminals are represented as entities. This allows parser operations which areindependent of the structural position at which they apply. This means that generalizations in thegrammar are stated in terms of the same abstract entities as generalizations in the parser. However,this is not a claim about the relationship between the study of competence linguistics and the studyof parsing. The grammars being discussed here are the grammars used by the parser, and may bequite di�erent from the grammars which are appropriate for the study of competence linguistics.For example, the grammar used to test the adequacy of NNEP represent as a single nonterminalwhat in Government Binding Theory would be an entire lexical projection and all its associatedfunctional projections. All the information about these projections is compiled into the featurestructure of the node. The question of what the appropriate abstract entities are for parsing isdependent on several factors, including the generalizations which can be stated in terms of thoseentities, the ability to parse without violating the bound on the number of entities which can bestored, and the restriction's on the architecture's ability to implement rules involving multipleentities. In any case, this issue can be investigated in terms of the grammars used by the parser,and does not need to directly involve the design of the parser.The structural information in SUG descriptions is represented with two binary predicates and aset of unary predicates. The binary predicates are potential dominance (could dom) and potentialequality (equatable). Potential dominance keeps track of what nodes may dominate what othernodes through a chain of immediate dominance links which have yet to be introduced. This rela-tionship was used above in the double attaching operation. Potential equality keeps track of what95



nodes may be equated with what other nodes through a sequence of equations which have yet to bedone. This relationship was used above in the internal attaching and internal trace equating opera-tions. The information which is needed about dominance relationships is represented in three ways:by not specifying a potential dominance relationship, with the representation of tree fragments, andwith predicates that specify what nodes were added by the last grammar entry.10 The root of atree fragment dominates all the nodes in the tree fragment, and the root of the last grammarentry dominates all the nodes added by that grammar entry. The information about immediatedominance relationships which NNEP needs is represented with the parented unary predicate. Anode is parented if some other node immediately dominates it. NNEP does not need to know whichnode is the immediate parent of a node, only that it has one. This alternative representation wasintroduced in the last chapter in order to allow for the forgetting operation. The nodes whichdominate words are distinguished with the predicate anchored. This predicate is necessary in orderto calculate which nodes are on the right frontier of the structure and thus are eligible for equations.If a node precedes an anchored node, then it precedes a word in the structure and thus is not onthe right frontier. Such nodes are speci�ed with the predicate nonfrontier. Ordering constraintsbetween nonterminals and words are speci�ed with the nonfrontier predicate, with a predicate suchas head leftward, or by limiting how the grammar entry can be combined with the parser state.Ordering constraints between nonterminals and un�lled terminals can also limit how the grammarentry can be combined with the parser state, and can also be expressed with a predicate thatexpresses the direction in which the terminal is needed, such as needs head rightward. Because ofthe compact representation of phrase structure in NNEP's current grammars, the vast majority ofordering constraints involve terminals. The only exceptions are the ordering constraints betweenobjects of ditransitive verbs. As will be discussed in section 6.4, performance constraints meanthat NNEP only needs to store such ordering constraints for one second object at a time. Becauseof this, such ordering constraints can be stored with two unary predicates, preceded and preceding,rather than a binary predicate.The only other structural information which NNEP needs to represent in its memory is orderingconstraints between terminals. Grammar entries don't have these constraints, but they do come aspart of the input. The input words come ordered, and when the parser state includes more thanone unconnected tree fragment, these constraints have to be stored, not just checked for consistencywith other constraints. To represent this ordering, NNEP has three predicates, matrix fragment,adjacent fragment, and right fragment. The matrix tree fragment is the one rooted by the matrixroot of the sentence, the right tree fragment is the rightmost tree fragment, and the adjacent treefragment is the one just to the left of the rightmost tree fragment. This set of predicates allows forfour tree fragments to be stored at one time, where the fourth consists of all those nodes which arenot in any of the other three. As will be discussed in section 6.4, performance constraints makethis length su�cient. Any subtree which contains phonetically realized material and is rooted by anode which has no immediate parent is in this list. Nodes which represent traces for long distancedependencies are never roots of these tree fragments, because these trace nodes never dominateany phonetically realized material.10NNEP does not always enforce the constraint that links in a phrase structure tree should not cross. In order toimplement this constraint, all nodes would need to know what other nodes they dominate. The no-crossing constraintis usually assumed for English, although it is not language universal, and even in English it can be violated withoutmuch trouble. For example, \I saw a man yesterday who was wearing stockings". The aspects of this constraintwhich are enforced by NNEP can be thought of in terms of an attention shifting mechanism, which limits attention tothe rightmost tree fragment whenever that tree fragment has unsatis�ed requirements. This mechanism is discussedin section 4.5. Heaviness considerations are probably also involved in the predominance of noncrossing structures inEnglish, but these have not been modeled here. 96



The only nonstructural information in SUG descriptions is contained in the feature structures. Aswas illustrated above, feature structure information is represented with predicates which are speci�cto the feature structures used in the grammar. For a simple feature structure with no coreference ofvalues either within itself or between itself and other nodes, the information can be speci�ed usinga unary predicate for each feature label path to an atom. For example, [cat:[V:+,A:�], tense:3sg]can be represented with three predicates, which might be called cat-V+, cat-A�, and tense-3sg.Because of the constraints on allowable grammars, the set of such predicates which NNEP needscan always be determined from the grammar, and this set will always be �nite. NNEP checks thesepredicates to determine the uni�ability of feature structures. Coreference between nonterminalfeature structures can be represented with a binary predicate for each possible equality betweendistinct feature label paths. For example if we need to represent head(x)�head(y), then we need apredication like same head(x,y). Because of the transitivity of equality it may be necessary to de�nemore such predicates than are needed to specify the coreferences in the grammar, but because ofconstraints on the grammar the set of necessary predicates will always be �nite and determinablefrom the grammar. For the grammars used in chapter 6, no such binary predicates are needed.Features which refer to terminals can be represented with two kinds of unary predicates, one kindif the terminal has its word speci�ed and one kind if the terminal is un�lled. Predications of thelater kind express the need for a predication of the former kind. Predications of the former kindprevent any equations where both nodes have the same such predicate predicated of them. As inthe example mentioned above, a node with an underspeci�ed head terminal could be speci�ed asneeds head and a node with a word as its head could be speci�ed as headed. When the parse is doneall nodes with needs head predicated of them must also have headed predicated of them. Duringthe parse two nodes which are both headed can not be equated11. The set of such predicates whichare needed to parse can be determined from the grammar.As will be discussed in section 6.1, most of the linguistic constraints on long distance dependenciescan be expressed as a system of coreferential feature values in SUG grammar entries. However,rather than use the techniques just discussed, it is easier for NNEP to represent these constraintswith two predicates, extractable and foot. The rules which calculate long distance dependenciesonly look for possible gap sites at nodes which are speci�ed as extractable. They only check to see ifa node potentially dominates a trace if that node is speci�ed as the foot of its grammar entry. Thename of this predicate is taken from Tree Adjoining Grammar, as will be explained in chapter 6.In addition to the above information about the SUG description being accumulated, NNEP alsoneeds to store the state of the public node stack. The information which NNEP's operations needabout this stack is what node is on top of the stack. This is represented with the public predicate.As will be discussed in section 6.4, the equatable and could dom predicates mentioned above areactually implemented in two versions, one for nodes on the public node stack and one for other treefragment roots. The �rst arguments of the �rst version of these predicates can be used to determinewhat nodes are on this stack. Using only this source of information and the public predicate, thisstack can only be two deep. As will also be discussed in section 6.4, performance constraints and astrategy for conserving space on this stack make this depth su�cient. All trace nodes are on thisstack, and sometimes the root of a tree fragment is on this stack.11Two nodes which are both headed can be equated if they have the same head terminal. Thus a grammar mightalso need a predicate like same head to distinguish this case. This isn't an issue in the grammars used here.97



4.4.2 Maintaining State InformationNNEP's operations test and predicate the information just discussed, but sometimes the informationadded by an operation has implications for NNEP's current description which were not speci�edin the de�nition of the operations. If this implied information is not explicitly represented, then itwould not be immediately available for later operations to test, and it might be lost altogether if anode is forgotten. For this reason, NNEP has a set of rules which calculate information indirectlyimplied by the e�ects of operations. These rules calculate the inheritance of ordering constraints,the positions of tree fragments on the tree fragment list, possible long distance dependencies, andthe e�ect of equations on equatable relationships.Linear precedence relationships inherit downward across dominance relationships. Linear prece-dence is de�ned so that if x precedes y, then everything which x dominates precedes everythingthat y dominates. This inheritance applies whenever a grammar entry or tree fragment attachesto a node with an ordering constraint on it. Because of constraints on the grammars, the gram-mar entry or tree fragment will always dominate a terminal. Thus if the attachment takes placeat a node which is preceded by other nodes, then the inheritance results in the preceding nodesno longer being on the right frontier (nonfrontier). Since nonfrontier nodes cannot be involvedin further equations, no other precedence information needs to be calculated in this case. If theattachment takes place at a node which precedes another nonterminal node, then all the nodes inthe attached subtree also precede that node. Since NNEP is constrained to only have one linearprecedence relationship, this amounts to inheriting the preceding predicate to either the nodes in thetree fragment or the nodes which have been introduced by the grammar entry. The only other caseis when the attachment takes place at a node which precedes a word. Since such a node is not onthe right frontier, this can only happen if the node is in a grammar entry and the attachment takesplace with either the leftward attaching or double attaching operations. For double attaching, noinheritance needs to take place if the attached constituent is a trace node. Otherwise the attachedconstituent is the rightmost tree fragment, the nonfrontier predicate needs to be inherited to all itsnodes. The inheritance of ordering constraints can therefore be calculated with the following rules.The variables in each of these and the subsequent rules are implicitly universally quanti�ed.preceded(next comb upper site) ^ preceding(x) ) nonfrontier(x)preceded(next inter attach site) ^ preceding(x) ) nonfrontier(x)preceding(next comb upper site) ^ new node(x) ) preceding(x)preceding(next comb upper site) ^ anchored(next comb lower site) ^ right fragment(x)) preceding(x)preceding(next inter attach site) ^ right fragment(x) ) preceding(x)nonfrontier(next comb lower grammar node) ^ anchored(next comb lower site) ^right fragment(x) ) nonfrontier(x)Maintaining the tree fragment list means updating the predicatesmatrix fragment, adjacent fragment,and right fragment. All new nodes added by combination operations are in the rightmost tree frag-ment, so the actions of the operations specify these nodes as right fragment. When the equationlesscombining operation is used, a tree fragment needs to be added to the end of the list. This meansthat nodes which were adjacent fragment are no longer adjacent fragment, and nodes which were98



right fragment are now adjacent fragment but not right fragment. The rightmost and adjacent treefragments need to be combined when either the internal attaching operation is used, or when thedouble attaching operation attaches the rightmost tree fragment. In these cases, nodes which wereadjacent fragment need to be changed to right fragment, nodes which are right fragment may needto become matrix fragment, and which tree fragment is the adjacent one needs to be �gured out.These last two issue depend on how full the list was before the operation, so their rules are sensitiveto this information. The following rules are su�cient for maintaining the tree fragment list.equationless combining^ adjacent fragment(x) ) :adjacent fragment(x)equationless combining^ right fragment(x) ) :right fragment(x)^ adjacent fragment(x)combine fragments^ adjacent fragment(x) ) :adjacent fragment(x) ^ right fragment(x)matrix fragment(x)^ adjacent fragment(x) ) hal�ull listcombine fragments^ hal�ull list ^ right fragment(x) ) matrix fragment(x):right fragment(x)^ :adjacent fragment(x)^ :matrix fragment(x) ) full listcombine fragments^ :adjacent fragment(x)^ :right fragment(x)^ :(full list ^matrix(x))) adjacent fragment(x)
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Because z is the public node, enough of the information about z is available in constant predicatesfor this test to be done. The restriction that in both these rules z must be the top node on thepublic node stack imposes a number of important constraints on long distance dependencies, someof which cannot be speci�ed within SUG (or TAG). These will be discussed in chapter 6. Thesetwo movement rules, then, can be implemented with the following rules.could dom(next comb upper site,public node) ^ :anchored(public node) ^new node(w)^ foot(w)) could dom(w,public node)could dom(next inter attach site,public node) ^ :anchored(public node) ^right fragment(w) ^ foot(w)) could dom(w,public node)could dom(next comb upper site,public node) ^ :anchored(public node) ^new node(w)^ extractable(w) ^ unify(w,public node)) equatable(w,public node)could dom(next inter attach site,public node) ^ :anchored(public node) ^right fragment(w) ^ extractable(w)^ unify(w,public node)) equatable(w,public node)
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to the adjacent one, then the equatable relationships with these two roots are combined to producethose for the resulting node. In these later two rules, the node which is not being equated is thesingle variable.redo equatable public(x)^ equatable(public node,x) ^ :unify(public node,x)) :equatable(public node,x)equatable(next comb upper site,x) ^ :unify(grammar entry root,x)) :equatable(next comb upper site,x)4.5 NNEP's Disambiguation MechanismThe parser operations are distinguished from the rules for maintaining the parser state by the factthat the parser must choose whether and how to apply them, rather than having their applicationfollow directly from the state of the parser. After each step in the parse, NNEP must determinehow operations can be applied and choose among these possibilities. The current parsing modelcan calculate how operations can be applied, and it is designed to be able to choose among thesepossibilities on the basis of the available evidence. However, the later component of this processhas not been tested, so no claims about the adequacy of this particular disambiguation mechanismcan be made. As a matter of completeness, this section discusses the disambiguation mechanismwhich NNEP is currently designed to use. Doubtless there are other possible mechanisms, butdetermining the best one would require a substantial investigation of connectionist learning andevidential reasoning methods, which is outside the scope of the current investigation. The success ofconnectionist networks in other disambiguation problems indicates that this issue is not of particularconcern for determining the computational adequacy of the S&A architecture. Indeed, one of themost promising aspects of the work done in this dissertation is that it makes it possible to applyconnectionist methods to syntactic disambiguation at the level of syntactic representation.4.5.1 Coordinating Disambiguation DecisionsNNEP has three types of decisions it needs to make, when and where to forget nodes, when andwhere to do an internal operation, and how to combine a grammar entry for the next word into theparser state. Forgetting generally does not interact with the other decisions, since it only involvesnodes with little or no chance of being equated. If there is a conict between forgetting a node andpicking it for an operation, the forgetting operation is simply blocked from applying while the otherdecision is being made. The other operations interact in that only one of them can be performedat a time. Whenever one of the internal operations decides to apply, NNEP blocks the triggeringof any further actions until that operation has �nished modifying the parser state.12 On the otherhand, the combination arbitrator blocks the triggering of internal operations right after a word isinput. Thus no internal operations can be triggered while NNEP is �guring out how a word couldbe combined, even if no actual decision has been made. This preference for the incorporation ofinput words over doing internal equations is motivated by the time pressures associated with theinput of words.1312If the internal operations match at the same time, and therefore on the same node, the internal attaching operationis done, since a trace node is more likely to �nd another possible equation site.13The right mechanism shouldn't have this kind of discrete preference, but this strategy is easier to implement andcontrol by hand. Some very recent work on a Bayesian approach to NNEP's disambiguation problem characterizes this101



Another interaction occurs when an internal operation is necessary in order for a combination totake place. The space of possibilities that the combination arbitrator uses when making decisionsincludes both combinations which could be immediately applied and combinations which mightbe able to be applied after some sequence of internal operations. If it can't choose an operationwhich can be immediately applied, then the internal operation arbitrators are asked to �nd anoperation to apply. This is done by removing from consideration the possibility that future inputwill provide an equation site for the nodes the internal operations are trying to attach. Thus theinternal operations are asked to choose between the equation sites they currently have available. Ifthis is successful, then control reverts back to the combination arbitrator, which tries again to pickan operation it can immediately apply. Currently there is no strategy for what to do if no internaloperation can be picked, but progressively lowering the decision making threshold would be oneplausible approach.4.5.2 Choosing an ActionOf the three types of decisions, when and where to forget nodes is the simplest one. Currently,a node is forgotten when its chance of being equated is lower than a �xed threshold. A moresophisticated strategy would vary this threshold depending on the number of nodes stored in theparser state, but this is not necessary for the data considered in this document. The chance that anode will be equated is the chance that it will either be attached to another node or have anothernode attached to it. A node will be attached to another node if and only if it has no immediateparent. As will be discussed in the next section, the chance that a node will have no further nodesattach to it is stored as the value of the �nished predicate. Thus the forgetting decision can bemade by choosing those nodes which are parented and have a �nished value which is greater thansome threshold.The internal operations each have their own arbitrators. These arbitrators make decisions using asummation network and a threshold unit. The summation network sums the probability estimatesfor all the ways the unparented node of concern could end up being attached. This includes thepossibility that subsequent input will provide the site of this attachment. The threshold unitreceives weighted inhibitory input from the summation network, and excitatory input from theestimates of the probabilities for the ways the attachment could currently be done. The weightof the summation input must be between 0.5 and 1. If the probability estimate for the currentattachment site is greater than the weighted sum of the probability estimates for all the possibleattachments, then that attachment action is triggered. This calculation is formalized and explainedin the following two paragraphs.For the internal trace equating operation, the test the arbitrator wants to perform is:� < P (x j s)where � is the decision threshold, x is the site of the candidate equation, and s is the parser state.In order to guarantee that this test will only be passed by a single alternative, � must be at least0.5. The probability estimates which are used to perform this test are stored in the equatableand could dom predicates. The equatable predicate stores estimates of P (x j s) for each potentialequation site x, and the could dom predicate stores estimates of the probability that future inputchoice in terms of the probability that resource limitations will cause the parse to fail, but this work is too preliminaryto report here. Using this approach would allow a single arbitration mechanism to be used for all decisions, ratherthan having to coordinate multiple arbitrators, as is done here.102



will introduce potential equation sites for the trace node through an attachment at the potentiallydominating node. I'll write this later probability as P (future node under(x) j s). The trace nodehas to eventually equate with some other node, and each of these estimates represent probabilitiesof mutually exclusive alternative equations, so these alternatives form a partition of the possibleequations for the trace node. Thus they should sum to 1. However, a constant factor may beintroduced in the representation or calculation of these estimates, so they will actually sum to thatconstant factor. Thus, in order to perform the above test, each estimate needs to be divided bythe sum of all the estimates. This gives us the following test.� < P (x j s)Pi(P (xi j s) + P (future node under(xi) j s))This test is equivalent to:0 < P (x j s)� �Xi (P (xi j s) + P (future node under(xi) j s))This is precisely the calculation described in the previous paragraph.For the internal attaching operation, the same test needs to be performed, but the probabilityestimates which are involved are a little more complicated. Again, these probability estimates arestored in the equatable and could dom predicates, but in this case the values of these predicates wereset using probability estimates from the combination arbitrator's calculations. These probabilityestimates are of the form P (x; : : : j s) and P (future node under(x); : : : j s), where the ellipsisrepresents additional information which was available at the time that the tree fragment root wasadded to the parser state, as will be discussed below. Given that this additional information isavailable, the test the arbitrator wants to perform is:� < P (x j s; : : :)Using Bayes' rule, we get the following relationship.P (x j s; : : :) = P (x; : : : j s)P (: : : j s)As will be argued below, the probability estimates in the equatable and could dom values are formutually exclusive alternatives which exhaust the possible attachments which are compatible withthe information in \: : :" and s. Thus:P (: : : j s) =Xi (P (xi; : : : j s) + P (future node under(xi); : : : j s))Combining this with the previous two formulas, we get the following test.0 < P (x; : : : j s)� �Xi (P (xi; : : : j s) + P (future node under(xi); : : : j s))This is exactly the test for internal trace equating, only the estimates are based on more information.The threshold may be di�erent than that for internal trace equating, but it still must be at least0.5. Note that this calculation will also take care of any constant factor in the estimates.The combination operation arbitrator di�ers from the others in that it needs to choose a grammarentry and operation as well as a site. This makes the space of alternatives more complicatedthan just the currently available sites plus any future alternatives. In particular, the set of phrase103



structures which are compatible with two di�erent choices may not be disjoint. In other words, theinformation which would be added by one choice may not be incompatible with the informationwhich would be added by another choice. Thus NNEP must not only choose what information toadd, but also how much information to add. For example, if the next word is a preposition, theremay be more than one place where the prepositional phrase could attach in the current phrasestructure description. NNEP can either specify one attachment site, the other attachment site, orjust the grammar entry's information without specifying any attachment site (using equationlesscombining). The �rst two options constitute the basic choice to be made, but NNEP can pick thethird option, which is more general than each of the �rst two. Currently NNEP will always pick themost speci�c option which it is su�ciently con�dent is correct. It estimates the probability of eachoption not adding any incorrect information, then picks the most speci�c option whose probabilityof being correct is greater than a threshold. As above, this threshold must be at least 0.5. Thebest value would have to be determined empirically, and may need to vary depending on time andresource pressures.The space of ways that NNEP can combine a grammar entry with its current description (i.e.the space of combination choices) has some properties which make the calculation of the aboveprobabilities easier. At a given point in a parse, there is a set of phrase structure trees which arecompatible with the parser's current description. Each of the combination choices restricts thatset further. If one choice is more general than another, then all the trees which are compatiblewith the more speci�c choice are compatible with the more general choice. I will call the choiceswhich are not more general than any other possible choice the basic choices. The grammar can bedesigned so that any basic choice adds information to the description which is incompatible withthe information added by each other basic choice. In other words, no tree is compatible with morethan one basic choice. I will assume that NNEP's grammar is in the appropriate form to have thisproperty.14 The grammars used in this document are. These basic choices can be divided into twogroups, those that are immediately applicable, and those which require internal operations to beperformed before they might be applicable.15 The basic choices which are immediately applicableplay the same role as the currently available equation sites for the internal operations.To completely characterize the space of alternatives available to the combination arbitrator, we alsoneed to consider those equation sites for the root of a grammar entry which might be introducedby future grammar entries. For example, when the beginning of a noun phrase is encountered, thatnoun phrase may be the possessor for a subsequent genitive marker. There is no combination choicewhich would necessarily restrict the possible trees to only those compatible with this alternative, soit is not a basic choice, but this alternative still has to be considered. These alternatives play thesame role as those whose probability estimates are stored in the could dom predicate for the internaloperations. To determine what these alternatives are, grammar entries which can participate in thedouble attaching operation need to be classi�ed according to what types of nodes can participate inthe upper and lower equations. The transitive closure of these pairs of node types determine whatnodes in the current description could dominate (could dom) the roots of what grammar entriesvia future grammar entries. The classes of alternatives which are found using these relationshipsand the next word's grammar entries are the future choices we need. These future choices areequivalent to the type raised grammar entries used in formalisms like Combinatory Categorial14I believe any SUG grammar can be transformed into an equivalent grammar which has this property.15There is a glitch here. Since the combination arbitrator can't predict what the internal arbitrators are going todo, it can't predict with certainty what additional choices will be available after the internal operation. This doesn'tseem to be a problem. Perhaps a more uniform disambiguation mechanism (such as that mentioned in footnote 13)which doesn't split the decision making process like this would not have this limitation.104



Grammar (Steedman, 1987). As with basic choices, I will assume that these future choices arede�ned so that they are compatible with mutually exclusive sets of phrase structure trees. Thiscan always be done.Together, the basic choices and the future choices characterize all the ways that a grammar entryfor the next word can become part of the sentence's phrase structure tree. They are also mutuallyexclusive, since within each class they are assumed to be mutually exclusive, and the basic choicesequate the root of a grammar with nodes which are already in the parser state, while the futurechoices equate it with a node which has not yet been introduced. Thus this set of choices partitionthe set of phrase structure trees which could be built given the current description and the nextword. This characteristic will be important in the calculations of the combination arbitrator.The basic and future choices characterize the issue of what information to add to the currentdescription, but we still need to characterize the issue of how much information to add. NNEP canadd less information than that for a basic choice by either using a grammar entry which is strictlymore general than another grammar entry, or by using an operation which is strictly more generalthan another operation. An example of the former case would be if a grammar entry was split intoa lexical and a nonlexical component, but the original grammar entry was still left in the grammar.For simplicity, and because it makes the parser faster, I will assume that no such grammar entriesexist. In conjunction with the constraint that basic choices be mutually exclusive, this means thatall grammar entries for a given word must impose mutually exclusive sets of constraints. Thisis the case for all the grammar entries used in this dissertation.16 NNEP does, however, haveoperations which result in strictly more general parser states than would other operations. One isequationless combining, which results in a parser state which is more general than that producedby any use of the attaching operation. In cases where the double attaching operation can apply,the leftward attaching operation would produce a more general parser state. In addition to basicchoices, these more general combinations may also be compatible with future choices. For example,using equationless combining to add a noun phrase after a transitive verb is not only compatiblewith attaching the noun phrase as the object of the verb, it is also compatible with attaching thenoun phrase as the possessor for a subsequent genitive marker. Under the above assumptions aboutthe form of the grammar, these more general combinations are the only nonbasic choices which thecombination arbitrator has available to it. In addition, the only di�erence between the basic choicesand the nonbasic choices is whether an equation with the root of the grammar entry is speci�ed.This means that the set of phrase structure trees which are compatible with a nonbasic choice issimply the union of the sets of trees which are compatible with the basic and future choices thatthe nonbasic choice is more general than. Because of this, the probability of a nonbasic choicenot adding any incorrect information is simply the sum of the probabilities for its basic and futurechoices.17As mentioned above, NNEP's combination arbitrator chooses the most speci�c action whose prob-ability of not being incorrect is greater than a threshold. Since there are only two degrees ofspeci�city, this amounts to trying to pick a basic choice which can currently be applied, and ifnone is su�ciently probable, trying to pick a nonbasic choice. As will be discussed in the nextsubsection, these probabilities are of the form P (g; o; x; w; t0 j a; a0; s), where g is the grammarentry, o is the combination operation, x is the site of the combination (if any), w is the next word,16As with the previous constraints on the form of the grammar, I think that all SUG grammars can be transformedinto equivalent grammars with this property.17This sum should be adjusted for the probability that the additional resource usage would cause the parse tofail. Making such adjustments would allow basic and more general choices to be compared directly, rather than onlychoosing the more general option when no basic option can be chosen.105



t0 is the category (tag) of the subsequent word, a and a0 are the input information about the nextand subsequent words (acoustics), and s is the parser state. Given a particular threshold �, thetest we want to perform is: � < P (g; o; x; w; t0 j a; a0; s)This test is done in an analogous way to the internal arbitrators' calculations. Bayes' rule gives us:P (g; o; x; w; t0 j a; a0; s) = P (g; o; x; w; t0; a; a0 j s)P (a; a0 j s)Since, as argued above, the basic and future choices partition the set of trees which are compatiblewith the parser state and input information, P (a; a0 j s) can be calculated by summing over thespeci�c cases for the basic and future choices. For notation, I will use c to represent a basic or futurechoice type, in that g; c; x represents a speci�c choice. Although these choices include the basicchoices represented with g; o; x, g; o; x represents an immediately applicable combination, whereasg; c; x represents either a combination which may require internal operations to apply before it cantake place, or a class of combinations which require further input in order to take place. Using thesum over the speci�c basic and future choice cases to calculate P (a; a0 j s) in the above formula,we get: P (g; o; x; w; t0 j a; a0; s) = P (g; o; x; w; t0; a; a0 j s)Pi;j;k;l;m P (gi; cj; xk; wl; t0m; a; a0 j s)This gives us the following test.0 < P (g; o; x; w; t0; a; a0 j s)� � Xi;j;k;l;mP (gi; cj; xk; wl; t0m; a; a0 j s)From this discussion we see that the combination arbitrator makes its decision by summing all theprobability estimates for basic and future choices, then trying to �nd an immediately applicablebasic choice which passes the above test, and if this fails trying to �nd a nonbasic choice whichpasses the test. As with the internal operations, this test can be performed with a summationnetwork and a threshold unit. The summation network sums the probability estimates for all basicand future choices. The threshold unit gets input from the probability estimate for an immediatelyapplicable combination, and inhibitory input from the summation network, weighted by �. Unlikewith the internal operations, there is a separate threshold unit for each grammar entry, and insome cases multiple threshold units per grammar entry to test the di�erent operations that canbe used. In addition, for each immediately applicable nonbasic choice, there is another summationnetwork which sums basic and future choice estimates to calculate the nonbasic choice's probabilityestimate.184.5.3 Estimating Choice ProbabilitiesTo perform the above tests, we need to be able to estimate each choice's probability of being correct.The evidence which NNEP is designed to use to estimate these probabilities comes from threesources, the input words, the parser state, and other modules in the language system. While thenature of the evidence from other modules is outside the scope of this investigation, it is important18These nonbasic choices are all the same as basic choices where the root of the grammar entry does not get equated.Thus they share the same threshold units as the basic choices, but the value of the summed estimate is input so thatthe upper equation is to a node which does not currently exist.106



that NNEP's disambiguation mechanism be able to incorporate this evidence. For example, whendeciding between two places to attach a preposition, the module which processes the discoursemodel may want one phrase to be further speci�ed by this preposition's phrase, but not the other.The existence of this type of interaction was demonstrated by Altmann and Steedman (1988). Theyalso argued that interaction between higher level modules and the syntactic parser must occur inparallel. This parsing model's disambiguation mechanism allows the preferences of other modulesto inuence its decisions, and these preferences can be incorporated in parallel. In the followingdiscussion, these preferences would be treated in the same way as information in the parser state.The two sources of evidence which are within the scope of this investigation are the input words andthe parser state. The parser state information was discussed in section 4.4, and one more propertyof nonterminals will be added below. The information about input words which NNEP uses in agiven decision is the next word in the sentence, plus the grammatical category19 of the subsequentword. The information about the subsequent word is rarely needed, but there are circumstanceswhere it has to be used. Chapter 6 argues that the information represented in the parser state andthis information about the next two words is su�cient for making disambiguation decisions whichdo not involve higher level preferences. That discussion does not predict speci�c choices, but itdoes argue that the necessary information for making a choice is available when the choice has tobe made.As discussed above, NNEP's disambiguation mechanism requires that probabilities be estimated foreach of the basic and future choices. These choices designate alternative ways that the next wordcould be incorporated into the parser state, and consist of a grammar entry g for the word, a choicetype c, and a node x in the current phrase structure description. For the sake of completeness, Iwill assume that the input information about the words of the sentence is probabilistic, so the nextword w and the part of speech of the subsequent word t0 need to be determined on the basis ofthis probabilistic information a and a0 (\a" for acoustics, \t" for tag). The information about theparser state s also includes probabilities. From the last subsection, the probability we are tryingto estimate is P (g; c; x; w; t0; a; a0 j s).There are two problems in estimating P (g; c; x; w; t0; a; a0 j s). This probability needs to be brokenup into pieces which can individually be estimated on the basis of a reasonable amount of data,and the recombination of these pieces needs to be computable within the S&A architecture. Thefollowing discussion proposes a computation which can be done by the architecture, and I believethe individual components can be estimated on the basis of a reasonable amount of data. However,some independence assumptions are made, and I have no evidence (other than intuition) that theyare valid. Hopefully the reader will �nd them plausible.With two applications of Bayes' rule we get:P (g; c; x; w; t0; a; a0 j s) = P (a; a0 j g; c; x; w; t0; s)P (g; c; x; w; t0 j s)= P (a; a0 j g; c; x; w; t0; s)P (g; c;w; t0 j x; s)P (x j s)Since a and a0 represent the input information about the next two words, and words are pronouncedor spelled the same way regardless of their grammatical use (or they would not be the same word),their probability is only dependent on w and t0. Since the category t0 reects all the informationabout the subsequent word that is needed for determining compatibility with g, c, x, and s, g,c, x, and s do not provide any additional information about a0, despite the fact that t0 does not19There are only a few categories which need to be distinguished. These are categories such as words which canstart NP's, or �nite verbs. The part of speech tag of a word would be su�cient information for this categorization.107



specify the actual word. P (a; a0 j g; c; x;w; t0; s) � P (a; a0 j w; t0)This probability can be the input to the estimation process from the word recognition module.The probability of combining at a given node, P (x j s), is independent of the input. For thecombinations where the variable (x) is the site where the root of the grammar entry is equated,P (x j s) is the probability of ever attaching something at the node, times the probability thatno other node will be attached to �rst (except with internal operations). The �rst component isrepresented with the �nished predicate. The value of the �nished predicate is the probability that noroot nodes will be equated to the node. The second component is a combination of the requirementsof other nodes, linear precedence relationships, and the dominance relationships represented by treefragments. If another node needs a grammar entry attached to it and precedes x, then x can't havea grammar entry attached to it until the other node does. This is calculated before the arbitrationprocess and is represented with a signal called blocking. Dominance relationships play a similar role,to the extent that English does not allow branches in phrase structure trees to cross. This amountsto limiting the attention of the parser to the lowest constituent which hasn't �nished being built.While this constraint is violated in English, there are some cases where it does apply. The currentparser manifests this constraint in that, whenever there is a node in the rightmost tree fragmentwhich must have a grammar entry attached to it, only choices where x is in the rightmost treefragment are considered. This is also precalculated, and is represented with the signal nonattended.For the leftward attaching operation, the variable is the node which is being attached, not theattachment site. Thus, instead of the �nished predicate, the parented predicate is used. Linearprecedence constraints come into play if the site of the attachment is not on the right frontierof the grammar entry. In this case, if there are any requirements in the rightmost tree fragmentwhich aren't satis�ed by the attachment, then the operation can't apply. This is also precalculated,and represented with the unfull predicate. For the dominance instantiating operation, this laterinformation is part of the public information about the public node. From this discussion we seethat P (x j s) can be calculated by multiplying probability estimates which are either part of theparser state or are precalculated.20The only remaining calculation is for P (g; c; w; t0 j x; s). It seems plausible that the only way thatinformation about one node in the parser state might inuence the chances of combining at anothernode is by allowing combinations which might otherwise be performed at the other node. Sincein this probability the site of the combination is given, information which is not local to that siteshould be irrelevant. Another way of thinking of this assumption is from the point of view of thespeaker. If a speaker knows they are going to add to the speci�cation of a constituent, then whatthey are going to add would not be dependent on what other nodes are in the structure. It would,on the other hand, be dependent on the information about the constituent itself. Making thislocality assumption, we have:P (g; c; w; t0 j x; s) � P (g; c; w; t0 j ld(x; s))where ld(x; s) is the information in the local domain of x in s. The more information in ld(x; s),the more accurate this locality assumption is.At this point it is necessary to take into consideration the fact that the information in s may beprobabilistic. Thus there may be many sets of categorical parser states which are compatible with20These predicate and signal values all represent the multiplied estimate subtracted from 1. This is because thismultiplication is done with inhibitory links, which multiply the primary link's value by one minus the inhibitoryvalue. 108



ld(x; s). Let the set of ldi(x; s) be the set of all categorical local domains which are compatiblewith ld(x; s). Since the sets of trees compatible with each g; c; w; t0; ldi(x; s) partition the treescompatible with g; c; w; t0; ld(x; s), we have:P (g; c; w; t0 j ld(x; s)) = Xi P (g; c; w; t0; ldi(x; s) j ld(x; s))= Xi P (g; c; w; t0 j ldi(x; s); ld(x; s))P (ldi(x; s) j ld(x; s))Since the probabilities in s mean nothing other than the chances that the categorical feature valuesare true, P (g; c; w; t0 j ld(x; s)) =Xi P (g; c; w; t0 j ldi(x; s))P (ldi(x; s) j ld(x; s))Those ldi(x; s) which are incompatible with g; c; w; t0 won't matter because P (g; c; w; t0 j ldi(x; s))will be 0.The last assumption which needs to be made is that the probabilistic information in s is speci�c toindividual features. This allows this information to be stored with independent continuous valuedpredicates, and it means the following assumption is true, where ldi(x; s) = f1i(x) ^ � � � ^ fni(x):P (f1i(x); : : : ; fni(x) j ld(x; s)))� P (f1i(x) j ld(x; s)) : : :P (fni(x) j ld(x; s))With this assumption we now have:P (g; c; w; t0 j ld(x; s)) �Xi P (g; c; w; t0 j f1i(x); : : : ; fni(x))P (f1i(x) j ld(x; s)) : : :P (fni(x) j ld(x; s))Note that if P (g; c; w; t0) is independent of a feature, then that feature does not have to be consideredin this calculation.We've now broken down the estimation of P (g; c; x; w; t0; a; a0 j s) into presumably estimable com-ponents. The resulting formula is:P (g; c; x; w; t0; a; a0 j s) �P (a; a0 j w; t0)P (x j s)Xi P (g; c; w; t0 j f1i(x); : : : ; fni(x))P (f1i(x) j ld(x; s)) : : :P (fni(x) j ld(x; s))This estimate can be calculated within the S&A architecture by calculating each case in the sumindependently, and using links which inhibit other links to perform the multiplications. The esti-mates for each case go to the same units, thereby getting summed. A reasonable abstract model ofone link inhibiting another is that given the primary link's weighted activation p, and the inhibitorylink's weighted activation i, the resulting activation is p(1� i). Thus each case of the sum can becalculated with a single primary link inhibited by n + k inhibitory links. The input activation tothe primary link is P (a; a0 j w; t0), since this is presumably the output of the word recognitionmodule. Because P (g; c; w; t0 j f1i(x); : : : ; fni(x)) does not depend on the actual parser state, it canbe the weight of the primary link.21 k of the inhibitory links input one minus each of the valueswhich are multiplied together to calculate P (x j s). The other n inhibitory links likewise do theremaining multiplications by inputting (1� P (fji(x) j ld(x; s))) from the parser state. Preferencesfrom higher level language modules would be multiplied in using other inhibitory links.21The \x" in this formula refers to a generic site where a combination takes place, and does not actually refer tothe x in the parser state currently being considered. 109



4.6 NNEP's OutputOnce NNEP has chosen an action to perform, other language modules need to know about it. Thisis necessary in order to comply with the requirement that the output of the parser be incremental,and therefore express as much information as possible as soon as possible. The output of thisparsing model is simply the sequence of actions performed. This includes the operations used,the grammar entries used (if any), and the nodes where the operations were performed (if any).This output is the same as the derivation structure of the SUG derivation which the parser iscomputing. It conveys all the information about the sentence's phrase structure which is includedin the parser state, since another module could simply follow the derivation itself to construct thatparser state. This form of output is also maximally incremental, and does not require other modulesto know anything about the internal representations of the parser. Other modules simply need toknow the signi�cance for them of the choice of a particular grammar entry, and the signi�cancefor them of the equation of two nodes in the syntactic constituent structure. Because the domainof locality of SUG grammar entries is su�cient to express predicate-argument relations over them,the signi�cance of a grammar entry for the module that constructs predicate-argument structureis simply the predicate-argument structure associated with that grammar entry. The signi�canceof the equations which the parser does may be less clear, since there may not be a deterministicmapping from nodes in the constituent structure to nodes in the predicate-argument structure. Forexample, the di�erent thematic roles of the objects in \load the truck with hay" and \load thehay on the truck" would not be represented in the constituent structure, but would have to bedistinguished in the predicate-argument structure. In order for the equations to mean anything toother modules, the interface between the modules needs to keep track of the relationship betweennonterminal nodes and the entities in other modules. Such an interface has been proposed byAaronson (1991). In addition to the sequence of actions performed, NNEP continuously signalswhether the current parser state represents a complete description. A parse is only successful if itends with this output being true.
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Chapter 5The Connectionist ImplementationThe previous chapters have given a complete description of a model of syntactic parsing in theShastri and Ajjanagadde connectionist architecture with virtually no mention of units or links.This has been possible because the S&A architecture provides a clear mapping from the level ofunits and links to the level of symbolic computation. Because of this relationship, the discussion ofthe parser could be done in terms of constrained symbolic computation. This allows the �ndingsof other work on parsing and on natural language in general to be used in the investigation, and itprevents the aspects of the architecture which are irrelevant to syntactic parsing from complicatingthe investigation. However, it is still important to show how this abstract model can be implementedat the level of units and links. This demonstration is necessary in part to check that no errors havebeen made in the argument that the parsing model is implementable in the S&A architecture. Aconnectionist implementation is also necessary because there are characteristics of NNEP whichare best characterized in terms of units and links. These characteristics are not emphasized in thisdocument because the primary concern is demonstrating the adequacy of the architecture for doingtraditional natural language parsing. Also, the speci�cs of the current connectionist implementationare not intended to be a model of the real biological computations which the brain uses to parse, soany predictions made by these speci�cs should not be interpreted as characteristics of the parsingmodel. However, it is worth discussing those characteristics which are likely to be true of anyimplementation of a parser like NNEP in the S&A architecture. Perhaps future research will beable to develop a model at this less abstract level which will be able to make predictions about thenature of parsing in the brain.Chapter 2 discussed the basic characteristics of the S&A connectionist computational architecture.Sets of units are used to represent predicates, and �ring phases are used to represent variables.Thus the �ring of a unit in a phase represents a predication over a variable. Predications aboutthe situation as a whole are represented with sets of units that produce constant output acrossall phases. The strength of an output pulse will be used here to represent the probability of apredication being true. Links are used to implement pattern-action rules. These links are weighted,so soft rules can be implemented, and links can inhibit other links, which allows activations to begated or multiplied. The �rst section below gives a more speci�c speci�cation of these primitives.As touched on throughout chapter 4, these connectionist primitives are used to implement NNEP.The organization of this implementation is shown in �gure 5.1. Variables in the memory referto nonterminal nodes in the parser state, so whenever a new node is introduced it is assigned anunused phase in the pattern of activation. Speci�c sets of units are included in the implementationfor each predicate which is needed to represent the information in the parser state. The collective111



output of these sets of units is high in the phases in which their predicate is true. There are alsounits which transform stored information into a form which can be more easily used. This can becombining information within a phase, transferring information from one phase to other phases, ora combination of both. Because of the locality constraint on rules, transferring information betweenphases is always done with predications about the situation as a whole, so only value informationcan be transferred, not phase information. The grammar, operations, and rules of NNEP areimplemented in pattern-action rules. The grammar and operations are implemented together inthe pattern-action rules which calculate parser actions. These rules are split into links for �ndingnonterminals which match their patterns, and links for exciting the units for the information in theiractions, with arbitrators in between. The arbitrators implement the disambiguation mechanismdiscussed in section 4.5. The patterns use output from both predicate storage units and from theunits which transform stored information. Likewise, the actions set stored predications directly, andmake use of units which transform signals from the actions into the form which is stored. The actionof the forgetting operation is implemented with links which suppress all predications stored for thenode to be forgotten, and does not require any information to be transferred to other phrases. Theparser rules which keep the parser state up to date are compiled into the grammar-operation ruleactions. Thus they are implemented as part of the set of units which transform signal from actionsinto the form which is stored. Because some predicates are implemented with fewer units thanwould be needed in the general case, there are also links which remove such predications when theyare no longer needed.The rest of this chapter starts with a discussion of the structure of the implementation, includingsome comparisons with other network structures. The second section then provides a short pre-sentation of the primitives of the S&A connectionist architecture and the ways they are used here.For a detailed and extensive presentation of this architecture see (Shastri and Ajjanagadde, 1993).Then the implementation of NNEP's operations and grammar is discussed, followed by the imple-mentation of the rules which keep the parser state up to date. These components are then broughttogether in a discussion of the time course of parsing. In the sixth section, some characteristicsof this implementation of NNEP are discussed. In the last section the computer simulation of theimplementation is briey described, and an example of its operation is presented.5.1 Network StructureMost of this chapter presents the details of the connectionist implementation, but �rst this sectionwill discuss its basic structure. The network has three basic parts, input units, grammar units, andpredicate units. The input units are externally set to reect the words being input to the parser.The grammar units calculate what actions the parser should take, and output these actions. Thepredicate units calculate and store the information about the parser's previous actions that will beneeded to determine future actions. As shown in �gure 5.1, information ows from both the inputunits and the predicate units to the grammar units, and from the grammar units to both the outputand the predicate units. There are two sources of recurrence in this structure. Information cyclesfrom the grammar units through the predicate units and back, and it cycles within the predicateunits to maintain their state over time.The fact that the network is highly structured and specialized to this particular parser designmakes it di�erent from most connectionist networks, but some parallels can be drawn. In somerespects, the input, predicate, and grammar units correspond to the input, hidden, and output112
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one part that decides what information about the history of the parse to keep around. In otherrecurrent network structures, at least one layer has to do computations for both these problemssimultaneously.Of course, the biggest di�erence between NNEP's connectionist implementation and other con-nectionist networks is the use of temporal synchrony variable binding. For units that representproperties of the situation as a whole, this has no e�ect, since such properties don't involve vari-ables. Units in NNEP's network that represent properties of an entity map to multiple units in aconventional network, one for each entity that could have the property. Links map analogously;the information that NNEP's links can carry using temporal information (entity identity) has tobe mapped to distinctions between multiple links.5.2 The Connectionist ArchitectureWhile its design is motivated by biological considerations, the Shastri and Ajjanagadde connection-ist architecture is still an abstract computational model. Thus the primitives of the architectureare idealizations of the way neurons might compute. The objective of this idealization is to capturethe primary characteristics of biological computation, without making the task of modeling in thisarchitecture too complex. The level of idealization which is appropriate for the investigation donein this dissertation has a single kind of primitive unit. These units represent groups of neurons, sothe system is robust against the failure of single neurons or links. Units perform simple computa-tions and store simple state information. Links between units carry a scalar value. A link can alsoinhibit the activation passing across another link. For arguments for the biological plausibility ofthese primitives, see (Shastri and Ajjanagadde, 1990, 1993).Section 2.2 presents the major characteristics of the S&A architecture. Its central property is theuse of the temporal dimension to represent variable bindings. When active, a unit produces a pulsetrain. If two units are pulsing synchronously, then they are representing information about thesame variable's referent, and if they are �ring out of phase , then they are representing informationabout di�erent variables' referents. To make synchronization simple, in this investigation I assumethat the interval between pulses in a pulse train is �xed, and that two �ring pulses are eithersynchronous or not. Thus time can be divided up into periods, and each period can be dividedup into phases. A period can be thought of as a computation step which cycles through the set ofvariables.The information stored in the memory is manipulated using pattern-action rules. A rule is im-plemented as a collection of units and links. The rule tests the temporal pattern of activation inthe memory to see if it matches the rule's pattern. If a match is found then the rule modi�es thecontents of the memory to reect the e�ects of the rule's action, given the entity or entities whichwere involved in the match. Rules can compute in parallel, thus allowing computation to be doneat a speed which is independent of the number of rules.5.2.1 Units and LinksThis system only needs one kind of basic unit. Initially a unit sums its input and tests to seewhether this sum exceeds its threshold. If it doesn't, the unit continues checking for su�cientinput. If the total input at this time does exceed the unit's threshold, the unit ignores all its inputfor a �xed amount of time, then outputs one �ring pulse. For the units used here the magnitude of114



this pulse is either always 1, or is the value of the input. This output activation is always between0 and 1. After starting to �re, the unit waits another �xed amount of time before once againchecking its input to see if it exceeds its threshold. The units which store predications wait oneperiod before �ring, and do not wait at all before looking at their input.2 Units with these timingconstants are called �-btu units. If such a unit has a self-exciting link, then once excited, it will �rein its exciting phase every period until it receives su�cient inhibiting input in that phase. I willalso use two other kinds of units, called � -and and � -or units, which can be constructed from setsof the above primitive units. A � -and unit �res (with activation 1) after receiving one period ofuninterrupted su�cient input, and stops �ring after receiving insu�cient input. Thus it computesthe temporal and of its input over the last period. � -or units are not used very often. They �re(with activation 1) after receiving su�cient input and stay �ring until they have received an entireperiod of insu�cient input. Thus they compute the temporal or of their input over the last period.Links in this system are weighted and can either be inhibitory or excitatory. Links take the outputof their source unit and multiply it by their weight to get their value. For excitatory links, theirvalue is added to the input of their destination unit. For inhibitory links with unit destinations,their value is subtracted from their destination unit's total input. The destination of an inhibitorylink can also be another link. In this case the value of the destination link is multiplied by oneminus the value of the inhibitory link (primary(1-inhibitory)). Thus inhibitory activation of 1 willcompletely block any activation, and lesser values will let through a proportion of the activation.I will often talk about signals rather than links. A signal is a set of links, with the value of asignal being the sum of its links' values. While these signals can in general be thought of as justa conceptually convenient way to refer to sets of links, they seem to be necessary to control thecomplexity of link interconnections. If they are realized using units, the delay they introduce canbe handled in the same way as other propagation delays.5.2.2 Implementing PredicatesPredicates are implemented with collections of units. Some of these units �re in the phases of theentities of which the predicate is true, and some provide the circuitry used to make sure each newpredication is stored by some unit. Constant predicates are represented with sets of units whosecollective output has the same value regardless of the phase. Unary predicates require one set of �-btu units to store predications, and their collective output speci�es the probability of the predicatebeing true of the entity in each phase. For predicates with greater arity than unary predicates, therelationships between phases are represented using �xed associations between units. For example,two associated units can store one predication of a binary predicate by having one unit storing thephase of the entity in the �rst role of the predication and the other unit storing the phase of theentity in the second role. In the general case the number of units required to implement a predicatein this way is proportional to nk, where n is the maximum number of entities which can be storedby the memory and k is the arity of the predicate. Interestingly, this parser only needs to representunary and binary predicates. Also, the use of binary predicates is limited in ways which allow theirimplementation to use many fewer units than would be necessary in the most general case. Thesepredicate modules have signals which set predications to be true, set predications to be false, andoutput what predications are true. The value of a signal represents the probability of a predication.2To be precise the delay between the start of �ring and the detection of the input by another unit needs to betaken into account. Thus the units actually wait one period minus this delay before �ring, and wait this delay beforelooking at their input. 115



The particular way binary predicates have been implemented reects the use of these predicates inNNEP. The phases for the �rst argument of the predicate are stored in a list of �-btu units. For eachof these �rst argument storage units there is a unary predicate module which stores all the phases inthe second argument of a predication with the �rst argument. The associations between units whichrepresent the bindings across argument positions are organized in this �rst-argument-centered waybecause the resource requirements of NNEP allow the number of nonterminals which can be inthe �rst argument of each of the necessary binary relations to be signi�cantly constrained. Thisreduces the length of the list of �rst argument storage units, and the number of second argumentstorage unary predicate modules. This optimization is the reason there are a set of rules whichremove predications which are no longer needed.The mechanisms which are used to query binary predicates are simpli�ed by the locality constrainton rules. As discussed in section 2.2.4, this constraint means that all binary predicates are accessedthrough unary predicates. To do this without losing information about the relation, at least oneof the nodes involved in the query must be uniquely identi�able at the time. Because of the wayeach binary predicate is represented, this unique node will always be in the �rst argument of thepredicate. Thus all tests can be calculated using a signal of the form pred constant, where pred isthe predicate and constant is the name of the unique node. This signal speci�es all those nodeswhich are in the pred relation with constant. For example, one such signal which is needed iscould dom public, which speci�es those nodes which the public node could possibly be dominatedby. These signals are implemented using one � -and node per �rst argument position in the binarypredicate. Each of these � -and nodes' outputs is high unless the constant node is the same as thenode in their �rst argument storage unit. If one of these � -and nodes goes low, then it gates linksfrom the nodes in the second argument unary predicate module into the signal.In the same way, the mechanisms which are used to set binary predicates are also simpli�ed by thelocality constraint on rules. Instead of a pred constant signal, setting a binary predicate involvessignals of the form set pred constant. These signals are implemented in the same way as thepred constant signals, except the set pred constant signal is gated into the second argument storagemodule.5.2.3 Implementing Pattern-Action RulesPattern-action rules can be implemented using links to do computations within a phase, and � -andor � -or units to coordinate computation across phases. Negation of predicates in rule patternscan be implemented with inhibitory links. Disjunction can be implemented with multiple linkswith the same destination. Conjunction can often be implemented with multiple links and a unitthreshold greater than 1. In the case of p(x) ^ :q(x), conjunction can be implemented with linkswhich inhibit other links. A link with value P (p(x)) which is inhibited by a link with value P (q(x))will output the value P (p(x))(1 � P (q(x))), which is P (p(x) ^ :q(x)) (assuming independence).These mechanisms can be used to implement any pattern involving one variable, but some formulahave a simpler implementation than others. The implications of the relative complexity of di�erentpatterns has not been investigated, but NNEP's pattern implementations are fairly simple.3Since links can't store information, units are needed to communicate information between phases.�-btu units can't help, since they always �re in the same phase as their input, but � -and and � -orunits can be used for this purpose. Since � -and units �re after receiving one period of uninterrupted3In particular, no patterns need more than two levels of inhibition. In a few cases the implementation needs alink which inhibits a link which inhibits another link, but never more. This keeps link propagation delays small.116



su�cient input, they can be used to implement universal quanti�cation across the entities in thememory. Usually the universal quanti�cation is of the form 8x;:p(x), which is implemented witha � -and unit with threshold zero and an inhibitory input from p(x). This unit's output is highunless it receives input from p(x), after which it stays low for one period. Such a unit can be usedas a gate by having its output inhibit another link, thereby implementing q(y) ^ :8x;:p(x), orq(y) ^ 9x; p(x). Activation can only ow across the inhibited link when the gate is low. � -or unitscan be used similarly to implement existential quanti�cation over the entities in the memory.5.3 Implementing NNEP's Operations and GrammarNNEP's grammar is compiled into a set of rules which combine a given grammar entry with thecurrent phrase structure description. The ways these combinations can occur are characterized bythe set of combination operations. In addition, there is a rule for each internal operation, anda rule for the forgetting operation. These rules share the property that their application needsto be coordinated by the arbitrators which implement NNEP's disambiguation mechanism. Thiscoordination is done by splitting these rules into a pattern component and an action component.The patterns provide the input to an arbitrator, and the output of the arbitrator triggers the actions.The arbitrators choose among matching patterns, and pass the phase of the chosen pattern matchto the pattern's action. The implementation of these arbitrators was discussed in section 4.5. Inthis section the patterns and actions for these rules will be presented. The patterns for these rulescalculate the choice probability estimates discussed there.The operations which do not involve grammar entries are each implemented with a single rule.The forgetting operation's rule matches on locally complete nodes and, if chosen, suppresses allthe predications in the phase of the matching node and reclaims that phase for future use.4 Thestrength of a match is determined by predicates which represents the probability that the node willbe equated with in the future (�nished(x)^parented(x)). The state internal operations' rules look fornodes which can be equated with their respective unparented nodes, and, if chosen, transfer all thepredications about the matching node to the phase of their unparented node. The matching node'sphase is then made available for future use. The strengths of these matches are determined by thevalues of the equatable relationship. For these choices the arbitrator also takes into considerationthe values of the could dom relationship, since this relationship represents the possibility of futureequation sites.The grammar and combination operations are implemented with a large number of rules. Concep-tually, there is a distinct rule for each way each grammar entry could be used by a combinationoperation. The patterns of these rules look for nodes in the parser state where their combinationcan apply. The strengths of pattern matches are determined by whatever information is availablein the phase of the matching node, the next word in the input, and sometimes the subsequent wordin the input. For the equationless combining operation and the case of leftward attaching where theattached node is the public node, there is no speci�c node where the combination occurs. The valueof these matches is determined by summing over matches for nodes that could equal or dominatethe root of the grammar entry. This value is passed to the arbitrator in a phase which is currentlyunoccupied. All these patterns are speci�c to words, so lexically speci�c constraints can be usedin determining the strength of a match. The arbitrator chooses between matching patterns based4For simplicity, I assume there are a �xed set of phases, some of which are occupied by nodes and some of whicharen't. 117



on their relative strengths, plus the strengths of similar patterns that specify what combinationsmight be possible if internal operations are performed �rst.The actions for combination rules add to the parser state the information which is implied by theircombination taking place at the node chosen by the arbitrator. The signal from the arbitratorwhich triggers the action is used to set new information about that node. This signal also dropsa gate, which causes new nodes, and sometimes information about the public node, to be addedto the parser state. In the case of equationless combining and leftward attaching, information isalso added about the equatable and could dom relationships between the root of the grammar entryand other nodes. This information is taken from the pattern matches which were summed in thepattern of the rule. This allows the values of these relationships to be lexically speci�c.Although it is simpler to think of there being a distinct rule for each way each grammar entrycould be used by a combination operation, the actual implementation takes advantage of the com-monalities between rules. The most important of these is that rules which have the same e�ecton the parser state share the same action component. Since patterns are implemented with linksand the arbitrator grows with the number of output choices, this means that the number of unitsin the parser grows (linearly) with the number of di�erent structures in the grammar, not thenumber of words. The number of di�erent structures is much smaller than the number of words.There is also sharing between di�erent combination operations for the same grammar entry. Forexample, equationless combining is implemented in part as attaching at a phase which is currentlyunoccupied. Similarly, the case of leftward attaching where the attached node is the public node isimplemented in part as double attaching at a phase which is currently unoccupied. More sharingis possible, but this question involves issues far beyond the adequacy of the S&A architecture, soit has not been investigated.55.3.1 Combination Operation Rule PatternsAs mentioned in section 4.5, a combination operation rule pattern consists of a single primarylink and a set of inhibitory links. The input activation to the primary link is high only when theword for the pattern is the next word in the input. The inhibitory links �lter out those phaseswhich either don't have nodes or have nodes which are incompatible with the pattern's operationor grammar entry. For example, �gure 5.2 shows a pattern which has inhibitory links from the�V, +A and ��nite predicates to �lter out those nodes which are not �nite I's. The has head andhas verb �lter out those nodes which already have �lled terminals as the values of their head orverb features. The available predicate speci�es what phases do not represent nodes, so it is usedto �lter out unused phases. All patterns also have inhibitory links from the nonfrontier predicate,since they can all only apply to nodes on the right frontier. The �nished predicate represents theprobability that more structure will be attached below the node, so it �lters out those nodes whichare for independent reasons unlikely to be attached to.The above mechanism for testing patterns checks for matches within the phase of each node. Thusany information which the pattern needs to check needs to be represented within the phase of thatnode. This is a manifestation of the limitations of the S&A architecture which was characterized as5In particular, sharing a component of the implementation between combination rules implies that any learningwhich occurs for that component will be generalized to all the combinations which share the component. This issueis central to the debate over how much of the nature of language is inherent to the language mechanism, and howmuch is extracted from regularities in the linguistic environment. This issue cannot be resolved without an extensiveempirical investigation of language learning, which is outside the scope of this work.118



"likes"
input

non
fr

on
tie

r
fin

is
hed

not
_r

ig
ht_

fr
ag

m
en

t_
public

has
_h

ea
d

has
_v

er
b

-V +A -fi
nite

+V
_p

ublic
+A

_p
ublic

av
ai

la
ble

matching
nodes

I

NN

likes

hv

h h

blo
ck

in
g

not
_h

as
_h

ea
d_p

ublic

nee
ds_

hea
d_p

ublic

nee
ds_

fu
nc_

public
not

_c
ou

ld
_d

om
_p

ublic

unfu
ll_

publicFigure 5.2: The rule pattern for double attaching with the grammar entry shown.the constraint that all rules in the implementation have only one variable in both their antecedentand consequent. As discussed in chapter 4, the combination operations are speci�cally designed tocomply with this constraint. However, even though the combination rules only need to propagateinformation about one variable, there is still information about other nodes which needs to be tested.One case of this is constraints on the public node, which can be referred to with a constant ratherthan a variable. Because the public node is uniquely identi�able, information about this node canbe represented with constant predicates, which are implemented with signals which are constantacross all phases. Practically all the information about the public node needs to be represented inthis way. These signals are generated with rules of the following form.predicate(x) ^ public=x ) predicate publicAs illustrated in �gure 5.2, these signals are used in the double attaching operation to test whetherthe public node can unify with the lower attachment site. The unfull public signal is the same asthese signals, except unfull is itself a signal, rather than a stored predicate. This signal will bediscussed below.In addition to constant signals about the public node, operations need unary signals about nodeswhich are in a binary relation with the public node. For the double attaching operation, the patternneeds to test whether the matching node could dominate the public node. This signal is generatedwith the following rule.:could dom by(x,y) ^ public=x ) not could dom public(y)This is an instance of the mechanism described in section 5.2.2 for querying binary predicates.Although there are two variables shown in this rule, only one is in both the antecedent and conse-quent.In addition to information about the public node, combination patterns need to know informationabout nodes which precede the matching node. Combination patterns need to check whethercombining at the matching node will block future equations which need to occur for the phrasestructure description to become complete. As mentioned in chapter 4, precedence constraintsbetween nonterminals is represented with two unary predicates, preceded and preceding. In orderto check that the combination will not produce an uncompletable result, information about thecompletion requirements of the preceding nodes needs to be transferred to the phase of the precedednode. This could be done with the following rules.119



:parented(x) ^ preceding(x) ) gate blockingneeds head(x) ^ preceding(x) ) gate blockingneeds functional(x)^ preceding(x) ) gate blockingneeds verb(x)^ preceding(x) ) gate blockinggate blocking ^ preceded(x) ) blocking(x)The implementation does not actually use rules like this, since this constraint is not a categoricalone. These predicates (except parented and preceded) are continuous valued, and the implementationneeds to calculate an estimate of the probability that the combination will block an equation whichneeds to be done. This calculation is done by assuming each of the predicates is independent,which is an assumption made in all calculations. The values of the predicates in the antecedentsare multiplied, and the resulting values for the �rst four rules are summed appropriately (x+y�xy).This produces the value of the gate blocking signal, which is then �ltered so that it is only presentin the phase of the preceded node.Another way that a combination can result in an uncompletable description is when the lowerattachment site for double attaching or leftward attaching is not on the right frontier of the grammarentry. If there are incomplete nodes in the rightmost tree fragment, then after the combinationthese nodes will be blocked from satisfying those needs. This information about the nodes in therightmost tree fragment is represented in the signals unfull and unfull public. As with the blockingsignal, these signals are continuous valued. They are calculated in the same way, except withrespect to the following rules.:parented(x) ^ right fragment(x)^ :anchored(x) ) gate unfullneeds head(x) ^ right fragment(x)^ parented(x) ) gate unfullneeds functional(x)^ right fragment(x)^ parented(x) ) gate unfullneeds verb(x)^ right fragment(x)^ parented(x) ) gate unfullgate unfull ^ right fragment(x)^ :parented(x)^ anchored(x) ) unfull(x)unfull(x) ^ public=x ) unfull publicThe �rst of these rules is for trace nodes, and it is categorical. The rest are calculated by assumingthe predicates are independent evidence. The root of the rightmost tree fragment is not includedin this calculation, since that information is already available in the matching phase, and thesigni�cance of such needs are dependent on the grammar entry. The root of a tree fragment isidenti�ed as the node which dominates terminals but does not have an immediate parent.The equationless combining operation and the case of leftward attaching where the attached nodeis the public node are implemented by sharing components of the implementations of the attachingand double attaching operations, respectively. This can be done because combinations using theformer operations are simply less speci�ed versions of combinations using the later operations,where the equation site of the root of the grammar entry is the unspeci�ed information. One of thecomponents the less speci�ed combinations use is the patterns of their more speci�c counterparts.These patterns specify the possible equation sites for the root of the grammar entry which are120



already in the parser state. A second pattern is also needed. This pattern �nds nodes where theremay be attached, a grammar entry that introduces a node which will be attached to the root. Asdiscussed in section 4.5, the value of the pattern for the less speci�c combination is the sum ofthese patterns over the last period. This value is passed to the arbitrator in a phase which is notcurrently occupied by a node.From the above discussion we see that attaching and double attaching patterns are implementedas a single inhibited link, and that equationless combining and the public node case of leftwardattaching are implemented by summing the values produced by a set of inhibited links over thelast period. The one remaining class of combinations is those that use leftward attaching to attacha node which is not the public node. The patterns for these combinations need to do the samecalculation done in the other case of leftward attaching, except the pattern match is done in thephase of the lower attachment site. Thus there need to be inhibited links which calculate whatnodes could equate with the root of the grammar entry, what nodes could dominate that root viastructure which has not yet been introduced, and whether the rightmost tree fragment root canequate with the lower attachment site in the grammar entry.6 The values from the �rst two ofthese signals are summed over the last period, and the result is multiplied by the value of the thirdpattern, using an inhibitory link. This pattern is also inhibited by the public predicate, so thispattern will only match if the other case of leftward attaching does not. The result is the patternfor a leftward attaching combination which does not involve the public node.5.3.2 Combination Operation Rule ActionsOnce the arbitrator has picked a match for some combination rule's pattern, that rule's actionmust instantiate the e�ects of the rule's combination at the chosen node. This involves adding newinformation about the node(s) in the parser state which are equated with a node in the grammarentry, plus adding new nodes from the grammar entry. These additions are triggered by a unit inthe arbitrator which �res in the phase of the chosen matching node. There is one of these actiontriggering units for each combination rule action. Figure 5.3 shows an example of how the signalsto set the new information are generated for a double attaching combination whose pattern wasshown in �gure 5.2.
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Since the information which needs to be added by an action involves multiple nodes, each actiontriggering node has an associated � -and unit which only goes low for one period after its trigger node�res. This unit gates the links which set the information about nodes other than the one where theaction's match occurred. For dominance instantiating, this unit gates links from the public predicateto the predicates for information which results from equating the public node with a node in thegrammar entry. This unit also gates links which add new nodes and the information about themto the parser state. These links originate from the available predicate, which speci�es those phaseswhich are not being used. This predicate is implemented in a way that allows �xed links to pullout individual phases from this set. These gated links also unset the available predicate. Sincethe triggering unit �res in the phase of the matching node, new information about the matchingnode is simply added with links from the triggering unit to the appropriate predicates. This newinformation is the result of equating the matching node with a node in the grammar entry.Combinations which use the equationless combining operation share their rule's action componentwith the attaching combinations for their same grammar entries, and the combinations for thepublic node case of leftward attaching share their rule's action component with their associateddouble attaching combinations. Since the patterns for the less speci�c combinations are signaledin a phase which is not currently occupied by a node, this has the e�ect of introducing a new nodewhich is unconnected to the rest of the structure, then performing the more speci�c combinationat that node. This results in a parser state which is almost exactly the result of the less speci�ccombination. In addition, equatable and could dom relations need to be speci�ed for the new treefragment root, the root may need to be pushed on the public node stack, and, in the case ofequationless combining, the tree fragment maintenance rules need to be signaled that an additionhas been made. Whether this additional information is needed is determined by testing whetherthe triggering signal is in a phase which is currently unoccupied. Occupied phases are �lteredfrom the triggering signal, and the result is used to set the new information about the new root.This includes signals for setting the �rst argument of the equatable and could dom by predicates.The second arguments of these predicates are set using the values generated for the combinationspatterns, gated by the action's gate. These second argument setting signals only have an e�ectif the �rst argument setting signals they are paired with go high. The setting of these binarypredicates does not involve propagating pairs of variable bindings, since at any one time there is aunique node for the �rst argument of the predicates.One case of equationless combining which has not yet been discussed is that for parentheticalphrases. Parenthetical phrases have not been discussed because they do not �t in the characteri-zation of sentences as having a single connected phrase structure tree. A parenthetical phrase (asI am analyzing them) is one which has a phrase structure which is unconnected to the rest of thesentence's phrase structure. Sentence 337 is an example of this phenomena, taken from the Browncorpus. The \for his part" portion of this sentence would not be licensed to be in this position ifit were part of the phrase structure of the sentence.337 Mr. Nixon, for his part, would oppose intervention in Cuba.To build a parenthetical phrase's structure, equationless combining is used to add a node for theroot of the parenthetical phrase. This node is speci�ed as having an immediate parent, so as toexpress the fact that it does not need to �nd a position in the phrase structure of the sentence.This means that tree fragments which are for parenthetical phrases are distinguishable in that theyhave no distinguishable tree fragment root. 122



The actions for leftward attaching combinations which do not involve the public node are im-plemented in the same way as the other actions. The triggering signal is used to set the newinformation about the root of the rightmost tree fragment, and the action's gate node is used togate the instantiation of information about other nodes in the grammar entry. As with the publicnode case of leftward attaching, the patterns for the root of the grammar entry are used to set theequatable and could dom by predicates for the root of the grammar entry.5.3.3 State Internal Operation RulesThe two state internal operations discussed in chapter 4 are each implemented in the same way.The rules for these operations each have two patterns, one for the possible equation sites andone for the possibility that future grammar entries will contain the site of the desired equation.The actions of these two rules cause all the information about the chosen node to be transferredto the phase of the unparented node which it is equated with. This includes the combination ofinformation in binary predicates. There is a third state internal operation which was not discussedin chapter 4. This operation removes parenthetical phrases from the list of tree fragments, and itis called parenthetical popping.The two patterns for the internal attaching and internal trace equating operations are generatedusing the equatable and could dom relationships. The patterns which convey the probabilities foreach equation that could currently be done are generated with the following rules.right fragment(x)^ :parented(x)^ anchored(x) ^ equatable(x,y) ) equatable right root(y)public=x ^ :anchored(x)^ equatable(x,y) ) equatable public trace(y)The patterns which convey the probability that future grammar entries will contain the site ofthe desired equation are generated using the could dom relationship in the same way, using thefollowing rules. The actual nodes which match this pattern are not used by the arbitrator, but thesum of the values is.right fragment(x)^ :parented(x)^ anchored(x) ^ could dom by(x,y)) could dom right root(y)public=x ^ :anchored(x)^ could dom by(x,y) ) could dom public trace(y)These four rules are instances of the mechanism described in section 5.2.2 for querying binarypredicates.The actions for the internal attaching and internal trace equating operations are triggered by signalsfrom the arbitrator. As with combination rule actions, these actions have � -and units which onlygo low for one period after their triggering signal pulses. These units are used as gates for signalswhich involve the tree fragment root or trace node. One such signal is called equate to. For internaltrace equating, the gate unit gates the output of the public predicate to the equate to signal. Forinternal attaching, the gate unit gates the output of the anchored predicate to the equate to signal,inhibited by the not right fragment and parented predicates. As you might expect, the triggeringsignals for these actions are linked to a signal called equate from. These signals are the interface tothe mechanism which performs the chosen equation.123



The equate from and equate to signals cause the information about one node to be transferred tothe phase of another node. The phase of the �rst node is then forgotten, as described below. Thisprocess results in the e�ect of equating the two nodes. Because only one such equation will be doneat a time, only one such pair of signals is needed. This equation mechanism is implemented withadditional units for each predicate. All unary predicates have a unit which is used to store the valueto be transferred. The value of the predicate in the phase of the equate from signal is gated into thisunit. After the unit gets input, it outputs that value continuously. This value is then gated to setthe predicate in the phase of the equate to signal, and the storing unit gets deactivating input. Ingeneral, continuous valued predicates treat two separate set signals as independent evidence for thepredication, so if this equation combines two noncategorical values for a predicate, the two valuesare treated as independent. For second argument values in binary predicates, this same mechanismis used, since these are stored in unary predicate modules.7 If only the equate from node is a �rstargument, then that storage unit gets its phase changed to that of the equate to signal. If bothequated nodes are �rst arguments, the situation is more complicated. Such an equation involvestransferring the values of the second arguments for the equate from node to the second argumentmodule of the equate to node. This is done with the appropriate gates and signals.The parenthetical popping operation removes the tree fragment for a parenthetical or appositivephrase from the phrase structure of the sentence. These fragments are distinguishable from otherfragments because they have no distinguishable tree fragment root. As discussed above, the rootof a parenthetical phrase is speci�ed as parented when it is introduced. Since the root of a treefragment is the one node which dominates terminals but does not have an immediate parent,for a parenthetical phrase's fragment there is no such root. The parenthetical popping rule canonly apply to fragments which have no distinguishable root. Also, parenthetical popping requiresthat the parenthetical phrase be complete. Thus its pattern requires that there be no unful�lledexpectations or unparented nodes in the rightmost tree fragment. The action of the parentheticalpopping operation simply removes all the nodes in the rightmost tree fragment from the parserstate. This causes the parser to \pop" back to the state it was in before the construction of theparenthetical phrase was started.5.3.4 The Forgetting RuleThe rule which implements the forgetting operation looks for nodes which are not likely to beinvolved in any future equations, and removes the chosen node from the parser state. Two pred-icate are used in determining what node to forget, parented and �nished. Only nodes which haveimmediate parents can be forgotten, since otherwise this node would never get an immediate par-ent and the accumulated structure description would never become complete.8 Thus the parentedpredicate represents the (categorical) chance that this node will be attached to another node. Sincethe �nished predicate represents the probability that this node will have more structure attachedbelow it, these two predicates together represent the chance that any equations will occur at anode. The value of the �nished predicate is calculated using factors like whether the node has anyunful�lled expectations, and how long the node has been in the parser state (i.e. recency). Thecurrent implementation uses a fairly simpleminded theory of how to calculate this probability, butit is adequate for the data addresses in this dissertation.7This means that the equatable relation needs to be represented in the form not equatable, where the secondargument values for a given �rst argument are the complement of those for the equatable relation. In this form thepredicate grows monotonically, as do the other predicates in the system.8The matrix root can also be forgotten, but the current implementation never does that.124



The arbitrator for the forgetting operation simply picks nodes which are parented and have a�nished value greater than a fairly high �xed threshold. It does not consider the current resourceload, although I suspect that would be necessary for longer sentences. Any node which is pickedhas all its predications cleared and its phase is reclaimed for future use.5.4 Maintaining the Parser StateAs discussed in section 4.4, the parser's state information is represented in the connectionist im-plementation using unary and binary predicates. Most of these predicates are implemented inexactly the form described there, some are implemented in their complement form, and a few areimplemented in both. These choices have some e�ect on the complexity of link interconnections,but since I have not found any situations where these issues e�ect the behavior of the parser, Iwill not discuss them here. Also, the binary relationship could dom is represented in its reverseform (could dom by), so that the unparented node is in the �rst argument position. The remainderof this section will discuss the implementation of the rules which calculate information which isindirectly implied by the information added by operation rule actions. These rules' implementationhas an a�ect on the time course of parsing. In order to make the parser faster, these rules arecompiled into the actions of operation rules.The rules presented in section 4.4.2 use some constants, unary predicates, and constant predicateswhich are implemented as signals from operation rule actions. The unary predicates are new node,new foot, new extractable, redo equatable public and unify(grammar entry root,x), the constants arenext comb upper site, next comb lower site, and next inter attach site, and the constant predicatesare equationless combining, combine fragments, and nonfrontier(next comb lower grammar node).The unary signal for x 's such that unify(grammar entry root,x) is the result of one stage of thepattern matching process for the combination rule. The unary signal redo equatable public is gen-erated for the site of internal attaching, attaching, and double attaching, but it is delayed until thepredicates which need to be checked to determine uni�ability with the public node are already set.In the case of double attaching, this signal is delayed longer to allow the the public node stack topop the public node which is equated by the operation.9The signals for constants are used to drop gates which cause a rule to �re. For example, thefollowing rule is implemented with a � -and unit that goes low when the next comb upper site signalis simultaneous with the output of the preceded predicate. Thus this unit's output represents theconstant predicate :preceded(next comb upper site). This unit gates the output of the precedingpredicate to set the nonfrontier predicate.preceded(next comb upper site) ^ preceding(x) ) nonfrontier(x)The unary signals are used as input to rule patterns. For example, the following rule is imple-mented with a link from the new node signal to the preceding predicate, inhibited by the above:preceded(next comb upper site) unit.preceding(next comb upper site) ^ new node(x) ) preceding(x)9The sentences in which this delay is necessary are only marginally acceptable. This fact will be discussed insection 6.2. 125



The constant predicates are implemented with signals from the trigger units of the operation ruleactions to a � -and unit for each constant predicate. These units then inhibit the links whichimplement the rules that use the constant predicates.The rules which check the uni�ability of the public node and some other node in the parser statemake use of signals of the form not predicate public. These signals are the complements of thosediscussed in the last section, and they are constant across all phases. Ununi�able nodes are �lteredout from rule patterns using inhibitory links from predicates, which are themselves inhibited by theabove signals for the incompatible predicates. For example, the �lter would include a link from the+V predicate which is inhibited by the not �V public signal. This requires a whole lot of links.5.5 The Time Course of ParsingNow that the pieces of the parser's implementation have been presented, the total parsing processcan be discussed. The parser's memory is initialized with a node for the matrix IP of the sentence.As each word is input, grammar entries are combined with the parser state in the memory andinternal operations are performed until all the words have been processed and the parser staterepresents a complete description. The main loop of this computation starts by waiting for theinput of a word. When a word is input, the combination rule patterns for the grammar entriesfor that word �nd what combinations are possible with the current parser state. The combinationarbitrator sums these patterns and patterns for other possible ways a grammar entry for the wordcould be incorporated into the parser state. The combination arbitrator then compares this sum toeach of the completely speci�ed immediately applicable combinations (such as attaching to a nodein the right tree fragment), and tries to pick one. If it can't, then it tries to pick one of the lessspeci�ed immediately applicable combinations (such as equationless combining). If either of thesekinds of combinations are picked, then after a period to absorb propagation delays, the chosencombination's action is triggered in the chosen phase. The grammar entry, operation, and phaseof the chosen combination is also output to other language modules. The combination's actioninstantiates the new information introduced by the grammar entry and the equation(s) for thecombination. The action also sends signals to the rules for maintaining the parser state, and theserules calculated and add information which is indirectly implied by the action's new information.After all the new information is added, it takes one period for the signals for indirect testing to begenerated. Once this is done, as soon as the next word is input the above steps can start again.If none of the immediately applicable combinations are su�ciently likely, then the current im-plementation of the arbitrator assumes that it was because there is a better option which is notimmediately applicable. It then asks the internal operation arbitrators to �nd an immediatelyapplicable internal operation. The internal operation arbitrators then sum only over patterns forimmediately applicable options, and pick one. After a period to absorb propagations delays, theaction for the internal operation is triggered in the phase of the chosen node, and the appropriateequation is done. The chosen operation and phase are output to other language modules. Thechosen action also sends signals to the rules which maintain the parser state, and they add indi-rectly implied information. This new information may require that the signals for indirect testingbe updated. Once this is done, the parser returns to trying to �nd an immediately applicablecombination for the input word.The method which is currently used to require that the parser produce a complete description is agrammar entry for periods. This grammar entry must attach to the matrix root of the sentence,126



and that node can't be unfull. In order for the parser to combine this grammar entry with theparser state, the matrix root must be in the right tree fragment, and all the nodes in that fragmentmust be parented and have their expectations ful�lled. Such a parser state represents a completedescription, so attaching the grammar entry for the period at the end of the sentence guaranteesthat the parser has �nished the parse.5.6 Characteristics of the ImplementationThe most important characteristic of this implementation of NNEP in the S&A architecture is thatit exists. This is all that is necessary for this portion of the argument for the computational adequacyand linguistic signi�cance of the architecture. The other portions of the argument can all bediscussed at the more abstract level of constrained symbolic computation. However, there are somecharacteristics of the implementation which are worth mentioning, and which must be discussedat the level of units and links. These characteristics pertain to speed and space requirements ofNNEP.Because NNEP's grammar is implemented in a set of pattern-action rules which compute in parallel,NNEP's speed is independent of the size of its grammar. Even the propagation delays which wouldbe introduced by larger and larger grammars would not slow the parser down. The implementationuses one period to compensate for propagation delays, so as long as the propagation delays do notexceed one period in length they will not e�ect NNEP's speed. It is very important for the speedof a parsing model to be independent of the size of the grammar, since any real grammar for anatural language would be very large.The implementation of NNEP's grammar is also interesting in that grammar entries which have thesame e�ect on the parser state share the same units. Thus the number of units in the implementationis proportional to the number of di�erent structures in the grammar, not the number of words.Adding a new noun, for example, only requires adding new links to the units which are used forall the other nouns. The number of di�erent structures in a natural language grammar is muchsmaller than the number of words. Also, the number of units needed per structure is �xed (andfairly small), so the number of units in the implementation grows linearly with the number ofstructures.One of the motivations for connectionism is the possibility that architectures of this kind could helpbridge the gap between abstract theories of cognition and biological computation. This is one of theexpress objectives of Shastri and Ajjanagadde for their architecture. They present a plausible andfairly direct relationship between the primitives of the architecture and neurons. This relationshipallows estimates to be made of the real time and space characteristics of a biological version of theimplementation of the parsing model. No claims are being made here about the biological validityof the particular implementation that has been chosen, but it is still possible to see how fast andhow small such a biological implementation could be using this particular implementation. Also,at our current level of knowledge the estimates that can be made are rather approximate, so eventhese upper bounds are only useful to determine whether the model's speed and space requirementsare in the right general area. But, even this rough check would not be possible without the useof a biologically plausible connectionist architecture. The speed of a biological version of theimplementation is fairly easy to calculate. Shastri and Ajjanagadde report that a typical value forthe time between a neuron's activation spikes is about 20 msec. This is the biological correlate ofa period in the architecture. Each completely speci�ed combination operation takes at most six127



periods, so if no state internal operations are needed, then a sentence could be parsed at a rate ofabout eight words per second. This assumes that neurons can propagate synchronous �ring in asingle period, but assuming this would take two periods (which (Shastri and Ajjanagadde, 1993)reports as plausible) would require only three more periods per operation, which would result in arate of about �ve and a half words per second. The use of state internal operations would slow downthe parser about the same amount as additional words. This puts the speed of the parser in theright general area for real time language processing. The space requirements of a biological versionof the implementation is harder to estimated. The current simulation code uses about 3500 units,two thirds of which are for the grammar, which has 114 di�erent structures. A unit corresponds tovery roughly about a hundred neurons, and the number of structures for a complete grammar mightbe around �fty times more. That would give us an estimate of about 107 neurons, plus or minusa couple orders of magnitude. There are about 1012 neurons in the brain, so this estimate is wellwithin the fraction of the brain which appears to be used in sentence processing. Once again, let meemphasize that such estimates are only useful to determine whether the implementation's time andspace characteristics are in the right general area to comply with biological constraints. However,even such rough estimates point to the potential of future work using this model to investigatethe relationship between abstract theories of language processing and the biological basis of thatprocessing.5.7 The Simulation of the ImplementationThe above connectionist implementation of NNEP has itself been implemented using the RochesterConnectionist Simulator (RCS). This simulation is performed at the level of units and links discussedabove. RCS provides a simple visual display, which is used to show the patterns of activations forimportant predicates, and signals. It also displays the important parts of the arbitrators, includingall the grammar entries' combination rules. RCS also provides a command line interface, which isused to input words and to issue disambiguating commands when the implementation is not ableto make the choice. The output of the parser is printed to another window. This output speci�eswhat operation is being performed, what grammar entry (if any) is being used, and what nodes areinvolved. The results from the use of the simulation will be discussed in chapter 6.An example of the output produced by the simulation is given below. This output was produced forthe sentence \Who ate the pizza.". The �rst section was produced during parsing, and the secondsection was produced when the parser was done, to show the �nal state of the parser's memory.The words were input to the parser as fast as possible. Since the parser looks at two words ata time, combinations are always done with the next to most recent word. Figure 1.3 on page 19depicts this example. After the parser's memory is initialized with the matrix root I node, \who"is attached to this I node, and the N for \who" and the N trace are added. Since a matrix CP wh-word means that the sentence is a question, the matrix inection has to be inverted. However, if aninverted auxiliary is used, then the trace would not be governed (see section 6.2). Thus a specialgrammar entry is needed which allows inection to be manifested on the verb in the case of matrixsubject gaps. This grammar entry combines with the matrix root and the trace node using doubleattaching, and the N object is added. At this point the subject trace node is �nished and has aparent, so it is forgotten. The information about that node is printed for our convenience. Theprinted predicate values can range from 1 to 1000, where 1000 represents a probability of 1. Afterthat \the" is added using equationless combining, so as to allow for genitives. Since equationlesscombining is implemented as attaching to a previously nonexistent node, the action which printed128



this message said it was attaching. \Pizza" is then truly attached the the N introduced by \the".At this point the next word to combine is \.", which wants to attach to the matrix root. The parser�rst tries to �nd an attachment site for \.", but realizes it needs to do an internal operation �rst.It then picks the one internal operation which can be immediately applied, attaching \the pizza"as the object of \ate". This involves forgetting the variable for the object node and transferring allits information to the node for \the pizza", as indicated in the output. When this is done, \." canbe attached to the matrix root, which completes the parse. After that the information about thenodes which remain in the parser state were printed, along with a statement of the fact that theparse completed successfully.Step 1, Node 0: I'm the matrix root.Input: whoInput: ateStep 3, Node 0: 'matrix_wh_N' is attaching to me.Step 3, Node 1: Node 0 of 'matrix_wh_N' reporting for duty.Step 3, Node 2: Node 1 of 'matrix_wh_N' reporting for duty.Input: theStep 9, Node 0: 'matrix_trace_trans_verb' is double attaching below me.Step 9, Node 2: 'matrix_trace_trans_verb' is double attaching above me.Step 9, Node 3: Node 0 of 'matrix_trace_trans_verb' reporting for duty.Input: pizzaState: (Node:2, I-:1000, A-:1000, parented:1000, has_head:1000,has_func:1000, nonfrontier:1000, finished:1000,right_fragment:1000, matrix_fragment:1000, last_lower_eq:1000)Step 11, Node 2: Forget my variable.Step 16, Node 4: 'determiner' is attaching to me.Input: .Step 22, Node 4: 'complete_noun' is attaching to me.Step 33, Node 3: Forget my variable.Step 33, Node 3: Equating with equated node.Step 33, Node 4: Equated with equating node.Step 39, Node 0: 'period' is attaching to me.Sentence description is complete.State: (Node:0, I+:1000, A-:1000, finite+:1000, inverted+:1000,matrix_root:1000, has_head:1000, has_func:1000, has_verb:1000,anchored:1000, finished:782, right_fragment:1000,matrix_fragment:1000, last_upper_eq:1000)State: (Node:1, I-:1000, A-:1000, parented:1000, has_head:1000,has_func:1000, anchored:1000, nonfrontier:1000, finished:862,right_fragment:1000, matrix_fragment:1000)State: (Node:4, I-:1000, A-:1000, parented:1000, has_head:1000,has_func:1000, anchored:1000, finished:747, right_fragment:1000,matrix_fragment:1000, extractable:1000, last_foot:1000)129



Chapter 6Testing the Parsing ModelThe previous three chapters of this dissertation presented a speci�c model of parsing in the Shas-tri and Ajjanagadde connectionist computational architecture. The next two chapters use thisparser (NNEP) to argue that the S&A architecture is computational adequate and linguisticallysigni�cant1 for recovering the syntactic constituent structure of natural language sentences. Thischapter presents the portion of this argument which relates directly to natural language data. Theprimary concern of this dissertation is the computational adequacy of the architecture, so thischapter mostly looks at the ability of NNEP to handle a variety of issues in parsing natural lan-guage sentences. By showing that a parser implemented in the architecture can be adequate, thearchitecture is shown to be computationally adequate. For the architecture to be linguisticallysigni�cant, it not only has to be computationally adequate, it has to be constrained in ways whichinform the study of natural language. Although this portion of the argument is less well developedthan the �rst, there are some constraints on natural language which can be explained by the needto compensate for the limitations of the architecture.Before discussing the speci�c tests which have been done, some discussion of the nature of thesetests is necessary. Empirical investigations into the nature of natural language sentences usuallystart by classifying sentences into those which are \good" and those which are \bad". This is adistinction which is independent of the theories involved in the investigation (i.e. a pretheoreticdistinction). The investigators must then choose which of these sentences are pertinent to thequestions being addressed in the theories being investigated. As a �rst step, I limit the data ofconcern here to phenomena which are pertinent to sentence level processing, relying on intuitionand tradition to de�ne this class.2 I will call the good sentences in this class \acceptable" and thebad sentences \unacceptable".Since I am only investigating one module of the sentence processing system, the data needs to belimited further. By de�nition, a sentence is acceptable only if all the various stages of sentenceprocessing complete successfully. Thus any adequate model of constituent structure parsing mustbe able to recover the constituent structure of any acceptable sentence (given the necessary inputsfrom other modules). On the other hand, if a sentence is unacceptable, then any one of the stagesof processing may have failed. Thus a model of constituent structure parsing does not need toreject all unacceptable sentences. We do, however, eventually want a complete model of all the1The term \linguistic" is being used to refer to the study of language in general, and not speci�cally to competencelinguistics.2This level of phenomena includes more phenomena than \grammatical" but still does not include things liketrains coming through the wall and interrupting a sentence.130



stages of sentence processing, and such a model will have to account for all unacceptable sentences.In investigating a single module of this complete model, it is worthwhile to ask what unacceptablesentences are ruled out by a given model of the module. By investigating these questions ofunacceptability, we get a better understanding of how the module model might �t in a completemodel of sentence processing, and thus of the linguistic signi�cance of the model. However, onlyfailure to explain the acceptability of a sentence would constitute a counter example to the model.Although all acceptable sentences are relevant for the adequacy of a complete model of constituentstructure parsing, NNEP only needs to be tested on sentences that pose particular problems for theS&A architecture. The objective of this testing is not to demonstrate the adequacy of NNEP inparticular, but to use NNEP to demonstrate that an adequate parser could be implemented in theS&A architecture. Thus it isn't necessary for NNEP to address every kind of acceptable sentence,but only to address those phenomena which are of particular concern given the limitations of theS&A architecture.3 This chapter demonstrates NNEP's ability to handle these phenomena. Theargument that the set of phenomena addressed here is su�cient to demonstrate the computationaladequacy of the S&A architecture is given in section 7.1.As for adequacy, the investigation of linguistic signi�cance is only concerned with NNEP to theextent that NNEP manifests the characteristics of the S&A architecture. However, it is oftendi�cult to argue that no parser implemented in the architecture could parse a given unacceptablesentence, so some of these arguments involve auxiliary assumptions. These assumptions are allindependently motivated by e�ciency and simplicity considerations, so they are still explanatoryto a signi�cant degree. Due to time constraints and the interests of the parties involved, more e�orthas been put into providing these explanations in some areas than in others. The phenomena whichare investigated are su�cient to demonstrate that the limitations of the S&A architecture do havelinguistic signi�cance, and they indicate that future investigations of this nature are justi�ed.The testing of whether NNEP is adequate for recovering the constituent structures of sentences hasbeen done in the following areas. The evidence for the linguistic signi�cance of the S&A architectureis mostly given in the second and fourth of these areas.� phrase structure analyses� long distance dependencies� representing local ambiguities� resource bounds� diversity of languageIn each of these areas the investigation proceeds by selecting a set of data which is representa-tive of the phenomena in the area, and then NNEP is tested on the data. The �rst area testswhether NNEP's grammars can express those aspects of linguistic competence which are pertinentto constituent structure parsing. For this test the phrase structure analyses from (Kroch, 1989)are used. This paper is also used to test NNEP's ability to recover long distance dependencies. Inboth these �rst two areas, particular attention has been paid to characterizing the unacceptableexample sentences. The problem of representing local ambiguities in sentences is investigated usingthe example sentences in (Gibson, 1991). This test addresses the question of how local ambiguitieswhich people don't have trouble maintaining can be maintained in NNEP's representations. The3Some of these phenomena also require the ability to rule out unacceptable sentences, because otherwise the parserwould be mislead by false ambiguities when parsing acceptable sentences.131



question of how NNEP makes disambiguation decisions has not been tested, and this issue willonly be touched on in this chapter. This fact makes predicting unacceptable examples of localambiguities di�cult. The examples in another chapter of (Gibson, 1991) are used to test NNEP'sability to stay within the resource bounds speci�ed in chapter 4. A speci�c strategy is proposed forhandling the bounds on the depths of the public node stack and the tree fragment list, and with thisstrategy these bounds account for a number of unacceptable examples of center embedding. Thedata in (Gibson, 1991) is not su�cient to make speci�c arguments about strategies for handlingthe bound on the number of nonterminals, but all the acceptable sentences are handled withoutviolating this bound.4The �rst four areas test NNEP on speci�c phenomena which are of particular concern given thelimitations of the architecture. The last area, diversity of language, includes all syntactic phenom-ena found in natural language, whether they be theoretically important, lexically or constructionspeci�c, or surface obvious. While there is no particular reason to believe that a parser implementedin the S&A architecture would have di�culty in handling the large quantity and wide variety ofphenomena found in natural language, it is necessary to guard against the possibility that unfore-seen problems will arise in handling one of these phenomena. Since any hand picked set of datawill, by its very nature, include some phenomena and exclude others, the only way to avoid biases(intentional or otherwise) in checking for unforeseen problems is to test NNEP on sentences whichhave been randomly selected from the population of acceptable sentences. As an approximation tosuch a test, analyses and strategies have been given for parsing a set of �fty thirteen word sentenceswhich were randomly selected from the Brown corpus. Of course there are some phenomena in lan-guage which NNEP is not currently equipped to handle. The diversity of language test requiresthat these excluded phenomena be made explicit, and that for each such phenomena, argumentsbe given as to why they should not pose any particular problem for extensions to NNEP withinthe S&A architecture.In the rest of this chapter the speci�c tests just outlined will be discussed in detail. All �vetests are concerned with demonstrating the adequacy of NNEP. The linguistic signi�cance of thearchitecture is mostly argued for in the discussion of recovering long distance dependencies andhandling resource bounds, plus some evidence will be given in the discussion of representing localambiguities. The acceptable sentences from (Kroch, 1989) and 20 of the sentences form the Browncorpus were run on the computer simulation discussed in section 5.7. These sentences are listed inappendix A, along with the 15 manual intervention which were needed for disambiguation decisionsthat the simulation could not make. The remaining acceptable sentences from this set of tests (181sentences) were simulated by hand. While undesirable, this was necessary due to the extremelytime consuming nature of handcoding the grammar entries and running the examples. Becausethe simulation was done at an extremely low level, and simulation tools that are appropriate forthis type of network were not yet available, coding and debugging was rather di�cult. Hopefullyas more people work in this connectionist architecture, appropriate tools will become available.Running examples was also di�cult, due to the lack of a trained disambiguation mechanism. Thismeant manual intervention was necessary for many disambiguation decisions. This would be aparticular problem for the sentences from the tests on representing local ambiguities and handlingthe parser's resource bounds, since the timing of the disambiguation decisions is crucial to the4By its nature, any test of adequacy will involve a broad, and therefore shallow, test of the pertinent data. This isin contrast to the majority of dissertations, which involve a narrow and deep investigation. The reader should keepthis distinction in mind when considering any particular portion of this test. The standards which are appropriatefor a narrow and deep investigation are not necessarily appropriate for each of the areas in a broad and shallowinvestigation. 132



predictions of the model. Future work on automatically training the network should alleviate thisproblem, and therefore running these sentences on the computer simulation is being delayed untilthen.6.1 Phrase Structure AnalysesBecause the limitations of the S&A architecture place constraints on a parser's representation ofgrammatical information, NNEP needs to be tested on its ability to encode and use the gram-matical information that is necessary to accurately characterize the constituent structures of thelanguage. To illustrate NNEP's power and expressiveness, the phenomena discussed in (Kroch,1989) have been investigated.5 This section characterizes how the phrase structure analyses ofEnglish sentences used in (Kroch, 1989) can be speci�ed in NNEP's grammars.6 The followingsection compares the mechanism by which NNEP recovers long distance dependencies with thatgiven in (Kroch, 1989). This paper was chosen because it surveys important issues in these areas,and because the grammatical framework used is Tree Adjoining Grammar (Joshi, 1987a), whichexpresses grammatical information in a rather similar way to Structure Uni�cation Grammar.The analyses presented in this section map the projection of a lexical (N, V, A, or P) head andall its associated functional projections (IP, CP, DP) into a single SUG node, and specify thedistinguished positions associated with these projections using features in the SUG node. Aswas discussed in section 3.1.3, this mapping allows NNEP to make the best use of its limitedmemory capacity, and it reduces the need for rules which involve more than one nonterminal. Thespeci�c distinguished positions used in the mapping presented here are not intended to apply tolanguages other than English, and there are probably even cases in English for which they willprove inadequate. However, the same approach can be used to accommodate any schematized localcollection of nodes in a competence analysis by putting as much information as necessary into thefeature structure information in nodes.7Because all the nodes used in the SUG representation are associated with a particular lexical head,there are only four categories of SUG nodes, N, I, A, and P. These will be represented with thefeature decomposition [�V,�A] for N, [+V,�A] for I, [�V,+A] for A, and [+V,+A] for P. Allthese types of nodes have the distinguished position head, which speci�es the terminal which thenode's category is named after. For N nodes this is the head noun, for I nodes this is the wordbearing inection (tense and agreement), for A nodes this is the head adjective or adverb, and forP nodes this is the preposition. In addition, N and I (�A) nodes have the distinguished positionfunctional head. In N's this is the determiner, and in I's it is the either the complementizer or thewh- word which is adjoined to S0 (CP). The same feature can do double duty for complementizersand wh- words because in English the two positions are never both �lled, and they can be distin-guished on the basis of the lexical item (or a feature if necessary). I nodes also have the feature5The current simulation of the connectionist implementation runs on all the acceptable data sentences from (Kroch,1989), and produces the right constituent structure. There are 18 such sentences. Manual intervention was neededfor 5 disambiguation decisions, in cases where the simulation could not decide. These sentences and interventions aregiven in appendix A.6While it is important that a parser's grammars express the necessary information about linguistic competence,these grammars are not designed for use in the study of linguistic competence. They are designed for use by theparser. Thus many of the issues which are important in representations for theories of linguistic competence do notapply to the grammars described here.7I should stress that the SUG grammars characterized here are for use by NNEP. They are not intended to be acompetence theory of grammar, and they do not express all the information which is important in the characterizationof natural language grammar in general. 133



verb, which speci�es the verb. The position of a sentence's subject is also needed for representingordering constraints, but this can be done by limiting the combination operations that a pre-subjector post-subject adverb can use to attach to the I node, and therefore no distinguished position isneeded for the subject.The above set of distinguished positions leaves one signi�cant characteristic of a projection un-represented. This is the distinction between arguments and adjuncts. In (Kroch, 1989) adjunctsare represented as Chomsky adjoined to the phrase they are a constituent of, while argumentsare simply attached to the phrase. In most cases this distinction is represented in NNEP's gram-mar by specifying the attachment of arguments in the grammar entry for the head (or verb, etc)of the phrase, while specifying the attachment of adjuncts in the grammar entry for the head ofthe adjunct. However, PP's which are treated as arguments in (Kroch, 1989) are treated as ad-juncts in this SUG analysis. These PP's can be distinguished on the basis of the representationof predicate-argument structure. In NNEP the phrase structure analyses are assumed to be aug-mented with a predicate-argument level of representation such as Lexical Functional Grammar'sf-structure (Kaplan and Bresnan, 1982). For example, the I node for the verb \saw" might have[with-obj:[f-struct:x], f-struct:[instrument:x]] in its feature structure, where \x" is a variable usedto represent coreference. Since this level of representation has not been implemented yet in NNEP,information about what PP's are arguments is represented with predications on nodes. In theexample for \saw", the syntactic signi�cance of the f-structure information is represented with thepredicate �-to-with, signifying that the head of the node assigns a theta role to the object of a PPheaded by \with". Note that the number of prepositions for which such predicates must exist issmall.Most of (Kroch, 1989) is concerned with the analysis of long distance dependencies. The onlydi�erence between the structures produced by that analysis and those represented by NNEP'sgrammar is that when an adjunct has a long distance dependency, the modi�ed node is the siteof the dependency, not the modi�er. The constraints used by NNEP to simulate the constraintson long distance dependencies given in (Kroch, 1989) are discussed more thoroughly in the nextsection, but here I outline how some of those constraints can be expressed in an SUG grammar. Afew of the constraints don't appear to be expressible at this level, but they have a natural treatmentin terms of the processing done by NNEP, as will be discussed in the next section.In addition to the �-to-P predicates introduced above, the next section uses two predicates toexpress the grammatical information about what long distance dependencies are possible. Theextractable predicate speci�es those nodes which can be the site of a dependency, and the footpredicate speci�es those nodes which a dependency can cross. In other words, extractable nodescan be extracted and foot nodes can be extracted out of. This information can be speci�ed in SUGusing two features, domain and path, to constrain the domain in which a trace node can equate.8These features have terminals as their values. The path feature is used to de�ne the long distancecharacteristics of an extraction domain. If a node is foot, then its path feature's value is the sameas the path feature of the root of the grammar entry. Thus if this root is equated with anotherfoot node, a chain of coreferential path features will be formed. If a node is not foot, then it hasthe word of the grammar entry as its path feature value. The matrix root also has an instance ofa string as the value of its path feature, so all chains of coreferential path features will get a �lledterminal as its value from the top node in the chain. The domain feature is used to de�ne the localcharacteristics of an extraction domain. If a node is extractable, then its domain feature refers to8While NNEP uses the extractable/foot representation of this information, it is interesting to show that thiscompetence information can be expressed at the level of the grammatical framework. This is in contrast to someother constraints, which are characterized below in procedural terms.134



the same node as the path feature of the root of the grammar entry. Thus all the extractable nodesin grammar entries whose roots are in the same chain of foot nodes will have the same word asthe value of their domain feature. If a node is not extractable, then its domain feature refers tothe word of the grammar entry. This puts such nodes in a domain by themselves. The domain inwhich a trace node can equate is constrained by making its domain feature coreferential with thepath feature of the lowest node which dominates it. Thus the trace node can only equate with anode which is in its dominating node's domain, since otherwise the values of the domain featureswon't unify. This constrains long distance dependencies to only stretch across foot nodes, and onlyhave sites at extractable nodes, as desired.The local phrase structure analyses from (Kroch, 1989) are expressed in an SUG grammar in a verysimilar way to that used for Lexicalized Tree Adjoining Grammar (Schabes, 1990). The trees usedin (Kroch, 1989) are completely ordered, but in SUG linear precedence constraints are used to allowthe underspeci�cation of this ordering, as is done in (Joshi, 1987b). A word has in its grammarentry the node which represents the word's preterminal's immediate parent, any �A argumentswhich the word subcategorizes for, optionally the node which it modi�es (if it is the head of a +Anode), any nodes for which the word �lls a distinguished position (head, functional head, or verb),any trace nodes coindexed with the above nodes, and all the known syntactic information aboutthese nodes and their relationships to each other. This syntactic information includes informationabout the feature structure labels of the nodes, immediate dominance relationships, dominancerelationships, and linear precedence relationships. Obligatory arguments and all modi�ed nodeshave head terminals without their word's speci�ed, so as to express their expectation for a head.The same technique can be used to express the expectation for a determiner, complementizer, orverb.9 Any local linguistic constraints on possible structures can be enforced with restrictions onpossible grammar entries.The above division of information among grammar entries in general complies with both the TreeAdjoining Grammar (TAG) generalization that a grammar entry should contain a predicate and allits arguments, and the SUG generalization that a grammar entry should express all the informationknown given the presence of a word. Because it complies with this TAG generalization, thisgrammar entry domain is large enough to express predicate-argument relationships over it, thusallowing the speci�cation of a predicate-argument (f-structure) level of representation in the samegrammar entries. In SUG this level of representation can be expressed within the feature structurelabels of nodes. The equation of nodes will cause the uni�cation of the entities in the predicate-argument structure.10 This division of information among grammar entries is essentially the sameas that used in Lexicalized TAG (LTAG), except information about long distance dependencies is9In addition to these lexical grammar entries, there should be a few grammar entries which do not have words inthem. These nonlexical grammar entries would express the possibility for constructions such as relative clauses whichdo not have overt wh- words. However, for simplicity, these structures are lexicalized by precombining them withlexical grammar entries. This gives grammar entries a slightly larger domain of locality than that just described. Theonly nonlexical grammar entries which are used in the current implementation are one node grammar entries thatintroduce parentheticals and appositives, and a structure for topicalization.10Although the constructions addressed here allow the predicate-argument structure to be embedded in the SUGconstituent structure, I believe a parser which handles coordination would have to have separate levels of represen-tation for these two types of structure. Assuming the Combinatory Categorial Grammar analysis of coordination(Steedman, 1985) is essentially correct, the result of coordinating two constituent structure fragments is a single con-stituent structure fragment whose syntactic functionality is subsumed by each of the coordinated fragments. However,the predicate-argument structure for this resulting constituent structure includes two distinct sets of entities and pred-ications. Thus a many-to-one mapping from predicate-argument structure entities to constituent structure entitiesis necessary. This requirement precludes embedding predicate-argument structure in the feature structures of theconstituent structure nodes. 135



expressed with the wh- word, not with the word whose argument is extracted.There are two conicts between the TAG and the SUG generalizations about what informationshould be included in a grammar entry. The �rst is exceptional case marking verbs. Since anexceptional case marking verb provides the Case which allows the in�nitival sentence to have anovert subject, the SUG generalization says that the subcategorization for both the subject and thein�nitival verb phrase should be in the grammar entry for the verb. This results in a structurewhich expresses Case relationships. On the other hand, since the subject is an argument of thepredicate in the in�nitival verb phrase, the TAG generalization says that the subcategorization forthe subject should be expressed in a grammar entry for the in�nitival verb phrase. This results ina structure which expresses thematic relationships. Since the SUG generalization is important forNNEP, I will choose the former representation. The thematic relationship can still be expressed inthe representation of predicate-argument structure, since the subject and the in�nitival verb phrasehave nodes in the same grammar entry. This analysis explains why heavy-NP shift can occur forthe subjects of in�nitival sentences, but not for the subjects of �nite sentences. The examples whichare ruled out in (Kroch, 1989) using their analysis (footnote 12) can be ruled out by stipulatingthat the in�nitival verb phrase argument of an exceptional case marking verb is a foot node, andthe embedded subject argument is not. The same type of constraint could be used to rule outsentences like (1.).11(1.) *Whoi did you give the parents of ei a present?The second conict between the above TAG and SUG generalizations is the speci�cation of argu-ment prepositional phrases. The TAG generalization says that the argument PP should be in thegrammar entry for the subcategorizing word. The SUG generalization says that a prepositionalphrase should have the same grammar entry regardless of whether it is an argument or an adjunct,since the preposition itself can't determine this information. As will be shown in section 6.3, thelater property is necessary in order to delay resolving ambiguities between argument and adjunctPP attachments until disambiguating information is found. As proposed above, special features inthe predicate-argument structure representation can be used to allow a word to refer to the seman-tics of the object of its argument PP without actually mentioning the argument PP in its syntacticstructure. In this way the predicate-argument structure can obey the TAG generalization, whilestill allowing the syntactic constituent structure to obey the SUG generalization.6.2 Recovering Long Distance DependenciesThis section compares the mechanism by which NNEP recovers long distance dependencies withthe analysis given in (Kroch, 1989). Most of the constraints on long distance dependencies arecharacterized at the level of NNEP's grammars, as was speci�ed in the last section. These gram-matical constraints are compiled into features on nodes (i.e. extractable and foot), and enforcedby the rules that calculate long distance dependencies. However, some of the constraints on longdistance dependencies are predicted by the need to restrict these rules' access to trace nodes to thepublic node. Since the public node is the top node on the public node stack, these rules can onlyaccess the most recently introduced trace node. This constraint is used to explain the that-trace11To help prevent confusion about what sentence numbers are from what sources, I will number my sentences as\(n.)", the sentences from (Kroch, 1989) and (Gibson, 1991) as \(n)", and the sentences from the Brown Corpus as\n". 136



e�ect, the cases of subject islands that precede inection, and the limited possible extractions outof wh- islands. The later phenomena are particularly interesting, because accounting for this datarequired Kroch to go outside the power of TAG. Thus by accounting for this phenomena with acomputational constraint, the competence theory of long distance dependencies can be simpli�ed.This explanation for wh- island constraints is also interesting in that it subsumes Pesetsky's pathcontainment condition (Pesetsky, 1982). Unless stated otherwise, the numbering and examples inthis section are from (Kroch, 1989).The SUG grammar entries described above use dominance relationships to express the constraintthat a trace must be c-commanded by the node which binds it. They also use domain and pathfeatures to express what nodes can be extraction sites and what nodes can be extracted out of.NNEP's representation of this grammatical information uses the predicates extractable and foot,rather than the domain and path features. As described in chapter 4 and in the last section, thesepredicates directly represent what nodes can be extraction sites and what nodes can be extractedout of. Nodes which are speci�ed as extractable are checked to see if they could equate with anytrace nodes which the root of their grammar entry could potentially dominate. Nodes which arespeci�ed as foot are speci�ed as potentially dominating any trace nodes which the root of theirgrammar entry could potentially dominate.12 As with the coreference of path features, the iterativecalculation of potential dominance (could dom) relationships establishes an arbitrarily long chainof nodes. As with the the coreference of domain features with path features, trace nodes can onlyequate with allowable extraction sites which are within one grammar entry of this chain.This domain of extraction roughly corresponds to the domain allowed by TAG, ignoring for themoment most linguistic constraints on this domain. In nonmulticomponent TAG, a gap and its�ller are speci�ed in a grammar entry with the predicate to which the gap is an argument oradjunct. This relationship between the �ller and gap can then be stretched by adjoining auxiliarytrees at nodes between them. Since adjunctions cannot change thematic role assignments, theseadjunctions always take place above any phrase for which there is a chain of thematic roles fromit to the gap. The constraints on the domain of a TAG grammar entry restrict the length andnature of this thematic chain. These restrictions de�ne a local domain within which gaps canbe speci�ed. I will call this domain the local extraction domain of the gap. This local domainis analogous to the local domain around potentially dominating nodes in which a trace node canequate. After the adjunctions, the relationships between roots and feet of the adjoined auxiliarytrees taken together form a path from the phrase of the �ller down to the local extraction domainof the gap. This path is analogous to the chain of nodes which can potentially dominate a tracenode. Like NNEP's potential dominance chain, the TAG \foot path" can be arbitrarily long andthe gap needs to be within a local domain around the end of the path. Because of constraints onthe domain of grammar entries, each TAG root-foot relationship in this path will correspond toone or two of NNEP's root-foot relationships. This correspondence extends to the cases in (Kroch,1989) which use multicomponent TAG. In these cases the derivation includes one multicomponentadjunction into an elementary tree. This step involves an adjunction at an empty NP and an12In some cases whether a node is a foot node can't be determined within the domain of a single grammar entry,given the way this domain has been de�ned. For example, the object of the preposition \of" is a foot node when itattaches to the N for \picture", but not in general. This can be handled with a predication on the N for \picture".The grammar entries for \of" are sensitive to this predication, and specify whether its object is a foot accordingly.As will be discussed below, the predicates introduced in the previous section for expressing the distinction betweenargument and adjunct PP's can also be used for this purpose. Since this argument/adjunct distinction is assumed tobe the result of information in the predicate-argument structure, the fact that foot prepositional phrases are alwaysarguments suggests that the foot predicate should also ultimately be represented at the level of predicate-argumentstructure. 137



adjunction at an S0 which dominates that NP. The relationship between this S0 and this NP thusbecomes a segment in the path from the �ller's phrase to the local extraction domain of the gap.This segment also corresponds to one or two of NNEP's root-foot relationships. As we will see, thissegment is constrained in the same way as the other segments of this path.The correspondence just discussed allows many of the constraints from (Kroch, 1989) to be ex-pressed as constraints on possible foot nodes in NNEP's SUG grammar entries.13 Constraint (17)from (Kroch, 1989) (copied below) can be enforced by requiring SUG's foot nodes to be lexicallygoverned within their grammar entry, and requiring the maximal government domain of these nodesto be the root of their grammar entry.14(17) The foot node of a complement [non-adjunct] auxiliary tree must be lexically governed, andits maximal government domain must be the root node of the tree.As discussed above, in an elementary tree where a multicomponent adjunction takes place therelationship between the empty NP and the S0 is also treated in SUG as a chain of root-footrelationships. Thus the above SUG constraint also requires that such empty NP's must be lexicallygoverned, and the TG relationship from (Kroch, 1989) (the transitive closure of lexical government)must hold between the S0 and the empty NP. If the S0 is the root of the elementary tree, then theabove SUG constraint enforces constraint (19) in (Kroch, 1989) (copied below) for noncoindexedempty nodes.(18) For any node X in an elementary tree �, initial or auxiliary, X is properly governed if andonly if one of the following conditions is satis�ed.i) the maximal government domain of X is the root node of �;ii) X is coindexed with a \local" c-commanding antecedent in �.(19) For any node X in an elementary tree �, initial or auxiliary, if X is empty, then it must eitherbe properly governed or be the head of an athematic auxiliary tree.If the S0 is not the root of the elementary tree then the TG relationship may not extend to theroot, and thus the empty category might not have the root as its maximal government domain,as is required by (19). This will happen when the elementary tree where the multicomponentadjunction takes place is for a relative clause. The Chomsky adjunction con�guration at the topof the relative clause structure will prevent the root from being the maximal government domainof the noncoindexed empty NP. The grammaticality of sentence (2.) below (my example) indicatesthat this additional requirement is not desired, and thus I will not try to capture it in the SUGanalysis. More recent work in TAG generates (2.) by substituting the S0 of the relative clauseinto the Chomsky adjunction structure, and thus the S0 is the root of its elementary tree even inthe relative clause case (Kroch, personal communication). As long as any such S0 is the root ofits elementary tree, the above SUG constraint fully enforces constraint (19) in (Kroch, 1989) fornoncoindexed empty nodes.13Taken literally, the SUG grammar entry doesn't specify \foot" nodes. However, the relationship speci�ed abovebetween the SUG grammar's path and domain features and NNEP's foot and extractable predicates makes the iden-ti�cation of foot nodes in the SUG grammar easy. Therefore, I will talk of the SUG grammar as specifying footnodes.14The transitive nature the TG relation in (Kroch, 1989) allows the maximal government domain portion of (17)to be speci�ed individually on SUG foot nodes, even though there may be more than one SUG root-foot relationshipin a single TAG root-foot relationship. 138



(2.) John only wanted to talk to the man whoi he knew whatj paper to give a copy of ej to ei.Constraint (19) also applies to empty nodes which are coindexed. Since the coindexation of the gapis expressed in what is being called TAG's local extraction domain, this is a constraint on this localextraction domain. The constraint has three cases, extraction of adjuncts, extraction of subjects,and extraction of other arguments. Adjuncts must be coindexed within their elementary tree. Thiseliminates the possibility of using multicomponent tree sets for the extraction of adjuncts, since inthese sets the coindexation is between two trees within the set. Thus the local extraction domainof adjuncts is the domain of a single elementary tree which is rooted by a node of a V projection.15TAG grammar entries do not allow recursion on any type of node, except Chomsky adjunction. Ifthe adjunct modi�es a V projection then it must be the root V projection, since otherwise therewould be recursion on S0. If the adjunct modi�es an N projection then it must be a child of anode in the root V projection, since such adjuncts are PP's and thus no PP node can intervenebetween the N projection and the elementary tree root. In the SUG analysis the extraction ofadjuncts is expressed with a long distance relationship between the modi�ed node and the �ller,not between the modi�er and the �ller. This is necessary because modi�ers always provide theirown immediate dominance relationship with their modi�ed node, and thus if the modifying nodewas moved it would have no place to equate in the phrase of the modi�ed node. Thus a tracenode which represents an adjunct �ller (i.e. those which do not have �lled heads) must only beallowed to equate with an I node which potentially dominates it or with an N child of one of thenodes which potentially dominate it. Also, such a trace node cannot be potentially dominatedby an N node, since this would be the equivalent of using a multicomponent TAG analysis. Thelater constraint must simply be stipulated: no trace nodes which do not have �lled heads canbe speci�ed as potentially dominated by a node which is of type N. The former constraint is thesame as the constraints on the local extraction domain of arguments, except that extraction outof complement PP's is not allowed. This can be enforced by applying the constraints about to bediscussed for argument extraction to these unheaded trace nodes, plus stipulating that the objectof a complement PP will not be considered for possible equation with an unheaded trace node.Coindexed arguments other than subjects must have the grammar entry root as their maximalgoverning domain. Because recursion is not allowed in a grammar entry, the argument will eitherbe a child of the grammar entry's root projection or a child of a PP which is a child of theroot projection. Since in the SUG analysis PP's have both their parent and their children in theirgrammar entry, both these cases have the gap within one SUG grammar entry of the root projectionfor the TAG local extraction domain. Thus NNEP's local extraction domain is large enough tocover the TAG local extraction domain. All that remains is to constrain the SUG domain so thatit exactly matches the TAG local extraction domain for these cases. For the case of children ofthe root projection, the extractability of an argument can be determined within the locality of thegrammar entry, and thus their eligibility for equation with a trace node which is passed to theirroot projection can simply be stated in the grammar entry using the predicate extractable. Forthe case of children of PP's, the extractability of an argument is dependent on both the head ofthe PP and the head of the root projection. This is the problem of distinguishing argument PP'sfrom Chomsky adjoined PP's. As discussed above, this problem is solved with predications onthe root projection which specify what PP's it takes as arguments. For example, the V node for\saw" would have the predication �-to-with, indicating that it assigns a theta role to the object ofa PP headed by \with". The grammar entries for PP's are sensitive to their �-to-x predicationsand specify their object as extractable accordingly. These mechanisms ensure that NNEP will only15I'm using the term \V projection" to include VP, S, and S0.139



consider for equation with a trace node those arguments which the TAG analysis treats as withinits local extraction domain.The last case of constraint (19) from (Kroch, 1989) to be considered is that of coindexed subjects.Since subjects are never lexically governed, they must be \locally" coindexed. The locality for sub-jects is stricter than that for adjuncts, namely they must be adjacent to their antecedent governorin their grammar entry. This means that all the material which intervenes between the �ller andthe subject gap in the resulting tree must come from adjoined auxiliary trees. In the SUG analysisgiven so far all the material from the �ller down to the local extraction domain of the gap must comefrom the equivalent of auxiliary trees, but there may be material in the local extraction domainwhich precedes the subject gap. The possible types of such unwanted material which are discussedin (Kroch, 1989) are complementizers, wh- words adjoined at S0, \do" when used as in subject-auxinversion, and topics. The case of \do" can be ruled out by treating such post-inection subjectsin the same way as all other rightward subcategorized arguments. Since this subject argument isnot lexically governed, it will not be speci�ed as extractable by its grammar entry, and thus willnot be considered for equation with any trace nodes when \do" is attached. This split betweenarguments which precede the terminal of their grammar entry and those which follow it is justi�edbecause NNEP handles these cases with two di�erent mechanisms. Like most overt pre-inectionsubjects, pre-inection subject gaps are �lled using the double attaching combination operation.On the other hand, post-inection subject gaps are �lled using the internal trace equating opera-tion, which requires that the gap site �rst be found by the local movement rule, which only appliesto extractable nodes.The remaining unacceptable cases of coindexed subjects all have material other than inection tothe left of them in their local extraction domain. Given some assumptions about the grammarentries for complementizers, these cases are all ruled out by the requirement that NNEP's access totrace nodes obey a stack discipline. As speci�ed in chapter 4, trace nodes and some tree fragmentroots are put on the public node stack, and all the rules NNEP uses to calculate long distancedependencies are constrained to only apply to the top node on this stack. Thus only the mostrecently introduced trace node is available to be equated with a gap site. This clearly will ruleout the case of a wh- word preceding the subject gap in the local extraction domain, because thatword will add a trace node to the stack, and thus the previous trace node will not be available forthe double attaching operation to equate it with the subsequent subject gap. Since topicalizationis also handled using trace nodes, the same argument covers topicalized constituents. This leavescomplementizers.Although the grammar entry for a complementizer will not introduce a trace node, it can introducea node which prevents subject extractions. Since complementizers are only on �nite clauses, andin English all �nite clauses subcategorize for subjects, the presence of a complementizer impliesthe presence of a subject. Thus the grammar entry for a complementizer can safely express thisexpectation for a subject.16 Indeed, the grammar entry for a complementizer should express this16There is a slight chicken-and-egg problem here, but only if evidence is viewed categorically. A complementizermust always be followed by an overt subject in order to justify expressing the expectation for a subject in its grammarentry. Complementizers are always followed by �nite clauses, and �nite clauses always have overt subjects, unlessthey have subject gaps. As long as subject gaps don't occur after complementizers, a complementizer can expressits expectation for a subject, thereby ruling out subject gaps after complementizers. But, viewed categorically, ifa person ever hears a that-trace violation, they will no longer expect subjects after complementizers, and the that-trace violating dialect will spread through the language community like the plague. Of course, the human languagelearning mechanism is much more robust than this. It would require repeated exposure to that-trace violations beforea speaker would change their grammar entries. Opportunities for these violations are rare compared to the use ofcomplementizers in general, and there is no motivation for using a complementizer in the case of subject extractions.140



expectation, since grammar entries are supposed to express everything that is known about thephrase structure of the sentence given the presence of the word. This information makes the decisionof how to incorporate the subject into the current description easier. A complementizer expressesthis expectation for a subject by having a �A (N or I) node in its grammar entry, as shown in�gure 6.1. As will be discussed in section 6.4, in this situation NNEP won't put the subject nodeon the public node stack, but whether the subject is on the stack or not, this node prevents theequation of the trace node with the subject node in the following �nite verb's grammar entry. Ifthe node is put on the stack, then it is the top node on the stack, so the trace node is not availablefor double attaching when the �nite verb is encountered. If the node is not put on the stack, thenit is the rightmost tree fragment. This means the trace node is not in the rightmost tree fragment,and thus is not available for double attaching. Thus in either case the equation of the trace nodewith the subject node in the following �nite verb's grammar entry is blocked by the presence of anode which expresses the complementizer's expectation for a subject.17
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Figure 6.1: An example of how the that-trace e�ect is enforced.To summarize the above discussion, for English, constraints (17) and (19) from (Kroch, 1989) canbe simulated by NNEP using local constraints speci�ed in grammar entries, plus the constraintsimposed by using a stack for trace nodes, and requiring that no trace nodes which do not have�lled heads be speci�ed as potentially dominated by a node of type N.18Therefore the expected stable state for a language like English is to have the that-trace e�ect. On the other hand, itis predicted that evil linguists could raise a child who did not have the that-trace e�ect in their dialect of English.17Although I am not arguing for the language universality of the constraints proposed here, it is interesting thatthe above explanation for the that-trace e�ect does not work for pro-drop languages. In pro-drop languages thepresence of a complementizer does not imply the presence of an overt subject, and thus the grammar entry for acomplementizer will not include the node which blocks the extraction of the subject. Pro-drop languages do notexhibit the that-trace e�ect.18This last constraint is ugly. As far as I can tell the extraction of modi�ers of NP's is always ungrammatical,141



The only constraints in (Kroch, 1989) which have not yet been discussed are the constraints thatthere never be more than one fronted wh- word in a grammar entry, and that there never be morethan one fronted wh- word adjoined to the same S0 during a derivation. The �rst implication ofthese constraints is that there can't be more than one wh- word adjoined to a single S0. The SUGrepresentation of phrase structure analyses discussed in the previous section rules out this casebecause adjoined wh- words are speci�ed with the distinguished position predicate functional head.Since in SUG such a position is speci�ed as the value of a feature in the projection's node's featurestructure, only one word can �ll this position for a given projection. The nonlocal e�ects ofthis constraint are enforced with NNEP's stack discipline constraint on trace nodes. Since Kroch'sconstraint on allowable derivation structures is outside the formal mechanisms of TAG, it is desirableto eliminate it from the competence theory. By providing an explanation of the same phenomenaat the level of the parser, this competence constraint can be eliminated, thereby simplifying thecompetence theory.In general the public node stack will block wh- island violations because only one trace node canbe passed down the tree at a time. Because only the most recently introduced trace node canhave potential dominance relationships calculated for it, any previous trace nodes will be blockedfrom �nding a gap in the same domain. The exception to this generalization occurs in a situationwhere two trace nodes have been speci�ed as potentially dominated by the same node. If doubleattaching is used to attach a subtree at the potentially dominating node and equate the mostrecently introduced trace node with its gap, then the movement rules can apply to the other tracenode. In this way one trace node can be passed over another, thereby violating the wh- island. Allthe acceptable violations of wh- islands given in (Kroch, 1989) occur in these circumstances.As an example of how wh- islands can be violated, consider sentence (60a) and (60b) from (Kroch,1989).(60a) I know which booki the students would forget whoj ej wrote ei.(60b) I know which booki the TAs told us that the students would forget whoj ej wrote ei.The pertinent portion of the parsing of sentence (60a) is shown in �gure 6.2. In both sentences, thetrace node introduced by \which book" is �rst calculated to be potentially dominated by the objectof \forget". Another trace node is then introduced by \who", and \who"'s grammar entry speci�esthat it is potentially dominated by the same node. Double attaching is then used to simultaneouslyattach the trace node from \who" as the subject of \wrote" and the I for \wrote" as the object of\forget". Because the trace node for \who" has now been equated with its gap, the trace node for\which book" is now on the top of the stack, thus making it available to be checked for equatabilitywith the object of \wrote". After the equatable relation is speci�ed, internal trace equating can beused to do this equation. In contrast, if the trace node for \who" had to be passed farther downthe tree before it found its gap, then the trace node for \which book" would not have the necessarypotential dominance relationships for the movement rules to apply to it, as illustrated in �gure 6.3.The acceptable violations of a wh- islands given in (Kroch, 1989) which involve extracted adverbialphrases also come under the above exception.(56a) ?Whati were you wondering [howj to say ei ej ]?which subsumes most cases covered by this constraint. The remaining cases involve the extraction of PP argumentsto NP's, such as in \?[About whom]i did you write a book ei?". The constraint rules out sentences like \*[Aboutwhom]i did you make a copy of a book ei?". Hopefully a more detailed investigation of such extractions would resultin a more general and elegant characterization of this phenomena. (Kroch, 1989) does not discuss these extractions.142
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The representation of the gaps shown in Kroch's (56a) show a pattern of crossed dependencies,which are ruled out by the stack constraint on trace nodes. However, the SUG analysis of theextraction of modi�ers does not actually coindex the modi�ers, it expresses the dependency on themodi�ed node. Thus the trace node introduced by an adverbial wh- word must equate with themodi�ed node, as shown in �gure 6.4. Therefore, under this analysis (56a) does not have a crosseddependency. The trace node for \how" can be equated with the I node for \say", and then thetrace node for \what" can be equated with the object of \say".19Unfortunately the simple generalization just given will treat as acceptable several sentences whichare unacceptable. Sentences (61a) and (61b) from (Kroch, 1989) are examples of this.(61a) *I know which booki the students would forget whoj ej told us that Dorthy Sayers wrote ei.(61b) *I know which booki the students would forget whoj ej told us whok ek wrote ei.Since in (60a) the trace node for \which book" is available to be tested for equatability with theobject of \wrote", in (61a) it should be available for the calculation of a potential dominancerelationship with the object of \wrote". This would result in NNEP accepting (61a) and (61b).This can be �xed by stipulating that the time course of the movement mechanism is such that,after a double attaching combination, checking for possible equations for trace nodes is delayeduntil after the subject trace node is popped from the stack, while calculating potential dominancerelationships is not. Such a time course is compatible with NNEP's implementation. This allowsviolations of wh- islands where the outer coindexation goes one grammar entry below the innercoindexation, but does not allow the outer coindexation to go any further, as it does in (61a) and(61b).20The remaining cases from (Kroch, 1989) for which the above analysis over generates are the fol-lowing:(52a) *Howi did he wonder [whatj you had said ej ei]?(56b) *Howi were you wondering [whatj to say ej ei]?The exclusion of these sentences is complicated by the acceptability of:(26) On Thursdayi, whatj will you buy ej ei?Since in this analysis topicalization is treated with the same mechanism as wh- movement, it is hardto distinguish between moved adverbs and topicalized adverbs. However, the ungrammaticality ofthe following sentence points to a distinction between these cases:19Given the frequency of constructions using \how to", it is plausible that the parser would decide to equate the tracenode for \how" as soon as it sees \to", rather than waiting to see \say". This would have interesting consequences inconjunction with the constraint about to be proposed. In particular, it would predict the grammaticality of \?Whatiwere you wondering [howj to take a picture of ei ej ]?", as opposed to the ungrammaticality of \*Whati were youwondering [whoj ej took a picture of ei]?". This may also help explain why sentences like \?Whati were you wondering[howj the actor said ei ej ]?" are less acceptable than (56a) (footnote 14 in (Kroch, 1989)).20The fact that the mechanism for calculating long distance dependencies needs to treat the double attachingoperation as a special case may help explain why all the examples involving a wh- trace being extracted over a wh-subject gap are somewhat degraded in their acceptability. It is possible that some people have learned this specialcase for calculating equatability, some people have learned it for calculating potential dominance, and some peoplehaven't learned it at all. A statistical version of this argument might be able to explain the grey scale. This wouldpredict that the more time you spend reading these examples, the more acceptable they seem, which appears to bethe case. 146



(3.) *On Thursdayi, John wondered [whatj you will buy ej ei]?This pattern can be captured with the generalization that an adverb extraction cannot violate awh- island if there is an alternative extraction site for the adverb which is syntactically (althoughpossibly not semantically) allowable. In (52a), (56b), and (3.) the adverb could have been extractedfrom the matrix sentence, which would not violate the wh- island. In (26) there is no alternativebut to interpret the topic as extracted from the same phrase as \what". This generalization can beincorporated into NNEP's mechanism for disambiguating between possible gaps. If the followingsentence is ungrammatical, then the generalization could be extended to all types of trace nodes:(4.) ??Whoi did you want to forget howj to �nd ei ej?At the point when \how" is encountered it is possible that the gap for \who" is the subject of thein�nitival sentence, as in \Whoi did you want ei to forget howj to speak ej?".Other investigations have handled the sentences from (Kroch, 1989) discussed in the previousparagraph through a distinction between referential and nonreferential �llers. \On Thursday" isreferential, while \how" is not. If this is the appropriate generalization, then the phenomena isoutside the scope of this investigation, since no attempt has been made to combine NNEP with adiscourse level of representation.
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the movement rules do not apply, and no node in the subject will be checked for equatability withthe trace. Thus NNEP can't look for gaps in a pre-inection subject for �llers which precede thesubject, which is the constraint against extraction out of subjects. This fact means that the doubleattaching operation does not need to depend on the extractability of the grammar entry's lowerequated node. Only the local movement rule needs to be sensitive to this information.6.3 Representing Local AmbiguitiesBecause NNEP is a deterministic parser, it is important to test whether NNEP can handle the localambiguities in natural language which people do not have trouble with. This section characterizeshow NNEP can represent these local ambiguities. The question of how to resolve ambiguities whena choice must be made will also be touched on. This test looks at the acceptable example sentencesgiven in the chapters on ambiguity resolution in (Gibson, 1991).21 The representations necessaryfor parsing these sentences are presented, along with some discussion of disambiguation strategies.Some ambiguities can be represented in the parser state using partial speci�cation, thereby delayingtheir resolution until disambiguating information is found. One ambiguity (that of \have") seems torequire multiple posthead subcategorization frames to be stored in the parser state. However, themutual exclusion between frames can be represented using only a conjunction of SUG predications,given the way NNEP interprets SUG predicates. Both the above representations typically requireadditional resources to maintain the ambiguity, so interactions are predicted between the abilityto maintain ambiguities and other resource demands. This prediction has not been investigateddue to a lack of available data. There are no mechanisms (other than partial speci�cation) fordelaying the resolution of ambiguities which involve portions of a grammar entry which precedesor dominates the grammar entry's word. Some ambiguities which appear to be of this kind canbe handled by dividing each of the grammar entries into one lexical component which they shareand other nonlexical components which can be added after the lexical component. The ambiguitybetween NP's and NP's which are the leading edge of unmarked relative clauses is of this laterkind. The remaining lexical ambiguities of the former kind are predicted to be resolvable usingonly left context and (if needed) the subsequent word in the sentence. The information availablefor this resolution may not be conclusive, in which case a garden path is predicted for one of thealternatives. There is one case which may be a problem for this prediction, but conclusive evidencewould require experiments which have not been done.The work presented in this section is primarily concerned with how to represent the local ambiguitieswhich people do not have trouble maintaining. If the local ambiguity is eventually resolved, thenNNEP can detect that there is only one logically possible operation and perform it. However,often the sentence is globally ambiguous, NNEP does not permit the ambiguity to be maintained,or resource limitations force a choice. This requires that NNEP be able choose between logicallypossible alternatives. As discussed in section 4.5, NNEP is designed to make these choices onthe basis of the preferences of other language modules and estimates of the probabilities of thealternatives given the available information about the sentence. Under current assumptions the21The current simulation of the connectionist implementation of NNEP has not been run on the data from thesechapters. This is because of the large number of sentences (96 pertinent acceptable sentences), and the time requiredto handcode the various grammar entries and disambiguation strategies discussed in this section. In future work, Iintend to work on automatically training a disambiguation mechanism for NNEP. Such a trained mechanism wouldpresumably subsume all the speci�c strategies discussed in this section, thus avoiding the time consuming task ofhandcoding them. For this reason, implementing a simulation which would handle these examples is being postponeduntil automatic learning mechanisms are investigated. 148



probability for a combination at a given node with a given grammar entry for the next word isestimated using two independent estimates, one based on the relation of the given node to othernodes in the parser state (P (x j s)), and one based on information about the node, the grammarentry, the next word, and (if necessary) the part of speech tag(s) of the subsequent word in the input(P (g; o; w; t0 j ld(x; s))). The part of speech tags need to distinguish classes such as �nite verbs andwords which start NP's. There are many questions to be answered about what information abouta node is needed for the second estimate, but the initial hypothesis is that only independentlymotivated features are necessary. Since the above probabilities have not been estimated, in thissection I will o�er speci�c disambiguation strategies which intuitively comply with this more generalstrategy. The primary concern of these proposals is to determine when NNEP has the evidence itneeds to make a decision, and when NNEP needs to be able to represent the ambiguity.The �rst local ambiguity discussed in (Gibson, 1991) is between NP complements and S comple-ments. There are two cases of these, one where the S is an in�nitival clause and one where it is a�nite clause. Examples of both these cases are given in (225).22(225)a. Bill expected Mary.b. Bill expected Mary to like John.c. Bill knew John.d. Bill knew John liked Mary.As discussed in section 6.1, in�nitival complements with overt subjects are treated as two argumentsto the verb, one for the subject and one for the in�nitival VP. Thus this case can be handled bytreating the in�nitival VP like any other optional argument. In both (225a) and (225b) \Mary"is attached as an argument to \expected", as shown on the left in �gure 6.6. Then either thesentence is �nished or the in�nitival VP is attached as a separate argument to \expected". In thecase where the S complement is a �nite clause, the NP following the verb is either an argument ofthe verb or an argument of the S complement's verb. A verb like \knew" has a single argumentwhich is underspeci�ed as to whether it is an NP or an S. When the NP following \knew" is input,NNEP can't be su�ciently certain that the NP is the argument to \knew", so the grammar entryfor \John" must be added to the end of the list of tree fragments using equationless combining,as shown on the right in �gure 6.6. This combination allows for both possible completions. In(225c) this is the end of the sentence, so the NP node for \John" is equated with the argumentnode for \knew", thus making \John" the object of \knew". In (225d) the sentence is continuedwith the embedded �nite verb, \liked". The grammar entry for \liked" can be combined with\John" and the object for \knew" using double attaching, to produce the desired structure. ThusNNEP's ability to delay attachments allows it to resolve this local ambiguity correctly. Note thatthe possibility of either completion can be maintained no matter how long the NP is, providedNNEP has enough resources to maintain the ambiguity.The next set of sentences in (Gibson, 1991) introduce another ambiguity into the above types ofsentences. As is illustrated in (228), many words which are prehead constituents of NP's couldthemselves be heads of NP's.22Except where noted otherwise, the example sentences, their numbering, and the judgments of their acceptabilityare from (Gibson, 1991). 149
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,Figure 6.6: NP/S complement ambiguities.(228)a. We expected her.b. We expected her mother to like Fred.c. The populace believed the American.d. The populace believed the American president ate broccoli on Tuesdays.NNEP must be able to recognize whether a word in an NP is the head or not. I take this to be aseparate issue from the one just discussed, since those solutions remain unchanged by the solutionto this problem. There are two possible solutions to the problem of identifying when a word is thehead of an NP. The more straightforward one is that there are both head and nonhead grammarentries for words like \her" or \American", and that one of these grammar entries is chosen bylooking at the subsequent word. If the subsequent word could be part of the prehead or headportion of the NP, then the nonhead grammar entry is chosen, and otherwise the head grammarentry is chosen. The alternative is that there is a single grammar entry for the head and nonheadreadings of the word, but that the statement of headedness in the grammar entry is noncategorical.As shown in �gure 6.7, the grammar entry for \her" would be an NP which has its determiner andhas a nonzero nonone probability of having its head. If there are no words following \her" whichcould be the head of the NP then the nonzero probability that \her" is the head allows it to ful�llthe NP's need for a head. Otherwise the nonzero probability that \her" is not the head allows asubsequent word to be the head.23 The later alternative will be assumed here because it does notrequire subsequent word lookahead, which will be important below.24The next section in (Gibson, 1991) discusses ambiguities in thematic role assignment to objectNP's, illustrated in (233).(233)a. I loaded the truck on the ship.b. I loaded the truck with beans.Because there is no di�erence in the Case assignment structures for the di�erent thematic roles,this is not a problem for this parser. Such disambiguation is assumed to occur at a di�erent levelof representation.The sentences in (242) illustrate a case of PP attachment ambiguity.23An alternative to using noncategorical feature speci�cations in such cases is to distinguish between featurespeci�cations that needs ful�ll expectations and feature speci�cations that restrict iteration. In this case, the formerwould be speci�ed but the later would not. In SUG, word valued features are used for both purposes, but this andrelated phenomena seem to indicate that this conation is not justi�ed. Resolving this question will be left for laterwork.24This solution introduces the problem of how the parser knows which of the words in an NP which could be thehead is the head. I assume that there is a language speci�c parameter that simply stipulates that the last possiblehead is the head. This issue is not important to the constituent structure parser, although at some point in processingit needs to be determined. 150
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garden pathed. Sentences (5.) and (6.) (my examples) illustrate the same problem, but in this casethe preference seems to go the other way.(5.) The bird found yesterday with a broken wing is doing better today.(6.) The bird found yesterday that someone had destroyed its nest.The local ambiguity in these sentences arises because \found" can either be the matrix verb or thehead of a reduced relative clause. If there is no heavy shift this ambiguity can be resolved by lookingat the word following \found". If this word can start an NP or S complement, then the matrix verbgrammar entry can be chosen, and otherwise the reduced relative grammar entry can be chosen.This strategy is illustrated in �gure 6.9. The strategy works because \�nd" is obligatorily transitive,and thus if there is no object then it must be a reduced relative. The problem comes when thereis heavy shift, such as in the above examples. In these cases the strategy of choosing the reducedrelative reading when there is no adjacent object doesn't work, because the object has been shiftedacross an adjunct. The above strategy will always choose the reduced relative reading in such cases.We can modify the strategy to choose a reading on the basis of whatever available information welike, but any strategy for NNEP must make a choice, and thus NNEP predicts that either (247a)or (249a), and either (5.) or (6.) must produce some di�culty in any given context. At the momentthe question of whether this prediction is correct is an open one. Informal informant judgments arenot very good at answering such questions because of the di�culty in controlling for context. Thusthe evidence discussed above should be taken as only suggestive of a problem. Indeed, Gibson(personal communication) agrees that experiments are needed to determine whether one of thesentences is a garden path. If we take \slight di�culty" as evidence for a garden path in (249a),then the above strategy makes the right prediction. Assuming that (5.) is usually the garden pathfor the pair (5.),(6.) (as is my intuition), the above strategy makes the wrong prediction. It can becorrected by adding that in the case of a one word adverbial following \found", choose the matrixverb reading. This is justi�ed because one word adverbials are much more likely the participate inheavy shift than other adjuncts, and thus seeing such an adverbial following the verb doesn't tellyou much about whether heavy shift has occurred or not. Thus when a one word adverbial is seenfollowing \found", this information doesn't help disambiguate, and the decision must be made onother grounds, such as the frequency of the two grammar entries, which presumably support thematrix verb reading.
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without heavy shift a garden path would be predicted. This is the case in the standard example ofa garden path, (245a) (originally from (Bever, 1970)). Even without the prepositional phrases, both(245a) and (245b) are predicted to be garden paths, as is the case.26 This prediction is becausefor optionally transitive verbs, looking at the subsequent word to see if there is an object presentwon't help disambiguate between the matrix verb and reduced relative clause readings.(245a) # The horse raced past the barn fell.(245b) # The boat oated down the river sank.The next ambiguity which Gibson discusses is between sentential complements and relative clauses.As is illustrated in (255a) and (256a), when a verb takes both an NP complement and an S com-plement, an initial segment of an S following the NP complement may be part of the S complementor may be a relative clause modifying the NP.(255a) John told the man that kissed Mary that Bill saw Phil.(256a) John told the man that Mary kissed Bill.(259a) # John told the man that Mary kissed that Bill saw Phil.Altmann and Steedman (1988) showed that the resolution of this ambiguity is heavily inuenced bydiscourse factors. In a context where no further restrictions are expected on the referent of the NPcomplement, (256a) is the preferred reading. In contexts where further restrictions are expected,(259a) is the preferred reading. Since Gibson's judgments are done using an empty prior context, hegets the contrast shown. Thus in these cases NNEP simply needs to �nd what the choices are andallow other modules to provide the disambiguating information. The acceptability of (255a) in theempty context shows that this construction must be parsable despite the contradicting preferencesof other modules. Thus this case must be decided within the parsing module itself. The crucialdi�erence between (255a) and (259a) is that the information that the �rst embedded S is a relativeclause immediately follows \that". Thus the question of what grammar entry to use for \that"can be decided on the basis of subsequent word lookahead. If the word following \that" is a �niteverb then \that" must begin a relative clause, and otherwise other factors must be taken intoconsideration to make the decision. The later circumstance is the case in (256a) and (259a), asdesired.The following examples also have an ambiguity between sentential complements and relative clauses,but in this case it seems that the ambiguity can be maintained until the presence or lack of a gapsite can be found. This could be because the interpretations of the two alternatives are su�cientlysimilar that introspection does not always notice the garden path, or it could be because peoplecan delay the resolution of this ambiguity if the two alternatives are equally likely. The discoursefactors which can be used to resolve the previous ambiguity cannot be used to determine the relativelikelihood of these alternatives.(262a) The report that the president sent to us helped us make the decision.(263a) The report that the president sent the troops into combat depressed me.(266a) The report that motivated our investigation was submitted two days late.26Technically, all that is predicted is that either these sentences or their counterparts (e.g. \The horse raced pastthe barn") are garden paths for a given listener in a given context, but the preference in this case is clear.153



There is a way that the resolution of this ambiguity can be delayed, using the nonlexical grammarentry shown in �gure 6.10 and a nonstandard use of the movement mechanism. This grammarentry introduces the structure for a relative clause, and can be used for relative clauses withoutovert wh- words. The resolution of the ambiguity in (262a) and (263a) can be delayed by adding\that" to the rooted tree fragment list as the complementizer of an S0, and building any furtherportions of this S0 there, as shown in �gure 6.10. If a complete S0 is built, then it can be attachedas the complement of \report", which has an optional argument node for this complement. If a gapis found in the S0, then it can be attached to the S0 in the nonlexical grammar entry, using eitherleftward attaching or double attaching. Just doing this operation will not allow NNEP to �nd thegap, but since the triggering of the movement rules is compiled into the actions of operation rules,the action for this combination can trigger the movement rules used for internal attaching. Theserules will behave as if the S0 for \that" has just been internally equated with the S0 for the relativeclause, and therefore will �nd the gap site in the rightmost tree fragment.
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,Figure 6.10: A sentential complement/relative clause ambiguity.The remaining examples in chapter 6 of (Gibson, 1991) are concerned with lexical ambiguity. Thereare two strategies which NNEP can employ for handling these ambiguities. NNEP can either guesson the basis of the left context and subsequent word, or NNEP can use a representation which isambiguous in the same way as the word. The later strategy may employ nonlexical grammar entriesto express the di�erences between the readings. The addition of nonlexical grammar entries to thememory can be delayed, unlike the addition of lexical grammar entries. When NNEP picks betweengrammar entries, it does so on the basis of preferences from other language modules and estimatesof the probabilities of the alternatives given the available information about the sentence, as wasdiscussed in section 4.5. In the following discussion I will o�er speci�c disambiguation strategieswhich intuitively comply with this more general statistically based method, as was done above for\found" for sentences (247a) and (249a). The importance of these proposals is not that they provideevidence for the statistically based method, but that they demonstrate that the information whichis needed for disambiguation is present at the point at which disambiguation decisions have to bemade.Most of the noun/verb ambiguities discussed in (Gibson, 1991) are for verbs which take postheadcomplements. As for \found" above, this permits a strategy where if the subsequent word couldbegin a complement to the verb then the verb reading is chosen, and otherwise the noun readingis chosen. For the examples given, the alternative strategy of choosing the noun reading when thesubsequent word is a �nite verb and choosing the verb reading otherwise would also be possible(since all these nouns are in subject position). The ambiguities which can be handled with eitherof these strategies are given in (273), (276), (277), and (278).27 Since \lies" in (275) does not take27As in the sentences in (228), the problem of determining whether the word preceding the noun/verb ambiguousword (\warehouse" in (273), etc.) is the head of its phrase or not is handled by giving that word a nonzero nonone154



a complement in its verb reading, only the later of these strategies will work for this ambiguity.28These strategies are illustrated in �gure 6.11.(273)a. The warehouse �res numerous employees each year.b. The warehouse �res harm some employees each year.(276)a. The American places that I like to visit most are in California.b. The American places the book on the table.(277)a. The paint can be applied easily with a new brush.b. The paint can fell down the stairs.(278)a. The building blocks are red.b. The building blocks the sun.(275)a. The o�cial lies are very transparent.b. The o�cial lies often.
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, Figure 6.11: Noun/verb ambiguities.As mentioned above, the lexical ambiguity between di�erent uses of \have" seems to require NNEPto simultaneously represent multiple posthead subcategorization frames for a single lexical item.Nodes for both these frames can be added to the parser state, but the mutual exclusion betweenthese nodes still has to be represented. There are two possible ways of representing this mutualexclusion. The �rst is to simply say \it's not my problem". The two subcategorization frames arefor mutually exclusive predicate-argument structures, so the module which calculates predicate-argument structure will rule out the case where positions in both frames are �lled. Thus it isprobability of being the head of its NP. Note that unlike in (228), a subsequent word lookahead would not be su�cientfor choosing between multiple grammar entries for these two possibilities in this case.28Since these strategies make use of subsequent word lookahead, they are susceptible to a number of problems, butthe data on these issues is not clear. 155



not necessary for the constituent structure parser to enforce this constraint. Expressing mutualexclusion at the predicate-argument structure level is necessary anyway to express the mutual ex-clusion between some NP arguments and PP arguments (as for \give"), since the subcategorizationfor a PP argument is represented in the predicate-argument structure and not in the constituentstructure. While it is unappealing to place responsibility for this phenomena on another module,this would allow this phenomena to be subsumed under a more general mechanism.The other alternative is to represent the mutual exclusion between the nodes in the two subcatego-rization frames directly in the parser state. Given the way NNEP interprets the predicates of SUG,no additional predicate is necessary to express this mutual exclusion. If two nodes are mutuallyexclusive, this means they can't both dominate terminals. NNEP only checks for violations oflinear precedence constraints on terminals. If there is an inconsistency between linear precedenceconstraints on two nonterminals, this will always show up as a violation on terminals, providedboth nonterminals dominate terminals. If, however, one of the two nonterminals does not dominateany terminals, then the violation will not be detected by NNEP. Thus mutual exclusion can beexpressed by having the two nonterminals linear precede each other. If two nonterminals linearlyprecede each other, then one but not both nonterminals can ever dominate terminals, as desired.29At the moment this looks like a hack, but it would be an easy matter to rede�ne linear precedencein SUG so that only constraints between terminals can result in inconsistency, thus making it aperfectly legitimate constraint to express in an SUG grammar. It also doesn't violate the deter-minism constraint, as it has been de�ned here. At the level of the constituent structure parser, thestructural information it stores is still a conjunction of predications which grows monotonically,and all of which is part of the output. The relationship between this constituent structure andpredicate-argument structure does contain disjunction, since two mutually exclusive nodes belongto two distinct predicate-argument structures, but there are other cases where this is also assumedto be true. It could be that both this mechanism and the previous one are used, and it could evenbe that a better analysis of \have" would eliminate this problem. Since the only data I currentlyhave on the need for mutually exclusive subcategorized arguments is that for \have", it is hard todistinguish between these possibilities. Given that this phenomena is rare, it is better to explainit with an unusual use of existing mechanisms (such as incompatible ordering constraints) than tointroduce new mechanisms to handle it.The ambiguity between the main and auxiliary verb readings of \have", appears to require therepresentation of multiple posthead subcategorization frames. Gibson discusses (282a) and (282b),but the data I'm responsible for from the Brown corpus further complicates the analysis. All thisdata is shown below, split into the main verb and the auxiliary verb cases. The analysis of \have"involves many issues which I am not terribly knowledgable about, but an analysis will be presentedwhich at least covers the data I am aware of.(282a) Have the boys take the exam.1248: Mr. D'Albert has a �rm, attractive tone, which eschews an overly sweet vibrato.1269: So, what was the deepest music on her program had the poorest showing.(7.) Have the boys taken to school.(8.) Have the boys clean.29Although this use of precedence constraints results in two nodes which are preceded by other nodes, it does notnecessarily violate NNEP's constraints on the use of linear precedence. As discussed in chapter 4, NNEP needs tobe able to represent linear precedence constraints with two unary predicates, preceding and preceded. If two nodeslinearly precede each other, then they both are both preceding and preceded. If any other nodes are preceded by eitherof these nodes, then this constraint requires that it precede both these nodes. For the one case where this mechanismis used here, this is in fact the case. 156



(9.) Have the boys in bed.(282b) Have the boys taken the exam?988: The famed Yankee Clipper, now retired, has been assisting as a batting coach.1062: Allied Arts had booked Marlene Dietrich into McCormick Place Dec. 8 and 9.1113: One of those capital-gains ventures, in fact, has saddled him with Gore Court.1129: Cherkasov does not caricature him, as some actors have been inclined to do.Figure 6.12 shows the three grammar entries used in the analysis for \have" proposed here. All themain verb cases can be handled with the grammar entry shown on the left. The subject is optional,to allow for (282a) and (7.) through (9.). The second object also doesn't expect anything, to allowfor 1248 and 1269. This second argument could be an N or an I, and already has its head.30 In(282a) this node would be equated with the I from \take", and the head would satisfy \take"'s needfor inection. In (7.) through (9.) (my examples), the second object node would equate with theN which \taken", \clean", and \in" modify, and the head would satisfy their need for a noun. Inother words, \taken", \clean", and \in" would modify the second argument as if it were a normalNP.31 This type of analysis will also be used for the copula, below. The middle grammar entryshown in �gure 6.12 can handle all the auxiliary verb cases. The subject N can be either before orafter the verb, so both the question and declarative forms are covered. Assuming the \-en" a�xshows up as an \-ed" a�x on some verbs, the object I covers all of (282b), 988, 1062, 1113, and1129. The rightmost grammar entry in �gure 6.12 represents the ambiguity we are concerned with.This grammar entry would have to be used in (282a), (282b), and (7.) through (9.), since at thepoint when \have" is encountered there is insu�cient evidence to choose between the main verband the auxiliary verb cases. In all the other cases the subsequent word is su�cient evidence todisambiguate. The subsequent word would also be su�cient if the NP after \have" were markedfor case, since in this situation the case would be on the �rst (and only) word in the NP. If the�rst NP is ambiguous as to its case, then the rightmost grammar entry needs to be used. The NPis attached to the �rst N argument, and then the remainder of the sentence can be attached toeither, but not both, of the other argument nodes. In the case of (282b) and (7.) there is a furtherambiguity. This is the same reduced relative/main verb ambiguity discussed for \found" above, andsince the main verb \taken" is also very likely to be transitive, it can be disambiguated as in thatcase, using subsequent word lookahead. While it is unappealing to have this additional grammarentry just for dealing with this one case of ambiguity, at least it has been shown that NNEP doeshave the ability to handle it. Perhaps a more extensive investigation of auxiliaries would lead to abetter analysis.Gibson gives (282c) and (282d) as examples of the same phenomena as (282a) and (282b), butunder the analysis of the copula being used here, these examples are simply an ambiguity betweenmodi�er and argument attachments. Under this analysis \is" takes two arguments, a subject NP,and an object NP which has a nonzero nonone probability of already being headed. The \in" PP30The need to specify this generalization about this argument is the reason inection is being used as the head ofa verb projection rather than the verb. If this is an N argument then it needs to already have its head noun, andif it is an I argument then it needs to already have its inection. As will be discussed below, the need to representthe di�erent uses of \that" in a single grammar entry forces functional head to be used for both having a determinerand having a complementizer. Thus this set of generalizations of terminal valued features across categories is theonly one allowed by the data considered here. The need for descriptions to be partially speci�ed in the ways whichexpress the required local ambiguities is the central consideration for determining the proper generalizations in thelanguage for specifying constituent structure. This is in sharp contrast to the motivations for such generalizations incompetence linguistics, which is not concerned with ambiguity.31This version of \taken" is the head of a reduced relative clause.157
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6.4 Handling the Parser's Resource BoundsBecause various of NNEP's computational resources are bounded, it is important to test it onsentences which might require the violation of these bounds. This section characterizes how NNEPcan handle the bounds on its resources, and discusses their linguistic implications. At any onetime, NNEP can only store at most ten nonterminals, two nodes on the public node stack, and fourtree fragments. The constraint on the number of instantiations of binary predications that can bestored is subsumed by the later two constraints. There is also a constraint on the representationof linear precedence constraints. The implications and lack of implications of these bounds areinvestigated using the example sentences given in the chapters on processing overload in (Gibson,1991).34 Unfortunately, (Gibson, 1991) does not include examples which illustrate people's limitedability to attach modi�ers to the right frontier of a long right branching sentence, and I know ofno source for such examples. This limits the investigation of the implications of the bound on thenumber of nonterminals. However, as discussed in section 4.1.3, theories of restrictions on suchmodi�cation are compatible with this bound. Also, the examples addressed here do provide goodevidence that this bound does not need to be violated in other cases, and they do address the issuespertinent to the bounds on NNEP's public node stack and tree fragment list. These later boundsare consistent with the acceptable sentences, and account for many of the unacceptable sentences.As discussed in chapter 4, the bounds on NNEP's resources are motivated by the limitations of theS&A architecture. Biological constraints restrict the number of variables to at very most ten. InNNEP variables are used to refer to nonterminal nodes, so it can store information about at mostten nonterminal nodes at a time. The public node stack and the tree fragment list are implementedusing predicates to distinguish between their di�erent positions and rules which manipulate thosepredicates appropriately as their con�gurations change. The maximum depth of the stack andthe maximum length of the list are determined by the number of di�erent positions which canbe distinguished using the predicates. This means these sizes have to be bounded, since a givenimplementation has a �xed number of predicates. The actual bounds can be arbitrarily large,since an arbitrary number of predicates can be dedicated to this use. However, there is a naturalassumption to make about the number of predicates which are used. There are some predicateswhich are needed for rules other than those used to manipulate the con�gurations of the stackand list. Since these predicates are independently motivated, it is natural to assume that thesepredicates are available for the rules which manipulate the con�gurations of the stack and list. Itis also natural to assume that these are the only predicates used for this purpose. Any additionalpredicates would only be needed when the stack or list was beyond its otherwise maximum size, andthe circumstances in which this added size would be useful seem to be rather rare. If we assumethat all and only the independently motivated predicates are used in manipulating the stack andthe list, then their maximum sizes are the ones used for NNEP. The list of tree fragments can befour long and the public node stack can be two deep.The independently motivated predicates which NNEP can use to represent the list of tree frag-ments are right fragment, adjacent fragment, and matrix fragment. Right fragment is needed forvirtually all NNEP's operations, adjacent fragment is needed for internal attaching and sometimes34As for the other sentences from (Gibson, 1991), the current simulation of the connectionist implementationof NNEP has not been run on the data from these chapters. This is because of the large number of sentences (55acceptable sentences), and the time required to handcode the various grammar entries. Also, because the simulation'sdisambiguation mechanism does not have the statistical information it needs to make e�ective decisions, it uses moreresources than are necessary to avoid making these decisions. This would require a lot of time consuming manualintervention into disambiguation decisions in order to test the resource requirements of the underlying model.161



for double attaching, and matrix fragment is needed to prevent leftward attaching from applyingto the matrix root. These predicates allow NNEP to distinguish between four positions on the listof tree fragments, three for the three predicates, plus one for all the remaining nodes in the parserstate. Thus the list of tree fragments can be at most four deep before something goes wrong.For the public node stack, NNEP needs to know what node is the public node. In the case of tracenodes, this results in a maximum stack depth of two, since only trace nodes are neither parentednor anchored, so the non-public trace node on the stack can always be determined. In the case oftree fragment roots, the description of NNEP given in the previous chapters doesn't provide anypredicates which distinguish those which are on the public node stack from those which are not(other than for the public node itself). However, as was mentioned in chapter 4, the constraint onthe storage of binary relations requires that the binary relations for nodes on the public node stackand the binary relations for other tree fragment roots need to be stored in separate predicates.Thus the tree fragment roots on the public node stack can be distinguished from the other treefragment roots by which binary predicates refer to them. Thus also in this case, the public nodestack can be two deep, one position for the public node and the other for the other node referredto by the public node's binary predicates. This division of the binary predicates also means thatonce a tree fragment root is placed on the public node stack, it can't be dropped from it. If it weredropped, it would lose all the information stored in the binary relations.The constraint necessary for implementing the inheritance of linear precedence relationships is notstressed in this chapter because the data on this issue is rather limited. Gibson (1991) does notdiscuss any data which is pertinent to this issue, but there is only one pertinent case, and I havedevised some sentences to illustrate the phenomena. Unfortunately the judgments in this case arenot entirely clear. Partly for this reason and partly because the data is so limited, there are severalpossible analyses which I have not been able to tease apart. The possibility I am assuming is thatat any one time linear precedence constraints are only represented for one set of nonterminals whichare preceded by other nonterminals and do not dominate any words. Other constraints, such as astack, are possible, but these options make more assumptions about the cases in which these nodescan occur. For the purposes of this investigation I will stick with the simpler constraint.The examples which are pertinent to this last constraint are given in (12.) through (14.) (myexamples). Ordering constraints with terminals are represented with predicates and by restrictingthe applicability of grammar entries, so only ordering constraints between nonterminals are actuallyrepresented as linear precedence relationships. In addition, once a nonterminal is no longer on theright frontier, ordering constraints on it are no longer important. Thus the only linear precedencerelationships which need to be represented are those between two nodes which are both on theright frontier. Such constraints only occur in the case of ditransitive verbs. Sentences (12.), (13.),and (14.) contain one, two, and three ditransitive verbs, respectively. Sentence (12.) is �ne, but(13.) is surprisingly di�cult, and (14.) is unacceptable. A state in the parse of (13.) is shown in�gure 6.16. After the second ditransitive verb, the parser state must hold two nodes which havelinear precedence constraints on them, which is too many for NNEP to process correctly under theconstraint being assumed here. This may explain the unnaturalness of this sentence. On the otherhand this sentence is not completely out. This may be because the parser can simply throw awaythe �rst node's linear precedence constraints and still parse the sentence e�ectively, using a recencypreference or something equivalent. This may be the right explanation for these phenomena, buton the other hand the data is so limited and unclear that any number of other factors could explainthe pattern. In any case, the complete unacceptability of (14.) shows that the number of nodeswhich NNEP needs to represent and inherit linear precedence relationships for is at most two. Thelimited situation in which these nodes occur means that several possible strategies are possible for162



processing these (at most) two nodes within the locality constraint on rules.(12.) John gave the man money to buy roses with.(13.) ? John gave the man who bought the woman roses money to buy them with.(14.) # John gave the man who bought the woman that told Mary stories roses money to buythem with.
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Figure 6.17: A sentence with four tree fragments and two stacked nodes.
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Figure 6.18: The parse of (377a).Before the bound on the depth of the public node stack can be discussed, a strategy needs to bechosen for when to specify the roots of tree fragments as the public node. If a node is speci�ed asthe public node, then double attaching can be used, instead of leftward attaching and then internalattaching. On the other hand, only two nodes can be stored on the public node stack at one time, sothis resource should be conserved. NNEP uses a compromise strategy, where a tree fragment rootis speci�ed as the public node only if there is no public node at the time. Thus a sentence initialsubject will always be speci�ed as the public node, unless the �rst word of that subject introducesa trace node. Trace nodes must always be on the public node stack, regardless of whether thereare other nodes already on this stack.The fact that the above strategy speci�es sentence initial subjects as the public node is whatexplains the standard contrast in center embedded sentences, illustrated in (349), (342a), and(342b). As shown in the parse state for (342a) in �gure 6.19, the �rst subject is speci�ed as thepublic node because at that point in the parse there is no public node. The �rst relative clause thenintroduces a trace node, which must be on the public node stack. When the second relative clauseis encountered, that trace node must also be put on the public node stack, but the stack is alreadyfull, so the sentence is predicted to be unacceptable, as desired. Sentence (370a) demonstrates thatthis problem goes away when one of the relative clauses is replaced with a nominative complement,as shown above in �gure 6.17. In this example the subject is still speci�ed as the public node, butsince only one trace node is subsequently introduced, the sentence is acceptable.164



(349) The man that Mary likes eats �sh.(342a) # The man that the woman that won the race likes eats �sh.(342b) # The man that the woman that the dog bit likes eats �sh.(370a) The possibility that the man who I hired is incompetent worries me.
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Figure 6.19: A parse with one too many stacked nodes.Sentences (351a) and (351b) (originally from (Eady and Fodor, 1981)) illustrate that the previouse�ect is not just due to the number of sentence embeddings. These sentences are the same as(342a) and (342b), except \the man" gets its immediate parent before the �rst relative clause.When the �rst pertinent subject is encountered, a trace node has already been introduced by the�rst relative clause, so the subject is not speci�ed as the public node. Since the two trace nodes�t on the stack by themselves, there are no constraint violations. This is shown in the parser statefor (351b) given in �gure 6.20. Note that this parser state has the same number of subjects andtrace nodes as shown in �gure 6.19 for (342a), but since they are introduced in a di�erent order,di�erent predictions are made.(351a) I saw the man that the woman that won the race likes.(351b) I saw the man that the woman that the dog bit likes.The correlation between the acceptabilities of (17.) through (19.) and (20.) through (22.) (myexamples) further illustrate the parallel between subjects which are introduced before any tracenodes and trace nodes themselves. In (17.) through (19.) \the man" is introduced before any tracenodes, so it is speci�ed as the public node. In (20.) through (22.) \what" introduces a trace nodebefore \the man" is encountered. This trace node �lls the same position on the stack as \the man"in (17.) through (19.), so the pattern of acceptability is predicted to be the same, as desired.(17.) I said that the man that the woman likes eats �sh.(18.) # I said that the man that the woman that won the race likes eats �sh.(19.) # I said that the man that the woman that the dog bit likes eats �sh.(20) I wondered what the man that the woman likes eats.(21.) # I wondered what the man that the woman that won the race likes eats.(22.) # I wondered what the man that the woman that the dog bit likes eats.Wh- questions pattern the same as the indirect question in (20.) through (22.), as shown in (23.)(my example), (381a), and (381b), and their resource usage is also the same.165
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(401a) # Surprising though the information that the weapons that the government built didn'twork properly was, no one took advantage of the mistakes.(356a) # That that Joe left bothered Susan surprised Max.(356c) # That for Joe to smoke would annoy me is obvious.Despite the fact that not all unacceptable examples of center embedding have been accounted forby this model, an interesting and substantial subset of them can be explained in terms of theconstraints imposed by the mechanisms which NNEP needs to compensate for the computationallimitations of the S&A architecture.6.5 The Diversity of LanguageBecause there is no formal proof that the speci�c phenomena discussed above completely coverthe problems that the limitations of the Shastri and Ajjanagadde architecture pose for constituentstructure parsing, it is necessary to check for errors in the analysis by testing NNEP's ability tohandle the diversity of phenomena found in natural language. This section discusses such a test.The test uses a set of 50 thirteen word sentences which were randomly selected from the Browncorpus by Ezra Black in 1991.35 Exceptions to this test were only allowed for phenomena whichhave been explicitly excluded from the phenomena the parser is intended to cover. In particular,NNEP can not parse coordinations, or gaping in comparatives, and there are many disambiguationdecisions it can't make. Sentences which include these phenomena were still required to haveall the other aspects of their parse done properly. The rest of this section discusses why theexcluded phenomena should not pose any particular problem for extensions to NNEP within theS&A architecture.The problem of choosing between multiple possible parses has already been discussed in sections 4.5and 6.3. Section 6.3 shows that NNEP is capable of representing the information that the parserneeds to know for disambiguation when it needs to know it, without having to represent informa-tion which it can't be sure of. In order to make disambiguation decision using this information,the parser needs to make use of a large amount of statistical information about distributions inthe language. Connectionist architectures are rather good at representing and calculating withstatistical information through the use of continuous valued features and soft constraints. Sec-tion 4.5 showed one way in which this ability could be used in NNEP. Because this mechanismuses its statistical information in a massively parallel fashion, the large quantity of this informationdoes not pose a problem for NNEP's processing. The one aspect of disambiguation which preventsthe testing of the proposed disambiguation mechanism is the collection of this large amount ofinformation. Connectionist architectures are also rather good at this aspect of statistical decisionmaking. Other approaches to learning and probability estimation could also be used to collect the35Currently, the simulation of the implementation of NNEP has been run on the �rst 20 of these sentences. Forthe excluded phenomena discussed in this section, the portion of the sentence which contained this phenomena wasexcised before it was run. In the case of coordinations, the sentence was run twice, once for each of the conjuncts.This resulted in 24 runs. There were 10 manual interventions, three in one sentence, two in two sentences, andone in three sentences. Three of these were lexical choices, and the rest were internal attaching choices. No posthoc adjustments of lexically speci�c parameters were made to eliminate these interventions, since there are so manysuch parameters that this would almost certainly result in no remaining interventions. These 20 sentences and theseinterventions are given in appendix A. Grammar entries and parses have been speci�ed by hand for all the sentences.For the excluded phenomena discussed in this section, the desired result was speci�ed, but the process by which thatresult is achieved was not. 168



required information, given the clear relationship between the calculations described in section 4.5and probability estimation. Since the analysis in section 4.5 broke the estimates up into simplestatistically independent components, learning them should be tractable. Since the question oflearning is beyond the scope of this dissertation, questions of disambiguation were not addressedin any signi�cant way when testing NNEP on the Brown corpus sentences.36Other than disambiguation, the most common phenomena which NNEP is not currently designedto handle is coordination. Coordination is a very hard phenomena, and many parsers have dif-�culty with it. One approach which has been rather successful at characterizing coordination isCombinatory Categorial Grammar (Steedman, 1985, 1987). As discussed in chapter 3, there is arather close relationship between CCG and SUG. In particular, the forgetting operation de�ned insection 3.4 allows NNEP to abstract away from information in SUG descriptions in the same wayas CCG abstracts away from information in its categories. It is this ability to abstract that allowsCCG to handle coordination. By abstracting away from the irrelevant di�erences between phrases,CCG can use the simple generalization that phrases of the same type can be coordinated to producea phrase of that type. In SUG forgetting can be used to abstract away from the di�erences betweentwo tree fragment descriptions. NNEP could process coordinations by �nding phrases with thesame abstract SUG description on either side of the coordinating word, and parsing the sentence asif those phrases were a single phrase with that SUG description as its type. Parsing coordinationswould then involve constructing the SUG description for the second conjunct, �nding nodes in theSUG description for the preceding portion of the sentence which match with nodes in the secondconjunct's description, forgetting the nodes in the coordinated phrases' descriptions which are notinvolved in this match, and constructing the result of conating these pairs of matched nodes. Theprocess by which the parser �nds these matches and constructs the resulting structure has not yetbeen developed. The issue of coordination obviously needs much more investigation.Another problem arose with the construction \more than". The three examples of this constructionare given below.120: We're getting more pro letters than con on horse race betting, said Ratcli�.631: India is the most populous United Nations member with more than 400,000,000inhabitants.697: The odds favor a special session, more than likely early in the year.All these examples involve a missing constituent in the argument to \than". In 120 it is \letters",in 631 it is \inhabitants",37 and in 697 it is \early in the year". This is similar to the kind ofgaping that is found in coordination, and perhaps a CCG style analysis of this phenomena couldbe incorporated into NNEP. This is a very complicated phenomena, but I know of no reason whya parser like NNEP would have any more di�culty with it than other parsers.36The simulation of the implementation does support continuous valued parameters, and this ability was used torepresent distinctions such as the preference for argument attachments over adjunct attachments. Some disambigua-tion decisions were made on the basis of this kind of information.37There is an alternative structure for 631 which has \inhabitants" as part of the argument to \than". This ispresumably not the intended structure of the sentence, since this would mean the additional things are not inhabitants,which would have nothing to do with population. 169



Chapter 7ConclusionThis dissertation has shown that the Shastri and Ajjanagadde connectionist computational archi-tecture is adequate for recovering the syntactic constituent structure of natural language sentences,and has provided examples of signi�cant predictions that the limitations of the architecture makeabout the nature of language. This was done by �rst characterizing the nature of computationin the S&A architecture in terms of symbolic computation under a set of constraints. A speci�cparsing model was then designed to comply with these constraints and constraints from the natureof the parsing task. This model was used to demonstrate the adequacy of the S&A architectureby implementing it in the architecture, and testing it on all the phenomena which are of particularconcern, plus an approximately unbiased sample of text. The results of these tests show that theconstraints imposed by the architecture do not interfere with a parser's ability to recover the syn-tactic structure of natural language sentences. In addition, the results of these tests give examplesof some signi�cant properties of language that can be explained by these computational constraints.Thus the study of parsing in this connectionist architecture is not merely a question of implement-ing pre-existing theories of grammar and parsing, but can help inform the study of the nature oflanguage. The biological motivations for the architecture make this later point more signi�cant,since they provide independent motivations for this particular set of computational constraints,and therefore give them explanatory power. These insights into the nature of language in turn helpin the development of natural language processing technology. Now that we know how symbolicapproaches to language processing can be adapted for use in a connectionist network, the particularabilities of connectionist networks can be used to solve those problems which symbolic approacheshave had the most trouble with.In its �rst section, this chapter concludes the argument for the adequacy and signi�cance of theS&A architecture by arguing that the tests given in the last chapter address all the phenomenathat are of particular concern given the limitations of the architecture. Then the second sectionsummarizes the work presented in this dissertation. Some signi�cant aspects of this work that arenot directly part of the argument for adequacy and signi�cance are presented in section 3. Thisleads to a discussion of some promising future work that the work done so far makes possible. Thatdiscussion concludes this dissertation. 170



7.1 The Adequacy and Signi�cance of the ArchitectureThe adequacy of the S&A connectionist architecture for constituent structure parsing was demon-strated by addressing all the implications of the architecture's computational constraints in thetesting of a parser which has been implemented in this architecture. The speci�c phenomena whichare of concern given these constraints were identi�ed and data sets were selected for testing inthese areas. To make sure nothing was missed in this analysis, the parsing model was also testedon an essentially unbiased set of sentences. The proposed parsing model was successful in all thesetests. In addition, the results of these tests provided examples of signi�cant predictions that thearchitecture's constraints make about the nature of language.The constraints imposed by the S&A architecture and the nature of the parsing task were identi�edin chapter 2, and are listed again below. The implications of each of these constraints were addressedin testing the adequacy of the S&A architecture. The architecture's predictions about the natureof language were mostly due to constraint 4 and the bounds on the data structures that are neededto comply with this constraint.1. information about at most ten nodes stored at a time2. no explicit representation of disjunction between predications3. at most three tuples of unary predicates for storing relations4. at most one variable can appear in both a rule's antecedent and consequent5. input is incremental6. parse in quasi-real time7. produce maximally incremental output8. produce monotonic outputThe bound on the number of nonterminal nodes was addressed by testing NNEP on center embed-ding data (section 6.4). This test found that this bound was not a problem for any of the acceptablesentences. While this data addressed the cases where a large number of nodes have to be storedbecause they are unambiguously needed, it did not address the cases where a large number of nodeshave to be stored just in case one of them is needed. No appropriate data set was found for thesecases, but previously proposed theories of constraints on this phenomena restrict the number ofsuch nodes which need to be stored to within the bound of ten (section 4.1.3).The prohibition against disjunction combines with the requirements for incremental and monotonicoutput to constrain the parser's representation phrase structure information. To produce incremen-tal output, the parser needs to be able to represent everything it knows about the phrase structureof the sentence. To produce monotonic output, the parser needs to be able to avoid representinginformation that it can't be sure of. Thus the parser must be able to accurately characterize thephrase structure information about a sentence, and do so without using disjunction. The testof NNEP's ability to express phrase structure analyses (section 6.1) demonstrated this ability forthe unambiguous case. For the case where multiple analyses are locally possible, this ability wasdemonstrated using data pertaining to ambiguity resolution (section 6.3). For all the ambiguitieswhich did not cause garden paths in either of their completions, NNEP was able to represent bothpossible completions until there was enough evidence to resolve the ambiguity (except one, wherethe data is unclear).Parsing in quasi-real time means that the processing done between any two words and between thelast word and the completion of the parse can only take a bounded amount of time. Each parser171



action takes a bounded amount of time, so this constraint requires that the number of actions donebetween any two words be bounded. Only one action is necessary to combine a word's grammarentry with the parser state. Since each internal operation results in one less unparented node, andthere are only a bounded number of unparented nodes in the parser state, only a bounded number ofinternal operations can be done between any two words. The only other action the parser can takeis to combine a nonlexical grammar entry with the parser state. Nonlexical grammar entries cangenerally be precombined with lexical grammar entries, thereby eliminating the need for separateparser actions to use them, except in the cases where nonlexical grammar entries are needed todelay resolving an ambiguity. In the test of NNEP's ability to delay commitments long enough to�nd disambiguating information (section 6.3), never more than one nonlexical grammar entry hadto be used between any two words. Thus NNEP only needs to do a bounded number of actionsbetween any two words, and parsing can be done in quasi-real time.The constraint that bounds the number of instantiations of relations that can be stored is closelytied to the locality constraint on rules, since only the processing of relations might require pairs ofnodes to be propagated from a rule's antecedent to its consequent. This is manifested in NNEPby the fact that constraint 3 is subsumed by the bounds on the data structures that are used tocompensate for constraint 4. Thus no additional testing was needed for the bound on the numberof instantiations of relations that can be stored.The locality constraint on rules can have implications for any computation that involves relation-ships between nonterminal nodes. NNEP is designed so as to minimize the use of relations. Theonly relations that are in principle needed involve nodes that represent traces for long distancedependencies, the roots of unattached tree fragments, and nonterminals that are speci�ed as pre-ceded by other nonterminals. In the later case, the simplest solution is to use two unary predicatesrather than a binary predicate to represent the ordering constraints. This can only work if the nest-ing of the relevant constructions is highly constrained. The center embedding data on this issue(section 6.4) indicates that this prediction holds. For relations involving the roots of unattachedtree fragments, the locality constraint on rules requires that rules that calculate these relationsand attach the tree fragments must be constrained to only apply to one tree fragment root at anygiven time. The nested nature of English sentences ensures that the rightmost tree fragment rootcan always be this unique node. All the testing bears this out. In order to keep track of whichtree fragment is the rightmost one, a list of tree fragments is needed. This data structure can beimplemented with a set of unary predicates to keep track of the list order, and rules to updatethese predicates. However, since a network can only have a �xed number of predicates, the lengthof the list must be bounded. If only independently motivated predicates are used to representthe state of the list, then it can only be four tree fragments long. Testing on center embeddingdata (section 6.4) indicates that this length is su�cient, and this constraint correctly predicts somecenter embedded sentences to be unacceptable.The most interesting implications of the locality constraint on rules involve the mechanisms NNEPneeds to use to process long distance dependencies. Recovering long distance dependencies requirescalculating which nodes might be the gap site for a trace node. To calculate these relationshipswith rules that can propagate information about only a single node, these rules must be restrictedto only apply to one trace node at a time. For English this is the most recently introduced tracenode, so a stack data structure is needed to keep track of which trace node was introduced mostrecently. Testing on long distance dependency data and a comparison with the analysis of longdistance dependencies given in (Kroch, 1989) (section 6.2) showed that this stack constraint didnot interfere with recovering long distance dependencies. This comparison also showed that thisconstraint correctly predicted several constraints on long distance dependencies, including some172



that required Kroch to go outside of the power of his formalism to characterize. As with thelist of tree fragments, this stack data structure can only be of bounded depth. Assuming onlyindependently motivated predicates are used to represent the state of the stack, it can only be twodeep. Given a particular independently motivated strategy for when to make use of this stack,this bound does not interfere with the parsing of the acceptable sentences in the center embeddingdata, and it correctly predicts the unacceptability of a number of these sentences (section 6.4).The tests done in speci�c areas address all the implications of computational constraints on theparsing model, but to make sure that nothing has been missed in this argument, NNEP was alsotested on an essentially unbiased set of sentences. This test pointed out three phenomena whichNNEP is not currently equipped to handle, but these are all di�cult problems for any parsingmodel, and they do not seem to be any harder for models implemented in the S&A architecture. Infact, there are reasons to believe that each of them will be easier for this type of model then theyare for most parsers. The most important of these phenomena is resolving ambiguity. As arguedin section 6.3, when NNEP needs to resolve an ambiguity, it has the information needed to do so.This information includes the current representation of the sentence's phrase structure, the next twowords in the input, and any input from other language processing modules. Any of this informationmay be noncategorical, so statistical information can be used in this decision. Section 4.5 gave oneplausible mechanism for statistical ambiguity resolution, and in general connectionist networks arequite good at these kinds of tasks. Robust ambiguity resolution in general requires both automaticlearning of statistical information, and the ability to use that information in decision making.Connectionist networks have both these abilities.The other two phenomena which were encountered but not handled were coordination and gapingin comparatives. As sketched in section 3.4, there is a close relationship between the derivationstructures of SUG and those of Combinatory Categorial Grammar (CCG). Since NNEP followsSUG derivation structures when parsing, it should be possible to adapt CCG's successful analysisof coordination for use by NNEP. As discussed in section 6.5, under one such analysis NNEP wouldbuild the right conjunct as a separate tree fragment, and then �nd a matching subtree in theadjacent tree fragment. Nodes in these subtrees which were not involved in the match would beabstracted away from using forgetting, the matching nodes in the subtrees would be conated, andthe parse would be continued using the single conated subtree. At the moment this analysis is justspeculation, but it provides reason to believe that a model of parsing like NNEP could be extendedto handle coordination. As also discussed in section 6.5, a similar argument applies to gaping incomparatives. Such gaping is similar to gaping in coordination, so there is reason to believe that asimilar mechanism can be used for this phenomena.7.2 SummaryThis work has provided substantial evidence that the Shastri and Ajjanagadde connectionist com-putational architecture is adequate for recovering the constituent structure of natural languagesentences. A speci�c model of constituent structure parsing in the S&A architecture was presentedwhich addresses the limitations of this architecture. This model, called a Neural-network NodeEquating Parser (NNEP), was tested in the areas which are of particular concern given these limi-tations, and with an approximately unbiased sample of text. The results show that the limitationsof the architecture do not interfere with a parser's ability to recover the constituent structure ofnatural language sentences. In addition, the results of these tests indicate that some interestingproperties of language can be explained by these limitations. This makes the study of parsing173



within this architecture interesting for the study of the nature of language, as well as for the studyof parsing and connectionism.The speci�c areas which were addressed in the testing of the proposed parsing model were: express-ing phrase structure analyses, recovering long distance dependencies, representing local ambiguities,and staying within the architecture's resource bounds. For the �rst area a general technique wasgiven for mapping phrase structure analyses from theories of linguistic competence to a grammaticalrepresentation which is appropriate for NNEP. A speci�c mapping was given for the phrase struc-ture analyses used in (Kroch, 1989). (Kroch, 1989) was chosen because it surveys some importantissues in the study of linguistic competence, and because it uses a representational framework whichis similar to the one used in this dissertation. The issues addressed in (Kroch, 1989) are primarilyconcerned with the nature of long distance dependencies, so it also formed the basis of the argu-ment that NNEP can recover all acceptable long distance dependencies. NNEP's representationsare adequate for expressing the information which Kroch shows is necessary for determining whatthe possible long distance dependencies are, and its computations are adequate for successfullyusing that information in parsing. In addition, due to the computational limitations of the S&Aarchitecture, NNEP is unable to recover some classes of dependencies which are ruled out by Krochwithin his competence theory. These computational limitations were used to explain pre-inectionsubject islands, the that-trace e�ect, and the limited possible extractions out of wh- islands. Thelater phenomena are particularly interesting, because accounting for this data required Kroch to gooutside the power of his grammatical framework. If the burden of characterizing this phenomenais shifted from the competence theory to the processing theory, then the competence theory wouldbe signi�cantly simpli�ed.The testing of NNEP's ability to represent local ambiguities and stay within its resource boundswas done using the data in the appropriate chapters of (Gibson, 1991). (Gibson, 1991) was chosenbecause it provides a survey of the phenomena involved in ambiguity resolution and processing over-load. For each acceptable example of a local ambiguity given in (Gibson, 1991), representations aregiven which demonstrate how the resolution of that ambiguity can be delayed until disambiguatinginformation is found. The question of what constitutes disambiguating information is addressedby providing speci�c disambiguation strategies. There is one pair of sentences ((247a) and (249a))for which an appropriate representation could not be found, but in this case my intuitions disagreewith Gibson's, and we both agree that experiments are needed to resolve the issue. No signi�cantattempt was made to explain when people do have trouble with local ambiguities, and only onesuch situation was discussed. For the acceptable example sentences in (Gibson, 1991) pertaining toprocessing overload, parses were given which do not violate any of NNEP's resource bounds. Theseresource bounds require that at any one time the parser state can have no more than ten nontermi-nals, four tree fragments, two nodes on the public node stack, and one linear precedence constraintbetween sets of nodes. The �rst constraint was not adequately tested because of a lack of data, buttheories of the relevant phenomena are compatible with this constraint. Also, this constraint neverhad to be violated for the data which is available. The other constraints were thoroughly tested,using both the data from (Gibson, 1991) and a few sentences which were devised to address speci�cquestions pertaining to these constraints. A strategy for when to use the public node stack wasalso proposed and argued for, and with this strategy many of the unacceptable sentences discussedin (Gibson, 1991) were predicted to violate NNEP's resource bounds. Although several other un-acceptable sentences remain unaccounted for, the close �t with the data which is addressed makesthe prospects of developing this model into a complete theory of these phenomena promising. Italso provides independent evidence for the data structures which were involved in the explanationof constraints on long distance dependencies. 174



In addition to the four speci�c areas in which NNEP was tested, an essentially unbiased sampleof text was used to make sure that no errors were made in the identi�cation of the phenomenawhich are of particular concern for this investigation. This sample consists of 50 thirteen wordsentences which were randomly selected from the Brown corpus by Ezra Black. There are somephenomena in this sample which NNEP is not currently equipped to handle, but none of themwould be any harder for the S&A architecture than they are in general. These phenomena are:disambiguation decisions, coordination, and gaping in comparatives. With the exception of thesephenomena, grammar entries and parses were found for each of the sentences.The model of syntactic parsing used in the above tests is designed to compensate for the limitationsof the S&A architecture while imposing as few additional constraints as possible. Towards thisend, NNEP uses Structure Uni�cation Grammar (SUG) as its grammatical framework. SUG makesextensive use of partial descriptions, including the ability to partially specify structural information.This allows a parser to specify what it needs to know about the phrase structure of the sentenceindependently from what it can't be sure of, or doesn't need to know. By providing NNEP anexpressive language for specifying what it knows, SUG allows NNEP to represent the necessaryphrase structure and long distance dependency information. By not forcing NNEP to store morethan it knows, SUG allows NNEP to represent the necessary local ambiguities. By not forcingNNEP to store what it no longer needs to know, SUG allows NNEP to parse within its resourcebounds. SUG also helps NNEP compensate for its resource bounds by providing for a representationof constituent structure that has a minimal number of nodes. Other than the prohibition againstthe use of disjunction imposed by the S&A architecture, SUG does not restrict its derivationsbeyond the requirement that the resulting description be consistent and complete. To be thisgeneral, nonterminal node equation is used as the operation for combining partial descriptions,since all formalisms involve node equations when viewed as accumulating partial descriptions ofphrase structure trees.NNEP stores SUG partial descriptions in its memory and follows SUG derivations to recover thephrase structure of a sentence. After each step in which NNEP recovers new information aboutthe phrase structure, that information is output to other language modules. The set of suchsteps which are consistent with the limitations of the S&A architecture can be characterized withsix operations. Four of these operations (equationless combining, attaching, leftward attaching,and double attaching) are used to combine a grammar entry for the next word with the phrasestructure description built from the previous words of the sentence. Two of these operations(internal attaching, and internal trace equating) perform equations between nonterminal nodeswhich are already represented in the parser state. The ability to delay attachment decisions usingequationless combining or leftward attaching, and then perform them using internal attaching,allows NNEP to represent attachment ambiguities until enough information is available to resolvethem. In order to deal with the bounded number of nonterminals which NNEP can store, thereis also an operation for forgetting nodes which won't be equated with during the remainder of theparse. In addition to these seven operations, NNEP has rules which iteratively calculate possiblelong distance dependencies. One of these rules calculates what nodes in an attached tree fragmentmight be a gap position, and one calculates what nodes' constituents might contain a gap position.These rules are adequate for �nding possible long distance dependencies, and the domain overwhich they apply is su�ciently large to express the necessary constraints on possible long distancedependencies. Because these rules do not apply to tree fragments which have not yet been attachedto the tree fragment which contains the wh- word, they can not �nd gap positions within pre-inection subjects. Because these rules must be constrained to only apply for the most recentlyintroduced trace node, many constraints on possible extractions out of wh- islands are predicted.175



NNEP has been implemented in the S&A architecture as a special purpose module for doing syntac-tic parsing. In this module's memory, nonterminal nodes are the entities, and all the informationrecovered so far about the phrase structure of the sentence is stored as predications over thosenodes. All but two of these predicates are unary predicates. The two binary predicate representwhat nodes might eventually be equated with what other nodes, and what nodes might eventuallydominate what other nodes via links which have not yet been introduced. Pattern-action rules areused to perform computations over this information. Most of these rules implement the grammarand the combination operations. For each grammar entry, there is a set of patterns and a set ofactions which compute how the grammar entry can be combined with the description in the parserstate. The patterns and actions are separated by an arbitrator, which decides which of the matchingpatterns should have its action applied. There are also patterns, actions, and arbitrators for thetwo internal equating operations. As required by the limitations of the S&A architecture, all theseoperation rules match and apply for a single nonterminal node. The movement rules and otherrules which calculate indirectly implied information are in part compiled into the actions of theoperation rules, but are in part distinct. Similarly, the information about nodes which indirectlyinuence the applicability of an operation is calculated with rules which are in part distinct fromthe operation rule patterns. Because of constraints imposed by the S&A architecture, all theserules for indirectly implied information are speci�c to a uniquely identi�able node or set of nodes.This constraint requires that the movement rules and the double attaching operation only applyfor a single node, called the public node. A stack is used to keep track of what node is the currentpublic node, thereby constraining rules involving trace nodes to only apply to the most recentlyintroduced trace node.The S&A connectionist computational architecture can be used to implement NNEP because itsupports symbolic computation. Units are used to represent properties, links are used to computerule applications, and temporal synchrony of unit outputs is used to represent which entities havewhich properties. These mechanisms allow predications over variables to be stored, and allowpattern-action rules to dynamically manipulate those predications, thereby supporting symboliccomputation. The limitations of this architecture are that the number of variables is bounded, thereis no explicit representation of logical connectives, and relationships between variables are costly tostore and compute with. Biological considerations put the bound on the number of variables at atmost ten. Because the default connective is conjunction, the memory cannot explicitly representdisjunction. Using temporal synchrony, a unit's activation can only be used to explicitly representinformation about one variable or the situation as a whole, so any relationships between variablesmust be represented in the identity of the unit. This means that any rule at the implementationlevel can only generalize over one entity. This restriction is a form of locality constraint on rules.This constraint means rules which involve relationships between individual entities, such as themovement rules, must have one of those entities be uniquely identi�able when the rule applies.The di�culty with representing relationships between variables also motivates a constraint on thenumber of instantiations of a relation that can be stored at any one time.Some additional constraint are imposed on the parsing model by the input to and output fromthe syntactic parsing module. For spoken language, and to a large degree for reading, words areinput to the parser one at a time, with a bounded amount of time between words. Thus theparser must accept incremental input, and parse in quasi-real time. The output of the parser needsto be incrementally interpretable by other language modules. Thus the parser's output must beincremental and monotonic. In conjunction with the prohibition against the use of disjunction, theselater constraints imply that the parser must be deterministic, in the sense of (Marcus, 1980). Thetotal set of constraints on the parsing model are that the input is incremental, the representation of176



the sentence's phrase structure can only include at most ten nonterminals and three instantiationsof each relation, the representation cannot use disjunction, the rules must apply to each variableindependently, parsing must be done in quasi-real time, and the output must be incremental andmonotonic.7.3 DiscussionThe work presented in this dissertation is interesting for reasons other than the speci�c claims thatare argued for. It has implications for both natural language processing technology and cognitivemodels of sentence processing.1 These implications are in part because of the computational char-acteristics of the proposed model. In addition to being incremental, deterministic, having boundedmemory, and parsing in quasi-real time, NNEP has other interesting characteristics. Because therules which implement the grammar compute in parallel, NNEP's speed is independent of the sizeof its grammar. Even the propagation delays introduced by a larger grammar won't slow down theparser, provided they are less than one period long. Also, if two such rules have the same a�ect onthe parser state, then they share the same units in the implementation. Thus the number of unitsin the implementation grows with the number of di�erent structures in the grammar, not with thenumber of words. In addition, because the computational architecture is biologically plausible, alarge amount of neurological evidence which has been di�cult to apply to abstract parsing modelscould be brought to bear. Finally, there is a clear relationship between the connectionist primitivesin the network and their symbolic interpretations. This allows any future work on such parsersto take advantage of both the results from investigations into connectionism and the results frominvestigations into symbolic sentence processing. Since the successes of these two approaches aregenerally complementary, this prospect holds great promise for advances in the study of sentenceprocessing.For the development of natural language processing technology, NNEP's e�ciency and the prospectof taking advantage of connectionist methods make NNEP an interesting model. Because NNEPis deterministic and massively parallel, a parallel implementation of it could be extremely fast.Also, the success of connectionist networks in other learning problems makes the possibility ofstudying grammar induction with a model like this one promising. This fact and the ability todo evidential reasoning within the S&A architecture suggest that such a model could also begood at resolving syntactic ambiguities. Grammar induction and disambiguation are currently thegreatest challenges for syntactic parsers. The symbolic interpretation of the network should allowconnectionist methods to be used in these investigations while still taking advantage of our currentunderstanding of the issues involved. For example, because the current parser shares componentsof the network across grammar entries for di�erent words, learning in this network would inherentlygeneralize training examples pertaining to one word to the other words which share its grammarentry's components. Because we know what linguistic constructs di�erent portions of the networkimplement, other types of sharing can be used to place linguistically motivated constraints on howthe parser generalizes in automatic grammar induction.For the investigation of cognitive models, NNEP's computational characteristics and the workwhich has already been done on center embedding and constraints on long distance dependencies1Contrary to common practice, these are not unrelated topics. The way people communicate with language is�nely tuned by years of linguistic interaction with other people. This level of communication ability requires bothknowledge of what people can understand and what they can't understand. While it is possible that research e�ortswhich ignore the data from cognitive modeling could develop a natural language processing system which has boththese abilities, I believe that developing such a system will eventually require a theory of human sentence processing.177



suggest that it may be possible to develop this parser into a model of human sentence processing.NNEP's incrementality, monotonicity, bounded memory, parallelism, speed, size, and ability tointeract with other modules comply with many researcher's beliefs about the nature of the humanparser. The successful use of connectionist networks in other cognitive models also bodes well forthis endeavor. Perhaps most signi�cantly, the ability to use biological measurements to make �negrained predictions based on the time course of processing in such a model could be a very powerfultool in developing such a model. The number of words NNEP can parser per second has alreadybeen shown to be in the right general area based on biologically determined parameters. Recentwork on event related potentials (ERP's) could be particularly interesting for such an e�ort, sincethey provide on-line measures of processing at an extremely �ne time scale.The fact that the underlying computational mechanisms which are used in this investigation arethe same as those used in the work on reexive reasoning in the S&A architecture (Shastri andAjjanagadde, 1993) is also signi�cant for cognitive modeling, since it strongly suggests that funda-mentally di�erent computational mechanisms did not have to be developed for language processing.What exactly did have to evolve for the development of the human linguistic capacity is clearly farbeyond the scope of this work, but perhaps future work on grammar induction can address thisissue.7.4 Future WorkAs suggested by the last section, there are several directions in which this work could be continued.Advances in the various areas of natural language processing technology discussed above could beapplied to broad coverage parsing. As discussed above, this work could be used in cognitive modelsof sentence processing. Also, this model of constituent structure parsing could be interfaced withother language processing modules.Developing NNEP into a broad coverage parser would involve addressing grammar induction, dis-ambiguation, coordination, and network simulation. Grammar induction is necessary because a realgrammar is too large to be hand coded. For NNEP, grammar induction could be done either byautomatically decomposing structures from preparsed corpora into grammar entries, or by startingwith a broad class of grammar entries and removing or keeping them based on their usefulness inparsing corpora. Connectionist methods use the later approach. One advantage of this approach isthat it can subsume grammar induction under statistical parameter estimation. A grammar entryis in the grammar if its probability is nonzero. Statistical parameter estimation is needed for doingdisambiguation. Disambiguation also requires that NNEP's arbitration mechanism be redesigned.Preliminary work on a Bayesian decision theoretic analysis of the parser's disambiguation task hasbegun this process. Using prior information about the distribution of both phrase structure trees(i.e. the grammar) and resource usage, these two constraints on the parser can be handled uniformlyin terms of probability of parser failure. Thus a single arbitration mechanism can choose betweenboth internal operations and combination operations. This analysis has revealed signi�cant par-allels between the learning problem faced by NNEP and those solved with the backpropagationlearning algorithm (Rumelhardt et al., 1986).One issue in adapting connectionist learning techniques to a network like NNEP is how to handle theaddition of the temporal synchrony variable binding mechanism. Given the locality constraint onrules that has been assumed here, this is rather simple. This constraint means that all adjustableparameters are in portions of the network that test or set information about individual phrase178



structure nodes or information about the structure as a whole. Both these kinds of information areavailable within individual phases of the temporal pattern of activation. Thus the same techniquesthat apply for networks that don't use temporal synchrony can be applied during each phase ina network that does use temporal synchrony. The same techniques that are used for recurrentconnectionist networks can be used to handle the fact that a computation in one phase can a�ectcomputation in another phase by setting predications about the structure as a whole.Applying connectionist learning techniques to the network developed in this dissertation will requirea couple things to be done. First, an adequate class of grammar entries of a tractable size needsto be found. The grammar entries used in chapter 6 should form a basis for determining anappropriate class. Second, the disambiguation mechanism used in the current parser needs tobe redesigned to better match the kinds of networks which connectionist learning methods aredesigned for. The preliminary work mentioned above on a Bayesian approach to parsing decisionsis a start in this project. While these problems will require a signi�cant amount of work, the successthat connectionist networks have had for similar problems makes the application of connectionistlearning methods to grammar induction and disambiguation very promising.Because of their fundamentally di�erent nature, some linguistic phenomena are not likely to beaddressed by simply adding grammar induction to the current model. Coordination is a verycommon example of such a phenomena. A special mechanism needs to be added in order to handlethe gaping which occurs in coordination and some other phenomena. As was discussed above andin section 6.5, the close relationship between the derivation structures of NNEP's grammaticalframework and the derivation structures of Combinatory Categorial Grammar suggests how sucha mechanism can be developed.In addition to the above natural language processing issues, broad coverage parsing with a parserlike NNEP requires that the connectionist network be e�ciently simulated. This in turn requiresan adequate development environment for networks of this kind. Currently the Rochester Connec-tionist Simulator is being used, which is not adequate for developing large networks with the kindsof complex link interconnections, complex unit organization, and time sensitive behavior that amodel like NNEP has. Mechanisms are needed for de�ning and using modular representations oflink interconnections and unit organization. In addition to controlling complexity, such mechanismswould allow the network to be de�ned and simulated at di�erent levels of abstraction, which couldsigni�cantly speed up simulation on serial machines. Automatic mechanisms for accounting forpropagation delays would also be extremely useful. For the work involving large corpora discussedabove, a parallel simulation of the network may be necessary.Future work on a parser like NNEP could address several issues in cognitive modeling. Morework could be done on computational explanations for constraints on long distance dependencies,and for constraints on center embedding. Garden path phenomena were only touched on in thisdissertation, and more work in this area would likely be fruitful, especially if combined with a theoryof ambiguity resolution. A theory of ambiguity resolution would also be useful in an investigationof what nodes on the right frontier of a structure are available for modi�cation. This investigationwould be needed to answer the remaining questions about the implications of the architecture'sbound on the number of nonterminals which can be stored. Since resource bounds and ambiguityresolution are likely to be involved in the explanation for the ordering preferences associated withheaviness phenomena, it would be interesting to investigate both the mechanisms and motivationsfor heavy shift in a model like NNEP. The biological plausibility of the computational architecturemakes modeling on-line measures of sentence processing another interesting area for future workon a parsing model like NNEP. 179



The above research directions could all be done mostly within a model of constituent structureparsing. Eventually such a model needs to be embedded in a larger model of language processing,so it would also be fruitful to investigate interfacing a parser like NNEP with other languageprocessing modules. From the input side, NNEP could be connected with a model of speechrecognition. Under the current disambiguation mechanism, the speech recognition module wouldoutput probability distributions over word-tag pairs, where the word is the next word in the inputand the tag is the category of the subsequent word in the input. From the output side, a modulefor constructing predicate-argument structure could be connected with NNEP. This would likelyrequire a more complex interface, since some of the issues now addressed in NNEP are probablybest handled within the predicate-argument structure module. In particular, what nodes are footnodes and what nodes are extractable are probably determined within this module. This wouldrequire an interface which allowed constraints from the predicate-argument structure module tobe communicated to the constituent structure module. Similar mechanisms would also be neededto interface NNEP with a discourse processing module. NNEP outputs a sequence of statementsabout how it is constructing the constituent structure of the sentence. Using a grammar which gavethe relationships between constituent structure nodes and predicate-argument structure nodes, thepredicate-argument structure module could interpret these statements as instructions for buildingthe predicate-argument structure.2 Although sometimes these instructions would be ambiguous,most of the structural ambiguities would be resolved at the level of the constituent structure.It is indicative of the nature of this investigation that the work which it could lead to is so abundantand diverse. A question such as the adequacy of a computational architecture for a task inherentlyinvolves a broad range of issues in that task. Fortunately, the results of this investigation havebeen worth the e�ort. By demonstrating that there is no problem in constituent structure parsingwhich prevents the S&A architecture from performing this task in general, we are now justi�ed inspending time investigating speci�c parsing issues using the S&A architecture.
2Synchronous Tree Adjoining Grammars (Schabes and Shieber, 1990) provides a similar analysis of the relationshipbetween these two levels of representation. 180



Appendix ADisambiguation InterventionsThe following two lists give the sentences which have been run on the computer simulation of theconnectionist implementation of the parsing model of this dissertation, and the interventions whichwere needed. Sentences with conjunctions were run twice, once for each conjunct, and these arelabeled \n.1" and \n.2". In addition, \than con" was excised after \letters" in sentence 120.The 18 Sentences from (Kroch 1989)(2) On Thursday, what will you buy?(3a) ? On that shelf, how many books can �t?(5) After the party, I wonder who will stay.� picked \stay" for internal trace equating of topic's trace(7) After the party, who will stay?(23b) When does he think that we left?� picked \left" for internal trace equating of \when"'s trace(28a) I saw an old St. Bernard with a limp yesterday.� picked \Bernard" for attaching of \with"(28b) I saw yesterday an old St. Bernard with a limp.(29a) An old St. Bernard with a limp came by yesterday.(30) Which old St. Bernard came by yesterday?(36) Which painting did you see?(37) Which painting did you see a copy of?(38) Which painting did you see a photograph of a copy of?(50) ? Which book did you reject the idea that students should read?181



� forced internal operation (attaching) after \idea"(56a) ? What were you wondering how to say?� forced internal operation (trace equating) after \to"(60a) I knew which book the students would forget who wrote.(60b) I knew which book the TAs told us that the students would forget who wrote.(69) I know who John persuaded to visit the town.(70) I know which town John persuaded you to visit.The First 20 Sentences from the Brown Corpus Data31.1 The petition listed the mayor's occupation as attorney.31.2 The petition listed his age as seventy-one.37 His political career goes back to his election to city council in nineteen-twenty-three.� picked \election" for internal attaching of \in"120 We're getting more pro letters on horse race betting said Ratcli�.� picked \letters" for internal attaching of \on" before \betting"137 It was one of a series of recommendations by the Texas Research League.150 All Dallas members voted with Roberts except Rep. Bill Jones who was absent.156.1 Most of the �re was directed by Cotten against Dallas.� picked proper noun entry for \Dallas" (over compounding noun)156.2 Most of the �re was directed by Cotten against Sen. Parkhouse.172 Fifty-three of the one-hundred-�fty representatives immediately joined Grover as co-signers ofthe proposal.198 Bellows made the request while the all-woman jury was out of the courtroom.200 Some of the defendants strongly indicated they knew they were receiving stolen property.214 He said evidence was obtained in violation of the legal rights of citizens.� picked IP of \obtained" for internal attaching of \in"� picked \rights" for internal attaching of \of"222 He said this constituted a very serious misuse of the Criminal court processes.270 He also asked Congress to approve establishment of a national child health institute.286.1 Only eleven senators were on the oor. 182



286.2 There was no record vote.337 Mr. Nixon for his part would oppose intervention in Cuba without speci�c provocation.375 One of these men is former Fire Chief John A. Laughlin he said.409 It declares that Sunday sales licenses provide great revenue to the local government.� picked object of \declares" for attaching of \that" (to prevent it becoming a determiner)� picked \provide" for internal attaching of \to"419 The lawyer with whom I studied law steered me o� the Socialist track.426 Mr. Reama far from really being retired is engaged in industrial relations counseling.� picked leftward attaching of \being" with \really"� picked object of \being" for internal attaching of \retired"� picked IP of \engaged" for internal attaching of \in"451 At present all o�enses must be taken to Sixth District Court for disposition.516.1 He also expanded the radio system with a central control station.516.2 He also modernized the radio system with a central control station.
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