Hybrid Reinforcement/Supervised Learning for
Dialogue Policies from COMMUNICATOR data

James Henderson and Oliver Lemon and Kallirroi Georgila
School of Informatics
University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, United Kingdom
james.henderson@ed.ac.uk

Abstract

We propose a method for learning dialogue man-
agement policies from a fixed dataset. The method
is designed for use with “Information State Up-
date” (ISU)-based dialogue systems, which repre-
sent the state of a dialogue as a large set of fea-
tures, resulting in a very large state space and a
very large policy space. To address the problem
that any fixed dataset will only provide informa-
tion about small portions of these state and policy
spaces, we propose a hybrid model which combines
reinforcement learning (RL) with supervised learn-
ing. The reinforcement learning is used to optimise
a measure of dialogue reward, while the supervised
learning is used to restrict the learnt policy to the
portion of the space for which we have data. Linear
function approximation is used to handle the large
state space efficiently. We trained this model on
a subset of the COMMUNICATOR corpus, to which
we have added annotations for user actions and In-
formation States. When tested with a user simu-
lation trained on the same data, our model outper-
forms all the systems in the COMMUNICATOR data
(it scores 37% higher than the best COMMUNICA-
TOR system). All of these advances will improve
techniques for bootstrapping and automatic optimi-
sation of dialogue management policies from lim-
ited initial datasets.

1

We investigate using a fixed corpus of dialogues to automat-
ically optimise dialogue systems which have rich represen-
tations of dialogue context. The “Information State Update”
(ISU) approach to dialogue [Larsson and Traum, 2000] em-
ploys such representations of dialogue context for flexible di-
alogue management, and the question arises as to whether
dialogue management policies can be learnt [Levin and Pier-
accini, 1997] for such systems. We focus on learning with a
fixed corpus of dialogues because dialogue corpora are very
expensive to produce, and it is often not practical to produce
new dialogues during the course of learning. Even if dia-
logues can be automatically generated with simulated users,

Introduction

68

training on simulated dialogues does not replace the need to
fully exploit the real data.

Previous work on learning dialogue management policies
has focused on small state spaces and small sets of actions
to choose between [Singh et al., 2002; Levin et al., 2000;
Scheffler and Young, 2002]. They use reinforcement learn-
ing (RL) to find a policy which optimises a reward function
over dialogues. In this paper we address the ambitious task of
learning to choose between a relatively large number of ac-
tions (70 in our experiments), with a very large state space
(over 1087 states are theoretically possible), given a fairly
small corpus of dialogues (697 in our experiments). We use
linear function approximation to handle the large state space,
but this does not address the difficulty of searching for an op-
timal policy in the huge space of possible policies.

Given the huge policy space, any fixed dataset will only
provide information about a small portion of this space. To
address this problem, we propose a hybrid learning model
which combines reinforcement learning (RL) with supervised
learning. RL is used to optimise a measure of dialogue re-
ward, while supervised learning is used to restrict the learnt
policy to the portion of the space for which we have data.
When trained on a subset of the COMMUNICATOR corpus
[Walker et al., 2001a; 2002] and tested with a user simula-
tion trained on the same data, this model outperforms all the
systems in the COMMUNICATOR data. When the relative im-
portance of the RL component and the supervised learning
component are adjusted, we currently find that a purely su-
pervised model performs the best. However, for a range of
degrees of influence of RL, the hybrid system still performs
better than the COMMUNICATOR systems. In this paper, we
first discuss the annotations we have added to the COMMUNI-
CATOR data, then present the proposed learning method, and
then present our evaluation method and the results.

2 Automatic Annotation of the
COMMUNICATOR Data

The COMMUNICATOR corpora (2000 [Walker et al., 2001al]
and 2001 [Walker et al., 2002]) consist of human-machine
dialogues (approx 2300 dialogues in total). The users always
try to book a flight, but they may also try to select a hotel
or car-rental. The dialogues are primarily “slot-filling” dia-
logues, with some information being presented to the user af-

ter the system thinks it has filled the relevant slots. These cor-
pora have been previously annotated using the DATE scheme,
for each system utterance’s Conversational Domain, Speech
Act, and Task [Walker et al., 2001b].

We used a hand-crafted automatic system to assign Speech
Acts and Tasks to the user utterances, and to compute infor-
mation states for each point in the dialogue (i.e. after every
utterance). The system is implemented using DIPPER [Bos
et al.,2003] and OAA [Cheyer and Martin, 2001], using sev-
eral OAA agents (see [Georgila et al., 2005] for more details).
An example of some of the types of information recorded
in an information state is shown in figure 1. The state is
intended to record all the information about the preceding
portion of the dialogue which is relevant to making dialogue
management decisions, including filled slots, confirmed (i.e.
grounded) slots, and previous speech acts.

For the experiments reported in this paper, we used a pre-
liminary version of the annotation, which included 4 of the 8
systems in the 2001 corpus. This subset consists of 97 users,
697 dialogues, and 51,309 total states. The fact that the an-
notation was done automatically means that some errors are
inevitable, particularly in this preliminary version. But we
believe that this has an equal effect on our performance mea-
sures for both the COMMUNICATOR systems and our learnt
systems, so it does not affect our conclusions.

3 Using the Data for Reinforcement Learning

We use the annotated COMMUNICATOR data to train a Rein-
forcement Learning system. In RL, the objective of the sys-
tem is to maximise the reward it gets during the course of the
dialogue. Rewards are defined to reflect how well a dialogue
went, so by maximising the total reward the system optimises
the quality of dialogues. The difficulty is that, at any point in
the dialogue, the system cannot be sure what will happen in
the remainder of the dialogue, and thus cannot be sure what
effect its actions will have on the total reward at the end of
the dialogue. Thus the system must choose an action based
on the average reward it has observed before when it has per-
formed that action in states similar to the current one. This
average is the expected future reward.

The core component of any RL system is the estimation of
the expected future reward (the Q-function). Given a state and
an action that could be taken in that state,! the Q-function tells
us what total reward, on average, we can expect between tak-
ing that action and the end of the dialogue. Once we have this
function, the optimal dialogue management policy reduces to
simply choosing the action which maximises the expected fu-
ture reward for the current state.

The actions which the reinforcement learning system needs
to choose between are defined in terms of the DATE scheme
[Walker and Passonneau, 2001] system annotations for Con-
versational Domain, Speech Act and Task. Each possi-
ble triple of values for these three features is considered
a different action. In addition, there are release_turn and

'The expected future reward also depends on the dialogue man-
agement policy which the system will use in the future. This self-
referential nature of RL is the topic of much RL research, and will
be discussed more below.

69

end_dialogue actions. There are a total of 70 actions which
occur in the data.

3.1 Defining Dialogue Reward

To apply RL to the COMMUNICATOR data, we first have to
define a mapping r(d,) from a dialogue d and a position in
that dialogue ¢ to a reward value. This reward function is
computed using the reward level of annotation in the COM-
MUNICATOR data, which was extracted from user question-
naires and task completion measures. For all states other than
the final state, we provide a reward of -1. This encodes the
idea that, all other things being equal, short dialogues are bet-
ter than long ones. For the final state we provide a reward
which is the sum of the rewards for each feature in the reward
annotation. “Actual Task Completion” and “Perceived Task
Completion” are both worth a reward of 100 if they are non-
zero, and O otherwise. The remaining reward features have
values ranging from 1 to 5 in the annotation. Their reward
is their value (minus one) times the weight shown in table 1.
The relative values of these later weights was determined by
the empirical analysis reported in [Walker et al., 2001al].

Actual Task Completion 100
Perceived Task Completion 100
Task Ease 9
Comprehension Ease 7
System behaved as Expected 8
Future Use 9

Table 1: The weights used to compute a dialogue’s final re-
ward value. The first two features’ weights are multiplied by
0 or 1, and the rest are multiplied by values from O to 4.

3.2 Estimating the Expected Future Reward

Given this definition of reward, we want to find an estimate
Q(si, a) of the expected future reward, which is the expected
value (“E[]”) of the total reward between taking action a in
state s; until the end of the dialogue.

Q(sia a) ~ E[Z 'I“(d,j)lsi, (1]
i>i
Given that the number of possible future state sequences
(Si+1,-..) is exponential in the length of the sequences, it is
not surprising that estimating the expected reward over these
sequences can be very difficult.

The ISU framework is significantly different from the
frameworks used in previous work on reinforcement learn-
ing for dialogue management, in that the number of possible
states is extremely large. Having a large number of states is
a more realistic scenario for a practical, flexible, and generic
dialogue systems, but it also makes many RL approaches in-
tractable. In particular, with a large number of states it is not
possible to learn estimates of the expected future reward for
each state, unless we can exploit commonalities between dif-
ferent states. The feature-based nature of ISU state represen-
tations expresses exactly these commonalities between states
through the features that the states share. There are a number

STATE 13

DIALOGUE LEVEL

Turn: user

Speaker: user

ConvDomain: [about task]

SpeechAct: [provide info]

AsrInput: <date_time> october three first late morning</date_time>
TransInput: <date time> october thirty first late morning</date_ time>

TASK LEVEL

Task: [depart time]
FilledSlotValue: [late morning]
FilledSlot: [depart_ time]
CommonGround: [dest city]

LOW LEVEL
WordErrorRate: 20.00

HISTORY LEVEL

SpeechActsHist: [], opening closing,[], opening closing, instruction, request info,
[provide_info], implicit_confirm, request info, [provide_info], implicit_ confirm,
request_info, [provide info]

TasksHist: [], meta greeting goodbye, [], meta greeting goodbye, meta instruct, orig city,
[orig _city], orig city, dest city, [dest_city], dest city, depart arrive date, [depart time]

FilledSlotsHist: [], [], [orig city], [dest _city], [depart time]

FilledSlotsValuesHist: [], [], [hartford connecticut], [orlando florida], [late morning]

GroundedSlotsHist: [], [], [], [orig city], [dest _city]

Figure 1: Example fields from an Information State annotation. User information is in square brackets.

of techniques that could be used for RL with feature-based as values, we used a simple function to map these numbers to
representations of states, but the simplest and most efficient areal number between 0 and 1, with the absence of any value

is linear function approximation. being mapped to 0. For features which can have arbitrary text
We use linear function approximation to map from a vector as their values, we used 1 to represent the presence of text
of real valued features f(s) for the state s to a vector of esti- and O to represent no value. The remaining features all have

mates Q(s, a) for each a. The trained parameters of the linear either a finite set of possible values, or a list of such values.
function are a vector of weights w, for each action a. Given Features with a list value are first converted to a list of pairs
weights trained on a given dataset, an estimate Q 4..(s,a) of consisting of the feature and each value. For every possible
the expected future reward given a state s and an action a feature-value pair, we define an element of the vector f(s)
is the inner product of the state vector f(s) and the weight which is 1 if that feature-value pair is present in the state and

vector wg>. 0 if it is not. These form the vast majority of our features. In
T total there are 291 features.

Quua(s,a) = f(8) wa = Z fi(8)wai To train the weights of the linear approximation, we em-

i ployed a standard RL learning method called SARSA())

The weights w, are learnt from data, but the mapping f (s) [Sutton and Bartp, 1998]. One advanFage of using linear func-

from states to vectors must be specified beforehand. Each ~ tion approximation is that the learning method can be kept

value f;(s) in these vectors represents a possible commonal- fairly simple, while still incorporating domain knowledge in

ity between states, so it is through the definition of f(s) that ~ the design of the mapping to feature vectors. One area of
we control the notion of commonality which will be used by ~ future research is to investigate more complicated mappings
the linear function approximation. The definition of f(s) we (© feature vectors f(s). This would bring us into the current

are currently using is a straightforward mapping from feature- research topic of kernel-based methods. Kernels are used to
value pairs in the information state s to values in the vector ~ compensate for the over-simplicity of linear functions, and
f(s). can be used to express more complicated notions of common-

The state vector mapping f(s) is computed using the first ality between states [Shawe-Taylor and Cristianini, 2004].
four levels of our annotation of the COMMUNICATOR data. Applvi .
X L . ing RL to a Fixed Dataset
We went through these annotations and identified the features 3.3 ppiymng oa ed Datase
which we consider relevant for dialogue management. These
features were of three types. For features which take numbers

We initially tried using the estimate of expected future reward
Q.ua(8,a) discussed in the previous section to define our di-
alogue policy. The dialogue policy simply selected the action

2We will use the notation z Ty to denote the inner product be- a with the highest Q.. (8, a) given the state s. However, we
tween vectors and y (i.e. “xtranspose times y”). found that this policy was very different from the policy ob-

70

served in the COMMUNICATOR data, almost never choosing
the same action as was in the data. This simply means that the
actions which have been learnt to have the best future rewards
are not the ones that were typically chosen by the COMMU-
NICATOR systems in those states. Such actions would then
lead to states unlike anything observed in the data, making
the estimates for these states highly unreliable. In addition,
the future reward depends on the policy the system uses in
the future, so if the policy is different from that observed in
the data, then the estimate Q4. (3, a) is not even relevant.

The solution to these problems which is typically used in
RL research is to generate new data as learning progresses
and the policy changes. The RL system can thus explore
the space of possible policies and states, generating new data
which is relevant to each explored policy and its states. Such
policy exploration is often considered an integral part of RL.
In future research, we intend to perform this exploration by
running each policy with a user simulation (as in [Scheffler
and Young, 2002]) trained on the COMMUNICATOR dataset,
but first we need a solution to the problem of applying RL to
a fixed set of data. Such policy exploration is only feasible
with simulated dialogues generated through interaction with
a simulated user, because generating real data with human
users is very expensive. But a simulated user is not the same
as a human user, so it is important to learn as much as possible
from the fixed set of data we have from human users. In ad-
dition, the huge policy space makes even policy exploration
with simulated users intractable, unless we can initialise the
system with a good policy and constrain the exploration. This
also requires learning as much as possible from the fixed set
of data available before exploration.

There have been some proposals for learning a policy
which is different from that used to generate the data (called
off-policy learning), but these methods have been found not
to work well with linear function approximation [Sutton and
Barto, 1998]. They also do not solve the problem of straying
from the region of state space which has been observed in the
data.

3.4 A Hybrid Approach to RL

To address the above problems, we have investigated a novel
hybrid approach which combines RL with supervised learn-
ing. The supervised learning is used to model the policy
which the systems in the data actually use, which we model
as a probabilistic policy Sy (s, a).

Sua(8,a) & P(als)

In other words, Su.(8,a) is an estimate of the probability
that a random system selected from those which generated
the data would choose action a given that it is in state s. The
function S,..(s,a) is computed with linear function approx-
imation, just like Q.. (8, a), except that a normalised expo-
nential function is used so that the result is a probability dis-
tribution over actions a.

exp(f(s)"wy)
o exp(f(s)Twy

As with the Q-function, the use of linear function approxima-
tion means that we have estimates for P(a|s) even for states s

Sdata(sﬂ a) =

71

which have never occurred in the data, based on similar states
which did occur.

The hybrid approach we have investigated is based on the
assumption that we can’t model the expected future reward
for states in the unobserved portion of the state space. Thus
we simply specify a fixed reward for these unobserved states.
By setting this fixed reward to a low value, it amounts to a
penalty for straying from the observed portion of the state
space. The expected future reward is then the average be-
tween the fixed reward U for the cases where performing a
in s leads to an unobserved state and the expected reward
Quua(8,a) for the cases where it leads to an observed state.
Formally, this average is a mixture of the fixed reward U
for unobserved states with the @Q,..(s,a) estimate for ob-
served states, where the mixture coefficient is the probability
P,orvea(8, @) that performing a in s will lead to an observed
state.

E[Ei>j T(da i)lsja a]
~ Qdatu(sa a)Rlbserved(sy a) + U(l - Pobsc’rvc’d(s7 a))

Because this estimate of the expected future reward is only
needed for choosing the next action given the current state
s, we only need to estimate a function which discriminates
between different actions in the same way as this estimate.
To derive such a discriminant function, we first approximate
P,iservea(8,a) in terms of the probability distribution in the
data P(s,a) and the size of the dataset NV, under the assump-
tion that the number of possible state-action pairs is much
larger than the size of the dataset (so P(s,a)N < 1).

Poerea(s,a) =1 = (1 = P(s,a))N
&~ P(s,a)N = Sju.(s,a)P(s)N

Given this approximation, the discriminant function needs to
order two actions ay , as in the same way as the above estimate
of the expected future reward.

Quara(8,01)Suaa(8,01)P(s)N + U(1 — Syua(s,a1)P(s)N)

< Quaa(8,a2)S1ua(8,a2) P(8)N + U(1 — Syua(s,a2)P(s)N)
if and only if

Sdatu(s7 al)(Qdata(87 al) - U) S Sdata(87 a2)(Qdata(87 a2) - U)

We call this discriminant function Q (s, a).

Qh}rbrid(*g; a) = Szlum(sy a) (Qdata(S; CL) - U)

We use this Q),4i4(8, @) function to choose the actions for
our hybrid policy. By adjusting the value of the unobserved
state penalty U, we can adjust the extent to which this model
follows the supervised policy defined by S,..(s,a) or the re-
inforcement learning policy defined by @ 4..(8,a). In partic-
ular, if U is very low, then maximising @ ,,($,) is equiva-
lent to maximising Sy (s, a).

4 Experimental Results

We evaluate the trained dialogue management policies by
running them against trained user simulations. Both the poli-
cies and the user simulations were trained using the annotated
COMMUNICATOR data for the ATT, BBN, CMU, and SRI

systems. We compare our results against the performance
of these same four systems, using an evaluation metric dis-
cussed below. The information states for the simulated dia-
logues were computed with the same rules used to compute
the information states for the annotated data.

4.1 The Testing Setup

For these experiments, we restrict our attention to users who
only want single-leg flight bookings. This means there are
only 4 essential slots to be filled: origin city, destination city,
departure date, and departure time. To achieve this restric-
tion, we first selected all those COMMUNICATOR dialogues
which did not contain trip continuations.®> This subset con-
tained 79 BBN dialogues, 132 CMU dialogues, 258 ATT di-
alogues, and 174 SRI dialogues. This subset was used for
evaluating the systems and for training the user model. The
system model was trained on the full set of dialogues, since it
should not know the user’s goals in advance.

The user model was trained in the same way as the super-
vised component of the hybrid system discussed above, using
linear function approximation and a normalised exponential
output function. The states which precede user actions are
input as vectors of features very similar to those used for the
system but tailored to the needs of a user model. The output
of the model is a probability distribution over actions, which
consist of Speech Act, Task pairs. The user simulation se-
lects an action randomly according to this distribution. We
also trained a user model based on n-grams of user and sys-
tem actions, which produced similar results in our testing.

When we first tested the hybrid policy, we found that it
never closed the dialogue. We think that this is due to the sys-
tem action (annotated in DATE) “meta_greeting_goodbye”,
which is used both as the first action and as the last action
of a dialogue. The hybrid policy expects this action to be
chosen before it will close the dialogue, but the system never
chooses this action at the end of a dialogue because it is so
strongly associated with the beginning of the dialogue. This
is an example of the limitations of linear function approxi-
mation, which we plan to address by splitting this action into
two actions, one for “greeting” and one for “goodbye”. In the
meantime, we have augmented the hybrid policy with a rule
which closes the dialogue after the system chooses the action
“offer”, to offer the user a flight. We have also added rules
which close the dialogue after 100 states (i.e. total of user
and system actions), and which release the turn if the system
has done 10 actions in a row without releasing the turn.

4.2 The Evaluation Metric

To evaluate the success of a dialogue, we take the final state
of the dialogue and use it to compute a scoring function. We
want the scoring function to be similar to the reward we com-
pute from the quality measures provided with the COMMUNI-
CATOR data, but because we do not have these quality mea-
sures for the simulated dialogues, we cannot use the exact

3There are only 54 dialogues which contain continuations. Ex-
cluding these dialogues does not harm the evaluation of the COM-
MUNICATOR systems, since their average score is actually lower
than that for the non-continuation dialogues (20.9).

72

same reward function. When we compare the hybrid pol-
icy against the COMMUNICATOR systems, we apply the same
scoring function to both types of dialogues so that we have a
comparable evaluation metric for both.

Because currently we are only considering users who only
want single-leg flight bookings, the scoring function only
looks at the four slots relevant to these bookings: origin city,
destination city, departure date, and departure time. We give
25 points for each slot which is filled, plus another 25 points
for each slot which is also confirmed (i.e. grounded). We also
deduct 1 point for each action performed by the system, to
penalise longer dialogues. Thus the maximum possible score
is 198 (i.e. 200 minus 2 system actions: ask for all the user
information in one turn, and then offer a flight).

The motivation behind this evaluation metric is that con-
firmed slots are more likely to be correct than slots which
are just filled. If we view the score as proportional to the
probability that a slot is filled correctly, then this scoring as-
sumes that confirmed slots are twice as likely to be correct.
When combining the scores for different slots, we do not try
to model the all-or-nothing nature of the COMMUNICATOR
task-completion quality measures, but instead sum the scores
for the individual slots. This sum makes our scoring system
value partial completions more highly, but inspection of the
distributions of scores indicates that this difference does not
favour either the hybrid policy or the original COMMUNICA-
TOR systems.

Although this evaluation metric could reflect the relative
quality of individual dialogues more accurately, we believe
it provides a good measure of the relative quality of differ-
ent systems. First, the exact same metric is applied to ev-
ery system. Additional information which we have for some
systems, but not all, such as the COMMUNICATOR user ques-
tionnaires, is not used. Second, the systems are being run
against approximately equivalent users. The user simulation
is trained on exactly the same user actions which are used to
evaluate the COMMUNICATOR systems, so the user simula-
tions mimic exactly these users. In particular, the simulation
is able to mimic the effects of a speech recognition errors,
since it is just as likely as the real users to disagree with a
confirmation or provide a new value for a previously filled
slot. The nature of the simulation model may make it system-
atically different from real users in some way, but we know
of no argument for why this would bias our results in favour
of one system or another.

4.3 Comparisons Between Systems

We have run experiments to answer two questions. First, in
our hybrid policy, what is the best balance between the su-
pervised policy and the reinforcement learning policy? Sec-
ond, how well does the hybrid policy perform compared to
the COMMUNICATOR systems that it was trained on?

We trained models of both Q..(s,a) and S,.(s,a), and
then used them in hybrid policies with various values for the
unobserved state penalty U. For both functions, we trained
them for 100 iterations through the training data, at which
point there was little change in the training error. During test-
ing, each hybrid policy was run for 1000 dialogues against
the linear function approximation user model. The final state

Table 2: The average scores for different values of the unob-
servable state reward U, and the three components of these
scores.

for each one of these dialogues was then fed through the scor-
ing function and averaged across dialogues. The results are
shown in table 2. The values for U were chosen based on the
average number of decisions per dialogue which were differ-
ent from that which the purely supervised policy would pick,
which were 0 (U = —1000), 1 (U = 0), 2 (U = 40), and 5
(U = 80), respectively.

Table 2 also shows some results for running the hybrid sys-
tem against a user simulation based on n-grams of actions
(“vs Ngram”). This user model seems to be easier to interact
with than the linear user model. In particular, the resulting
dialogues are better in terms of grounding.

To evaluate how well the hybrid policy performs compared
to the COMMUNICATOR systems, we extracted the final states
from all the non-continuation dialogues and fed them through
the scoring function. The average scores are shown in tables 3
and 4, along with the best performing hybrid policy and the
scores averaged over all systems’ dialogues.

Table 3 shows the results computed from the complete di-
alogues. These results show a clear advantage for the hybrid
policy over the COMMUNICATOR systems. The hybrid pol-
icy fills more slots and does it in fewer steps. Because the
number of steps is doubtless affected by the hybrid policy’s
built-in strategy of stopping the dialogue after the first flight
offer, we also evaluated the performance of the COMMUNI-
CATOR systems if we also stopped these dialogues after the
first flight offer, shown in table 4. The COMMUNICATOR sys-
tems do better when stopped at the first flight offer, but the
ordering of the systems is the same. They do better on length,
but worse on grounding, and about the same on filled slots.

4.4 Discussion of Results

These results provide clear answers to both our questions,
for this corpus and this approach to dialogue management.
First, the more the system relies on the policy determined
with supervised learning, the better it does. Second, the learnt
policies perform better than any of the COMMUNICATOR sys-
tems.

The results in table 2 show a clear trend whereby the more
the system sticks with the supervised policy, the better it does.
In other words, the best the hybrid policy can do is simply
mimic the typical behaviour it observes in the systems in the
data. This is a surprising result, in that we were expecting re-
inforcement learning to provide some improvement over the
supervised policy, provided the hybrid policy wasn’t too dif-

U total filled | grounded | length System total filled |grounded| length
score slots slots penalty score slots slots penalty

-1000 || 114.2 || 89.1 474 | -22.2 hybrid RL/SL 1142 [89.1 474 222

0| 1013 | 69.5 516 | -19.7 BBN 67.5 || 77.2 59.2 | -68.9

40 || 100.6 69.9 51.9 -21.1 CMU 497 60.2 47.4 -57.9

80 || 96.0 || 67.0 4941 -204 ATT 39.5 || 55.6 33.1 -49.3

vs Ngram: SRI 21.0 52.4 0.0 314
80 || 105.7 || 68.8 572 -203 combined COMM || 40.0 || 58.4 303 | -48.6

73

Table 3: The average scores for the different systems, and the
three components of these scores.

System total || filled |grounded| length
score || slots slots penalty

hybrid RL/SL 1142 || 89.1 474 -22.2
BBN 832 || 74.1 24.1 -15.0
CMU 63.9 || 55.1 26.9 -18.1
ATT 553 || 55.8 24.4 -25.0
SRI 27.8 || 52.2 0.0 -24.4
combined COMM || 53.0 || 56.9 18.3 -22.2

Table 4: The average scores after the first flight offer for the
different systems, and the three components of these scores.

ferent from the supervised policy. This may reflect the fact
that RL is harder than supervised learning, or that the amount
of data we are using isn’t enough to train an RL system effec-
tively for such a complicated dialogue management task. We
are currently producing better quality annotations, for the full
set of COMMUNICATOR systems, which should improve the
estimates for the RL component of the hybrid system. An-
other approach would be to only use the RL component for
specific types of decisions (thereby simplifying the dialogue
management task for RL). For example, the results in table 2
suggest that reinforcement learning improves grounding, but
perhaps ends the dialogue before all the slots are filled.

It is worth noting that, even though the best system is
purely supervised, the hybrid policies which do use some RL
also do quite well. This can be seen by comparing their scores
to the results for the COMMUNICATOR systems in tables 3
and 4. This performance is achieved despite the extreme dif-
ficulty of our state and policy spaces, as indicated by the very
bad performance we observed when we initially tried a purely
RL system. Therefore, we conclude that this hybrid approach
would allow the fruitful use of RL in many situations where
RL would otherwise be inappropriate due to the complexity
of the task or the amount of data available. We anticipate that
even for our very complex task, RL can be made beneficial by
increasing the amount of data through simulated dialogues,
which we intend to do in future work.

Tables 3 and 4 show a clear advantage of the learnt policy
“hybrid RL/SL” over all the COMMUNICATOR systems. This
result is perhaps surprising, since the learnt policy shown is
the purely supervised version, which simply mimics the typi-
cal behaviour of these same systems. One likely explanation
is that the hybrid policy represents a kind of multi-version
system, where decisions are made based on what the majority

T
200 -

150

100

Score

50 [- Hybrid RL

COMMUNICATOR ~ +

1 1 1 1
300 400 500 600
Dialog Rank

0 1‘00 2‘00
Figure 2: Comparing slot scores for the TALK learnt policy

(“Hybrid RL”) versus the COMMUNICATOR systems (disre-
garding penalties for dialogue length)

of systems would do. Multi-version systems are well known
to perform better than any one system alone, because the mis-
takes tend to be different across the different systems.

For a more detailed comparison of the systems, figure 2
plots the scores (ignoring length) for the average COMMU-
NICATOR dialogues versus the learnt policy’s simulated dia-
logues, as a function of their rank. Because the COMMUNI-
CATOR systems do better when stopped after the first flight of-
fer, we use these results for these plots. In figure 2, the length
of each bar reflects how many dialogues achieved the asso-
ciated score for the number of filled and/or grounded slots.
None of the dialogues actually get the maximum score of 200
(all slots filled and grounded), but very many of the learnt pol-
icy dialogues score 175, compared to very few of the COM-
MUNICATOR dialogues reaching that score.

5 Conclusion

The learnt policy scores 37% higher than the best COMMU-
NICATOR system which we examined (114.2 versus 83.2).
These are extremely promising results for a learnt policy with
70 actions, over 1087 possible states, and very few hand-
coded policy decisions. They indicate that linear function ap-
proximation is a viable approach to the very large state spaces
produced by the ISU framework. They also show that this
method for combining supervised learning with reinforce-
ment learning is effective at learning policies in extremely
large policy spaces, even with the limited amount of data in
any fixed dataset. In the case of only using supervised learn-
ing, the linear function approximation is able to merge the
policies of the systems in the COMMUNICATOR data and per-
form better than any one of these systems alone. Currently,
adding reinforcement learning to this model degrades perfor-
mance slightly, but still does better than any of the COMMU-
NICATOR systems. Further improvement should be possible
by tailoring the representation of states and actions based on
our experience so far.

The next step is to better exploit the advantages of re-
inforcement learning. One promising approach is to apply
RL while running the learnt policy against simulated users,
thereby allowing RL to explore parts of the policy and state
spaces which are not included in the COMMUNICATOR data.
The hybrid policy we have learnt on the COMMUNICATOR

74

data is a good starting point for this exploration. Also, the
supervised component within the hybrid system can be used
to constrain the range of policies which need to be explored
when training the RL component. All of these advances will
improve techniques for bootstrapping and automatic optimi-
sation of dialogue management policies from limited initial
datasets.

Acknowledgements

This work is funded by the EC under the FP6 project “TALK:
Talk and Look, Tools for Ambient Linguistic Knowledge”.
We thank Johanna Moore for proposing the use of the COM-
MUNICATOR dataset for this work.

References

[Bos et al., 2003] Johan Bos, Ewan Klein, Oliver Lemon,
and Tetsushi Oka. DIPPER: Description and Formalisa-
tion of an Information-State Update Dialogue System Ar-
chitecture. In 4th SIGdial Workshop on Discourse and Di-
alogue, pages 115-124, Sapporo, 2003.

[Cheyer and Martin, 2001] Adam Cheyer and David Martin.
The Open Agent Architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1/2):143-148, 2001.

[Georgila er al., 2005] Kallirroi Georgila, Oliver Lemon,
and James Henderson. Automatic annotation of COM-
MUNICATOR dialogue data for learning dialogue strate-
gies and user simulations. In Ninth Workshop on the
Semantics and Pragmatics of Dialogue (SEMDIAL), DI-
ALOR’05, 2005.

[Larsson and Traum, 2000] Staffan Larsson and David
Traum. Information state and dialogue management in
the TRINDI Dialogue Move Engine Toolkit. ~Natural
Language Engineering, 6(3-4):323-340, 2000.

[Levin and Pieraccini, 1997] E. Levin and R. Pieraccini. A
stochastic model of computer-human interaction for learn-
ing dialogue strategies. In Proceedings of Eurospeech,
pages 1883—-1886, Rhodes, Greece, 1997.

[Levin et al., 2000] E.Levin, R. Pieraccini, and W. Eckert. A
stochastic model of human-machine interaction for learn-
ing dialog strategies. IEEE Transactions on Speech and
Audio Processing, 8(1):11-23, 2000.

[Scheffler and Young, 2002] Konrad Scheffler and Steve
Young. Automatic learning of dialogue strategy using di-
alogue simulation and reinforcement learning. In Proc.
HLT, 2002.

[Shawe-Taylor and Cristianini, 2004] John Shawe-Taylor
and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[Singh et al., 2002] Satinder Singh, Diane Litman, Michael
Kearns, and Marilyn Walker. Optimizing dialogue man-
agement with reinforcement learning: Experiments with
the NJFun system. Journal of Artificial Intelligence Re-
search (JAIR), 2002.

[Sutton and Barto, 1998] Richard Sutton and Andrew Barto.
Reinforcement Learning. MIT Press, 1998.

[Walker and Passonneau, 2001] M. Walker and R. Passon-
neau. DATE: A Dialogue Act Tagging Scheme for Eval-
uation of Spoken Dialogue Systems. In Walker, M., Pas-
sonneau R., DATE: A Dialogue Act Tagging Scheme for
Evaluation of Spoken Dialogue Systems. In Proceedings
of Human Language Technology Conference, San Diego,
March, 2001.,2001.

[Walker et al.,2001a] M Walker, J Aberdeen, J Boland,
E Bratt, J Garofolo, L Hirschman, A Le, S Lee,
S Narayanan, K Papineni, B Pellom, B Polifroni,
A Potamianos, P Prabhu, A Rudnicky, G Sanders, S Sen-
eff, D Stallard, and S Whittaker. Darpa communicator dia-
log travel planning systems: The june 2000 data collection.
In Eurospeech 2001, Aalborg, Scandinavia, 2001.

[Walker et al.,2001b] Marilyn A. Walker, Rebecca J. Pas-
sonneau, and Julie E. Boland. Quantitative and Qualita-
tive Evaluation of Darpa Communicator Spoken Dialogue
Systems. In Meeting of the Association for Computational
Linguistics, pages 515-522, 2001.

[Walker et al.,2002] M. Walker, A. Rudnicky, R. Prasad,
J. Aberdeen, E. Bratt, J. Garofolo, H. Hastie, A. Le,
B. Pellom, A. Potamianos, R. Passonneau, S. Roukos,
G. Sanders, S. Seneff, and D. Stallard. Darpa commu-
nicator: Cross-system results for the 2001 evaluation. In
ICSLP 2002, 2002.

75

