
Segmenting State into Entities and itsImplication for LearningJames HendersonDepartment of Computer Science, University of Exeter, Exeter EX4 4PT, United KingdomJ.B.Henderson@ex.ac.uk1 Sequences, Structures, and Segmenting with SynchronyNeural Network models have been successful at pattern analysis using just a holistic representationof the input pattern. There is not usually any need to partition the problem or impose strongprior assumptions. This approach has been extended to processing sequences and to processingstructures, but with much less success. The storage capacity of a network which is appropriate forshort sequences or shallow structures is soon overwhelmed when faced with long sequences or deepstructures, leading to much relevant information being lost from the network's representationof state. The solution advocated here is to segment the representation of state into multiplecomponents. The number of components can grow with the length of the sequence or the sizeof the structure, thereby allowing the capacity required for each component to remain constant.Given this approach, the questions are how to represent these components, on what basis tosegment the state information, and what are the implications for learning and processing.In cognitive neuroscience one proposal for pattern segmentation is that the brain does this seg-mentation and represents the result using the temporal synchrony of neuron activation spikes[von der Malsburg and Buhmann, 1992]. Any two features of the input which are associatedwith the same entity are represented using synchronous (or more generally, correlated) activa-tion spikes, and any two features which are associated with di�erent entities are represented withnon-synchronous (uncorrelated) activation spikes [von der Malsburg, 1981] [Eckhorn et al., 1988][Gray et al., 1989] [Shastri and Ajjanagadde, 1993] [Singer and Gray, 1995]. This approach hasbeen applied to visual object recognition [Wang and Terman, 1997] and auditory source recogni-tion [Wang, 1996]. In both domains there are multiple entities in the world which are togetherproducing the sensory input, and the brain needs to segment the sensory input according to whichentity is responsible for which aspects of it.This neuroscienti�c proposal suggests answers to two of our questions. First, that the synchronyof spiking neurons can be used to represent the components of the segmented state. Second,that this segmentation should be done on the basis of the entities in the domain. The workdiscussed in the remainder of this abstract looks at our third question, the implications of thesetwo proposals for learning and processing. We argue that these two proposals are intimatelyrelated for computational reasons. Indeed, it may be that the entire concept of an entity is anartifact of our brains using temporal synchrony to segment our representation of state.2 Temporal Synchrony for Arti�cial Neural NetworksTo apply the idea of using the synchrony of neuron activation spikes to a computational architec-ture, we �rst need to de�ne an abstraction of the neurobiology which captures only those prop-erties which are relevant to our computational investigation. For this work we use the followingabstraction:11This abstract model is based on the SHRUTI model of re
exive reasoning [Shastri and Ajjanagadde, 1993][Shastri, 1999]. 1



Time is divided into discrete periods, and each period is divided into discrete phases.There is no bound on the number of periods and no bound on the number of phases in a period.The ordering between phases within a period cannot be used to represent information.Units are divided into two types, those which process each phase independently (called pulsingunits) and those which output the same activation to all phases (called nonpulsing units).As is commonly done, a unit is intended to correspond to a collection of neurons, so it is possiblefor a single unit to be pulsing in multiple phases during the same period. Being abstractions, it ispossible to question each of these assumptions,2 but they are appropriate here because they allowus to focus on the primary concern, the use of temporal synchrony.Simple Synchrony Networks (SSNs) [Lane and Henderson, 1998] [Henderson and Lane, 1998]are an arti�cial neural network architecture which uses this abstract model of temporal synchronyin a way which supports learning. They are an extension of Simple Recurrent Networks (SRNs)[Elman, 1991], which gives them the ability to process sequences. Each position in the sequenceis represented as a period in the network's temporal pattern of activation. The di�erence betweenSSNs and SRNs is in the representation of the network's state at each sequence position. SRNsuse a holistic representation of state, while SSNs segment this state into information about a setof entities.3 Each entity is represented by a phase in the network's temporal pattern of activation.Thus the information about an entity at a sequence position is represented by a pattern ofactivation in a phase in a period. As illustrated in �gure 1, this pattern of activation is computedfrom holistic inputs at the sequence position, inputs about the entity at the sequence position,and the pattern of activation for the entity during the previous sequence position. The links whichperform this computation can be trained using a simple extension of Backpropagation ThroughTime [Lane and Henderson, 1998].
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Figure 1: An example of a SSN network. Nonpulsing units are shown as circles, pulsing units asstacks of circles, and links as solid arrows. The dashed arrows represent the copying of activationfrom the previous period.3 Generalization with Temporal SynchronyThe motivation for segmenting state information into components was that this would allow us tovary the number of components, and thus the capacity of the state, without having to vary thecapacity requirements of each individual component. This requirement is met by the above neu-ral network model because the number of phases can vary without requiring additional training.2For example, see [Lane and Henderson, in press] for a discussion of bounding the number of phases in a period.3Some versions of the SSN architecture maintain a holistic representation of state as well as an entity basedrepresentation. Without loss of generality, we will talk in terms of the simpler architecture, called type A in[Lane and Henderson, 1998], which has holistic inputs but no holistic state.2



These additional phases are simply processed with the same link weights as all the other phases.This processing strategy has signi�cant implications for learning. Anything learned about a com-putation performed in one phase will automatically be generalized to computations in all otherphases. This generalization across phases is an inherent property of using temporal synchrony,since link weights do not change at the time scale of phases.Processing each phase in the same way and therefore generalizing learned information acrossphases poses no problems if we use phases to store information about individual entities. Indeedthis is exactly what we want. For example, if we learn to recognize that one snake is poisonousthen we want to generalize that knowledge to other snakes, even in situations where there aremultiple snakes. In language processing, if we learn something about one noun phrase then wewant to generalize that knowledge to other noun phrases, even in sentences that have multiplenoun phrases. These types of regularities are central to what we mean by \entity", and they arecaptured by using temporal synchrony to represent entities [Henderson, 1996]. It could even beargued that the concept of entity is derivable from the computational properties of using temporalsynchrony, but that argument is beyond the scope of this abstract.4 An Application to Language ProcessingOne application which involves both arbitrarily long sequences and arbitrarily large structuresis parsing natural language. There is wide variation in the length of sentences and the size oftheir syntactic structures, and thus wide variation in the capacity required to represent the stateof a parser as it processes a sentence. Many attempts have been made to apply holistic neu-ral network representations to parsing, but in one way or another they all run into the problemof a network's limited storage capacity [Ho and Chan, 1999]. As advocated above, this limita-tion has been overcome using Simple Synchrony Networks [Lane and Henderson, in press]. TheSSN's phases are used to store the information about syntactic constituents, thereby segment-ing the parser's state into an arbitrarily large set of constituents and allowing each constituent'srepresentation to be of constant size. It also means the network has the linguistically desirableproperty of generalizing over constituents, as well as simplifying the parser's output representation[Henderson and Lane, 1998].Recent experiments demonstrate that a SSN parser can handle varying sentence lengths andgeneralize appropriately, even with the complexities of real natural language. Henderson [2000]compares the performance of a SSN parser to the standard statistical parsing technique of Prob-abilistic Context Free Grammars. Both models were trained on the same set of sentences froma corpus of naturally occurring text, and then tested on a held out set. The test set containedsentences ranging from 2 words to 59 words in length. The SSN parser output 65% of the targetconstituents (recall) and 65% of the constituents which it output were in the target (precision).The Probabilistic Context Free Grammar was much less robust, not �nding parses for half thesentences, and even in the parsed half only outputting 57% of the target constituents and having54% of the output constituents be in the target.5 ConclusionsThese empirical results show that segmenting state information on the basis of entities is an ef-fective way to allow neural networks to store arbitrarily large amounts of state information. Theyalso show that using temporal synchrony to represent this segmentation results in appropriategeneralization across entities when learning. Thus the neuroscienti�c proposal of using the syn-chrony of activation spikes to segment patterns according to entities has been shown to havesigni�cant computational implications for arti�cial neural networks. Simple Synchrony Networksare an arti�cial neural network architecture which demonstrates the promise of this proposal.
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