
Estimating Probabilities forUnbounded Categorization ProblemsJames HendersonUniversity of Geneva, Computer Science Department24, rue G�en�eral Dufour, CH-1211 Gen�eve 4, SwitzerlandAbstract. We propose two output activation functions for estimatingprobability distributions over an unbounded number of categories witha recurrent neural network, and derive the statistical assumptions whichthey embody. Both these methods perform better than the standard ap-proach to such problems, when applied to probabilistic parsing of naturallanguage with Simple Synchrony Networks.1 IntroductionRecurrent networks have the advantage over feed-forward networks that theycan compute mappings from arbitrarily many input patterns to arbitrarilymany output patterns. The work presented in this article focuses on the issuesthat arise with an unbounded number of output patters. In particular, weare concerned with the problem of estimating a probability distribution overan unbounded set of mutually exclusive categories. We propose two outputactivation functions which can be used for such tasks, and in each case derivethe statistical assumptions which are necessary to prove that training networkswhich use these functions will result in estimates of the desired probability dis-tributions. We then experimentally evaluate these activation functions in anapplication of a recurrent network architecture (Simple Synchrony Networks[4]) to probabilistic parsing of real natural language sentences. We �nd thatboth of these activation functions perform better than the standard approachof converting the task to a sequence of bounded categorization problems.As an example of an unbounded categorization problem, consider the deci-sion an incremental natural language parser must make when it reaches the lastword of the sentence \John said Mary left yesterday." The parser must choosewhether \yesterday" modi�es \said" or \left". Each alternative modi�cationcan be thought of as a category, and they are mutually exclusive. In generalthere can be an unbounded number of verbs in such a sentence, so there can bean unbounded number of modi�cations which the parser must choose between.To make this choice, we want to be able to estimate a probability distributionover an unbounded number of mutually exclusive categories.The reason a recurrent network can produce an unbounded number of out-



puts is that it can be run for an unbounded amount of time, and producedi�erent outputs at each time.1 We assume that one output yi is produced ateach time i, from one hidden layer activation pattern zi.2 We will denote thetotal input as x and use Yi to denote whether the output category associatedwith time i is the correct output category. Our objective is to have yi to be anestimate of P (Yijx). In the above example, the potential modi�cations are thedi�erent i, Yi represents the correctness of modi�cation i, and x is the wholesentence plus the question of how to parse \yesterday". We want y1 to be anestimate of the probability that \yesterday" modi�es \said", and y2 to be theestimate for \left".2 Using a Sequence of Bounded CategorizationsThe standard method in statistical modeling and neural networks for handlingunbounded categorization problems is to convert them into an unbounded se-quence of bounded categorization problems. The �rst step in this process isto choose an ordering between the categories, which we will denote c1; : : : ; cn.The categorization probabilities which are then estimated are each conditionalon the correct category not being any of those earlier in the sequence. Theseprobabilities can each be estimated independently, because the fact that thealternatives are mutually exclusive has been taken care of in the condition-ing.3 The original probabilities can then be computed from these estimates bymultiplying in accordance with the chain rule for conditional probabilities:4P (Yc2 jx) = P (Yc2 j:Yc1 ;x)� (1� P (Yc1 jx)): : :P (Ycn jx) = P (Ycn j:Yc1 ; : : : ;:Ycn�1 ;x)�(1� P (Yc1 jx)) � : : :� (1� P (Ycn�1 jx))The main disadvantage of this method is that the sequential ordering chosenfor the conditioning biases the estimate. When the estimates are smoothed, aswith neural networks, then small probabilities will tend to be overestimated,thereby reducing the probability assigned to categories later in the sequence.This will bias the estimates towards categories earlier in the sequence, and, formost tasks, this bias will be detrimental no matter what ordering we choose.In the next section we will propose methods which do not require any ordering,and thus do not introduce this bias.1We are using the word \time" simply to refer to the di�erent states which a recurrentnetwork passes through. Everything discussed here is equally applicable to the graph-basedgeneralization of time, as discussed in [2].2All this work could be generalized to any �nite number of output categories per time,but we do not do so here in the interest of space.3The unbounded amount of information in the conditional of the probability can be han-dled with any of a variety of methods, including making explicit independence assumptionsand running a recurrent network on the sequence c1; : : : ; cn.4Note that P (Yc1 jx) is estimated directly and P (Ycn j:Yc1 ; : : : ;:Ycn�1 ;x) is actuallyequal to 1 because cn is the only possible alternative remaining.



3 Estimating the Probabilities DirectlyThe standard methods for estimating probabilities with neural networks ap-ply only to feed-forward networks. However, for any (discrete time) recurrentnetwork applied to a particular input, we can convert it into an equivalent feed-forward network with one copy of the recurrent network for each time step inthe input [5]. The di�culty arises because the standard proofs for showing thata trained neural network will estimate a probability distribution assume thatall the outputs are computed from the same hidden layer activation pattern[1]. But for recurrent networks the di�erent outputs yi are produced at di�er-ent times from di�erent hidden activation patterns zi. The fundamental issuein deriving new activation functions for estimating probability distributionsover an unbounded set of categories is how to handle an unbounded number ofhidden activation patterns.3.1 An Unbounded Logistic Sigmoid FunctionWhen we train a network to compute an output, the hidden layer learns arepresentation which is optimized for computing that particular output giventhe input. Thus it is natural to assume that a given output yi can be accuratelycomputed from its hidden activation pattern zi without requiring additionalinformation about the input x. This independence assumption, plus the factthat zi is a function of x, results in the following approximation:P (Yijx) = P (Yijzi;x) � P (Yijzi) = p(zijYi)P (Yi)p(zi) (1)In this model we are not assuming any ordering or other di�erentiationbetween the di�erent category indexes i, so the prior probability distributionover these categories P (Yi) must be uniform. Therefore P (Yi) = 1=n, where nis the number of categories. We can write p(zi) as a sum over output cases:p(zijYi)(1=n) + �j 6=ip(zijYj)(1=n). The �rst element of the sum is the numer-ator in the previous formula. The second element represents the probability ofcomputing the hidden activation vector zi in situations where Yi is false. Weassume that these later probabilities are only dependent on the fact that Yi isfalse, and not dependent on the speci�c index j of the correct category. Thus:p(zi) � p(zijYi)(1=n) + p(zij:Yi)(1� 1=n) (2)These assumptions allow us to estimate P (Yijx) with a single output unityi, in a similar way to the two-category case for �nite mappings:P (Yijx) � p(zijYi)(1=n)p(zijYi)(1=n) + p(zij:Yi)(1� 1=n) (3)� 11 + (n� 1)exp(�ai) where ai = ln� p(zijYi)p(zij:Yi)� (4)



Equation 4 is the logistic sigmoid activation function, except that the weightingof (n� 1) has the e�ect of shifting the function to the right by ln(n� 1).Because the above independence assumptions are not exactly correct, it issometimes desirable to add a normalization factor by taking advantage of thefact that �kp(Ykjx) = 1. To normalize, equation 4 simply needs to be dividedby �k1=(1 + (n� 1)exp(�ak)). This is optional, but it has been found to helpin the later stages of training, as is done in the experiments in section 4.For the two-category case for �nite mappings, the logistic sigmoid activationfunction is used with the cross-entropy error function. This ensures that aftertraining the outputs do indeed estimate the desired posterior probabilities,assuming that the class-conditioned probability of the hidden activation vectoris in the exponential family of distributions [1]. Translating this to our case,we want to ensure that the output yi estimates P (Yijx), assuming that p(zijYi)is in the exponential family. To complete the parallel with the �nite case wesimply need to assume that p(zij:Yi) is also in the exponential family. Giventhese assumptions, the proof is the same as for the �nite case.The training algorithm for the unnormalized version of this model is thesame as for the �nite case. We can see this by noting that equation 4 isequivalent to the usual logistic sigmoid applied to bi = ai � ln(n � 1), and@bi=@ai = 1. For the normalized version a factor of one minus the unnormalizedoutput needs to be added to @E=@ai.3.2 An Unbounded Softmax FunctionAs an alternative to the unbounded sigmoid activation function, we considerwhat statistical assumptions would be necessary to derive a version of thenormalized exponential, or \softmax", activation function. This is the properactivation function to use in the case of a bounded number of categories greaterthan 2, so it is natural to expect it would generalize to the unbounded case.For this derivation we do not assume that one hidden layer activation patternis su�cient to estimate a given category's probability, but instead make themuch weaker assumption that the total set of all hidden patterns is su�cient.This alternative provides us with a normalization factor equal to p(z1; : : : ; zn):P (Yijx) � P (Yijz1; : : : ; zn) = p(z1; : : : ; znjYi)P (Yi)Pk p(z1; : : : ; znjYk)P (Yk) (5)We then make the main independence assumption of this method; we assumethat the probability distributions over hidden activation patterns are condi-tionally independent, given the correct category i:p(z1; : : : ; znjYi) � p(zijYi)�Yj 6=i p(zj jYi) � p(zijYi)�Yj 6=i p(zj j:Yj) (6)In the second step we have assumed, as for the previous function, that the onlyinformation about Yi which is relevant to zj is the fact that Yj is false.



Using, as above, the uniform prior P (Yi) = 1=n, and substituting formula 6into formula 5 and simplifying, we get:P (Yijx) � p(zijYi)p(zij:Yi)�Xk p(zkjYk)p(zk j:Yk) (7)� exp(ai)Pk exp(ak) where ai = ln� p(zijYi)p(zij:Yi)� (8)Equation 8 is precisely the softmax activation function, applied to an un-bounded number of categories.As with the sigmoid activation function, cross-entropy error is the appropri-ate error function to use for the softmax activation function when you wish toestimate a probability distribution over a bounded number of categories [1]. Asfor the unbounded sigmoid function, generalizing this result to the unboundedcase requires the additional assumption that p(zij:Yi) is in the exponentialfamily. Given this assumption and the assumption that p(zijYi) is in the expo-nential family, the same proof as for the bounded case can be used to show thatthe network outputs yi trained with cross-entropy error do estimate P (Yijx).It is straightforward to show that the training algorithm is also the same as inthe bounded case.4 Experiments on Probabilistic ParsingThe recurrent network architecture to which we apply the above output acti-vation functions is Simple Synchrony Networks (SSNs) [4]. SSNs are similarto Simple Recurrent Networks, but rather than computing one output patternfor each position in the input sequence, SSNs compute one output pattern foreach pairing of a sequence position with any of its preceding sequence posi-tions. When applied to natural language parsing, this provides enough outputsso that there is one output value for every possible parent of every word orphrase in the sentence (see [3]). These probabilities plus probabilities overphrase labels (noun phrase, verb phrase, etc.) are all the parser needs to �ndthe most probable parse. In the experiments reported here, the same networkarchitecture and the same probabilistic parser are applied, with varying outputactivation functions and their associated error functions.Table 1 shows the results for the three methods.5 The standard measure forcomparing parser performance is shown in the last column. For comparison,the testing results for an un-smoothed statistical model (a probabilistic context5For each method, we trained multiple networks with 60, 80, and 100 hidden units, usingmomentum and weight decay regularization. Training error was used to automatically reducethe learning rate, and cross validation was used to automatically reduce the regularizationand to decide when to stop training. In each case the best network was chosen based oncross validation, and results were then computed on a held-out testing set. In each case oneof the two networks with 100 hidden units was chosen, but similar cross validation resultswere achieved by all the networks run with 80 or 100 hidden units.



free grammar) were 29.2% recall, 53.7% precision, and 37.8% F�=1, but state-of-the-art results using a much larger training corpus (1 million words versusthe 26,480 words used here) are in the upper 80's.Training Cross Validation TestingRec Prec F�=1 Rec Prec F�=1 Rec Prec F�=1Sequence 60.2 62.3 61.3 57.9 60.0 58.9 58.7 59.9 59.3Unb Sig 69.6 71.8 70.7 62.9 64.3 63.6 65.1 66.6 65.8Unb Soft 72.1 72.5 72.3 64.5 63.9 64.2 64.8 64.2 64.5Table 1: Results: percent phrase recall, precision, and a combination of both.5 ConclusionsThe experimental results show a clear advantage for both of the unboundedactivation functions we have proposed in this article over the standard methodof converting the unbounded distribution into a sequence of bounded distri-butions (\Sequence" in table 1). This shows that these alternative statisticalestimation methods could improve the performance of many applications inunbounded domains, in particular statistical parsers. The unbounded sigmoidfunction (\Unb Sig" in table 1) shows an advantage over the unbounded soft-max function (\Unb Soft" in table 1), but the results on the cross validationset show that this is not likely to be a reliable di�erence.References[1] Christopher M. Bishop. Neural Networks for Pattern Recognition. OxfordUniversity Press, Oxford, UK, 1995.[2] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptiveprocessing of data structures. IEEE Transactions on Neural Networks,9:768{786, 1998.[3] James Henderson and Peter Lane. A connectionist architecture for learn-ing to parse. In Proceedings of COLING-ACL, pages 531{537, Montreal,Quebec, Canada, 1998.[4] Peter Lane and James Henderson. Incremental syntactic parsing of naturallanguage corpora with simple synchrony networks. IEEE Transactions onKnowledge and Data Engineering, 13(2), 2001.[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-sentations by error propagation. In D. E. Rumelhart and J. L. McClelland,editors, Parallel Distributed Processing, Vol 1. MIT Press, Cambridge, MA,1986.


