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Abstract

Previous work has demonstrated the viability of a particular neural networktectime,
Simple Synchrony Networks (SSNs), for syntactic parsing (Henderson & Lane, 191},
derson, 2000). However the output was interpreted as a score, only interpretatileunistic
way relative to other scores of the same type. In this paper we discuss a $iX tpained
using a method that allows us to interpret the output as probability estimadtese Estimates
are then used in a chart parser to find the most probable complete parse. Téns systpares
favorably to one where the probability estimates are calculated from hgeahbicounts, and
to a simple Probabilistic Context Free Grammar. We argue that this is dhe todaker in-
dependence assumptions necessary for training the SSN relative tocsthtsidels based on
frequency counts. If so, then such neural network architectures are a potéptizhtave to
statistical smoothing techniques for developing robust statistical parsers

1. Introduction

In many domains neural networks are an effective alternative to frequeasad statistical
methods. This has not been the case for syntactic parsing, but recent work halanifible
neural network architecture for this problem (SSN) (Henderson & Lane, 1998), & &ten-
derson, 1998), and this parsing method appears to be robust in the face of spansg datimi
(Henderson, 2000). However the lack of a probabilistic interpretation for thengamutputs
makes it difficult to integrate such a parser with other robust NLP syst€his paper proposes
a new version of the SSN parser whose outputs can be interpreted as probaliigtesof
structural relationships (i.e. of attachment decisions). We compare thisig@e to estimating
these probabilities using frequency counts. When used in a chart parser to findshprob-
able parse, the SSN achieves much better performance than the frequencynbtsstl This
SSN parsing system also performs better than a simple Probabilistic CéinéexGrammar
(PCFG), used to establish a baseline.

We argue that the reason that the neural network parser performs better tliaquency
based counterpart is that it can make weaker independence assumptions. o codepén-
sate for the necessarily limited amount of data available, methods whiotaés probabilities
by counting frequencies must make strong independence assumptions so as to hagatsuffici
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counts. These assumptions lead to undesirable biases in the model generated; stiitinoa
guarantee coverage of less frequent cases. Neural networks also requiredwhegeassump-
tions in order to define their input-output format, but these assumptions can be muar.wea
Because neural networks learn their own internal representations, newvatksetan decide
automatically what features to count and how reliable they are for preditiengutput. Thus
they provide a potential alternative to using smoothing techniques to find essiricatinfre-
quent cases, as is required for robust parsers.

2. TheProbabilistic Grammar Modd

This section presents the probabilistic model which is shared between tharg&Sk$ fre-
quency based counterpart. The following sections discuss a few additional asswempéde
to suit each individual technique. The shared model is based on the probabilitiesved-indi
ual structural relationships between syntactic constituents, plus labelefaphterminal con-
stituents. The labels specify things like whether the constituent is a noun phraseedo
phrase. Structural relationships specify things like the attachment of a grepakphrase to
a noun phrase, or the inclusion of a noun into a noun phrase. By specifying all such structura
relationships in a constituent structure tree we can fully specify the to@stistructure tree.

Two structural relationships are sufficient to fully specify the structumethe corpus dis-
cussed in section Jarent andgrandparent Parentis the relationship between a wardnd
the constituent that immediately dominates it in the tr€eandparentis the relationship be-
tween a word and the constituent which immediately dominates the word’s paresiitaent.
For the corpus used in this paper thggandparentrelationships are sufficient to specify all
immediate dominance relationships between two nonterminal constituents, dedanmnter-
minal constituents have at least one word of which they ar@ainent To prevent redundancy,
we only specify thegrandparentrelationship for the first such child word for each constituent.
For example the structure of a simple subject-verb sentence would be repdesente

parenic;, w; ), paren{c,, wy), N(c;), S(c2), grandparentcs, w )

wherec,, ¢, are nonterminalsy,, w, are the words (such as “John loves”), aldS are labels.
This is the structure depicted in figure 1 after the second word under “Accurm @atiput”.

To calculate an estimate for the probability of a given parse, we decomposstittnate into
one estimate for each of the labels or structural relationships in the payss#o fhis we first
apply the chain rule in a bottom-up, left-to-right order. For example to compute theljilitba
of the structure mentioned above:

P(paren(Cb w1)7 paren(C% w2)7 N(Cl)7 S(CZ)a grandparen¢027 wl) | wi, wZ)
= P(paren(cl, wl) | wh, ’UJQ)

* P(paren(Cg, ’UJQ) | paren(cl, wl), w1, ’UJQ)

x P(N(c1) | paren{cs, ws), parenfc;, wy), wy, ws)

« P(S(c2) | N(c1), parentcy, wy), parentc,, wy), wy, wy)

« P(grandparentcy, wy) | S(cz2), N(c1), parenicy, wy), paren{c;, w;), wy, ws)
Then we apply the independence assumptions of the grammar model to get the specific proba-
bilities which need to be estimated, as discussed next.

lIn the actual experiments below we use part-of-speech tags as inputieratttial words. We are using
“words” here for expository convenience.
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The first assumption is that labeling nonterminals is sufficiently simpleo{fiodataset) that
knowing a label doesn’t tell us anything the we don’t already know from the part-otkpags
for the words. This allows us to determine labels and structural relationsitipgendently of
each other. The second assumption is that nonterminals can be labeled inafigrresnsoon
as we see the first word which is an immediate child of the constituent.l&Biynithe model
assumes that the probability of a structural relationship can be estimataba as both the
word involved in the relationship and the first word-child of the nonterminadlirad in the
relationship have been seen. Later words are assumed to be independent oftiblesanic
relationships. So far we have reduced the calculation for the above exantipésftdlowing:

P(parenic;, w;) | wy)

* P(paren(cz, U}Q) | pal’en(cl, wl), wr, U}Q)

* P(N(c1) | parentcy, wy), wy)

* P(S(c2) | paren{cy, wy), paren{cy, wy), wy, wo)

* P(grandparentc,, w) | parentcs, wy), parentc,, wy), wy, ws)

The idea behind the remaining independence assumptions is that the first word wimch is a
immediate child of a constituentis a good approximation to the syntactic head aofitbitoent,
and as such determines most of the characteristics of the constituent. Excdpde head
relationships, we assume that structural relationships are independent of leachVigé also
assume that all relationships for constituents not involved in the relatiomslgjpestion are
not important. Specifically, the probability of a parent relationship is independexit ather
structural relationships, except the head relationship for the parent constiflieaprobability
of a grandparent relationship is independent of all other structural relationshipgt éxe head
relationship for the grandparent constituent and the fact that the grandchild wordbentinst
head of its parent constituent. These are somewhat strict independence assuiptioote
that we are not ignoring the prior words, so to the extent that the prior parse is unambiguous
these independence assumptions are inconsequential.

Given this full set of independence assumptions, the calculation for the abovelexam
reduced to the following:

P(paren(cl,wl) | wl)

* P(paren(cz, U}Q) | wr, U}Q)

* P(N(c1) | parentcy, wy), wy)

* P(S(CQ) | paren(CQ, U)Q), w1, wg)

x P(grandparentcy, wy) | paren{cs, wo), paren{c, wy ), wy, ws)

These are the probabilities which need to be estimated by the neural netwatk fiadquency
based counterpart. Given all such probabilities, a best first chart panssed to find the most
probable constituent structure for the sentence, in a similar way as for PCFGs

3. Estimating the Probabilities with a Simple Synchrony Networ k

We use the same neural network architecture (Lane & Henderson, 1998) and the ssene par
design (Henderson, 2000) as has been used in previous work. The neural network arehitectur

2This assumption includes the incorrect assumption that choosingamterminal as the parent of a word is
independent of choosing another as the parent, when in fact they are indompatiause a word can only have
one parent. We are currently investigating a slight modification taéual network design which should correct
this inaccuracy.
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(SSNs) is appropriate for syntactic parsing because of its ability to teameralizations over
syntactic constituents (Henderson & Lane, 1998). We will first review the pdesagn and
then discuss the probabilistic interpretation of the outputs.

3.1. Outputting the Relationships

The input-output format of the SSN parser is designed to allow us to directlpiptat as
estimates of the probabilities discussed in the previous section. The mdengjeeain defining
such an input-output format is that there aré:?) probabilities for all the possible structural
relationships, but if we wait until the end of the sentence then the SSN architecture can only
produceO(n) outputs. The SSN architecture only produces a bounded number of outputs per
constituent at any given time, and only a bounded number of constituents can be introduced
in each time step, so at the end of the sentence there are a linear number ibfi@otssand
therefore a linear number of outputs. The solution is not to wait until the end of thensente
but to produce outputs during each of thén) time steps during the course of the parS¢n)
time steps times th€(n) outputs per time step gives us the necessany’) total outputs. In
other words, we need to output the structural relationships incrementally.

The particular SSN parser used here outputs (the probabilities for) the sttuetatianships
maximally incrementally. Words are input to the parser one at a time, ahaadh word a new
constituent is introduced to act as the constituent which the word heads, if needéxlv B
we will usec; to denote the constituent which is introduced during the input of wqrdA
constituent; forms a part of the final parse if and onlyparentc;, w;), in which casew; is
presumed to be the syntactic headcpf A structural relationship is output as soon as both
the word in the relationship has been input and the constituent in the relationshijedras
introduced. This incremental output is illustrated in figure 1. When the parse igletanthe
accumulation of all the outputs fully specifies the parse, as illustratéw dtdttom of figure 1.

The output of a neural network is the activation values calculated by the netvaark's
put units. For this parser the output units are divided into three parts, one for producing es-
timates ofparentprobabilities, one for producing estimatesgsindparentprobabilities, and
one for producing estimates of label probabilities. Plaeentprobabilities can be output with
a single unit, which calculates a different output value for each constituent desicty time
step. Theparentoutput for constituent; during the time step in which word; is input is
the estimate of?(parentc;, w;) | paren{c;, w;), wy, ..., w;), or if i = j it is the estimate of
P(paren{c;, w;) | wy, ..., w;). Infigure 1 the later case applies to the despacentoutput for
NP, VVZ, and AT, and the former case applies to the degpggdntoutput for NN.

The part of the output which estimates the probabilities forgrendparentrelationships
consists of two output units, one for right branching cases and one for left branching cases
Both these output units also calculate a different output value for each constituerg each
time step. Thdeft-grandparentoutput for constituent; during time stepw; is the estimate
of P(grandparentc;, w;) | paren{c;, w;), paren{c;, w;), ws, ..., w;) (as forc, and AT in fig-
ure 1). Thesibling output for constituentc; during time stepw; is the estimate of
P(grandparentc;, w;) | paren{c;, w;), paren{c;, w;), ws, ..., w;) (as for¢; and VVZ in fig-
ure 1).

In addition to these structural outputs, there is also one output unit for each possible

3Here we are assuming that the number of constituents is linear in theemariwords. This is uncontroversial,
being implied by any lexicalized or dependency-based grammar.
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John: loves: a: joke:
Input: NP, cl VVZ, c2 AT, c3 NN, c4
c2
1 * s 3
. c c c
Output: i Cﬂ | N
NP \YAVV4 AT NN

c2 c2

c2
Accumulated: cl cl cl ¢c3 cl c3
Output | | | | | ™S

NP NP VWzZ NP VWzZ AT NP VWWZ AT NN

time

Figure 1: An example of the SSN parser’s output, depicted graphically.

terminal label. For simplicity these outputs are also incremental, butardyoutput value is
calculated in each time step. The output for labglduring time stepw; is the estimate of
P(Lk(Cz) | paren(ci, U}i), Wi, . .. ,wi).

3.2. The Soft Biases

Given enough data and enough training time, the network just described can elgcesat
timate the probabilities in the grammar model. However, given that wayahkave limited
amounts of data it is important to bias the network towards solutions which we baneegior
reason to believe will be good. We can do this with the SSN parser by adding inputis whi
will emphasize the importance of certain information, plus making use of thediwii the
computation.

Because all the words are input to the representation of each constituentrindghg earlier
input can affect a later output, and thus they are not being assumed to be independavenio
in practice a recurrent network such as an SSN will learn more about the depasleetween
an input and an output if they are close together in time. The immediate effégtsaé a form
of recency bias; the most recent input words will effect an output more thaeraagut words.
We can also make use of this property by adding input units which express informaditon t
the network should already have, but that may need emphasizing at differestdimng the
parse. For example we bias the network to pay particular attention to the toeddow each
constituent by providing the head word as an input at every time during the life of itaens
So the input for constituemnt during time stepu; includesw; as the constituent’s head, as well
asw; as the current input word. This results in the network paying particular attetithet
words that are directly related to the outputs being produced for constitugumting time step
wj, with previous input words providing an influence proportional to their recency.

We also bias the network training by providinghaw constitueninput unit which is only
active forc; at timew;. This helps thgarentoutput unit distinguish between making the
head of a new constituent;J and attachingy; to an old constituent. In addition this input helps
the network produce other outputs because the short period after this input is when most of the
outputs involvinge; will be required. For similar reasons we providéaat parentinput unit,
which is the disambiguatguharentoutput from the previous input word. This input information
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Is also correlated with nonzero outputs being required for a short time afiéswThese addi-
tional inputs have been devised in part on the basis of the author’s linguistic knowledige a
part on the basis of experimental results.

3.3. TheTraining Method

The training method we use is an extension of Backpropagation Through Time (Lane &
Henderson, 1998), but we use a different output error function, called Cross Entrogsy. Thi
allows us to train the outputs using 0/1 targets, and have the network trainiagrgerto an
output which is an estimate of the probability that the output should be a 1 given the input,
assuming that all the outputs are independent. By using a O target when a labetionsklp
Is not true and a 1 target when it is true, the network can be trained to &stimegprobabilities
of labels,parentrelationships, angrandparentelationships, given the words which have been
input so far. This covers all the probabilities in the grammar model, excejptribst of them
are also conditioned on sorparentrelationships. To achieve this we use a technique based on
mixture models (Bishop, 1995), where tharentoutputs are used as the mixing coefficients.
The effect of this technique is simply that we only train outputs in cases wherteueparent
relationships are compatible with the condition of the probability. For exampleeicase of
NN in figure 1, thdeft-grandparenbutput unit and thsibling output unit would not be trained.

4. Estimating the Probabilities from Frequencies

The standard approach to estimating the probabilities in section 2 would baki strong
enough independence assumptions that the necessary parameters can be estimdted f
quency counts. We will call this approach to estimating these probabilitieBrii@abilistic
Structural Relationships (PSR) model. In addition to all the independence assusngis-
cussed in section 2, the PSR model assumes every structural relatiandeipendent on the
word involved in the relationship and the head word of the constituent invotvekei rela-
tionship (and whether they are the same), but they are independent of all other viibigs.
independence assumption is strong enough to provide us with sufficient statiseosogiv
training data, but still captures to the extent possible the relevant infamnfatr estimating
the structural relationship probabilities. Given this assumption, all thenpeters of the above
model can be estimated by counting the pairs of the words and head words invohaathin e
relationships.

This choice for the independence assumptions of the PSR model is designed to provide
a minimal pair with the SSN model. First of all, the PSR model’'s independescengsions
subsume all the independence assumptions made to define the SSN’s input-output forrhat, whic
were discussed in section 2. The only difference between the independence asssifapthe
two models is that the PSR’s assumptions impose hard constraints in the ¢esegie SSN
model imposes soft constraints, namely the recency preferences discussetian 3.2.

5. TheExperiments

In this section we empirically test the ability of Simple Synchrony Neksdo estimate the
probabilities required by the probabilistic grammar model. We compare its pefae both
to its frequency based counterpart (the PSR model) and to a simple PCFG. dosdate the
advantages of using an estimation method that does not require strong independenpe assum
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tions, we do these tests using a relatively small training Jethandle the resulting sparseness
of training data the network must learn which of the inputs about a constituent ardamipas
well as how they correlate with the outputs. The advantage of SSNs is thatutoeyadically
learn the relative importance of different inputs as part of their traininggssc

5.1. A Corpus

We use a subset of the SUSANNE corpus (Sampson, 1995) as a source of preparsed sen-
tences for our experiments. The language is English. We removed annotations vehiait ar
relevant to specifying syntactic constituency and we used the shorter vefsiba part-of-
speech tags (the Lancaster-Leeds Treebank (Gastamle 1987) tagset). These tags were used
as our input, instead of specific words. Random selection of sentences was useducepr
a training set of only 26,480 words, a cross validation set of 4365 words (30,845 words total,
compared the million word corpora typically used (Charniak, 1997; Collins, 1999; Rakhapa
1999)), and a testing set of 4304 words. By using a small training set we are ptpesigr
emphasis on the ability of the parser to generalize to novel cases in a tiogllysappropriate
way, and to do so robustly.

As was done for previous work on SSN parsers (Henderson & Lane, 1998), we also simpli-
fied the structures in the corpus slightly so that they could be expressed mdeomly parent
andgrandparentrelationships. In particular, some pairs of constituents are conflated so that
every constituent has a word as an immediate child, since otherwise gagalpgrent relation-
ships would be necessary. This is a local modification which does not change théveecurs
nature of the structures or the ability to extract predicate-argument infiomfedm them. It is
also motivated on linguistic grounds (Henderson, 2000). However, we should empghasite
would be possible to define a different input-output format for an SSN parser which useild
any corpus’s definition of constituency.

5.2. Training the Models

Neural network training is an iterative process, which requires intéiates testing with a
cross validation set to avoid over-fitting. This technique also allowei uevelop multiple
versions of the network and evaluate them using the cross validation set, watrerutising
the testing set until a single network has been chosen. Our chosen network tiair3b f
passes through the training set before reaching a maximum of the average basweeali
and precision on constituents in the cross validation set.

Estimating the PSR model is straightforward. All the word pairs assabtvaith each struc-
tural relationship (or label-head pairs) are extracted, counted, and nogthatizaccordance
with the probability model. Because this process does not require a cross ealiskttj we use
the combination of the network’s training set and the network’s cross validation se

Estimating the parameters of a PCFG is also straightforward. All theeseces of child la-
bels that occur in the corpus for each parent label need to be extracted, counted paadzedr
in accordance with the conditional probabilities required by the model. As witA$femodel,
we use the network’s training set plus its cross validation set to esttimapobabilities.

41t should be noted that in situations where large amounts of traduteyare available, relative to the amount of
variability in the domain, then weaker independence assumptions coulddxand robustness could be achieved
without resorting to neural networks or other sophisticated techniguasnoothing. Also, in such situations the
SSN parser would not be appropriate, under its current implementagoaube the training process is too slow
for the use of very large datasets to be feasible.
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5.3. Testing Results

Once all development and training had been completed, the SSN, the PSR, and-the PC
were tested on the data in the testing set. For each model the most probablaquansling to
the model was taken as the output of the patséte results of this testing are shown in table 1.

The main concern of this paper is whether the SSN does a better job at estithatipar
rameters of the probabilistic model than counting frequencies. The performanoe S6N
model compared to the PSR model shows that it clearly does. Under every emdas @SN
does much better than the PSR.

The first column shows the percentage of sentences for which some parse was found. The
SSN never outputs estimates that are exactly zero, so there is alway®asiséor choosing
a parse. For some cases the PSR model did not provide enough nonzero probabilities to con-
struct a parse with nonzero probability, so the sentence could not be parsed. Bsittthés
in only 6.6% of the sentences, showing that our independence assumptions were sufficiently
strong to get reasonable estimates of the probabilities. For a robust parserulteneed to
totally remove these unparsed cases, so we also applied a simple famoathing to the PSR,
called “PSR Sm” in table 1. In this model, zero probabilities are eliteithdy adding 0.5 to
all the counts. Consequently this model also finds parses for 100% of the sentences, but it
performance is worse under all the other measures.

The remaining four columns in table 1 give the performance of each parser maéracall
(percentage of desired which are output) and precision (percentage of output vehildsaed)
on both constituents and parent-child relationships. An output constituent is theasame
desired constituent if they contain the same words and have the same labemedssre is
a common one for comparing parsers. Parent-child relationships are the rasiirpfeting
the parse as a form of dependency structure. Each parent-child relationshg parse is
interpreted as a dependency from the child word (or the head word of the child gengtiio
the head word of the parent constituent. Two such relationships are the samevifdius are
the same. This measure is more closely related to the output of the SSN qadsiie PSR
model, and may be more appropriate for some applications.

From the relative performance of the PSR and the SSN under all these measicdsar
that the SSN is able to extract important information from words which the S&i¢hassumed
were less relevant, but the PSR model assumed were totally irreleVartPSR model had
to impose these independence assumptions in order to get sufficient counts foriegtiheat
model’s probabilities. These independence assumptions turned out to be strong enough to get
reasonable coverage, but they were too strong to get good performance.

The PCFG was tested in order to provide a baseline for evaluating the resulie SSN
and PSR model$The first thing to notice about the testing results is that the PCFG only found
parses for about half of the sentences. This lack of robustness is a consequencengf maki
weaker independence assumptions than the PSR model.

Rather than providing a default output in the unparsed cases, we computed performance
statistics on the subset of sentences for which the PCFG did parse, shaftei2t Even on

SWe would like to thank Jean-Cedric Chappelier and the LIA-DI at EPFLshane, Switzerland for providing
the tools used to train and test the PCFG.

Note that this is a simple PCFG. We have applied no sophisticatedtbing and we have not modified the
corpus labeling to make it more appropriate for the generalizations lebyn@dCFG (as we did do for the SSN
parser).
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Sentences Constituents Parent-child
Parsed Correct|| Recall| Precision| Recall| Precision
SSN 100% | 14.4% || 64.2%| 64.8% | 82.1%| 82.3%
PSR 93.4%| 2.8% || 38.2%| 40.1% | 64.7%| 65.9%
PSR Sm|| 100% | 2.8% | 35.9%| 36.8% | 58.8%| 59.4%
PCFG 50.8%| 3.3% || 29.2%| 53.7% | 38.2%| 73.3%

Table 1: Testing results.

Sentences Constituents Parent-child
Parsed Correct|| Recall| Precision| Recall | Precision
SSN 100% | 16.3% | 65.1%| 66.5% | 83.0%| 83.6%
PSR 97.8%| 4.3% | 40.1%| 41.2% | 68.5%| 69.2%
PCFG 6.5% || 57.5%| 53.7% || 75.2%| 73.3%

Table 2: Testing results on the sentences parsed by the PCFG.

this subset the SSN parser did better than the PCFG under every measure sélnel@sures
that the SSN parser’s results are sufficiently good that it is worth ansgvguiestions about its
specific characteristics, as we are doing here in the comparison witlstRen@del.

The subset of sentences which the PCFG does parse can also be used as aonimoditei
“easy” sentences, relative to the half which it does not parse. By comparifogrpance on the
“easy” half of the test set to that on the total set, we can get an indicatithre sbbustness of
the methods. The PSR model has only a third as many unparsed sentences on the leasy” ha
on the total, and the other performance measures reflect this. In contraSg§khparser only
improves slightly on the easy sentences, relative to the total setatimdjgts robustness on the
hard sentences.

References

BisHoPC. M. (1995). Neural Networks for Pattern Recognitio®xford, UK: Oxford University Press.
CHARNIAK E. (1997). Statistical techniques for natural languagsipgr Al Magazine

COLLINS M. (1999). Head-Driven Statistical Models for Natural Language Pagsi PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, PA.

GARSIDER., LEECHG. & (EDS) G. S. (1987).The Computational Analysis of English: a corpus-based
approach Longman Group UK Limited.

HENDERSONJ. (2000). A neural network parser that handles sparse datBroceedings of the 6th
International Workshop on Parsing Technologips123-134, Trento, Italy.

HENDERSONJ. & LANE P. (1998). A connectionist architecture for learning tosparinProceedings
of COLING-ACL, p. 531-537, Montreal, Quebec, Canada.

LANE P. & HENDERSONJ. (1998). Simple synchrony networks: Learning to parsarahtanguage
with temporal synchrony variable binding. Rroceedings of the International Conference on Artificial
Neural Networksp. 615-620, Skovde, Sweden.

RATNAPARKHI A. (1999). Learning to parse natural language with maximatmogy models Machine
Learning 34, 151-175.

SAMPSON G. (1995).English for the ComputerOxford, UK: Oxford University Press.



