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Abstract

Recent developments in connectionist architectures for symbolic computation have made it
possible to investigate parsing in a connectionist network while still taking advantage of the
large body of work on parsing in symbolic frameworks. The work discussed here investigates
syntactic parsing in the temporal synchrony variable binding model of symbolic computation in a
connectionist network. This computational architecture solves the basic problem with previous
connectionist architectures, while keeping their advantages. However, the architecture does
have some limitations,; which impose constraints on parsing in this architecture. Despite these
constraints, the architecture is computationally adequate for syntactic parsing. In addition,
the constraints make some significant linguistic predictions. These arguments are made using
a specific parsing model. The extensive use of partial descriptions of phrase structure trees is
crucial to the ability of this model to recover the syntactic structure of sentences within the
constraints imposed by the architecture.

1 Introduction

The ability of connectionist networks to learn and to combine multiple sources of soft constraints
has made them important tools for cognitive modeling. On the other hand, their inability to
dynamically manipulate complex compositional representations has prevented them from being
successfully applied to many problems. Recovering the syntactic structure of natural language
sentences requires both these abilities. Recent work on how to support symbolic computation within
a connectionist computational architecture has made the combination of these abilities possible, but
these architectures have limitations. This article discusses one such computational architecture,
proposed by Shastri and Ajjanagadde (Shastri, Ajjanagadde, 1993), and the implications of its
limitations for syntactic parsing. These limitations do not prevent syntactic parsing, and they
make some significant linguistic predictions.

Like other purely connectionist architectures, the Shastri and Ajjanagadde (S&A) architecture
uses many simple computing units that communicate with each other using only an output acti-
vation value. The pattern of activation over these units represents the predications that are being
stored, and the interconnection pattern implements the rules of the system. Like recurrent con-
nectionist networks, these rules may compute sequentially in time, and the order of input items is
represented by presenting the input sequentially in time. Such networks have been used to parse
simple syntactic constructions (Elman, 1991) and to model the interaction of syntactic and seman-
tic constraints (St. John, McClelland, 1992), but because they are unable to capture all the relevant
generalizations, they have been unable to handle the full diversity and complexity of natural lan-
guage syntax. In particular, these networks cannot capture generalizations over phrase structure
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constituents. For example, a rule which allows a subject noun phrase to be modified cannot also
be used to modify an object noun phrase, or else the sentence-level semantic effects of these two
events would be identical. To capture these generalizations, an architecture needs to represent
constituent identity in a way that allows each rule to apply to each constituent, rather than to
the phrase structure as a whole. The Shastri and Ajjanagadde architecture solves this problem
by using fine grained temporal distinctions to represent different constituents. If units are firing
synchronously, then they are representing features of the same constituent, and otherwise not. By
using temporal distinctions (rather than unit distinctions) to represent constituent identity, rules
inherently generalize across constituents, since the same interconnection pattern is present at ev-
ery time. The addition of this temporal synchrony variable binding mechanism makes the S&A
architecture computationally adequate for syntactic parsing.

While the S&A architecture solves the basic problem with connectionist networks and still keeps
the advantages that have made connectionist networks attractive for cognitive modeling, it does
have some limitations. These limitations impose computational constraints on syntactic parsing in
this architecture. Interestingly, most of these constraints have previously been proposed based on
linguistic and psychological data. The parser must have a bounded memory (Chomsky, 1959), and
in particular can only store information about a bounded number of things (Miller, 1956). The
parser cannot explicitly represent disjunction, which in conjunction with the requirement that the
parser’s output be incrementally interpretable, means the parser must be deterministic in the sense
proposed by Marcus (Marcus, 1980). Also, rules implemented in the network can only test and
modify information about a single phrase structure node and the phrase structure tree as a whole.
This locality constraint prevents rules which manipulate pairs of nodes, which has some significant
linguistic implications that have not previously been investigated.

Despite the computational constraints imposed by the S&A architecture, the architecture is
powerful enough for syntactic parsing. This argument is made using a specific parsing model
which has been implemented in the architecture and tested on a broad range of natural language
phenomena. Following Description Theory (Marcus, et al., 1983), this parsing model uses partial
descriptions of phrase structure trees to allow deterministic parsing. Partial descriptions allow
some kinds of information to be specified independently of other kinds of information, thereby
allowing the parser to state information which it can be sure of without stating information which
it can’t be sure of. The partial descriptions used here allow multiple kinds of grammatical features,
expectations, iteration restrictions, and structural constraints to all be specified independently of
each other. All but the last of these kinds of information are local to individual phrase structure
nodes, thereby isolating the information which is difficult to handle given the architecture’s strict
locality constraint on rules. This locality of information is also important for dealing with the
parser’s bounded memory, since it allows individual nodes to be removed from the memory without
interfering with computations that involve other nodes.

In addition to allowing acceptable sentences to be parsed, the computational constraints imposed
by the S&A architecture predict the unacceptability of some sentences. These predictions are
mostly in the areas of long distance dependencies and center embedding, and are largely due to the
techniques used to comply with the locality constraint on rules. Because this article concentrates
on the bounded memory and determinism constraints, these results will only be outlined here.

2 The Connectionist Architecture

The Shastri and Ajjanagadde connectionist computational architecture has several characteristics
which make it well suited for investigating natural language parsing. As argued in (Shastri, Aj-



janagadde, 1993), the architecture is biologically motivated, supports the massively parallel use of
knowledge, supports evidential reasoning, has psychologically plausible limitations, and supports
symbolic computation. All of these characteristics are important for cognitive modeling, and the
relationship between the architecture and biology shows particular promise for the integration of
lower level and higher level investigations of cognitive processes. However, for our purposes it is
the support of symbolic computation that is most important. This property makes it possible to
investigate syntactic parsing in the S&A architecture at an appropriate level of abstraction, which
allows this investigation to make use of previous work on the nature of the language comprehension
process.

To support symbolic computation, it must be possible to represent, and compute with, multiple
properties of multiple things. Such a representation must have a mechanism for distinguishing
which properties are for which things. This is called the variable binding problem. For example,
to represent the situation at the top left of figure 1, we need to represent that the square is striped
and the triangle is spotted. This can be done with the following logical formula.

Jx, 3y, striped(z) A square(z) A spotted(y) A triangle(y)

In this formula, the variables are used to represent the bindings between predications. The name
“x” does not mean anything in and of itself, but the sharing of it represents that the thing which
is striped is the same as the thing which is square, and possibly different from the thing which is
spotted and a triangle. This information can be represented in the S&A architecture as shown in
the rest of figure 1. Asin many connectionist architectures, different predicates are represented with
different units.! The pattern of activation over these units represents the predications which are
true (or the probability of their truth). The problem with this simple representation is that there is
no representation of which predicates are true of which thing. To represent the depicted situation,
all four units would have to be active, but then we would not know whether it is the square or the
triangle which is striped. The S&A architecture solves this problem by using units which, rather
than producing sustained output, produce a pulse train of activation (as do neurons).? If two units
are pulsing synchronously, then they are representing predications about the same thing, and if
they are not pulsing synchronously, then they are representing predications about possibly different
things. Thus the temporal synchrony of unit activation is used to represent the bindings between
predications, just as variables are used to do this in logical formulae. This mechanism is called
temporal synchrony variable binding, and it is the core feature of the S&A architecture. For the
purposes of this investigation I will be assuming that these units all fire at the same frequency, so
temporal synchrony reduces to having the same phase in the periodic pattern of activation. These
phases, then, are equivalent to variables, as shown in figure 1. In the parsing model discussed below,
variables refer to phrase structure constituents, so these phases represent constituent identities.
As in other connectionist architectures, computation in the S&A architecture is done using
links between units. Links multiply the output of their input unit by their weight to get their
activation. Some links provide this activation as input to another unit, where it is summed with
the activation from other input links. The S&A architecture also allows links which use their
activation to inhibit the activation of another link. A primary link’s activation is multiplied by one
minus the activation of each inhibiting link.® Sets of interconnected links are used to implement

1To prevent confusion, I will refer to nodes in a connectionist network as “units”, and nodes in a phrase structure
tree as “nodes”.

2There are other kinds of units which do produce sustained output. These units represent predications about the
situation as a whole, rather than information about individual entities.

*The use of inhibitory links is necessary to implement signal gates that don’t introduce significant propagation
delays, and to allow dynamically calculated probabilities to be multiplied.
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Figure 1: An example of temporal synchrony variable binding, and the sequential application of
two rules.

pattern-action rules, which test and modify the predications stored in the temporal pattern of
activation of the units. Because the same links are present during each variable’s phase, these
pattern-action rules inherently generalize across variables. Thus the rules of the parser inherently
generalize across phrase structure constituents. It is this ability to capture generalizations which
distinguishes the S&A architecture from other solutions to the variable binding problem, such as
(Smolensky, 1990).

An example of computation in the S&A architecture is also given in figure 1. The bottom two
lines of the timing diagram show the effects of the application of the following two rules.

Va, striped(z) A square () = danger
Va, danger A triangle (x) = scared(x)

First the synchronous activation of striped and square trigger the activation of the unit representing
the predicate danger, which is true of the situation as a whole. Then in 3’s phase the simultaneous
activation of danger and triangle cause the scared unit to change its state. This change shows up
in the output activation of the scared unit in the subsequent period, in the phase of y. Because
the effects of a rule generally show up in the pattern of activation one period after the rule applies,
periods can be thought of as steps in the computation, as shown in figure 1. By supporting
predications over variables and supporting sequential computation with pattern-action rules that
generalize over variables, the S&A architecture supports the kind of symbolic computation necessary
for syntactic parsing.

3 The Computational Constraints

As discussed above, this article argues for the computational adequacy and linguistic significance
of the Shastri and Ajjanagadde connectionist computational architecture for syntactic parsing.
While these arguments involve the development of a specific parsing model which is implemented
in the primitive computational devices of the architecture, that level of description is too detailed
to provide a useful basis for discussing the motivations for, and implications of, aspects of the
parser’s design. Fortunately, computation in this architecture has been characterized in terms of
symbolic computation, which has been found to be an appropriate level of abstraction for this



type of investigation. This prevents the irrelevant details of the architecture from interfering with
the investigation of parsing issues.? The characteristics of the architecture which are relevant for
parsing can be characterized at the level of symbolic computation in terms of a set of computational
constraints. These constraints, plus the constraints from the nature of the parsing task, form the
set of computational constraints on a model of syntactic parsing in the S&A architecture.

3.1 Constraints from the Architecture

While the S&A architecture provides a rather general purpose computing framework, it does have
significant limitations. One very significant limitation of this architecture is that it has a bounded
memory capacity.” The ability to detect whether or not units are pulsing synchronously has
bounded precision, and units can only maintain periodic firing for a bounded range of frequen-
cies, so only a bounded number of distinguishable phases can fit in one period. Thus predications
can only be stored for a bounded number of variables. From biological evidence this bound is at
most ten, probably a little less (Shastri, Ajjanagadde, 1993). For this investigation the bound will
be assumed to be ten.

Another significant limitation of the S&A architecture is that it has no explicit representation of
logical connectives. Thus only the default logical connective can be used. Conjunction is the most
useful connective for syntactic parsing, so it will be used as the default connective. This means the
architecture cannot explicitly represent a disjunction of predications. However, it can implicitly
represent disjunctive information, and disjunction can be manifested in parallel computations. The
rules of the network or an external observer can give a disjunctive interpretation to a predicate,
but in terms of the explicit representation, the predications will still simply be conjoined with
other predications. Also, the lack of a predication can be interpreted as a disjunction between that
predication and other incompatible predications, but again the predications which are specified are
treated as conjoined. The parallel computation of pattern-action rules can also manifest disjunction,
in that different patterns can be doing tests which pertain to different possible continuations of the
computation. Thus if a bounded amount of disjunction is needed for a bounded amount of time,
it can be eliminated by compiling all that computation into one pattern-action rule for each of the
disjuncts. These computations, however, must be atomic, in that they cannot store intermediate
state, and thus cannot be composed of multiple steps. This limits the feasibility of this method to
only short computations, although there can be a large number of disjuncts.

The last limitation of the S&A architecture is its locality constraint on rules.® Because links
do not have any memory, the rules implemented by links can only test and modify information
which is represented in the activation pattern at a given instant. This includes information about
an individual variable, and information about the situation as a whole. Thus this is the only
information that can be tested or modified by a given rule. Computations which involve multiple
variables can be done by using different rules to set and test predications about the situation as a

*This approach represents a departure from standard connectionist methodology. Even if the reader is not con-
vinced by the above argument, hopefully they will find the results of this investigation sufficient to justify this
divergence.

®The architecture allows for multiple computing modules, each with its own memory. NNEP is implemented as
one of these modules. The memory bounds apply to each computing module independently, so the parser does not
have to share its memory resources with other cognitive activities.

SThere is actually one more constraint imposed by the S&A architecture, but this constraint ends up being
subsumed by the bounds on the data structures used to handle the locality constraint on rules. This other constraint
limits the storage of relationships between variables, and is related to the way the locality constraint on rules limits
the processing of relationships between variables. See (Shastri, Ajjanagadde, 1993) for a discussion of this constraint,
and (Henderson, 1994) for a discussion of how it applies to the work presented here.



whole (as was illustrated in section 2), but computations which require the manipulation of pairs
of variables (or triples, etc.) cannot be directly implemented. However, they can be indirectly
implemented if at any given time the relationships represented by the pairs can also be represented
with unary predicates. This can be guaranteed if at any given time one of the variables in each
pair can be uniquely identified. Then the variables which are in the relationship to this unique
node can be specified with a unary predicate, and the computation can be done using these unary
predicates. For example, calculating long distance dependencies requires calculating relationships
between a trace node and other nodes, but because (as it turns out) only one trace node needs
to be involved in these computations at any given time, these calculations can be done within the
locality constraint on rules. If a node is uniquely identifiable, then a rule can refer to it with a
constant rather than a variable, so this locality constraint on rules can be expressed as a constraint
that no rules involve more than one variable. While this constraint has no precedent in work on
syntactic parsing, it turns out to have a number of significant linguistic implications.

3.2 Constraints from the Task

To understand the implications of the computational constraints imposed by the S&A architecture,
we need to take into consideration the computational constraints imposed by the nature of the
syntactic parsing task. The words which are input to the parser become available one at a time,
in the order in which they appear in the sentence. Thus the parser must accept incremental input.
The modules which receive the output of the parser need to compute the sentence’s interpreta-
tion incrementally. In order to provide for incremental interpretation, the parser’s output must be
incremental and monotonic. If the output isn’t monotonic, then the interpreter can’t make commit-
ments on the basis of the output without risking having to retract those commitments. While such
retractions do occur under some circumstances, I assume that there is always some evidence that
something has gone wrong. Typically the person will be consciously aware of a problem, although
other evidence (such as regressions in eye movements) can also be used to determine these cases.
Since we are concerned here with the normal case in which nothing goes wrong, the parser’s output
must be monotonic.” Thus the nature of the syntactic parsing process requires that a parsing model
accept incremental input, and produce incremental monotonic output.

3.3 The Relationship to Previously Proposed Constraints

Combining the constraints from the nature of the parsing task with the constraints from the ar-
chitecture, we get the following set of constraints on a model of syntactic parsing in the S&A
architecture. In additional to being consequences of using an independently motivated compu-
tational architecture, these computational constraints are interesting because of their relation to
previously proposed computational constraints on natural language.

. at most ten variables stored at a time
. no explicit representation of disjunction

. rules can only use one variable

1

2

3

4. incremental input
5. incremental output
6

. monotonic output

"Note that this constraint is only being claimed to apply to the calculation of syntactic constituent structure. Other
levels of representation, such as predicate-argument structure, may not be subject to the monotonicity constraint.



The first constraint is an example of a bounded memory requirement. It has generally been
assumed that at some level of abstraction the syntactic parser has a bounded memory (Chomsky,
1959). Church (Church, 1980) showed that this constraint applies at a level which takes into
consideration performance constraints, such as restrictions on the depth of center embedding and
on the availability of phrases for posthead modification. The particular form of the bounded
memory constraint given above has not previously been successfully applied to syntactic parsing,
but it has extensive precedence in other investigations of cognition. Miller proposed a bound of
seven plus or minus two on the number of things which can be stored in short term memory (Miller,
1956), and this result has been replicated for a surprising number of tasks. The bound given above
is precisely the same form of constraint, and although here I'm assuming ten things can be stored,
Miller’s results are within the resolution of the biological arguments which were used to derive that
bound. See (Shastri, Ajjanagadde, 1993) for a more extensive discussion of this relationship.

Another interesting correlation with previously proposed computational constraints on natural
language is due to the restriction on disjunction and the requirement for incremental monotonic
output. These constraints imply that the syntactic parser must parse deterministically. This con-
straint was first proposed by Marcus (Marcus, 1980), and has been argued for by several researchers
since ((Church 1980), (Marcus, et.al. 1983), (Berwick, Weinberg, 1984)). It requires that the parser
deterministically pursue a single analysis. This means that multiple analyses can’t be pursued in
parallel, and that once the parser commits to an aspect of the analysis it can’t retract that commit-
ment. Explicitly pursuing multiple analyses in parallel is equivalent to having explicit disjunction in
the representation of the analysis, which is ruled out by the second constraint above. The retraction
of commitments is ruled out because all commitments must be immediately output in order for the
output to be maximally incremental, and once information has been output it can’t be retracted
or the output wouldn’t be monotonic. Thus the determinism constraint can be derived from the
independently motivated constraints that there be no explicit representation of disjunction and
that the parser’s output be incremental and monotonic.

Because in this article I am emphasizing the way investigations using the S&A architecture fit
with other work in psycholinguistics, the following discussion will concentrate on the implications
of the bounded memory and determinism requirements. The locality constraint on rules also has
significant consequences, and these consequences will be mentioned, but they will not be the focus
of discussion. See (Henderson, 1994) for an extensive discussion of these issues.

4 The Parsing Model

The argument for the adequacy and linguistic significance of the Shastri and Ajjanagadde connec-
tionist architecture is made using a specific example of a parser implemented in this architecture.
The previous section identified the characteristics of this architecture which are significant for syn-
tactic parsing in terms of a set of constraints on symbolic computation. Given this characterization,
it is possible to make the arguments for adequacy and significance at the level of symbolic com-
putation. This greatly simplifies the discussion of the relevant characteristics of the parser, and
it allows results from work in linguistics, computational linguistics, and psycholinguistics (which
has almost all been done in terms of symbolic representations) to be applied to this investigation.
Accordingly, this section will concentrate on how this parsing model, called a Neural-network Node
Equating Parser (NNEP), is designed to comply with the computational constraints discussed in
the previous section.



4.1 Representing Phrase Structure Trees

The constraints outlined in the previous section place several requirements on the parser’s repre-
sentation of grammatical information. First, because the parser must be deterministic, the rep-
resentation should allow the parser to avoid saying what it doesn’t know. Following Description
Theory (Marcus, et al., 1983), partial descriptions of phrase structure trees are used to satisfy this
requirement. Partial descriptions allow the parser to underspecify phrase structure information,
rather than either overcommitting or using a disjunction of more completely specified alternatives.
In addition, in order to produce incremental output and only allow syntactically well-formed anal-
yses, the parser must be able to say what it does know. Again the use of partial descriptions is
important for this requirement, because they allow different kinds of information to be specified
independently of each other. To satisfy both these requirements, the grammatical representation
must allow information which the parser does know at a given time to be specified independently of
the information which the parser does not know. The grammatical representation used here allows
different kinds of grammatical features (e.g. +nominative, +plural), expectations (e.g. obligatory
arguments), iteration restrictions (e.g. one determiner per NP), and structural constraints (e.g.
linear order) to all be specified independently of each other.

The locality constraint on rules and the parser’s bounded memory both place another require-
ment on the parser’s representation of grammatical information. Because of the locality constraint
on rules, the representation should allow as much information as possible to be local to individual
phrase structure nodes. Thus we want a relatively flat phrase structure representation, provided
it still expresses the compositional nature of syntax. This compact representation also makes it
easier to stay within the parser’s bounded memory, because it reduces the number nodes in a
tree’s representation. The grammatical representation used here allows flexibility in the grouping
of information into nodes because multiple kinds of expectations and iteration restrictions can be
specified for a single node. In many formalisms this is not true. For example, in Context Free
Grammars, the node on the left side of a rule cannot have any more nodes attached to it (thereby
restricting iteration), and the nodes on the right side of the rule must have other nodes attached to
them (thereby expressing expectations). For constituents which can iterate, like optional modifiers,
Chomsky adjunction needs to be used. This results in multiple copies of the modified node. Also,
in order to control the iteration of things like determiners separately from controlling the itera-
tion of things like head nouns, Context Free Grammars have to have separate nodes for these two
purposes (i.e., NP and N, or DP and NP). These problems also apply to the expression of expec-
tations. Optional arguments require two grammar rules, one with the argument and one without,
and expressing the expectation for a determiner separately from expressing the expectation for a
head noun requires two separate nodes for these purposes.

The locality constraint on rules and the parser’s bounded memory interact in another interesting
way to constrain the parser’s representations. Not only should as much information as possible be
local to individual nodes, as little information as possible should be expressed as relationships
between nodes. Of the four kinds of information mentioned above, only structural constraints
involve multiple nodes. By allowing most ordering constraints to be stated with respect to terminals
(rather than other nonterminals), many structural constraints can also be localized to individual
nodes.® By identifying the minimal set of relations that are needed to parse, special mechanisms
which allow all rules to use only one variable can be devised for these few cases. This localization
of computation in turn makes it possible to stay within the parser’s bounded memory. Because
computations which do not directly involve a node are independent of the information about that

80nly nonterminal nodes are represented as entities in the parser’s memory. Information about terminals is
represented with features and constraints on the use of grammar entries.



node, a node which will not be directly involved in any more parser operations can be safely
removed from the parser’s memory. By removing nodes as they are completed during a parse,
the parser can parse arbitrarily long sentences using only a bounded number of nodes at any
given time. The grammatical representation used here allow relationships between nodes to be
minimized because structural constraints are specified independently of other kinds of grammatical
information. Grammar formalisms based on Context Free Grammars do not have this property
because expectations and iteration restrictions are specified in terms of a node’s structural position
in the grammar rule, as discussed above.

4.1.1 Structure Unification Grammar

In order to comply with the above requirements, NNEP uses Structure Unification Grammar (Hen-
derson, 1990) as its grammar formalism. Structure Unification Grammar (SUG) is a formalization
of accumulating partial information about the phrase structure of a sentence until a complete
description of the sentence’s phrase structure tree is constructed. As such it is similar to other uni-
fication based or constraint based grammar formalisms. These include Description Theory (Marcus,
et al., 1983), Head-Driven Phrase Structure Grammar (Pollard, Sag, 1987), Construction Grammar
(Fillmore, et al., 1988), and Segment Grammar (de Smedt, Kempen, 1991), among others. Like
these other formalisms, SUG allows multiple kinds of grammatical features to be specified indepen-
dently of each other. Unlike these other formalisms, SUG allows multiple kinds of expectations,
iteration restrictions, and structural constraints to also be specified independently of each other. In
addition, SUG’s derivations are only constrained by the semantics of the declarative representation,
so any valid parsing strategy can be characterized in terms of valid SUG derivations.

The flexibility of SUG derivations is due to its simple mechanism for combining partial descrip-
tions of phrase structure trees. An SUG derivation takes partial descriptions from the grammar
(which is simply a set of partial descriptions), conjoins them, and equates some of their nonterminal
nodes. Any order of conjoining descriptions and equating nodes is possible, so the parser can use
any parsing strategy and still be following an SUG derivation. The only restrictions on deriva-
tions are that the final description be consistent and completely describe some phrase structure
tree. This means that each equation done in the derivation needs to be between nodes which have
consistent descriptions. The grammar can limit the possible equations by specifying inconsistent
information about any two nodes which shouldn’t be equated. Unlike consistency, completeness
is only necessary for the final description. By not satisfying completeness requirements locally, a
grammar entry can express expectations about what kinds of information other grammar entries
will contribute to the final phrase structure. Because of the complete flexibility of SUG derivations,
SUG grammar entries have no procedural import, and the grammar is free to group information
into grammar entries in a way which expresses exactly the information interdependencies which
the parser needs to know.

The language which SUG provides for specifying partial descriptions of phrase structure trees
is illustrated in figure 2. As in many formalisms, the grammatical features of nodes are described
with feature structures. The use of feature structures allows multiple kinds of grammatical features
to be specified independently of each other. Expectations and iteration restrictions are specified
with a different kind of feature, shown in figures as letter superscripts and subscripts, respectively.
Expectations express what information will be specified before the parse is finished. Superscripts
specify these expectations in that before a parse can be finished, any node with a superscript must
equate with a node that has the same letter as a subscript. For example in figure 2, the subject
node for ate must be equated with a node which has its head noun, thereby expressing the fact that
ate obligatory subcategorizes for a subject. The object node has no such feature, since the object
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Figure 2: Some example grammar entries. They can be combined to derive the sentence Who ate
my white pizza by equating the two I’s, the second and third N’s, and the last four N’s.

of ate is optional. Tteration restrictions prevent grammar entries from being repeatedly attached at
a node, even if the grammatical features of the grammar entries are compatible. Subscripts specify
these restrictions in that any node with a subscript cannot be equated with another node which has
the same subscript. For example in figure 2, my has a subscript to prevent other determiners from
attaching to the same noun phrase, while white has no such subscript, thereby allowing adjectives
to iterate.

Like all the above features, structural constraints can be specified partially and independently
of other constraints. In addition to the immediate dominance relation for specifying parent-child
relationships? and the linear precedence relation for specifying ordering constraints,'® SUG allows
chains of immediate dominance relationships to be partially specified using the dominance relation.
A dominance constraint between two nodes specifies that there must be a chain of zero or more
immediate dominance relationships between the two nodes, but it does not say anything about the
chain. This relation is necessary to express long distance dependencies in a single grammar entry.
For example in figure 2, the grammar entry for who expresses the fact that its gap is somewhere
within its sentence, but does not say where. Because the final description of a derivation must
specify a single tree, the N “trace” node in this grammar entry must find a “gap” node to equate
with, thereby expressing the fact that the existence of a gap is obligatory.

°In the grammar, the solid lines in figures represent immediate dominance, but when these descriptions are
interpreted by NNEP, solid lines do not specify the actual identity of the immediate parent for the dominated node.
The reason is that the forgetting operation to be discussed below does not allow such identity information to be kept.

1%Tn order to simplify figures, linear precedence constraints will not in general be shown. Most such constraints are
between words and either nonterminals or their head terminals. These can be inferred from the lateral position of
the nodes relative to the words.
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4.1.2 Node Closure

In addition to providing the necessary flexibility in the specification of the phrase structure of
the sentence, Structure Unification Grammar localizes information in a way that allows completed
nodes to be closed from further access by the syntactic parser. Closed nodes can be removed from
the phrase structure representation, thereby reducing the number of nodes which NNEP needs to
store information about, and allowing it to stay within its memory bounds. Because NNEP outputs
all the information about the phrase structure of the sentence as it computes it, forgetting nodes
does not interfere with the interpretation of the output. The mechanism for closing nodes, called
the forgetting operation, does not imply any particular node closure strategy; it simply provides a
sound mechanism for implementing such a strategy.

For the forgetting operation to be sound, its use cannot allow the forgotten information to be
contradicted later in the parse. Because forgetting a node prevents any future parser actions at
that node, soundness can be guaranteed as long as all the information about a forgotten node
would only be needed to test the consistency of parser actions at that node. The only information
in an SUG description which is a problem for this requirement is immediate dominance. Some
parser actions need to test whether a node has an immediate parent, but if that parent has been
forgotten, then this information would not be available. Since no parser actions need to know
the actual identity of the immediate parent, this problem can be easily solved by representing
immediate dominance in two parts, dominance (for ordering constraints), and having an immediate
parent. The later information is a property of an individual node, so forgetting the parent will
not interfere with accessing this information. With this change in representation, forgetting a node
will never allow the parser to compute an analysis which would otherwise be impossible. It may,
however, prevent the parser from finding an analysis which would otherwise have been possible.
Thus the parser wants to avoid forgetting nodes which have a significant chance of being involved
in a parser action. In particular, it never wants to forget nodes which must be equated with in
order for the parse to be completed.

4.2 Recovering Phrase Structure Trees

The parsing model presented here (NNEP) uses SUG’s phrase structure descriptions as its rep-
resentation of phrase structure information, and computes SUG’s derivations in recovering that
phrase structure information from the words of a sentence. NNEP’s parser state represents an
SUG description which specifies the information that has been determined so far about the phrase
structure of the sentence. NNEP’s operations compute the SUG derivation steps which combine
this intermediate description with descriptions from the grammar and perform node equations.
NNEP outputs each of these derivation steps as they are computed, thereby outputting all the
information which NNEP adds to its parser state as soon as the information is inferred. When the
parse is done, NNEP checks to make sure it has produced a complete description, thereby ensuring
that NNEP will only accept sentences which the grammar specifies as grammatical.

The set of SUG derivations which NNEP can compute is limited by the computational con-
straints discussed in section 3. Because NNEP must produce incremental output, the phrase struc-
ture information which is implied by the presence of a word must be added to the parser state
(and therefore output) when the word is input. This information is precisely the grammar entry
for the word, provided there is no lexical ambiguity. If there is more than one grammar entry that
could be used for a word, then because no disjunction is allowed in the parser state, one of them
must be chosen.!’ In some cases this forced choice can result in a mistake, thereby predicting a

11t is possible that predicates could be defined which represent a bounded disjunction between grammar entries,
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garden path.'? The parse shown in figure 3 gives examples of three parser operations which add
the information in a grammar entry to the parser state.

In contrast to grammar entries, the equations between nodes in the grammar entry and nodes
already in the parser state do not necessarily have to be specified. For example in figure 3, when
the grammar entry for who is added, its root is equated with the sentence node which initialized
the parser state, but when the is processed, it’s grammar entry is not attached to the tree fragment
from the previous portion of the sentence. Such delays in attachment decisions are necessary when
there is not enough information available at that time to make a commitment to one equation,
since the determinism requirement prevents the retraction of commitments. In this case, NNEP
can’t be sure that the is the start of the object of ate, since it might also be the start of the
possessor of the object of ate, as in Who ate the pizza’s crust. If an equation decision is delayed,
one of the possible equations can be performed later in the parse when there is enough information
available. In this example, the equation is done when the end of the sentence is reached, at which
point there can be no forthcoming possessive marker. After this equation, NNEP has specified a
single immediate dominance tree, and there are no remaining superscripts, so the parse has been
completed successfully.

The locality constraint on rules means that the rules which implement the parser’s operations
must each involve only one variable. This constraint limits the set of operations that NNEP can
use. This has its greatest effect on the process of recovering long distance dependencies, which
requires the calculation of what constituents a trace node might be equated with or extracted out
of. To allow the calculation of these relationships, trace nodes are placed on a bounded stack, and
the rules which do these calculations are restricted to only apply to the top node on this stack.
The top node on the stack is called the public node. Because the public node is always unique,
potential equation sites and potentially dominating nodes for the public node can be accessed by
rules using unary predicates. In figure 3, the trace node introduced by who is the public node when
ate is being processed. This allows a single operation to simultaneously equate the trace node as
the subject of ate, and equate the sentence node of ate with the sentence node introduced by who.

The bound on the number of variables that can be stored in NNEP’s memory requires the use of
the forgetting operation discussed above. In figure 3, after ate is processed, the two NP’s on the left
are no longer on the right frontier of the sentence. Thus no other nodes will be equated with them,
and NNEP can safely close them off from further consideration. Since this level of representation
is only being used for syntactic parsing, forgetting these nodes does not interfere with processes
which might involve their associated nodes at other levels of processing. The resulting parser state
only requires two variables. The terminals are only shown for readability.

4.3 The Connectionist Implementation

As discussed above, NNEP is implemented using the Shastri and Ajjanagadde connectionist compu-
tational architecture. The S&A connectionist architecture was developed for modeling fast common
sense reasoning (called reflexive reasoning), and here it is used to implement a special purpose mod-
ule for syntactic constituent structure parsing. It is a module in that the predicates and variable

or portions of grammar entries, thus allowing lexical disambiguation to be delayed. However, this would greatly
complicate the parser, since such predicates would require a very complex interpretation which is rather different
from the node-local features represented by most other predicates. Thus this alternative has not been pursued,
although perhaps the constrained use of such predicates would be feasible.

12This discussion is a slight simplification. In the complete model (Henderson, 1994), the parser can wait for
information about the immediately following word in cases where it isn’t sure which grammar entry to pick. Also,
not all grammar entries are associated with words, so some ambiguities can be handled by delaying the addition of
one of these nonlexical grammar entries.
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bindings of the network are specific to the network’s particular task. It is not currently clear
whether this network is part of a larger module which includes things such as the calculation of
predicate-argument structure, or whether it is a distinct module that interacts highly with other
stages of language processing.

The network has three basic parts, input units, predicate units, and grammar units. The
temporal pattern of activation over the predicate units represents the information the parser needs
to know about its parser state. The phases in this pattern of activation represent variables that refer
to nonterminal nodes in the phrase structure of the sentence, and the predicates represent properties
of nodes and of the phrase structure tree as a whole. Since these predicate units represent a feature
decomposition of the types of nodes, and these features are only interpreted within this module,
the predicate units are analogous to hidden units in Parallel Distributed Processing (Rumelhardt,
McClelland, 1986) networks.

The network’s input units are just a stand-in for the word recognition component of the system.
There is one input unit per word. The unit for the next word is active across all phases until a
grammar entry for that word is combined with the parser state. Links from these units go to units
for the grammar entries of the word. These primary links are inhibited by links from the units that
represent predicates. These inhibitory links filter out all the phases for phrase structure nodes in
the parser state which cannot be sites for a combination with the grammar entry. Thus primary
links from the input units and inhibitory links from the predicate units implement the patterns for
the pattern-action rules that calculate what action the parser should take given the parser state
and the next input word. Other such links implement the patterns for parser actions that do not
use a grammar entry (such as internal attaching).

The input activation provided to the grammar units by the above patterns is used to choose what
parser action to perform next. The nature of the arbitration network that should be used to make
this disambiguation decision has not been significantly addressed in this work, but see (Stevenson,
1994) for an investigation of these issues. Once this choice has been made, the grammar unit for
the chosen parser action fires in the phase of the chosen site. This is the output of the parser, since
this is the earliest indication of what the parser has decided, and the sequence of parser actions
completely determines the information that the parser recovers about the phrase structure of the
sentence. This output is also used to trigger the action component of the pattern-action rule that
calculates the chosen parser action. This action changes the states of the predicate units to reflect
the new information that is implied by the chosen parser action. An action is implemented with
links from the grammar unit to the units for new predications about the site of the parser action,
plus a unit that gates (using inhibitory links) links to units for the new predications about other
nodes in the grammar entry. These gated links may introduce new nodes into the parser state, and
may add information about uniquely identifiable nodes. The forgetting operation, which removes
nodes from the parser state, is implemented with a pattern-action rule that looks for nodes which
have at most a small chance of ever being involved in any future parser actions, suppresses all the
predications about these nodes, and makes their phases available for future use.

In addition to the pattern-action rules for parser actions, there are some rules for calculating the
indirect implications of the predications that are directly added by the above rule actions. These
are implemented with links that propagate activation from the directly set predicate units to the
units for the implied predications. These rules include those that calculate possible long distance
dependencies, and rules that transfer information about the public node to predications about the
structure as a whole.
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5 Adequacy and Significance

The previous section described a model of syntactic parsing (NNEP) which is designed to comply
with the constraints imposed by the S&A architecture and the nature of the parsing task. In
this section, NNEP will be used to argue that the S&A architecture is computationally adequate
for syntactic parsing, and that it makes linguistically significant predictions. To argue for the
adequacy of an architecture, it is not sufficient to perform tests simply on a small set of examples,
or on phenomena which the architecture is well suited for. The phenomena which are likely to
be difficult for the architecture need to be identified, and empirical tests need to be performed
on these phenomena. Because the limitations of the S&A architecture which are significant for
syntactic parsing have been characterized at the same level of abstraction (symbolic computation)
as has traditionally been used in the study of linguistic phenomena, it is fairly easy to identify
the phenomena which are of particular concern. Most of this section discusses these phenomena
and the empirical tests which have been performed on them. To argue that an architecture makes
linguistically significant predictions, it is simply necessary to provide examples of such predictions.
These results will be outlined in the discussion of the tests. See (Henderson, 1994) for an extensive
discussion of these results.

While it is important to pay particular attention to phenomena where the limitations of the
architecture are likely to be significant, it is also necessary to guard against errors in the identifi-
cation of these phenomena. There is no complete proof that the relevant limitations of the S&A
architecture and the relevant phenomena for these limitations have been completely identified. For
this reason, NNEP is also tested on a set of randomly selected, naturally occurring sentences. This
provides an essentially unbiased test of the parser’s ability to handle the diversity of phenomena
in natural language. While it is not necessary for the parser to handle every phenomena in this
test set, specific arguments need to be made that any excluded phenomena can be handled by
extensions to the parser.

Four types of phenomena are of particular concern given the limitations of the S&A architecture.
As discussed in section 3, the parser has a bounded memory, must be deterministic, and must be
implemented with rules that only use one variable. The bounded memory constraint requires testing
on center embedded sentences, since these are the sentences which necessarily involve remember-
ing a relatively large number of nodes. The determinism constraint requires testing with locally
ambiguous sentences. If a given sentence prefix can be continued in more than one way, then at
that point the parser needs a representation of the sentence’s phrase structure which is compatible
with both continuations, without using disjunction.!® This requirement in turn places constraints
on the representation of grammatical analyses. Thus we also need to test the parser’s ability to
express phrase structure analyses that accurately characterize the language. Computations that
involve more than one node always involve nodes which are looking for an immediate parent. These
nodes include trace nodes, so testing on long distance dependencies is necessary. They also include
subject nodes and delayed attachment decisions, but these phenomena are adequately covered in
the local ambiguity and phrase structure analysis data. The data structures which are used to
comply with the locality constraint on rules also introduce constraints. These data structures are
of bounded size, so they also require testing on center embedded sentences. From this analysis we

!3*Maintaining local ambiguities requires additional resources, but to date the interaction between maintaining
ambiguity and resource bounds has not been investigated. For example, a long right branching sentence could
conceivably have a modifier attached to any one of the nodes on the right frontier, and thus all of these nodes would
need to be stored. However, it is well known that the set of nodes which are available for such modification is severely
restricted (Church, 1980). Because of these performance constraints, the parser’s bounded memory is not likely to
be a problem for maintaining local ambiguities. No test in this area has been done because no suitable set of data
has been found.
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see that NNEP needs to be tested on center embedded sentences, local ambiguities, long distance
dependencies, and phrase structure analyses.

To test NNEP on the specific phenomena identified above, papers were selected from the lit-
erature which discuss a representative sample of the data on these phenomena. NNEP was then
tested on its ability to at least parse the data in the papers, if not adopt the same analyses.'?
For an approximately unbiased sample of sentences, a set of sentences randomly selected from the
Brown Corpus was used. All of these tests deal only with FEnglish data, except to the extent that
the analyses inherited from the papers generalize to other languages.

To test NNEP’s ability to express phrase structure analyses that accurately characterize the
language, the phrase structure analyses in (Kroch, 1989) were used. In (Kroch, 1989), constraints
from Government Binding theory are expressed in the Tree Adjoining Grammar (TAG) framework.
The similarity between SUG and TAG made this paper particularly appropriate for this task. As
is the case in the examples given above, NNEP’s grammars represent each lexical projection and
all its associated functional projections as a single SUG nonterminal node. All the information
about these projections are expressed in the feature structures which label the node. This compact
representation is possible because SUG can represent multiple types of expectations and iteration
restrictions on a single node. Ordering constraints within these projections can be specified with
respect to the distinguished terminal nodes (constituent head, functional head, and verb).! Any
schematized local collection of nodes can be represented in this way, so the test was successful.

The analyses in (Kroch, 1989) were also used to test NNEP’s ability to recover long distance
dependencies. Again the use of TAG in this paper was useful, because NNEP’s rules for calculating
long distance dependencies factor the local component of that dependency from the recursive com-
ponent, just as is done in TAG. The local rule calculates what constituents could be the gap for
a filler, and the recursive rule calculates what constituents could have the gap somewhere within
them. Because the relevant filler is always uniquely identifiable as the public node, these rules only
need a variable to range over the candidate nodes, and thus do not have to violate the locality
constraint on rules. Most of the constraints on long distance dependencies are simply compiled into
features on nodes in grammar entries (i.e., extractable and not_barrier), and enforced by the long
distance dependency rules. However, some of the constraints are enforced by the computational
constraints on these rules. In particular, these rules can only access the most recently introduced
trace node (i.e., the top node on the public node stack). This constraint is used to explain the that-
trace effect, the cases of subject islands that precede inflection, and the limited possible extractions
out of wh- islands. The later phenomena are particularly interesting, because accounting for this
data required Kroch to go outside the power of TAG. Thus by accounting for this phenomena with
a computational constraint, the competence theory of long distance dependencies can be simplified.
This explanation for wh- island constraints is also interesting in that it subsumes Pesetsky’s path
containment condition (Pesetsky, 1982). In summary, all the data in (Kroch, 1989) was correctly
categorized, mostly by adopting the same analyses, and some of the phenomena were predicted by
the computational constraints imposed by the S&A architecture.

To test NNEP’s ability to handle local ambiguities, the data from the chapters on ambiguity
resolution in (Gibson, 1991) were used. (Gibson, 1991) is particularly well suited for this purpose
because Gibson surveys the literature on ambiguity resolution and discusses the relevant data. To

MWhile each of these areas deserve a more detailed analysis, a broad and shallow test is appropriate for this stage
of the investigation. A demonstration of the feasibility of addressing all of these issues is necessary to justify the
detailed investigation of any one of them.

15Ordering constraints involving subjects are enforced by limiting the parser operations that can be used with the
grammar entry, since the presence of a subject in the parser state changes how the subject’s sentence can be attached
to.
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test whether the S&A architecture’s determinism constraint prevents a parser from being adequate,
only NNEP’s ability to represent the ambiguities in this data set needs to be addressed. NNEP
needs representations which allow it to delay the resolution of a local ambiguity long enough for
disambiguating information to be found. The issue of whether the parser can make the right choice
given disambiguating information is not of particular concern here, given the general success of
connectionist networks in disambiguation tasks. Because NNEP can delay attachment decisions,
ambiguities in the way two grammar entries are connected can be handled. Because SUG’s partial
descriptions allow NNEP to avoid specifying information which it doesn’t yet know, NNEP can use
grammar entries which are compatible with all the possible continuations of a locally ambiguous
sentence. This may involve leaving some structure unspecified. For example, the ambiguity between
a sentential complement and a relative clause requires that the relative clause’s modification rela-
tionship and trace node not be specified until the gap is found. This can be handled with grammar
entries which specify the delayed structure information, but which are not associated with a word.
The addition of such nonlexical grammar entries can be delayed until there is disambiguating infor-
mation. Because SUG’s partial descriptions allow NNEP to specify the information it does know
independently of the information it needs to leave unspecified, the information which is necessary
to resolve an ambiguity is available for decision making. In a few cases the information which is
available for decision making also needs to include the word immediately following the current word.
If the parser has to make a decision and it can’t decide based on the left context and the next two
words, then a garden path is predicted in one of the alternatives. There is one pair of sentences for
which this prediction may be a problem, given below. Since found is obligatorily transitive, looking
at the immediately following word to see if it could be the start of an object would ordinarily allows
this reduced relative/main verb ambiguity to be resolved, but because of the heavy NP shift, this
is not possible for these sentences. Gibson (personal communication) agrees that experiments are
needed to determine whether one of the sentences is a garden path, as this model predicts. With
this one caveat, all the acceptable data is parsable. NNEP accounts for the unacceptability of The
horse raced past the barn fell, but otherwise no attempt was made to account for the unacceptable
data. Some of the unacceptable data is probably due to the disambiguation mechanism’s efforts to
conserve resources, but this possibility has not been investigated.

(247a) The bird found in the room was dead.
(249a) The bird found in the room enough debris to build a nest.

The test of NNEP’s ability to handle center embedded sentences used the data from the chapters
on processing overload in (Gibson, 1991). Again, (Gibson, 1991) is particularly well suited for this
purpose because it surveys the literature. In addition, some example sentences involving nested
ditransitive verbs were constructed and used. Since the interaction between ambiguity and resource
requirements is not being tested here, nodes were closed as soon as possible, using the forgetting
operation. None of the acceptable sentences required more than ten nonterminals to be stored at
any one time, so the architecture’s bounded memory was not a problem. In fact, the maximum
number of nonterminals required was nine, given the compact phrase structure representation used
here. This is interesting because nine is the maximum of the robust bound on human short term
memory of seven plus or minus two (Miller, 1956). The data structures which are used to handle
the locality constraint on rules also result in some bounds. The public node stack can be at most
two deep, there can be at most three unattached tree fragments in the parser state, and there can
be at most one first posthead argument node for a ditransitive verb. None of these constraints need
to be violated to parse any of the acceptable sentences in this data set. In addition, much of the
unacceptable data is ruled out, mostly due to the bound on the depth of the public node stack and
a particular (independently motivated) strategy for when to specify a tree fragment root as the
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public node. Not all the unacceptable data, however, is predicted by these constraints. Some of this
data is probably due to interactions between the resources necessary for maintaining ambiguities
and these resource bounds, but this possibility has not been investigated.

To make sure the above phenomena-specific tests did not miss anything which would be difficult
for the S&A architecture, NNEP was also tested on an essentially unbiased sample of sentences.
This set of fifty thirteen word sentences were randomly selected from the Brown corpus by Ezra
Black in 1991. Since the issue being addressed is the adequacy of the S&A architecture, and not the
adequacy of NNEP as it is currently designed, incompleteness in NNEP’s coverage of the phenomena
in this data set is only a problem to the extent that extensions to NNEP aren’t likely to be able
to handle the phenomena. Indeed there are some phenomena which NNEP is not yet equipped to
handle, but none of these are expected to be any more difficult for this architecture than they are
in general. In particular, NNEP cannot parse coordinations, or gapping in comparatives, and it
cannot make many disambiguation decisions. As argued above, this architecture is well suited for
doing disambiguation. I expect that the relationship between SUG and Combinatory Categorial
Grammar (Steedman, 1987) will make the analyses of coordination and gapping easier for this
parsing model than for most phrase structure based parsers. Due to the scope of these topics, they
will have to be left for future work.

6 Conclusion

This article has discussed syntactic parsing using a model of symbolic computation in a connec-
tionist network recently proposed by Shastri and Ajjanagadde (Shastri, Ajjanagadde, 1993). This
connectionist model of computation extends previous connectionist architectures by using tempo-
ral synchrony variable binding to represent the identities of entities in a way that allows rules to
generalize over entities. Because of this added ability, the architecture can take advantage of the
compositional nature of natural language, while keeping the properties of connectionist networks
which have made them important tools for cognitive modeling. However, the S&A architecture
has some limitations, which impose computational constraints on syntactic parsing. Most of these
constraints have previously been proposed on the basis of linguistic and psychological evidence,
and the other constraint makes some significant linguistic predictions. None of these constraints
prevent the architecture from being computationally adequate for syntactic parsing.

To demonstrate the computational adequacy and linguistic significance of the S&A architecture
for syntactic parsing, a specific parsing model has been implemented in the architecture which is
designed to address the architecture’s computational constraints. The central characteristic of this
parser which allows it to comply with these constraints is its extensive use of partial descriptions
of phrase structure trees. This parser has been tested on all the phenomena which are of particular
concern given the limitations of the architecture (phrase structure analyses, long distance depen-
dencies, local ambiguities, and center embedding). The results of these tests and a test on a random
sample of sentences indicate that the S&A architecture is powerful enough for recovering the syn-
tactic structure of natural language sentences, and that the computational constraints imposed by
the architecture make some significant linguistic predictions. These predictions are mostly in the
areas of long distance dependencies and center embedding.

The significance of this work goes beyond the specific issues addressed here. Because the pri-
mary concern here is the adequacy of the S& A architecture, this work has concentrated on problems
which connectionist networks have previously had difficulty with. By demonstrating the feasibility
of syntactic parsing in this architecture, this work justifies using it to investigate issues for which
connectionist networks are particularly well suited. For example, previous connectionist investi-
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gations of grammar learning and ambiguity resolution have been hampered by representational
inadequacies. With the above work, the success connectionist models have had on similar problems
in other areas is likely to be repeated for natural language. Another strength of connectionist
architectures such as this one is their relationship to the biological substrate of human language
processing. The biological motivations for the S&A architecture have already been important in
this investigation, in that they provide independent motivations for the computational constraints,
and therefore give them explanatory power. This relationship also gives work in this architecture
predictive power, since the link between an abstract model and real time and space data can be
made on the basis of independent biological evidence. The model presented above is compatible
with the real time constraints on language processing given this relationship, but work taking full
advantage of this predictive power has only begun. This predictive power and the other advantages
of connectionist networks are likely to make future work on cognitive modeling in this architecture
very fruitful.
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