
A NEURAL NETWORK PARSER THATHANDLES SPARSE DATA�James HendersonUniversity of ExeterSchool of Engineering and Computer ScienceExeter EX4 4PT, UKJ.B.Henderson@exeter.ac.ukAbstractPrevious work has demonstrated the viability of a particular neural network architecture, SimpleSynchrony Networks, for syntactic parsing [6]. Here we present additional results on the performance ofthis type of parser, including direct comparisons on the same dataset with a standard statistical parsingmethod, Probabilistic Context Free Grammars. We focus these experiments on demonstrating one ofthe main advantages of the SSN parser over the PCFG, handling sparse data. We use smaller datasetsthan are typically used with statistical methods, resulting in the PCFG �nding parses for under half ofthe test sentences, while the SSN �nds parses for all sentences. Even on the PCFG's parsed half, theSSN performs better than the PCFG, as measure by recall and precision on both constituents and adependency-like measure.1 IntroductionIn many domains neural networks are an e�ective alternative to statistical methods. This has not beenthe case for syntactic parsing, but recent work has identi�ed a viable neural network architecture forthis problem (SSN) [6], [7]. This alternative parsing technology is potentially of interest because neuralnetworks have di�erent strengths from statistical methods, and thus may be more applicable to sometasks. Like statistical methods, neural networks are robust against noise in the input and errors in thedata. But unlike statistical methods, neural networks are particularly good at handling sparse data.In order to compensate for the necessarily limited amount of data available, statistical methods mustmake strong independence assumptions. These assumptions lead to undesirable biases in the modelgenerated, and may still not guarantee coverage of less frequent cases. Neural networks also requireindependence assumptions in order to de�ne their input-output format, but these assumptions can bemuch weaker. Because neural networks learn their own internal representations, neural networks candecide automatically what features to count and how reliable they are for predicting the output.In this paper we empirically investigate the ability of SSNs to handle sparse data, relative to thestatistical method Probabilistic Context Free Grammars (PCFGs) and a statistical version of the SSNparser. To test this ability we use a small dataset relative to those typically used with statisticalmethods. We train all the models on the same dataset and compare their results, both in terms ofcoverage and performance on the covered portion. The statistical version of the SSN parser has goodcoverage, but its performance is worse than both the other two models. The PCFG covers underhalf of the test sentences. The SSN produces a parse for all of the sentences, while still achieving0Published in Proceedings of the 6th International Workshop on Parsing Technologies, Trento, Italy, 2000.



better performance than that of the PCFG on the PCFG's parsed sentences, as measure by recall andprecision on both constituents and a dependency-like measure.2 Simple Synchrony NetworksThe neural network architecture used in this paper has previously been shown to be a viable parsingtechnology based on both initial empirical results [6] and the linguistic characteristics of the basiccomputational model [5]. Their appropriateness for application to syntactic parsing is a result of theirability to learn generalisations over structural constituents. This generalisation ability is a result ofusing a neural network method for representing entities, called Temporal Synchrony Variable Binding(TSVB) [12]. In Simple Synchrony Networks (SSNs) this method is used to extend a standard neuralnetwork architecture for processing sequences, Simple Recurrent Networks (SRNs) [3]. SRNs can learngeneralisations over positions in an input sequence (and thus can handle unbounded input sequences),which has made them of interest in natural language processing. However, their output at any giventime in the input sequence is an unstructured vector, thus making them inappropriate for recoveringthe syntactic structure of an input sentence. By using TSVB to represent the constituents in asyntactic structure, SRNs can be extended to also learn generalisations over structural constituents.The linguistic relevance of this class of generalisations is what accounts for the fact that SSNs generalisefrom training set to testing set in an appropriate way, as demonstrated in section 4. In this sectionwe brie
y outline the SSN architecture.2.1 Representing ConstituentsThe problem of representing constituents in a neural network is an instance of a broader problem,representing entities in general. The di�culty is that each entity can have multiple features andthe network needs to represent which features go with which entity. One proposal is to use pulsingunits and represent the binding between the features of each entity using the synchrony of the units'activation pulses. This has been proposed on both biological grounds [13] and computational grounds[12]. Following the computational work we will call this method Temporal Synchrony Variable Binding.We use TSVB's pulsing units to represent information about syntactic constituents.TSVB can be applied to a learning task by combining it with a standard neural network architecture.Because we need the network to process sequences as well as constituents, we use an architecture thatcombines TSVB with Simple Recurrent Networks. In addition to a layer of input units and a layer ofoutput units, SRNs have a layer of memory units which store the internal state of the network fromthe previous position in the sequence. This allows SRNs to learn their own internal representationof the previous input history. To extend SRNs with TSVB, pulsing units need to be added. Theseunits represent inputs, outputs, and internal state about individual constituents. In order to retainthe SRN's ability to represent information about the situation as a whole, the architecture also hasnormal nonpulsing units. These units also provide a means for information about one constituent tobe passed to other constituents.Pulsing units can be added to SRNs in a variety of ways. One proposed class of such networksis called Simple Synchrony Networks (SSNs) [7]. The architectural restriction which de�nes SSNs isappropriate for the parser used here because information about only one constituent is input at anyone time, namely the constituent headed by the current input word. This input simply speci�es the



current word. To accommodate SSN's restrictions we simply need to provide the same informationthrough nonpulsing input units as we provide to this one constituent through the pulsing input units[6]. In this way each constituent gets information about its head word from the pulsing input unitsand gets information about every other word from the nonpulsing input units.In this paper we use the simplest form of SSN, called type A in [7]. This architecture only has asingle internal state layer and a single memory layer, both consisting of pulsing units. We use 100units in each of these layers, which is a moderately large size, resulting in a ability to approximate awide variety of functions.2.2 Learning Generalisations over ConstituentsThe most important feature of any learning architecture is how it generalises from training datato testing data. SRNs are popular for sequence processing because they inherently generalise oversequence positions. Because inputs are fed to an SRN one at a time, and the same trained parameters(the link weights) apply at every time, information learned at one sequence position will inherentlybe generalised to other sequence positions. This generalisation ability manifests itself in the fact thatSRNs can handle arbitrarily long sequences. The same argument applies to TSVB and constituents.Using synchronous pulses to represent constituents amounts to cycling through the set of constituentsand processing them one at a time. Because the same trained parameters are applied at every time,information learned for one constituent will inherently be generalised to other constituents. Thisgeneralisation ability manifests itself in the fact that these networks can handle arbitrarily manyconstituents.3 A SSN ParserThe Simple Synchrony Network architecture gives us the basic generalisation abilities that we needfor syntactic parsing, but the speci�c way that a SSN parser generalises from training set to testingset also depends on the speci�c input-output format that we ask it to learn. The main challenge inde�ning an input-output format is that a syntactic structure consists of a set of relationships betweenconstituents, whereas SSNs only provide us with outputs about individual constituents. More precisely,there are O(n2) possible relationships between constituents and only O(n) outputs at any given time.The solution is simply to output the syntactic structure incrementally. By making use of the O(n)positions in the input sentence1 to produce output, the network can produce the necessary O(n2)outputs over the course of the parse. In this section we will specify the nature of this incrementaloutput in more detail, and give speci�cs about the format of the input to the network. In each case,the importance of these choices is how they e�ect the way that the network will generalise.3.1 The Model of ConstituencyBefore discussing the speci�c input-output pattern, it is necessary to specify what exactly we mean by\constituent". This is a crucial decision, since the constituent is the unit over which generalisationsare learned. One answer would be to simply use the de�nition of constituency that is implicit inwhatever corpus you have available. It would be possible for us to do this, but at the cost of a more1Here we are assuming that the number of constituents is linear in the number of words. This is uncontroversial,being implied by any lexicalised or dependency-based grammar.



complicated output format. Also, the import of constituents as the unit of generalisations may notbe the one intended by the corpus writer. Instead we choose to take a lexicalised approach. Eachconstituent is associated with a word in the input, which is intended to be the head of that constituent.The constituent structure can then be thought of as a set of relationships between each constituent'shead word and the other words and constituents in the structure. This perspective is closely relatedto Dependency Grammar [8]. It is also closely related to Lexicalized Tree Adjoining Grammar [11]and the head-driven statistical parsing model by Collins [2], but in these cases our constituent needsto be mapped to the entire projection of a lexical head.Unfortunately the corpus we will use in the below experiments does not label heads for constituents.As an approximation, because we know we are using a head-initial language, we will use the �rst wordwhich is a direct child of a constituent as the constituent's head. If a constituent in the originalcorpus does not have any words as direct children, then that constituent is collapsed into one of itschild constituents, as discussed further in section 4.1. Thus the corpus used in the below experimentsis slightly 
atter than most corpora. In particular it often does not distinguish between an S and itsVP, the two constituents having been collapsed.Using a lexicalised de�nition of constituency not only makes the unit of generalisation more lin-guistically appropriate, it has the added advantage that it provides a �xed mapping between theconstituents in the network's output and the constituents in the corpus. Two constituents are thesame if they have the same word as their head. Using this mapping it is easy to de�ne a �xed input-output pattern for the network to learn during training, which is necessary for supervised learningalgorithms such as the one used here. However, we should emphasise that it would be possible tode�ne a di�erent input-output format for an SSN parser which could use any corpus's de�nition ofconstituency.3.2 The Independence AssumptionsAs mentioned above, the independence assumptions made by a neural network model are embodiedin the de�nition of its input-output format. If there is no way for information to 
ow from a giveninput to a given output, then the model is assuming that that output is independent of that input.For the SSN parser used here these assumptions are due to the incremental nature of the network'soutput.As discussed above, the SSN parser solves the problem of outputting relationships between con-stituents by outputting them incrementally. In particular, this SSN parser outputs structural rela-tionships maximally incrementally. Words are input to the parser one at a time, and with each worda new constituent is introduced to act as the constituent which the word heads, if needed.2 A struc-tural relationship is output as soon as both things in the relationship have been introduced. Thisincremental output is illustrated in �gure 1. When the parse is complete the accumulation of all theoutputs fully speci�es the parse, as illustrated in �gure 1.The syntactic structure of a sentence can be fully speci�ed by specifying the set of parent-childrelationships in it. These come in two types, one where the parent is a constituent but the child isa word, and one where both the parent and the child are constituent. When the child is a word,then because we assume that the �rst word child of a constituent is its head, the parent constituent2In the actual experiments below we use part-of-speech tags as inputs, not the actual words. We are using \words"here for expository convenience and clarity.



NP

c1

NP

c1

NP, c1

John:

VVZNP

c1

c2

VVZ

c1

c2

VVZ, c2

loves:

ATVVZNP

c1

c2

c3

AT

c2

c3

AT, c3

a:

NNATVVZNP

c1

c2

c3

NN

c3

NN, c4

joke:

Output
Accumulated:

Input:

Output:

timeFigure 1: An example of the SSN parser's output.must have been introduced before or at the same time as the word is input. Thus as soon as a wordis input, the network can output which constituent is the parent of that word. This is done with asingle output unit, called the parent output, which pulses in synchrony with the parent of the currentinput word. For example when `John' is input in �gure 1 the new constituent, c1, is speci�ed as theparent, while when `joke' is input the previous constituent, c3, is speci�ed as the parent. When boththe parent and child are constituents, then the relationships is output as soon as the second of thetwo constituents is input. If the second constituent is the child, then this output is speci�ed using thegrandparent output unit, which pulses in synchrony with the parent of the constituent which is headedby the current input word. For example when `a' is input in �gure 1 the previous constituent, c2, isspeci�ed as the grandparent. If the second constituent is the parent, then this output is speci�ed usingthe sibling output unit, which pulses in synchrony with the child of the constituent which is headedby the current input word. For example when `loves' is input in �gure 1 the previous constituent,c1, is speci�ed as a sibling. Given the previous assumptions, these three output units are all that isnecessary to specify the syntactic structure of the sentence.So far we have only discussed the output pattern which we would like the network to produce (thetarget output), but a network will actually output real values, not zeros and ones. To interpret thisoutput we look at all the possible parents for a given child, and pick the one whose output activationis the highest. First we incrementally choose the parents for each word, based on the parent outputunit's activations. This not only determines all parent-child relationships involving words, it alsodetermines which of the introduced constituents have head words and thus are included in the outputstructure. For example in �gure 1 constituent c4 is not included in the output structure. Only theseheaded constituents candidates to be in relationships with other constituents or later words. Secondwe choose the best parent for these headed constituents, based on both the grandparent output unit'sactivations at the time of the constituent's head (for leftward attachments) and the sibling outputunit's activations in synchrony with the constituent (for rightward attachments). This determinesall the parent-child relationships between two constituents.3 While the resulting set of parent-child3There is one distinguished constituent, introduced with a sentence-initialising input symbol, which does not requirea parent. This acts as the root of the parse tree, in the same way as the start symbol of CFGs.



relationships may not form a tree, this representation of the structure is su�cient to determine whichwords are included in each constituent, and thus to calculate recall and precision on constituents.This maximally incremental output format implies some fairly strong independence assumptions.This is particularly true for the parents of words. No output after a word can in
uence which con-stituent is interpreted as its parent, and thereby this decision is assumed to be independent of laterinput words. For the parents of constituents there is a slight complication in that a later sibling outputcan override a grandparent output that is produced at the time of the constituent's head word. Forexample, in the sentence \John knows Mary left", the network may produce a fairly high grandparentoutput value for attaching 'Mary' to 'knows', but when 'left' is input an even higher sibling outputvalue can override this and result in 'Mary' being attached to 'left'. However it is not possible for lateroutputs to a�ect a decision which does not involve a later word's constituent. For example, in thesentence \John saw the policeman with Mary", the decision of whether 'with' should be attached to'saw' or 'the policeman' is not e�ected by any output at the time when 'Mary' is introduced, and thusthe unsuitability of 'Mary' as an instrument of the seeing cannot be used. Thereby decisions betweentwo possible parents for a constituent are assumed to be independent of any input words after the lasthead word of the three constituents involved.Finally, in addition to outputs about structural relationships, the parser also outputs the labels ofthe constituents. This output is produced at the time when the constituent's head word is input, usinga bank of output units, one for each label. Thus the decision of what label to give a constituent isassumed to be independent of all words after the constituent's head word. This assumption is mostlyfor convenience, since any output about an individual constituent could be delayed until the end ofthe sentence.43.3 The Soft BiasesBecause all the words are input to the representation of each constituent, in theory any earlier inputcan e�ect a later output, and thus they are not being assumed to be independent. However, in practicethere are ways to make the network pay more attention to some inputs than to others. In particular,a recurrent network such as an SSN will learn more about the dependencies between an input and anoutput if they are close together in time. The immediate e�ect of this is a form of recency bias; themost recent input words will e�ect an output more than earlier input words. To make use of this weprovide a new constituent input pattern, which is correlated with being an output for a short timeafterwards. We also provide a last parent input unit, which is the disambiguated parent output fromthe previous input word. This is also correlated with being an output for a short time afterwards.Finally, we bias the network to pay particular attention to the head word for each constituent byproviding the head word as an input at every time during the life of a constituent. Thus an output ata given input word for a given constituent pays particular attention to the input word and the head ofthe constituent, with previous input words providing an in
uence proportional to their recency. Thisinput format has been devised in part on the basis of the author's linguistic knowledge and in parton the basis of experimental results.54Because in the experiments below we are actually inputting part-of-speech tags and there are a fairly small numberof possible labels, labelling of constituents is actually not di�cult and thus this independence assumption is not aproblem.5All development decisions such as these have been made on the basis of the cross validation set used below. Thetesting set was not used until the �nal results reported in section 4.3 were produced. The one exception was a set ofresults collected before training had completed for the submitted version of this paper.



4 Generalising from Sparse DataTo test the ability of Simple Synchrony Networks to handle sparse data we train the SSN parserdescribed in the previous section on a relatively small set of sentences and then test how well itgeneralises to a set of previously unseen sentences. Because the training set is small, the testingsentences will contain many constituents and constituent contexts which the network has never seenbefore. Thus the network cannot simply choose the constituents which it has seen the most times inthe training set, because in most cases it will have never seen any of the constituents which it needs tochoose between. To handle this sparseness of training data the network must learn which of the inputsabout a constituent are important, as well as how they correlate with the outputs. The advantageof SSNs is that they automatically learn the relative importance of di�erent inputs as part of theirtraining process.To provide a comparison with the SSN parser we also apply a standard statistical method to thesame data sets. We estimate the probabilities for two Probabilistic Context Free Grammars, oneusing just the network's training sentences and another using both the training sentences and thecross validation sentences. These PCFGs are then both tested on the network's testing sentences.PCFGs deal with the problem of sparse data by ignoring everything about a constituent other thanits label. The strength of this independence assumption depends on how many constituent labels thecorpus has, and thus how much information the labels convey. Because we are dealing with smalltraining sets, we only use a small number of labels. Even so, the PCFGs have only seen enough CFGrules in the training sets to produce parses for about half of the test sentences. The problem withsuch statistical approaches is that information is either counted (i.e. increasing the number of labels)or ignored (i.e. decreasing the number of labels), and there is no middle ground.6In addition to the PCFGs, we train a statistical model based on the output format of the SSNparser. This test is to control for the possibility that it is the linguistic assumptions discussed in theprevious section which are responsible for the SSN parser's performance, and not the SSN architecture.Rather than estimating the probabilities for CFG rules like in PCFGs, this statistical model estimatesthe probabilities of the same structural relationships used in the output of the SSN parser (parent,grandparent, and sibling, plus label-head relationships). Thus we will call this model the ProbabilisticStructural Relationships (PSR) model. The PSR model also makes all the independence assumptionsmade by the SSN parser, but in order to deal with the sparse data it must also make additionalindependence assumptions. Every structural relationship is dependent on the word involved in therelationship and the head word of the constituent involved in the relationship (and whether theyare the same), but they are independent of all other words. This assumption imposes a hard biasthat parallels the main soft biases provided by the SSN parser's input format. This independenceassumption is strong enough to provide us with su�cient statistics given our training data, but stillcaptures to the extent possible the relevant information for estimating the structural relationshipprobabilities. The PSR model is closely related to dependency-based statistical models, such as thatin [2].6It should be noted that we are using the term \statistical method" here in a rather narrow sense, intending to re
ectcommon practice in parsing technology. Indeed, neural networks themselves are a statistical method in the broadersense. We do not intend to imply that there are no other methods for addressing the problem of sparse data. Forexample, Maximum Entropy is a framework for deciding how strongly to believe di�erent sources of information andhas been applied to parsing [9], although with a much larger training set than that used here.



4.1 A Small CorpusWork on statistical parsing typically uses a very large corpora of preparsed sentences (for examplemore than a million words in [1], [2], and [9]). Such corpora are very expensive to produce, andare currently only available for English. In addition, using a very large training corpus helps hideinadequacies in the parser's ability to generalise, because the larger the training corpus the betterresults can be obtained by simply memorising the common cases.7 Here we use a training set ofonly 26,480 words, plus a cross validation set of 4365 words (30,845 words total). By using a smalltraining set we are placing greater emphasis on the ability of the parser to generalise to novel casesin a linguistically appropriate way, and to do so robustly. In other words, we are testing the parseron its ability to deal with sparse data.We use the Susanne8 corpus as our source of preparsed sentences. The Susanne corpus consistsof a subset of the Brown corpus, preparsed according to the Susanne classi�cation scheme describedin [10], and we make use of the \press reportage" subset of this. These parses have been converted toa format appropriate for this investigation, as described in the rest of this section.9As is commonly done for PCFGs, we do not use words as the input to the parser, but instead usepart-of-speech tags. The tags in the Susanne scheme are a detailed extension of the tags used in theLancaster-Leeds Treebank (see [4]), but we use the simpler Lancaster-Leeds scheme. Each tag is atwo or three letter sequence, for example `John' would be encoded `NP', the articles `a' and `the' areencoded `AT', and verbs such as `is' encoded `VBZ'. There are 105 tags in total.The parse structure in the Susanne scheme is also more complicated than is needed for our purposes.Firstly, the meta-sentence level structure has been discarded, leaving only the structures of individualsentences. Secondly, the `ghost' markers have been removed. These elements are used to representlong distance dependencies, but they are not needed here because they do not e�ect the boundariesof the constituents. Third, as was discussed above, we simplify the nonterminal labels so as to helpthe PCFG deal with the small training set. We only use the �rst letter of each label, resulting in15 nonterminal labels (including a new start symbol). Finally, as was discussed in section 3.1, someconstituents need to be collapsed with one of their child constituents so that every constituent hasat least one terminal child. There are very few constructions in the Susanne corpus that violate thisconstraint, but one of them is very common, namely the S-VP division. The head word of the S (theverb) is within the VP, and thus the S often occurs without any terminals as immediate children. Inthese cases, we collapse the S and VP into a single constituent, giving it the label S. The same is donefor other such constructions. As discussed above, this change is not linguistically unmotivated.The total set of converted sentences was divided into three disjoint subsets, one for training, one forcross validation, and one for testing. The division was done randomly, with the objective of producingcross validation and testing sets which are each about an eighth of the total set. No restrictionswere placed on sentence length in any set. The training set has 26480 words, 15411 constituents, and1079 sentences, the cross validation set has 4365 words, 2523 constituents, and 186 sentences, and thetesting set has 4304 words, 2500 constituents, and 181 sentences.7Given this fact, it is unfortunate that much work on statistical parsing does not even report the number of wordsin their training set.8We acknowledge the roles of the Economic and Social Research Council (UK) as sponsor and the University ofSussex as grant holder in providing the Susanne corpus used in the experiments described in this paper.9We would like to thank Peter Lane for performing most of this conversion.



4.2 Training the ModelsThe SSN parser was trained using standard training techniques extended for pulsing units [7]. Neuralnetwork training is an iterative process, in which the network is run on training examples and thenmodi�ed so as to make less error the next time it sees those examples. This process can be continueduntil no more changes are made, but to avoid over-�tting it is better to check the performance of thenetwork on a cross validation set and stop training when this error reaches a minimum. This is why wehave split the corpus into three datasets, one for training, one for cross validation, and one for testing.This technique also allows multiple versions of the network to be trained and then evaluated using thecross validation set, without ever using the testing set until a single network has been chosen. Thisis the technique which we have used in developing the speci�c network design reported in this paper.The resulting network trained for 325 passes through the training set before reaching a maximum ofthe average between its recall and precision on constituents in the cross validation set.Estimating the parameters of a PCFG is straightforward. All the sequences of child labels thatoccur in the corpus for each parent label need to be extracted, counted, and normalised in accordancewith the conditional probabilities required by the model. Because this process does not require a crossvalidation set, we create two PCFGs, one using only the network's training set and the other usingboth the training set and the cross validation set. The �rst provides a more direct comparison withthe SSN parser's ability to deal with small training sets, but the second provides a better indicationof how the two methods compare in practice.Estimating the PSR model is also straightforward. All the head tag bigrams associated with eachstructural relationship (or label-head tag bigrams) are extracted, counted, and normalised in accor-dance with the probability model.10 As with the second PCFG, we use the network's training set plusits cross validation set to estimate the probabilities.In addition to embodying the same linguistic assumptions as the SSN parser, the PSR model hasthe advantage that it has a �nite space of possible parameters (namely one probability per tag bigramfor each relationship). Because a PCFG places no bound on the number of children that a parentconstituent can have, a PCFG has an in�nite space of possible parameters (namely one probability foreach of the in�nite number of possible rules). This makes it di�cult to apply smoothing to a PCFG,to avoid the problem of assigning zero probability to rules that did not occur in the training set. Thuswe have not applied smoothing to the PCFGs, contributing to the bad test set coverage discussed inthe next section. However the PSR's �nite space of parameters makes it simple to apply smoothingto the PSR model. Thus we apply a smoothing method to estimate the parameters for a second PSRmodel; before normalising we add half to all the counts so that none of them are zero.4.3 Testing ResultsOnce all development and training had been completed, the SSN parser, the two PCFGs, and the twoPSRs were tested on the data in the testing set. For the PCFGs and the PSRs the most probableparse according to the model was taken as the output of the parser.11 The results of this testing areshown in table 1, where PCFG 1 is the PCFG that was produced using only the training set, PCFG 210Brie
y, in the probability model each structural relationship probability is conditional on the constituents' heads be-ing correct, and the chain rule plus the independence assumptions from section 4 are used to combine these probabilitiesinto the probability of the entire parse.11We would like to thank Jean-Cedric Chappelier and the LIA-DI at EPFL, Lausanne, Switzerland for providing thetools used to train and test the PCFG.



Sentences Constituents Parent-childParsed Correct Recall Precision Recall PrecisionSSN 100% 14.4% 65.1% 65.0% 83.0% 82.9%PCFG 1 45.3% 3.3% 24.9% 54.0% 32.2% 72.4%PCFG 2 50.8% 3.3% 29.2% 53.7% 38.2% 73.3%PSR 90.6% 2.8% 37.0% 40.3% 63.1% 65.1%PSR Sm 100% 2.8% 35.9% 36.8% 58.8% 59.4%Table 1: Testing results.Sentences Constituents Parent-childCorrect Recall Precision Recall PrecisionParsed by SSN 19.5% 66.6% 67.6% 83.7% 84.0%PCFG 1 PCFG 1 7.3% 58.1% 54.0% 74.3% 72.4%Parsed by SSN 17.4% 65.4% 66.4% 83.4% 83.8%PCFG 2 PCFG 2 6.5% 57.5% 53.7% 75.2% 73.3%Table 2: Testing results on the sentences parsed by PCFG 1 and PCFG 2, respectively.is the PCFG produced using both the training set and the cross validation set, PSR is the unsmoothedPSR, and PSR Sm is the smoothed PSR.The �rst thing to notice about the testing results is that both PCFGs only found parses for abouthalf of the sentences. For the unparsed sentences the PCFGs had not found enough rules in theirtraining sets to construct a tree that spans the entire sentence, and thus there is no straightforwardway to choose the most probable parse.12 In contrast the SSN parser is able to make a guess for everysentence. This is a result of the de�nition of the SSN parser, as with the smoothed PSR, but unlikeboth PSR models the SSN parser produces good guesses. The �rst evidence of the quality of the SSNparser's guesses is that they are exactly correct more that 4 times as often as for any of the PCFGsor PSRs.The remaining four columns in table 1 give the performance of each parser in terms of recall(percentage of desired which are output) and precision (percentage of output which are desired) onboth constituents and parent-child relationships. An output constituent is the same as a desiredconstituent if they contain the same words and have the same label. This measure is a common onefor comparing parsers. Parent-child relationships are the result of interpreting the parse as a formof dependency structure. Each parent-child relationship in the parse is interpreted as a dependencyfrom the head word of the child to the head word of the parent. Two such relationships are the sameif their words are the same. This measure is more closely related to the output of the SSN parser andthe PSR model, and may be more appropriate for some applications.Given that both PCFGs produce no parse for about half of the sentences, it is no surprise thatthe SSN parser achieves about twice the recall of both PCFGs on both constituents and parent-childrelationships (although it is interesting that the SSN actually performs more than twice as well). Thuswe also compute these performance �gures for the subset of sentences which are parsed by each PCFG,12It would be possible to use methods for choosing partial parses, and thus improve the recall results in table 1 (atthe cost of precision). Instead we choose to report results on the parsed subset, since this is su�cient to make our point.



as discussed below. However restricting attention to the parsed subset will not change the PCFGs'precision �gures. Just as the recall �gures are particularly low, the precision �gures are improved dueto the fact that the PCFGs are not outputting anything for those sentences which are particularlyhard for them (i.e. the sentences they cannot parse). Even so, the SSN does about 10% better thaneither PCFG on both constituent precision and parent-child precision.Table 2 shows the performance of the PCFGs and SSN on the subset of test sentences parsed byeach PCFG. Note that these �gures are biased in favour of the PCFGs, since we are excluding onlythose sentences which are di�cult for each PCFG, as determined by the results on the testing setitself. Even so, the SSN outperforms each PCFG under every measure. In fact, under every measurethe SSN's performance on the entire testing set is better than the PCFGs' performance on the subsetof sentences which they parse.Given the large di�erence between the linguistic assumptions embodied in the PCFGs and the SSNparser, we need to address the possibility that the better performance of the SSN parser on this corpusis due to its linguistic assumptions and not due to the SSN architecture. The poor performance ofboth PSR models clearly demonstrates this. The PSR model was designed to follow the linguisticassumptions embodied in the SSN parser as closely as possible, only imposing additional independenceassumptions to the extent that they were required to get su�cient counts for estimating the model'sprobabilities. Nonetheless, both PSR models do much worse than the PCFGs, even on the parent-childrelationships, which are directly related to the parameters of the PSR model. The only exception iscomparing against the recall results of the PCFG models including their unparsed sentences, but therecall results of the PCFG models on the parsed subsets indicates that this is simple an artifact ofthe low coverage of the PCFGs. Thus the better performance of the SSN parser cannot be due to itslinguistic assumptions alone. It must be due to the SSN architecture's ability to handle sparse datawithout the need to impose strong independence assumptions.One �nal thing to notice about these results is that there is not a big di�erence between the resultsof the SSN parser on the full testing set and the results on the subsets which are parsed by eachPCFG. There is a small improvement, re
ecting the fact that the PCFGs fail on the more di�cultsentences. However the lack of any big improvement is a further demonstration that the SSN is notsimply returning parses for every sentence because it is de�ned in such a way that it must do so. TheSSN is making good guesses, even on the di�cult sentences. This demonstrates the robustness of theSSN parser in the face of sparse training data and the resulting novelty of testing cases.5 ConclusionThe good performance of the Simple Synchrony Network parser despite being trained on a smalltraining set demonstrates that SSN parsers are good at handling sparse data. In comparison withProbabilistic Context Free Grammars trained on the same data, the SSN parser not only returnsparses for twice as many sentences, its performance on the full testing set is even better than theperformance of the PCFGs on the subset of sentences which they parse.By demonstrating SSNs' ability to handle sparse data we have in fact shown that SSNs generalisefrom training data to testing data in a linguistically appropriate way. The poor performance ofthe PSR model shows that this is not simply due to clever linguistic assumptions embodied in theparticular parser used. This generalisation performance is due to SSNs' ability to generalise acrossconstituents as well as across sequence positions, plus the ability of neural networks in general to



learn what input features are important as well as what they imply about the output. The resultingrobustness makes SSNs appropriate for a wide variety of parsing applications, particularly when asmall amount of data is available or there is a large amount of variability in the input.References[1] Eugene Charniak. Statistical techniques for natural language parsing. AI Magazine, 1997.[2] Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,University of Pennsylvania, Philadelphia, PA, 1999.[3] Je�rey L. Elman. Distributed representations, simple recurrent networks, and grammatical struc-ture. Machine Learning, 7:195{225, 1991.[4] R. Garside, G. Leech, and G. Sampson (eds). The Computational Analysis of English: a corpus-based approach. Longman Group UK Limited, 1987.[5] James Henderson. Description Based Parsing in a Connectionist Network. PhD thesis, Universityof Pennsylvania, Philadelphia, PA, 1994. Technical Report MS-CIS-94-46.[6] James Henderson and Peter Lane. A connectionist architecture for learning to parse. In Proceed-ings of COLING-ACL, pages 531{537, Montreal, Quebec, Canada, 1998.[7] Peter Lane and James Henderson. Simple synchrony networks: Learning to parse natural languagewith temporal synchrony variable binding. In Proceedings of the International Conference onArti�cial Neural Networks, pages 615{620, Skovde, Sweden, 1998.[8] I. Mel�cuk. Dependency Syntax: Theory and Practice. SUNY Press, 1988.[9] Adwait Ratnaparkhi. Learning to parse natural language with maximum entropy models. Ma-chine Learning, 34:151{175, 1999.[10] Geo�rey Sampson. English for the Computer. Oxford University Press, Oxford, UK, 1995.[11] Yves Schabes. Mathematical and Computational Aspects of Lexicalized Grammars. PhD thesis,University of Pennsylvania, Philadelphia, PA, 1990.[12] Lokendra Shastri and Venkat Ajjanagadde. From simple associations to systematic reasoning: Aconnectionist representation of rules, variables, and dynamic bindings using temporal synchrony.Behavioral and Brain Sciences, 16:417{451, 1993.[13] C. von der Malsburg. The correlation theory of brain function. Technical Report 81-2, Max-Planck-Institute for Biophysical Chemistry, Gottingen, 1981.


