
Workshop ROMAND2000, Lausanne, 19-20 octobre 2000

Estimating a Probabilistic Grammar Using a Neural Network

James Henderson

University of Exeter
School of Engineering and Computer Science

Exeter EX4 4PT, UK

Abstract

Previous work has demonstrated the viability of a particular neural network architecture,
Simple Synchrony Networks (SSNs), for syntactic parsing (Henderson & Lane, 1998),(Hen-
derson, 2000). However the output was interpreted as a score, only interpretable ina heuristic
way relative to other scores of the same type. In this paper we discuss a SSN parser trained
using a method that allows us to interpret the output as probability estimates. These estimates
are then used in a chart parser to find the most probable complete parse. This system compares
favorably to one where the probability estimates are calculated from head bigram counts, and
to a simple Probabilistic Context Free Grammar. We argue that this is due to the weaker in-
dependence assumptions necessary for training the SSN relative to statistical models based on
frequency counts. If so, then such neural network architectures are a potential alternative to
statistical smoothing techniques for developing robust statistical parsers.

1. Introduction

In many domains neural networks are an effective alternative to frequencybased statistical
methods. This has not been the case for syntactic parsing, but recent work has identified a viable
neural network architecture for this problem (SSN) (Henderson & Lane, 1998), (Lane& Hen-
derson, 1998), and this parsing method appears to be robust in the face of sparse training data
(Henderson, 2000). However the lack of a probabilistic interpretation for the parsers’ outputs
makes it difficult to integrate such a parser with other robust NLP systems. This paper proposes
a new version of the SSN parser whose outputs can be interpreted as probability estimates of
structural relationships (i.e. of attachment decisions). We compare this technique to estimating
these probabilities using frequency counts. When used in a chart parser to find the most prob-
able parse, the SSN achieves much better performance than the frequency basedmethod. This
SSN parsing system also performs better than a simple Probabilistic ContextFree Grammar
(PCFG), used to establish a baseline.

We argue that the reason that the neural network parser performs better than itsfrequency
based counterpart is that it can make weaker independence assumptions. In order to compen-
sate for the necessarily limited amount of data available, methods which estimate probabilities
by counting frequencies must make strong independence assumptions so as to have sufficient



James Henderson

counts. These assumptions lead to undesirable biases in the model generated, and may still not
guarantee coverage of less frequent cases. Neural networks also require independence assump-
tions in order to define their input-output format, but these assumptions can be much weaker.
Because neural networks learn their own internal representations, neural networks can decide
automatically what features to count and how reliable they are for predictingthe output. Thus
they provide a potential alternative to using smoothing techniques to find estimates for infre-
quent cases, as is required for robust parsers.

2. The Probabilistic Grammar Model

This section presents the probabilistic model which is shared between the SSNand its fre-
quency based counterpart. The following sections discuss a few additional assumptions made
to suit each individual technique. The shared model is based on the probabilities of individ-
ual structural relationships between syntactic constituents, plus labels for the nonterminal con-
stituents. The labels specify things like whether the constituent is a noun phrase ora verb
phrase. Structural relationships specify things like the attachment of a prepositional phrase to
a noun phrase, or the inclusion of a noun into a noun phrase. By specifying all such structural
relationships in a constituent structure tree we can fully specify the constituent structure tree.

Two structural relationships are sufficient to fully specify the structures in the corpus dis-
cussed in section 5,parent, andgrandparent. Parent is the relationship between a word1 and
the constituent that immediately dominates it in the tree.Grandparentis the relationship be-
tween a word and the constituent which immediately dominates the word’s parent constituent.
For the corpus used in this paper thesegrandparentrelationships are sufficient to specify all
immediate dominance relationships between two nonterminal constituents, because all nonter-
minal constituents have at least one word of which they are theparent. To prevent redundancy,
we only specify thegrandparentrelationship for the first such child word for each constituent.
For example the structure of a simple subject-verb sentence would be represented as

parent(c1; w1); parent(c2; w2); N(c1); S(c2); grandparent(c2; w1)
wherec1; c2 are nonterminals,w1; w2 are the words (such as “John loves”), andN; S are labels.
This is the structure depicted in figure 1 after the second word under “Accumulated Output”.

To calculate an estimate for the probability of a given parse, we decompose theestimate into
one estimate for each of the labels or structural relationships in the parse. To do this we first
apply the chain rule in a bottom-up, left-to-right order. For example to compute the probability
of the structure mentioned above:P (parent(c1; w1); parent(c2; w2); N(c1); S(c2); grandparent(c2; w1) j w1; w2)= P (parent(c1; w1) j w1; w2)� P (parent(c2; w2) j parent(c1; w1); w1; w2)� P (N(c1) j parent(c2; w2); parent(c1; w1); w1; w2)� P (S(c2) j N(c1); parent(c2; w2); parent(c1; w1); w1; w2)� P (grandparent(c2; w1) j S(c2); N(c1); parent(c2; w2); parent(c1; w1); w1; w2)
Then we apply the independence assumptions of the grammar model to get the specific proba-
bilities which need to be estimated, as discussed next.

1In the actual experiments below we use part-of-speech tags as inputs, not the actual words. We are using
“words” here for expository convenience.



A Probabilistic Neural Network

The first assumption is that labeling nonterminals is sufficiently simple (forour dataset) that
knowing a label doesn’t tell us anything the we don’t already know from the part-of-speech tags
for the words. This allows us to determine labels and structural relationshipsindependently of
each other. The second assumption is that nonterminals can be labeled incrementally, as soon
as we see the first word which is an immediate child of the constituent. Similarly, the model
assumes that the probability of a structural relationship can be estimated as soon as both the
word involved in the relationship and the first word-child of the nonterminal involved in the
relationship have been seen. Later words are assumed to be independent of these labels and
relationships. So far we have reduced the calculation for the above example tothe following:P (parent(c1; w1) j w1)� P (parent(c2; w2) j parent(c1; w1); w1; w2)� P (N(c1) j parent(c1; w1); w1)� P (S(c2) j parent(c2; w2); parent(c1; w1); w1; w2)� P (grandparent(c2; w1) j parent(c2; w2); parent(c1; w1); w1; w2)

The idea behind the remaining independence assumptions is that the first word which is an
immediate child of a constituent is a good approximation to the syntactic head of the constituent,
and as such determines most of the characteristics of the constituent. Except for these head
relationships, we assume that structural relationships are independent of each other. We also
assume that all relationships for constituents not involved in the relationshipin question are
not important. Specifically, the probability of a parent relationship is independent ofall other
structural relationships, except the head relationship for the parent constituent.2 The probability
of a grandparent relationship is independent of all other structural relationships, except the head
relationship for the grandparent constituent and the fact that the grandchild word mustbe the
head of its parent constituent. These are somewhat strict independence assumptions, but note
that we are not ignoring the prior words, so to the extent that the prior parse is unambiguous
these independence assumptions are inconsequential.

Given this full set of independence assumptions, the calculation for the above example is
reduced to the following:P (parent(c1; w1) j w1)� P (parent(c2; w2) j w1; w2)� P (N(c1) j parent(c1; w1); w1)� P (S(c2) j parent(c2; w2); w1; w2)� P (grandparent(c2; w1) j parent(c2; w2); parent(c1; w1); w1; w2)
These are the probabilities which need to be estimated by the neural network andits frequency
based counterpart. Given all such probabilities, a best first chart parser is used to find the most
probable constituent structure for the sentence, in a similar way as for PCFGs.

3. Estimating the Probabilities with a Simple Synchrony Network

We use the same neural network architecture (Lane & Henderson, 1998) and the same parser
design (Henderson, 2000) as has been used in previous work. The neural network architecture

2This assumption includes the incorrect assumption that choosing one nonterminal as the parent of a word is
independent of choosing another as the parent, when in fact they are incompatible because a word can only have
one parent. We are currently investigating a slight modification to theneural network design which should correct
this inaccuracy.



James Henderson

(SSNs) is appropriate for syntactic parsing because of its ability to learngeneralizations over
syntactic constituents (Henderson & Lane, 1998). We will first review the parserdesign and
then discuss the probabilistic interpretation of the outputs.

3.1. Outputting the Relationships

The input-output format of the SSN parser is designed to allow us to directly interpret it as
estimates of the probabilities discussed in the previous section. The main challenge in defining
such an input-output format is that there areO(n2) probabilities for all the possible structural
relationships,3 but if we wait until the end of the sentence then the SSN architecture can only
produceO(n) outputs. The SSN architecture only produces a bounded number of outputs per
constituent at any given time, and only a bounded number of constituents can be introduced
in each time step, so at the end of the sentence there are a linear number of constituents and
therefore a linear number of outputs. The solution is not to wait until the end of the sentence,
but to produce outputs during each of theO(n) time steps during the course of the parse.O(n)
time steps times theO(n) outputs per time step gives us the necessaryO(n2) total outputs. In
other words, we need to output the structural relationships incrementally.

The particular SSN parser used here outputs (the probabilities for) the structural relationships
maximally incrementally. Words are input to the parser one at a time, and with each word a new
constituent is introduced to act as the constituent which the word heads, if needed. Below
we will useci to denote the constituent which is introduced during the input of wordwi. A
constituentci forms a part of the final parse if and only ifparent(ci; wi), in which casewi is
presumed to be the syntactic head ofci. A structural relationship is output as soon as both
the word in the relationship has been input and the constituent in the relationship hasbeen
introduced. This incremental output is illustrated in figure 1. When the parse is complete the
accumulation of all the outputs fully specifies the parse, as illustrated at the bottom of figure 1.

The output of a neural network is the activation values calculated by the network’sout-
put units. For this parser the output units are divided into three parts, one for producing es-
timates ofparentprobabilities, one for producing estimates ofgrandparentprobabilities, and
one for producing estimates of label probabilities. Theparentprobabilities can be output with
a single unit, which calculates a different output value for each constituent duringeach time
step. Theparentoutput for constituentci during the time step in which wordwj is input is
the estimate ofP (parent(ci; wj) j parent(ci; wi); w1; : : : ; wj), or if i = j it is the estimate ofP (parent(ci; wi) j w1; : : : ; wi). In figure 1 the later case applies to the desiredparentoutput for
NP, VVZ, and AT, and the former case applies to the desiredparentoutput for NN.

The part of the output which estimates the probabilities for thegrandparentrelationships
consists of two output units, one for right branching cases and one for left branching cases.
Both these output units also calculate a different output value for each constituentduring each
time step. Theleft-grandparentoutput for constituentci during time stepwj is the estimate
of P (grandparent(ci; wj) j parent(ci; wi); parent(cj; wj); w1; : : : ; wj) (as forc2 and AT in fig-
ure 1). The sibling output for constituentci during time stepwj is the estimate ofP (grandparent(cj; wi) j parent(ci; wi); parent(cj; wj); w1; : : : ; wj) (as forc1 and VVZ in fig-
ure 1).

In addition to these structural outputs, there is also one output unit for each possiblenon-

3Here we are assuming that the number of constituents is linear in the number of words. This is uncontroversial,
being implied by any lexicalized or dependency-based grammar.



A Probabilistic Neural Network

NP

c1

NP

c1

NP, c1

John:

VVZNP

c1

c2

VVZ

c1

c2

VVZ, c2

loves:

ATVVZNP

c1

c2

c3

AT

c2

c3

AT, c3

a:

NNATVVZNP

c1

c2

c3

NN

c3

NN, c4

joke:

Output
Accumulated:

Input:

Output:

time

Figure 1: An example of the SSN parser’s output, depicted graphically.

terminal label. For simplicity these outputs are also incremental, but onlyone output value is
calculated in each time step. The output for labelLk during time stepwi is the estimate ofP (Lk(ci) j parent(ci; wi); w1; : : : ; wi).
3.2. The Soft Biases

Given enough data and enough training time, the network just described can accurately es-
timate the probabilities in the grammar model. However, given that we always have limited
amounts of data it is important to bias the network towards solutions which we have some prior
reason to believe will be good. We can do this with the SSN parser by adding inputs which
will emphasize the importance of certain information, plus making use of the timing of the
computation.

Because all the words are input to the representation of each constituent, in theory any earlier
input can affect a later output, and thus they are not being assumed to be independent. However,
in practice a recurrent network such as an SSN will learn more about the dependencies between
an input and an output if they are close together in time. The immediate effect ofthis is a form
of recency bias; the most recent input words will effect an output more than earlier input words.
We can also make use of this property by adding input units which express information that
the network should already have, but that may need emphasizing at different times during the
parse. For example we bias the network to pay particular attention to the head word for each
constituent by providing the head word as an input at every time during the life of a constituent.
So the input for constituentci during time stepwj includeswi as the constituent’s head, as well
aswj as the current input word. This results in the network paying particular attention to the
words that are directly related to the outputs being produced for constituentci during time stepwj, with previous input words providing an influence proportional to their recency.

We also bias the network training by providing anew constituentinput unit which is only
active forci at timewi. This helps theparentoutput unit distinguish between makingwi the
head of a new constituent (ci) and attachingwi to an old constituent. In addition this input helps
the network produce other outputs because the short period after this input is when most of the
outputs involvingci will be required. For similar reasons we provide alast parentinput unit,
which is the disambiguatedparentoutput from the previous input word. This input information



James Henderson

is also correlated with nonzero outputs being required for a short time afterwards. These addi-
tional inputs have been devised in part on the basis of the author’s linguistic knowledge and in
part on the basis of experimental results.

3.3. The Training Method

The training method we use is an extension of Backpropagation Through Time (Lane &
Henderson, 1998), but we use a different output error function, called Cross Entropy. This
allows us to train the outputs using 0/1 targets, and have the network training converge to an
output which is an estimate of the probability that the output should be a 1 given the input,
assuming that all the outputs are independent. By using a 0 target when a label or relationship
is not true and a 1 target when it is true, the network can be trained to estimate the probabilities
of labels,parentrelationships, andgrandparentrelationships, given the words which have been
input so far. This covers all the probabilities in the grammar model, except that most of them
are also conditioned on someparentrelationships. To achieve this we use a technique based on
mixture models (Bishop, 1995), where theparentoutputs are used as the mixing coefficients.
The effect of this technique is simply that we only train outputs in cases where the trueparent
relationships are compatible with the condition of the probability. For example in the case of
NN in figure 1, theleft-grandparentoutput unit and thesiblingoutput unit would not be trained.

4. Estimating the Probabilities from Frequencies

The standard approach to estimating the probabilities in section 2 would be to make strong
enough independence assumptions that the necessary parameters can be estimated from fre-
quency counts. We will call this approach to estimating these probabilities theProbabilistic
Structural Relationships (PSR) model. In addition to all the independence assumptions dis-
cussed in section 2, the PSR model assumes every structural relationship is dependent on the
word involved in the relationship and the head word of the constituent involved in the rela-
tionship (and whether they are the same), but they are independent of all other words.This
independence assumption is strong enough to provide us with sufficient statistics given our
training data, but still captures to the extent possible the relevant information for estimating
the structural relationship probabilities. Given this assumption, all the parameters of the above
model can be estimated by counting the pairs of the words and head words involved in each
relationships.

This choice for the independence assumptions of the PSR model is designed to provide
a minimal pair with the SSN model. First of all, the PSR model’s independence assumptions
subsume all the independence assumptions made to define the SSN’s input-output format, which
were discussed in section 2. The only difference between the independence assumptions for the
two models is that the PSR’s assumptions impose hard constraints in the cases where the SSN
model imposes soft constraints, namely the recency preferences discussed insection 3.2.

5. The Experiments

In this section we empirically test the ability of Simple Synchrony Networks to estimate the
probabilities required by the probabilistic grammar model. We compare its performance both
to its frequency based counterpart (the PSR model) and to a simple PCFG. To demonstrate the
advantages of using an estimation method that does not require strong independence assump-



A Probabilistic Neural Network

tions, we do these tests using a relatively small training set.4 To handle the resulting sparseness
of training data the network must learn which of the inputs about a constituent are important, as
well as how they correlate with the outputs. The advantage of SSNs is that they automatically
learn the relative importance of different inputs as part of their training process.

5.1. A Corpus

We use a subset of the SUSANNE corpus (Sampson, 1995) as a source of preparsed sen-
tences for our experiments. The language is English. We removed annotations which are not
relevant to specifying syntactic constituency and we used the shorter versionof the part-of-
speech tags (the Lancaster-Leeds Treebank (Garsideet al., 1987) tagset). These tags were used
as our input, instead of specific words. Random selection of sentences was used to produce
a training set of only 26,480 words, a cross validation set of 4365 words (30,845 words total,
compared the million word corpora typically used (Charniak, 1997; Collins, 1999; Ratnaparkhi,
1999)), and a testing set of 4304 words. By using a small training set we are placinggreater
emphasis on the ability of the parser to generalize to novel cases in a linguistically appropriate
way, and to do so robustly.

As was done for previous work on SSN parsers (Henderson & Lane, 1998), we also simpli-
fied the structures in the corpus slightly so that they could be expressed in terms of onlyparent
andgrandparentrelationships. In particular, some pairs of constituents are conflated so that
every constituent has a word as an immediate child, since otherwise great-grandparent relation-
ships would be necessary. This is a local modification which does not change the recursive
nature of the structures or the ability to extract predicate-argument information from them. It is
also motivated on linguistic grounds (Henderson, 2000). However, we should emphasizethat it
would be possible to define a different input-output format for an SSN parser which coulduse
any corpus’s definition of constituency.

5.2. Training the Models

Neural network training is an iterative process, which requires intermediate testing with a
cross validation set to avoid over-fitting. This technique also allowed usto develop multiple
versions of the network and evaluate them using the cross validation set, withoutever using
the testing set until a single network has been chosen. Our chosen network trained for 325
passes through the training set before reaching a maximum of the average between its recall
and precision on constituents in the cross validation set.

Estimating the PSR model is straightforward. All the word pairs associated with each struc-
tural relationship (or label-head pairs) are extracted, counted, and normalized in accordance
with the probability model. Because this process does not require a cross validation set, we use
the combination of the network’s training set and the network’s cross validation set.

Estimating the parameters of a PCFG is also straightforward. All the sequences of child la-
bels that occur in the corpus for each parent label need to be extracted, counted, and normalized
in accordance with the conditional probabilities required by the model. As with thePSR model,
we use the network’s training set plus its cross validation set to estimatethe probabilities.

4It should be noted that in situations where large amounts of trainingdata are available, relative to the amount of
variability in the domain, then weaker independence assumptions could be made and robustness could be achieved
without resorting to neural networks or other sophisticated techniquesfor smoothing. Also, in such situations the
SSN parser would not be appropriate, under its current implementation, because the training process is too slow
for the use of very large datasets to be feasible.



James Henderson

5.3. Testing Results

Once all development and training had been completed, the SSN, the PSR, and the PCFG
were tested on the data in the testing set. For each model the most probable parse according to
the model was taken as the output of the parser.5 The results of this testing are shown in table 1.

The main concern of this paper is whether the SSN does a better job at estimatingthe pa-
rameters of the probabilistic model than counting frequencies. The performance of the SSN
model compared to the PSR model shows that it clearly does. Under every measure the SSN
does much better than the PSR.

The first column shows the percentage of sentences for which some parse was found. The
SSN never outputs estimates that are exactly zero, so there is always somebasis for choosing
a parse. For some cases the PSR model did not provide enough nonzero probabilities to con-
struct a parse with nonzero probability, so the sentence could not be parsed. But thisis true
in only 6.6% of the sentences, showing that our independence assumptions were sufficiently
strong to get reasonable estimates of the probabilities. For a robust parser wewould need to
totally remove these unparsed cases, so we also applied a simple form of smoothing to the PSR,
called “PSR Sm” in table 1. In this model, zero probabilities are eliminated by adding 0.5 to
all the counts. Consequently this model also finds parses for 100% of the sentences, but its
performance is worse under all the other measures.

The remaining four columns in table 1 give the performance of each parser in terms of recall
(percentage of desired which are output) and precision (percentage of output which are desired)
on both constituents and parent-child relationships. An output constituent is the sameas a
desired constituent if they contain the same words and have the same label. Thismeasure is
a common one for comparing parsers. Parent-child relationships are the result ofinterpreting
the parse as a form of dependency structure. Each parent-child relationship in the parse is
interpreted as a dependency from the child word (or the head word of the child constituent) to
the head word of the parent constituent. Two such relationships are the same if their words are
the same. This measure is more closely related to the output of the SSN parserand the PSR
model, and may be more appropriate for some applications.

From the relative performance of the PSR and the SSN under all these measures it is clear
that the SSN is able to extract important information from words which the SSN model assumed
were less relevant, but the PSR model assumed were totally irrelevant. The PSR model had
to impose these independence assumptions in order to get sufficient counts for estimating the
model’s probabilities. These independence assumptions turned out to be strong enough to get
reasonable coverage, but they were too strong to get good performance.

The PCFG was tested in order to provide a baseline for evaluating the resultsfor the SSN
and PSR models.6 The first thing to notice about the testing results is that the PCFG only found
parses for about half of the sentences. This lack of robustness is a consequence of making
weaker independence assumptions than the PSR model.

Rather than providing a default output in the unparsed cases, we computed performance
statistics on the subset of sentences for which the PCFG did parse, shown in table 2. Even on

5We would like to thank Jean-Cedric Chappelier and the LIA-DI at EPFL, Lausanne, Switzerland for providing
the tools used to train and test the PCFG.

6Note that this is a simple PCFG. We have applied no sophisticated smoothing and we have not modified the
corpus labeling to make it more appropriate for the generalizations learnedby a PCFG (as we did do for the SSN
parser).



A Probabilistic Neural Network

Sentences Constituents Parent-child
Parsed Correct Recall Precision Recall Precision

SSN 100% 14.4% 64.2% 64.8% 82.1% 82.3%
PSR 93.4% 2.8% 38.2% 40.1% 64.7% 65.9%
PSR Sm 100% 2.8% 35.9% 36.8% 58.8% 59.4%
PCFG 50.8% 3.3% 29.2% 53.7% 38.2% 73.3%

Table 1: Testing results.

Sentences Constituents Parent-child
Parsed Correct Recall Precision Recall Precision

SSN 100% 16.3% 65.1% 66.5% 83.0% 83.6%
PSR 97.8% 4.3% 40.1% 41.2% 68.5% 69.2%
PCFG 6.5% 57.5% 53.7% 75.2% 73.3%

Table 2: Testing results on the sentences parsed by the PCFG.

this subset the SSN parser did better than the PCFG under every measure. This baseline ensures
that the SSN parser’s results are sufficiently good that it is worth answering questions about its
specific characteristics, as we are doing here in the comparison with the PSR model.

The subset of sentences which the PCFG does parse can also be used as an indication of the
“easy” sentences, relative to the half which it does not parse. By comparing performance on the
“easy” half of the test set to that on the total set, we can get an indication ofthe robustness of
the methods. The PSR model has only a third as many unparsed sentences on the “easy” half as
on the total, and the other performance measures reflect this. In contrast, theSSN parser only
improves slightly on the easy sentences, relative to the total set, indicating its robustness on the
hard sentences.

References

BISHOPC. M. (1995).Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press.

CHARNIAK E. (1997). Statistical techniques for natural language parsing. AI Magazine.

COLLINS M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, PA.

GARSIDE R., LEECH G. & (EDS) G. S. (1987).The Computational Analysis of English: a corpus-based
approach. Longman Group UK Limited.

HENDERSON J. (2000). A neural network parser that handles sparse data.In Proceedings of the 6th
International Workshop on Parsing Technologies, p. 123–134, Trento, Italy.

HENDERSONJ. & LANE P. (1998). A connectionist architecture for learning to parse. InProceedings
of COLING-ACL, p. 531–537, Montreal, Quebec, Canada.

LANE P. & HENDERSON J. (1998). Simple synchrony networks: Learning to parse natural language
with temporal synchrony variable binding. InProceedings of the International Conference on Artificial
Neural Networks, p. 615–620, Skovde, Sweden.

RATNAPARKHI A. (1999). Learning to parse natural language with maximum entropy models.Machine
Learning, 34, 151–175.

SAMPSON G. (1995).English for the Computer. Oxford, UK: Oxford University Press.


