
Estimating Probabilities for
Unbounded Categorization Problems

�

James B. Henderson

Dpartement d’Informatique, Universit de Genve, Geneva, Switzerland

Abstract

We propose two output activation functions for estimating probability distributions over an
unbounded number of categories with a recurrent neural network, and derive the statisti-
cal assumptions which they embody. Both these methods perform better than the standard
approach to such problems, when applied to probabilistic parsing of natural language with
Simple Synchrony Networks.

Key words: recurrent neural networks, probability estimation, natural language parsing

1 Introduction

Recurrent networks have the advantage over feed-forward networks that they can
compute mappings from arbitrarily many input patterns to arbitrarily many output
patterns. The work presented in this article focuses on the issues that arise with
arbitrarily many output patters. In particular, we are concerned with the problem of
estimating a probability distribution over an unbounded set of mutually exclusive
categories. We propose two output activation functions which can be used for such
tasks, and in each case derive the statistical assumptions which are necessary to
prove that training networks which use these functions will result in estimates of the
desired probability distributions. We then experimentally evaluate these activation
functions in an application of a recurrent network architecture (Simple Synchrony
Networks [9]) to probabilistic parsing of real natural language sentences. We find
that both of these activation functions perform better than the standard approach of
converting the task to a sequence of bounded categorization problems.

�
This work was supported by the Centre Universitaire d’Informatique, Universit de

Genve.

Preprint of article in Neurocomputing, 57:77–86, 2004.

As an example of an unbounded categorization problem, consider the decision an
incremental natural language parser must make when it reaches the last word of the
sentence “John said Mary left yesterday.” The parser must choose whether “yester-
day” modifies “said” or “left”. Each alternative modification can be thought of as
a category, and they are mutually exclusive. In general there can be an unbounded
number of verbs in such a sentence, so there can be an unbounded number of modi-
fications which the parser must choose between. To make this choice, we want to be
able to estimate a probability distribution over an unbounded number of mutually
exclusive categories.

The reason a recurrent network can produce an unbounded number of outputs is
that it can be run for an unbounded amount of time, and produce different outputs
at each time. � We assume that one output ��� is produced at each time � , from one
hidden layer activation pattern ��� . � We will denote the total input as � and use	 � to denote that the output category associated with time � is the correct output
category. Our objective is to have �
� be an estimate of �
� 	 ��� ��� . In the above exam-
ple, the potential modifications are the different � , 	 � represents the correctness of
modification � , and � is the whole sentence plus the question of how to parse “yes-
terday”. We want � � to be an estimate of the probability that “yesterday” modifies
“said”, and � � to be an estimate of the probability that “yesterday” modifies “left”.

2 Using a Sequence of Bounded Categorizations

The standard method in statistical modeling and neural networks for handling un-
bounded categorization problems is to convert them into an unbounded sequence of
bounded categorization problems. The first step in this process is to choose an or-
dering between the categories, which we will denote � ����������� ��� . The categorization
probabilities which are then estimated are each conditional on the correct category
not being any of those earlier in the sequence, namely �
� 	���� � � ��� 	��! ����������� 	����#" � .
These probabilities can each be estimated independently, because the fact that the
alternatives are mutually exclusive has been taken care of in the conditioning. The
original probabilities can then be computed from these estimates by multiplying in
accordance with the chain rule for conditional probabilities: $

�
� 	���% � ���'& �
� 	���% � � ��� 	(�! �*)+� �-, �
� 	��. � �/�0� (1)

� We are using the word “time” simply to refer to the different states which a recurrent
network passes through. Everything discussed here is equally applicable to the graph-based
generalization of time, as discussed in [6].� All this work has been generalized to any finite number of output categories per time,
but we do not present this extension here for simplicity.$ Note that 13254 ��687 9;:�< 4 �! �:�=�=�=>:�< 4 � 6 " @? is actually equal to 1 because A � is the only pos-
sible alternative remaining.

2

�����
� � 	(� 6 � ���'& �
� 	�� 6 � � ��� 	��! ����������� 	�� 6 " �*) (2)

� �-, � � 	(�! � �����) �����) � �-, � � 	(� 6 " � ���0�
The advantage of this method is that each probability which needs to be estimated� � 	(� � � � ��� 	��. ������� ��� 	(� �#" � is for just a binary categorization problem; either the
category is chosen or it is not. Thus the standard output activation function for es-
timating probabilities with neural networks can be used. The only complication is
that there is an unbounded amount of information in the conditional of each prob-
ability. The information � 	 �! ������� ��� 	�� � " can be represented with the single fact� ����� � � 	���� � . The unbounded amount of information in the input � can be handled
by running some form of recurrent network across the input. The network defines
a function from � to a hidden representation � � � , which is trained to be a sufficient
representation of � for estimating the probability:

� � 	(� � � � ��� 	��. ������� ��� 	(� �#" � & � � 	(� � � � � � � � ��� 	��! ����������� 	����#" � (3)
� � � 	(� � � � � � ��� ���	� � � 	���� ��� (4)

The main disadvantage of this method is that the sequential ordering chosen for the
conditioning biases the estimate. When the estimates are smoothed, as with neural
networks, then small probabilities will tend to be overestimated, thereby reducing
the probability assigned to categories later in the sequence, due to the � � , �
� 	 �
� � �����
terms. This will bias the estimates towards categories earlier in the sequence, and
this bias will be detrimental for most tasks no matter what ordering we choose. In
the next section we will propose methods which do not require any ordering, and
thus do not introduce this bias.

3 Estimating the Probabilities Directly

The standard methods for estimating probabilities with neural networks apply only
to feed-forward networks. However, for any (discrete time) recurrent network ap-
plied to a particular input, we can convert it into an equivalent feed-forward network
with one copy of the recurrent network for each time step in the input [10]. We can
use this fact to trivially extend the standard proofs for showing that a trained neural
network will estimate a probability distribution to the use of recurrent networks dis-
cussed in the previous section. The difficulty arises because these standard proofs
assume that all the outputs for a given probability distribution are computed from
the same hidden layer activation pattern [1]. But if we want to estimate a proba-
bility distribution over an unbounded set of categories � then we need to produce
their outputs �
� at different times using different hidden activation patterns � � . The
fundamental issue in deriving new activation functions for estimating probability

3

distributions over an unbounded set of categories is how to handle an unbounded
number of hidden activation patterns.

3.1 An Unbounded Logistic Sigmoid Function

When we train a network to compute an output, the hidden layer learns a represen-
tation which is optimized for computing that particular output given the input. Thus
it is natural to assume that a given output �
� can be accurately computed from its
hidden activation pattern � � without requiring additional information about the in-
put � . This independence assumption, plus the fact that � � is a function of � , results
in the following approximation: �

� � 	 �@� �/� & � � 	 �@� ��� � ��� (5)

� � � 	 �@� ��� � & � � ���0� 	 �5���
� 	 � �� � ��� � (6)

In this model we are not assuming any ordering or other differentiation between
the different category indexes � , so the prior probability distribution over these cat-
egories � � 	 � � must be uniform. Therefore �
� 	 �5� & �� , where � is the number of
categories. Because each � � is different, we cannot use it to normalize across out-
puts, but we can write it as a sum over output cases:

� ����� �'& � �����0� 	 � ���
� 	 � ��� ����	 � � ������� 	 � �@� � 	 � � & � ������� 	 � �� � ����	 �
� � ���0� 	 � �� (7)

The first element of the sum is the numerator in the previous formula. The second
element represents the probability of computing the hidden activation vector �8�
in situations where

	 � is false. We assume that these later probabilities are only
dependent on the fact that

	 � is false, and not dependent on the specific index
�

of
the correct category. Thus:

� ����� � � � � ���0� 	 �5�� � � � ���0� � 	 � ��
 �*, �

�
� (8)

These assumptions allow us to reduce � � 	 �@� ��� to a form similar to the activation
function used in the two-category case for finite mappings:

� � 	 �@� �/� � � ������� 	 � ������ ������� 	 � ������� � �����0� � 	 � ��� �-, ���� (9)

� Note that this assumption is stronger than the one made in section 2 because in this case
we do not have as much information in the conditional.

4

�
�

� � � � , � � exp � , � � � where � ��& ����� � �����0� 	 � �� � ���0� � 	 � ��� (10)

Equation 10 is the logistic sigmoid activation function, except that the weighting of� � , � � has the effect of shifting the function to the right by
��� � � , � � . This shifting

has little effect on estimates close to 1 or 0, but a large effect on estimates close to
0.5.

For the two-category case, the logistic sigmoid activation function allows a single
output unit to estimate the desired posterior probability, assuming that the category-
conditioned probability of the hidden activation vector is in a particular form of the
exponential family of distributions [1]. Translating this to our case, we want to
ensure that the output �
� can estimate �
� 	 ��� ��� , assuming that both � ��� �@� 	 � � and� ������� � 	 � � are in the exponential family:

� �����@� 	 � � & exp �
	 ��� � ����
 ����� ��� � ������� � ��� � (11)� ������� � 	 � � & exp �
	 ��� � ����
 ����� ��� � �������� ��� � (12)

Note that the parameter � � must be the same for these two probabilities, and that
both � � and � � must be the same for all output categories � . Combining these as-
sumptions with the definition of � � in equation 10 we get:

� � & ����� exp �
	 ��� � ����
 ����� ��� � ����� � � ��� �
exp �
	 ��� � ����
 ����� ��� � ����� �� ��� � � (13)

& � � ��� ����� where � &�� �
, � � , and ��� &�	 ��� � � , 	 ��� � � (14)

Now using equation 10 as our output activation function and � � ��� as our output
weights and bias gives us the desired result.

� � &
�

� � � � , � � exp � , ��� � ��� �������0� (15)

� �
� 	 �@� ��� (16)

Here we can see why equations 11 and 12 had to have the same parameters � � and� � for all categories � . The different �
� are computed by the recurrent network at dif-
ferent times from different hidden activation patterns � � , but they are all computed
with the same link weights � � ��� . Therefore it must be possible to define � � ���
independently of � , which requires � � and � � to be the same for all � .
The training algorithm for this model is the same as for the finite case, namely using
the cross-entropy error function and back-propagation learning. The equivalence
arises from the fact that equation 10 is the usual logistic sigmoid function applied
to �� & � � , ��� � � , � � , and that !#" �!�$ � & �

, so !�%!#$ � & !#%!#" � & � � , 	 � (where & is the
error). We can use the same proof as in the finite case to show that the minimum of

5

the cross-entropy error occurs where the output function is the desired probability
function, assuming an infinite training set [1].

Because the independence assumptions in this model are not exactly correct, it is
sometimes desirable to add a normalization factor by taking advantage of the fact
that ��� � � 	 � � �/� & �

. To normalize, equation 10 simply needs to be divided by
� � �

����� ��� ��	
exp
� � $�
 	 . This is optional, but it has been found to help in the final stages

of training. For the network whose results are reported in section 4, performance
on the validation set increased by 0.2% by training with normalization after the
training with the un-normalized version was complete.

� � 	 �0� ��� �
�

����� ��� ��	
exp
� � $ � 	��� �

����� ��� ��	
exp
� � $�
 	 (17)

In training, this requires a slight change to the back-propagation of error across the
output layer.

 &
 � � & ��� � , 	 � � � � , �

� � � � , � � exp � , � � � � (18)

3.2 An Unbounded Softmax Function

As an alternative to the unbounded sigmoid activation function, we consider what
statistical assumptions would be necessary to derive a version of the normalized
exponential, or “softmax”, activation function [2]. This is the proper activation
function to use in the case of a bounded number of categories greater than 2, so
it is natural to expect it would generalize to the unbounded case. For this derivation
we do not assume that one hidden layer activation pattern is sufficient to estimate
a given category’s probability, but instead make the much weaker assumption that
the total set of all hidden patterns is sufficient. This alternative provides us with a
normalization factor equal to � ��� ����������� ���
� :

� � 	 �@� �/� & � � 	 �@� � ��������� � ��� � ��� (19)

� � � 	 �@� � ��������� � ���
� & � � � ����������� ���(� 	 � �@� � 	 �5�
� � � ��� ����������� ���(� 	 � ���
� 	 � � (20)

We then make the main independence assumption of this method; we assume that
the probability distributions over hidden activation patterns are conditionally inde-
pendent, given the correct category � :

� ��� ��������� � ��� � 	 �5� � � � ���0� 	 �5�)�����	 � � � � � � 	 � � (21)

6

� � � ���0� 	 �5�) ����	 � � � � � � � 	 � � (22)

In the second step we have assumed, as for the previous function, that the only
information about

	 � which is relevant to � � is the fact that
	 � is false.

Using, as above, the uniform prior � � 	 � � & �� , and substituting formula 22 into
formula 20 and simplifying, we get:

� � 	 �@� �/� � �
��� ��� ��� 	

�
��� ��� ����� 	

� � �
���

� �

 	

�
�	�

� �
�

 	

(23)

� exp � � � �
��� exp � � � � where � ��& ��� � � � ����� 	 � �� � ���0� � 	 � ��� (24)

Equation 24 is precisely the softmax activation function, applied to an unbounded
number of categories. This activation function has also been used in other work on
natural language parsing with neural networks [4], but without any theoretical or
empirical justification.

When the softmax activation function is applied to a finite number of categories,
the outputs can be shown to estimate the desired posterior probabilities, assuming
that the category-conditioned probabilities of the hidden activation vectors are in a
particular form of the exponential family of distributions [1]. We can extend this re-
sult to our case by making the same assumptions as given for the sigmoid activation
function in equations 11 and 12. Combining these assumptions with the definition
of � � in equation 24 gives us the same result as for the sigmoid activation function
in equation 14. Now using equation 24 as our output activation function and � � � �
as our output weights gives us the desired result.

� � & exp �
� � ��� �����>�
� � exp �
� � � � ������� (25)

� �
� 	 �@� ��� (26)

As with the sigmoid activation function, the training algorithm for this model is the
same as for the finite case, namely using the cross-entropy error function and back-
propagation learning. The same proofs as in the finite case apply to both showing
that !�%!�$ � & � � , 	 � and showing that the minimum of the cross-entropy error occurs
where the output function is the desired probability function, assuming an infinite
training set [1].

7

4 Experiments on Probabilistic Parsing

To empirically compare these three methods for estimating probabilities for un-
bounded categorization problems, we apply them to parsing natural language sen-
tences. The input to this task is an unbounded sequence of words (the sentence), and
the result is a tree of phrases with the words at its leaves. We will represent this tree
as a set of phrases plus a set of parent-child relationships between these phrases
and between these phrases and the words. In the previous example, the result of
parsing “John said Mary left yesterday” would include two different phrases which
are the parents of “said” and “left”, respectively, and only one of these phrases can
be parent of “yesterday”.

The recurrent network architecture which we use in these experiments is Simple
Synchrony Networks (SSNs) [9]. SSNs extend Simple Recurrent Networks [5] with
the addition of Temporal Synchrony Variable Binding [11]. This extension allows
them to model sets of sequences, rather than just individual sequences. At each po-
sition in the input sequence, a new sequence is added to the SSN’s set of computed
sequences, and one output pattern is computed for each of the computed sequences
in the set at that position. This results in one output pattern for each pairing of a
position in the input with a preceding position in the input, ��� � � � � ��� �

. This gives
SSNs a number of output patterns which is quadratic in the length of the input,
rather than just linear.

When applied to natural language parsing, the quadratic number of SSN outputs
allows SSNs to compute one probability estimate for every possible parent of every
word or phrase in the sentence. For real natural language, it is fairly simple to
encode a phrase structure tree in such a way that a bounded number of phrases are
associated with each position in the input sentence (in these experiments the bound
is one), so that the number of possible parent relationships grows quadratically with
the length of the sentence. It is thus possible to define a mapping from possible
parent relationships to position-position pairs such that only a bounded number of
relationships are mapped to every position pair. We then use the SSN output pattern
for a given position pair to compute the bounded number of probability estimates
for possible parent relationships which have been mapped to that position pair.

To define the mapping from parent relationships to position pairs, we first assign
each phrase to a position in the sentence (in this work, the position of the first
word of the phrase). We then assign each relationship to the pairing of the positions
for the two phrases (or phrase and word) involved in the relationship. This results
in each pairing of positions having four possible relationships assigned to it. For
relationships between two phrases, there is the case where the parent is assigned to
the earlier position, plus the case where the parent is assigned to the later position.
For relationships between a phrase and a word, the phrase is always the parent and
the phrase is never assigned to a position later than the word, but there is the case

8

where the phrase is assigned to a position earlier than the word, and there is the
case where the phrase is assigned to the position of the word itself.

Each one of these four cases has a different output unit which is trained to compute
probability estimates for parent relationships of that type. By computing values for
these four output units at all the output patterns computed by the SSN, we get prob-
ability estimates for every possible parent relationship in the sentence. In addition,
the SSN’s outputs estimate the probabilities for the possible phrase labels for each
phrase (noun phrase, verb phrase, etc.). After the SSN computation is finished, the
total set of probability estimates are used in a statistical parser to determine the
most probable parse, and this parse is the output of the SSN parsing system (see [7]
for more details).

Training the SSNs is done with standard back-propagation through time [10], but
with SSNs we have two dimensions of time, one for the input sequence (as with
Simple Recurrent Networks) and the other to cycle through the set of computed
sequences (as with Temporal Synchrony Variable Binding). Thus we need to make
one copy of the network’s weights for each pairing of an input position with any
of its preceding positions (i.e. one copy for each output pattern). With the version
of SSNs used here, error flows backward through each individual sequence, but the
only connection between different sequences is either pre-specified in the design of
the network’s input patterns or is a result of normalizing across different sequence’s
outputs.

In the experiments reported here, the same network architecture, training method,
and statistical parser are applied for each probability estimation method. The only
difference between the methods is the output activation function and its associated
error function. For each method, we trained multiple networks with 60, 80, and
100 hidden units, using momentum and weight decay regularization. Training error
was used to automatically reduce the learning rate, and a validation set was used
to automatically reduce the regularization and to decide when to stop training. In
each case the best network was chosen based on its performance on the validation
set, and results were then computed on a held-out testing set. In each case one of
the networks with 100 hidden units was chosen, but similar validation results were
achieved by all the networks run with either 80 or 100 hidden units.

Table 1 shows the performance of the chosen parsers for the three methods. “Se-
quence” uses the standard method of converting the unbounded distribution into a
sequence of bounded distributions, “Unb Sig” uses the unbounded sigmoid func-
tion, and “Unb Soft” uses the unbounded softmax function. The standard single
measure for comparing parser performance is the F-measure applied to labeled
phrases in the testing set, shown in the last column of the table. F-measure is a
balanced combination (��� � � �� �

�
) of recall (percentage of correct phrases which are

output) and precision (percentage of output phrases which are correct).

9

Table 1
Parsing results: percent labeled phrase recall, precision, and F-measure

Training Validation Testing

Rec Prec F � 	 � Rec Prec F � 	 � Rec Prec F � 	 �

Sequence 60.2 62.3 61.3 57.9 60.0 58.9 58.7 59.9 59.3

Unb Sig 69.6 71.8 70.7 62.9 64.3 63.6 65.1 66.6 65.8

Unb Soft 68.7 70.6 69.6 63.6 64.7 64.1 64.8 65.9 65.4

These results are all good considering the nature of the datasets. For comparison,
the testing results for an un-smoothed statistical model (a Probabilistic Context
Free Grammar, PCFG) were 29.2% recall, 53.7% precision, and 37.8% F-measure.
The PCFG performs poorly because of the relatively small datasets used here, even
though we combined the training and validation sets to train the PCFG. The SSN
models all handle this problem robustly, finding appropriate ways to smooth the
probabilities from the training cases to the novel testing cases (see [7] for a discus-
sion). When a more specialized version of an SSN parser is trained using a much
larger dataset (one million words, versus the 26,480 words used here), performance
reaches 83.8% F-measure [8], compared to only 72.1% F-measure for a smoothed
PCFG trained on the same large dataset [3]. Other work on broad coverage parsing
with neural networks has only achieved 61.0% F-measure on this dataset [4], even
worse than when we used our small dataset and the SSN architecture with the same
output function as in that work (“Unb Soft” in table 1). All the above results are for
models which only include the part-of-speech tags of words in their input, rather
than the specific words. State-of-the-art statistical parsers, which all use specific
words, reach performance levels around 89% or 90% F-measure. When an SSN
parser is trained using a relatively small vocabulary of words, results reach 89.1%
F-measure [8].

5 Conclusions and Future Research

The experimental results show a clear advantage for both of the unbounded acti-
vation functions we have proposed in this article over the standard method. This
shows that estimating an unbounded probability distribution directly does impose
fewer undesirable biases than converting the unbounded distribution into a se-
quence of bounded distributions and then estimating the bounded distributions.
This improvement also suggests that these alternative statistical estimation meth-
ods could improve the performance of many applications in unbounded domains,
in particular statistical parsers. The unbounded sigmoid function does slightly bet-
ter than the unbounded softmax function on the testing set, but the results on the
validation set show that this is not likely to be a reliable difference. The fact that
two quite different sets of statistical assumptions lead to roughly equivalent per-

10

formance suggests that the training is able to produce hidden layer representations
which fit the statistical properties required by the output layer computations. This
is particularly interesting for the unbounded softmax function, since its statistical
assumptions are less easy to motivate.

In on-going research we have looked at other output activation functions which
weaken some of statistical assumptions made in this article. In particular we have
looked at weakening the assumption � �����@� 	 � � � � �����0� � 	 � � , replacing � 	 � with a fi-
nite number of relationships between � and the correct category (such as � is a phrase
which is above or below the correct phrase in the parse tree). These modifications
resulted in networks which did not exhibit stable convergence during training. We
hypothesize that this is caused by multiple conflicting statistical properties being
required of the hidden layer representations, which training is not able to satisfy.
Future research could try to solve this problem, and could address weakening other
statistical assumptions, such as the uniform prior used for �
� 	 � � . The promising
results obtained here suggest further work is justified.

References

[1] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, UK, 1995.

[2] J.S. Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In F. Fogelman
Soulié and J. Hérault, editors, Neurocomputing: Algorithms, Architectures
and Applications, pages 227–236. Springer-Verlag, New York, 1990.

[3] Eugene Charniak. Statistical techniques for natural language parsing. AI
Magazine, 18(4):33–44, 1997.

[4] F. Costa, V. Lombardo, P. Frasconi, and G. Soda. Wide coverage incremental
parsing by learning attachment preferences. In Proc. of the Conf. of the Italian
Association for Artificial Intelligence, 2001.

[5] Jeffrey L. Elman. Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7:195–225, 1991.

[6] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks, 9:768–
786, 1998.

[7] James Henderson. A neural network parser that handles sparse data. In Proc.
6th Int. Workshop on Parsing Technologies, pages 123–134, Trento, Italy,
2000.

[8] James Henderson. Structural bias in inducing representations for probabilis-
tic natural language parsing. In Proc. 13th Int. Conf. on Artificial Neural
Networks, Istanbul, Turkey, 2003.

[9] Peter Lane and James Henderson. Incremental syntactic parsing of natural

11

language corpora with simple synchrony networks. IEEE Transactions on
Knowledge and Data Engineering, 13(2):219–231, 2001.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing, Vol 1, pages 318–362. MIT Press,
Cambridge, MA, 1986.

[11] Lokendra Shastri and Venkat Ajjanagadde. From simple associations to sys-
tematic reasoning: A connectionist representation of rules, variables, and dy-
namic bindings using temporal synchrony. Behavioral and Brain Sciences,
16:417–451, 1993.

12

