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Abstract

For connectionist networks to be adequate for higher level
cognitive activities such as natural language interpretation,
they have to generalize in a way that is appropriate given the
regularities of the domain. Fodor and Pylyshyn (1988) iden-
tified an important pattern of regularities in such domains,
which they called systematicity. Several attempts have been
made to show that connectionist networks can generalize in
accordance with these regularities, but not to the satisfac-
tion of the critics. To address this challenge, this paper starts
by establishing the implications of systematicity for connec-
tionist solutions to the variable binding problem. Based on
the work of Hadley (1994a), we argue that the network must
generalize information it learns in one variable binding to
other variable bindings. We then show that temporal syn-
chrony variable binding (Shastri and Ajjanagadde, 1993) in-
herently generalizes in this way. Thereby we show that tem-
poral synchrony variable binding is a connectionist archi-
tecture that accounts for systematicity. This is an important
step in showing that connectionism can be an adequate ar-
chitecture for higher level cognition.

Introduction

Connectionist networks have been successfully applied to a
wide variety of problems, but they have not had much suc-
cess with higher level cognitive activities. For example in
natural language parsing, connectionist networks have not
been able to exhibit the same generalization abilities that
statistical approaches based on standard parsing techniques
have shown. This inability to generalize in the appropriate
way can be attributed to an inadequacy in standard con-
nectionist networks that was first identified by Fodor and
Pylyshyn (1988). They pointed out a pattern of regularities
in higher level cognitive activities that they called system-
aticity, and challenged connectionists to show how this pat-
tern could be accounted for within connectionism. In this
paper we show that a particular connectionist architecture,
called temporal synchrony variable binding (Shastri and
Ajjanagadde, 1993), accounts for systematicity through its
inherent ability to generalize across entities. In the process,
we clarify the notion of systematicity and show its implica-
tions for variable binding techniques. This work not only
contributes to the continuing debate about systematicity in
connectionist networks, it also indicates how connectionist
networks’ impressive learning abilities for pattern match-
ing tasks can be extended to the more complex domains
typical of higher level cognitive activities.

As Fodor and Pylyshyn (1988) describe it, systematicity
embodies the kinds of regularities that arise from a compo-
sitional generative grammar. Because in such grammars a
general-purpose composition operation is used to construct
sentences out of their constituents, a given constituent can
appear anywhere that its type of constituent is allowed. For
example, because “John” and “Mary” are the same type
of constituent, a generative grammar would not generate
“John loves Mary” without also generating “Mary loves
John”. Fodor and Pylyshyn (1988) argued that such reg-
ularities are an inherent part of human cognitive activity,
and thus that connectionism could not be an adequate cog-
nitive architecture until it accounted for this phenomena.
Many attempts have been made to meet this challenge (e.g.
Smolensky, 1990; Christiansen and Chater, 1994; Niklas-
son and van Gelder, 1994), but the critics have not been
satisfied (Fodor and McLaughlin, 1990; Hadley, 1994a;
Hadley, 1994b).1

Such difficulties have lead some connectionists inves-
tigating higher level cognitive activities to propose ex-
tensions to standard connectionist architectures. One
such investigation developed a technique called tempo-
ral synchrony variable binding for use in fast, common
sense reasoning (reflexive reasoning) (Shastri and Ajjana-
gadde, 1993).2 This technique can represent multiple fea-
tures of multiple entities, and it can perform a significant
class of computations over this representation. In addi-
tion to reflexive reasoning, it has been successfully applied
to syntactic natural language parsing (Henderson, 1994b;
Henderson, 1994a). This work showed that the kinds of
regularities that systematicity embodies could be directly
and simply represented in a network that uses temporal syn-
chrony variable binding. In this paper we show that it is not
only possible to build a connectionist network that exhibits
these regularities, but that these regularities are a conse-
quence of the inherent generalization abilities of temporal
synchrony variable binding networks.

Because there has not been general agreement about the1One proposal (Hadley and Hayward, 1995) has not yet been
criticized in the literature. This work will be discussed below in
the section on representing variable bindings.2The possibility of using temporal synchrony for encoding
feature bindings in the perceptual domain was suggested by von
der Malsburg and Schneider (1986), but Shastri and Ajjanagadde
were the first to use temporal synchrony to solve complex repre-
sentational problems in higher level cognitive activities.
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exact definition of systematicity, this paper starts with a dis-
cussion of this issue based on the work of Hadley (1994a).
The resulting definition of systematicity requires a solution
to the variable binding problem where learned parameters
are independent of variable bindings. Several connectionist
approaches to variable binding are then discussed with re-
spect to this requirement. For most of the proposed meth-
ods, there is no apparent way for them to satisfy this re-
quirement. In contrast, temporal synchrony variable bind-
ing by its very nature makes learned parameters indepen-
dent of variable bindings. By showing this we show that
temporal synchrony variable binding is a connectionist ar-
chitecture that can account for systematicity.

The Definition of Systematicity
Although neither (Fodor and Pylyshyn, 1988) nor
(Fodor and McLaughlin, 1990) provides a precise defini-
tion of systematicity, the concept is meant to embody the
pervasive regularities in language (and thought) that are tra-
ditionally captured using compositional generative gram-
mars. Such grammars express generalizations about the
sentences of a language in terms of their subconstituents.
A universal composition operation is then used to com-
bine these constituents to form sentences. Because gen-
eralizations are stated in terms of constituents, such an ar-
chitecture predicts a prevalence of regularities across con-
stituents. This is in fact the case. For example, the pattern
of words that can make up a noun phrase is very complex,
yet this pattern is virtually identical for subject and object
noun phrases. Thus if “John” can be a subject noun phrase
and “Mary” can be an object noun phrase (as in “John loves
Mary”), then it will also be possible for “Mary” to be a sub-
ject noun phrase and “John” to be an object noun phrase (as
in “Mary loves John”).

Within the connectionist paradigm, the ability to account
for regularities is not tested through representing general-
izations (as in the classical paradigm), but through learn-
ing generalizations. A connectionist architecture accounts
for a regularity if it can generalize from a training set to
a testing set in accordance with that regularity. Hadley
(1994a) uses this criteria to formalize the concept of sys-
tematicity. He requires a network to generalize from a set
of training sentences to a set of novel testing sentences.
He defines three degrees of systematicity, depending on
the novelty of the testing sentences. The one which most
closely matches Fodor and Pylyshyn’s concept is strong
systematicity, where the novel testing sentences include
words (i.e. simple constituents) in syntactic positions where
they did not occur in the training sentences. Going back
to our previous example, this means that a network that
was trained on sentences in which “Mary” was only in
object position would have to handle sentences in which
“Mary” appeared in subject position. Unfortunately, as
Christiansen and Chater (1994) point out, this definition
still has some imprecision in that no definition of “syntactic
position” is given. Christiansen and Chater (1994) provide
a linguistically motivated definition of syntactic position,
but this is not adequate. The network may be using a rather

different system of syntactic positions than the one an ex-
ternal observer would find natural.

For the test to guarantee that the network is truly able to
generalize to novel pairings of words with syntactic posi-
tions, we need to restrict the network’s task so that the syn-
tactic position of the word in the training set must be treated
as different from the syntactic position of the word in the
testing set. Hadley (1994a; 1994b) discusses a fourth type
of systematicity which does this. He defines semantic sys-
tematicity to be strong systematicity plus the requirement
that the system assign appropriate meanings to all words
occurring in the novel test sentences (Hadley, 1994b). The
task of assigning meaning forces the system to make dis-
tinctions between syntactic positions. For example, a net-
work trying to assign meaning to “Mary loves John” must
distinguish between the syntactic positions of “Mary” and
“John”, since neither word can in general be excluded from
either the lover or loved roles. This task illustrates how a
network can be forced to represent the distinctions between
syntactic positions that the experiment presumes. With this
restriction on the task, we can be sure that a network that
exhibits strong systematicity represents information about
syntactic positions and can combine this information with
its information about words in novel ways.

Hadley (1994) explicitly excludes from his definition of
systematicity a property which Fodor and Pylyshyn (1988)
emphasize, namely that the regularities Hadley discusses
must be nomic necessities. In other words, these regu-
larities must be inherent to the nature of the connection-
ist network, not just wired in. Wiring in the regularities
constitutes a mere implementation of them, and thus nei-
ther explains them nor furthers our understanding of them.
This paper argues that connectionist networks which use
temporal synchrony variable binding inherently generalize
information about words from one syntactic position to an-
other, and thus that strong systematicity is a nomic neces-
sity given the use of temporal synchrony variable binding,
as required by Fodor and Pylyshyn (1988). Because we
are concerned with demonstrating an inherent property, this
paper provides an in-principle argument. Experimental re-
sults from an implemented system are neither necessary nor
sufficient to demonstrate that a property is inherent to the
system.3
Learned Parameters versus Variable Bindings
The above definition of systematicity requires that a net-
work make use of information about words, syntactic po-
sitions, and the pairings of words with syntactic positions.
The pairings are manifested in the sentences that are in-
put to the network, and the task forces these pairings to be
manifested in the output of the network. Thus information3This approach is at odds with standard practise in connec-
tionism, but this divergence is to be expected given that thechal-
lenge posed by Fodor and Pylyshyn (1988) is a philosophical one,
and not directly empirical. For those who aren’t satisfied with an
in-principle argument, see the discussion below of (Hadleyand
Hayward, 1995). Their experimental results can be interpreted
as evidence for the generalization ability of temporal synchrony
variable binding networks.
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about these pairings must be communicated from the in-
put to the output, and consequently this information must
be represented in some way by the pattern of activation in
the network. This is an instance of the variable binding
problem. The network must represent the binding between
the information about a word and the information about
the syntactic position of that word. In classical approaches
these bindings are represented using variables. For exam-
ple, the binding between “Mary” and the subject syntactic
position in “Mary loves John” could be represented (sim-
plistically) asMary(x)^subject(x).

The requirements systematicity places on the represen-
tation of variable bindings are rather different from the re-
quirements it places on the representation of words and
syntactic positions. In order for a network to generalize
from processing one set of sentences to processing another
set, the parameters that are determined using the training
set (i.e. the link weights) have to represent information
that is also true of the testing set. For strong systematic-
ity, both information learned about words and information
learned about syntactic positions will be true of the testing
set. In contrast, because words and syntactic positions are
paired differently in the training and testing sets, any infor-
mation learned about variable bindings will not be true of
the testing set. Since the task requires information about
words and syntactic positions to be learned correctly, the
parameters that represent this information must not be de-
pendent on variable bindings. In other words, strong sys-
tematicity requires that the learned parameters (weights) of
a network should be independent of the variable bindings.4
Classical approaches use quantifiers to express this inde-
pendence. For example, the learned fact that “Mary” has
the interpretation MARY (following a standard notation)
could be represented with the rule8y,Mary(y))MARY(y).
The truth of this rule is a learned parameter, and it is
independent of the variable that the rule is applied to.
Applying this rule to x in Mary(x)^subject(x) we get
Mary(x)^subject(x)^MARY(x). This state specifies that
the subject has the interpretation MARY, despite the fact
that the rule is independent of the pairing of “Mary” with
the subject.

It should be clear at this point that the requirements of
strong systematicity are not specific to the task of natu-
ral language interpretation. Information about words and
syntactic positions could be replaced with a wide variety
of different kinds of information, and we could still find
tasks that require these different kinds of information to be
independent from their variable bindings. Any such task
will display the pattern of regularities that are embodied
in the concept of systematicity. For example, grasping a
piece of candy that is in ones visual field requires the in-
formation that an object is candy, the information about the
location of that object, and the binding between these two
types of information. Changing the location of the candy
does not change its sweetness, and changing the color of4This requirement does not preclude the use of information
that is dependent on the pairings of words with syntactic positions.
Such information is simply irrelevant to the issue of systematicity.

the candy does not change the trajectory for grasping. As
Fodor and Pylyshyn (1988) argued, such regularities are
pervasive in higher level cognitive activities, and thus a
proposed cognitive architecture must account for them. In
the rest of this paper we will describe a connectionist ar-
chitecture in which learned parameters are inherently inde-
pendent of variable bindings, thereby accounting for these
regularities.

Representing Variable Bindings
Several researchers have proposed ways in which connec-
tionist networks can represent variable bindings, but most
of these methods do not make learned parameters indepen-
dent of variable bindings, as required by systematicity. The
learned parameters of a connectionist network are repre-
sented in its link weights. The effect of a link weight on a
computation is dependent on which units the link connects
and the units’ activation levels, but it is not dependent on
the time at which the computation takes place.5 Thus if
the time dimension is used to represent variable bindings,
then learned parameters will inherently be independent of
variable bindings. This is the approach taken in temporal
synchrony variable binding. In contrast, if either the space
dimension (different units) or activation levels are used to
represent variable bindings, then learned parameters will
not inherently be independent of variable bindings. It is
possible to hardwire the network in such a way as to en-
force this independence, but there is no apparent motiva-
tion for such hardwired structure other than implementing
systematicity, and thus it is not inherent to the network.
Perhaps we have missed a method that would address these
criticisms, but the existing alternative proposals for connec-
tionist variable binding do not indicate what it would be.
Thus currently only temporal synchrony variable binding
implies that learned parameters are inherently independent
of variable bindings, as required by systematicity.

Tensor product variable binding (Smolensky, 1990) and
relative-position encoding (Barnden and Srinivas, 1991)
use the space dimension to represent variable bindings. Us-
ing such a representation, variable bindings are represented
by specifying the units where the computation should take
place. The problem with this method is that without ad-
ditional mechanisms the weights of the links for one set
of units will be different from the weights of the links for
another set. Thus the learned parameters used in a com-
putation will be different depending on the binding that is
manifested in the input, and the network will not exhibit
systematicity. If all links are trainable, then the weights
for two different sets of units will only be the same if ei-
ther there is an additional mechanism for enforcing weight
equality, or they are trained on equivalent data. Any mech-
anism for enforcing weight equality across different sets
of units is inherently nonlocal, and thus violates one of5Of course a link weight will have a different effect if it
changes from one time to another. This is not relevant here be-
cause learning is taking place at a much larger time scale than
individual computation steps. Therefore if any change did occur
it would be negligible.
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the basic tenets of connectionism. Thus, while it may be
an effective engineering solution, weight sharing does not
constitute a connectionist method for capturing systematic-
ity. Given that the training set used in the above test for
systematicity is by design biased with respect to the bind-
ings between words and syntactic positions, the data used
to train links for different sets of units will not be equivalent
without additional, as yet unproposed, mechanisms.

Hadley and Hayward (1995) propose a more plausible
way of using tensor product variable binding, but as the
system is described they are still hardwiring in the indepen-
dence between learned parameters and variable bindings.
The component of their network which uses tensor product
variable binding has no trainable links. This allows the dif-
ferent links in the variable binding component to stay equal
throughout training, thus making the effects of the learned
parameters independent of which of the variable binding
units is used. The resulting network generalizes extremely
well on the small grammar they use in their experiments.
However, this proposal has at least two problems; no inde-
pendent motivation is given for this hardwired component,
and the hardwired component grows with the size of the
systems vocabulary (linearly for units and quadratically for
links), which for a real system would be quite large. They
justify this use of hardwired structure by saying that their
units and links should be interpreted as high-level abstrac-
tions which aren’t necessarily manifested as collections of
neurons and synapses. While all connectionist networks
are abstract models, without some plausible connection to
the biological substrate it is difficult to see how the net-
work could be anything more than a mere implementation
of a classical statistical system. Interestingly, this criticism
can be addressed by assuming that Hadley and Hayward’s
work is not a competing proposal with the one advocated
here, but is actually a complementary one. As pointed out
by Tesar and Smolensky (1994), temporal synchrony vari-
able binding can be interpreted as an implementation of
tensor product variable binding.6 In addition, there is some
evidence that temporal synchrony is used in the brain to
do variable binding (see (Shastri and Ajjanagadde, 1993)
pages 439–441 for a discussion). Thus if we assume that
the variable binding component of Hadley and Hayward’s
network is an abstract representation of a temporal syn-
chrony variable binding mechanism, then the “mere imple-
mentation” criticism is addressed. More arguments against
this criticism will be given below. In the other direction, the
experiments run by Hadley and Hayward (1995) demon-
strate that when systematicity is embodied in a network (as
in temporal synchrony variable binding networks), simple
connectionist learning techniques can be very effective for
grammar induction.

Signatures (Lange and Dyer, 1989), CONSYDERR6Tesar and Smolensky (1994) argue that the use of time rather
than space to represent variable bindings is purely an implemen-
tation issue. This is reasonable when, as they do, one only looks
at static representations. However, as argued here, when the issue
of learning is taken into consideration the use of time rather than
space becomes quite important, even at the architecture level.

(Sun, 1992), and pattern-similarity association (Barn-
den and Srinivas, 1991) use the activation level dimension
to represent variable bindings. This complicates the na-
ture of computation in the network, since activation level
is also being used to represent what features a variable’s
entity has. It is conceivable that these two types of infor-
mation could be folded into individual activation levels, but
it isn’t at all clear how this could result in different variable
bindings being treated the same but the presence or absence
of features being treated differently. All the above investi-
gations use the alternative approach, in which these two
types of information are represented in the activation lev-
els of two different sets of units. In this approach, coordi-
nating computation between the two sets of units requires
representing the bindings between the variables and their
entity’s features. These bindings do not have to be dynami-
cally instantiated, so fixed spatial relationships can be used.
However, systematicity still requires learned parameters to
be independent of these bindings. Because these bindings
are represented using space, they pose the same problems
as using space to represent variable bindings.

Temporal synchrony variable binding (Shastri and Aj-
janagadde, 1993) is currently the only proposal for how to
use the time dimension to represent variable bindings. In
this model, a variable binding is represented by specify-
ing the times during which the computations involving the
variable should take place. If two units are representing
information about the same variable, then they output acti-
vation at the same time (i.e. synchronously). For our task,
if a given word is in a given syntactic position, then the
units that represent the word are outputting activation at the
same time as the units that represent the syntactic position.
Computations are performed when this activation spreads
through the network’s links. No matter at what time this
computation occurs, the same link weights will be used.
Thus no matter what variable binding a word or syntactic
position participates in, the same learned parameters will
apply to it. In other words, learned parameters are inde-
pendent of variable bindings. Thus the information that
the network has learned about a word or syntactic position
in one set of word-position pairings will automatically be
applied to the same word or syntactic position in different
pairings. Therefore the use of temporal synchrony variable
binding inherently results in a network which generalizes
information about words from one syntactic position to an-
other, and it inherently exhibits strong systematicity.

Temporal Synchrony Variable Binding
Temporal synchrony variable binding is a technique that
can be applied to virtually any style of connectionist model.
For higher level cognitive activities such as language inter-
pretation recurrent networks are of particular interest. Re-
current networks accept a sequence of inputs over time,
and perform a sequence of computations. As with vari-
able binding, the use of time to represent the input se-
quence allows the learned parameters of a recurrent net-
work to be independent of absolute position in the input se-
quence. Thereby such networks can generalize what they
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learn about one position in the input sequence to other po-
sitions. This property is imperative for language interpre-
tation, where the absolute position of a word in a sentence
carries virtually no information. Thus we need a network
that can use the time dimension to represent both input se-
quence and variable bindings.

All that is needed for a network to represent both in-
put sequence and variable bindings in the time dimension
is units that pulse periodically. The periods of the result-
ing pattern of activation correspond to steps in the com-
putation, and the phases correspond to variable bindings.7
In effect this method simply time-multiplexes a recurrent
network across variables. Such a periodic pattern of acti-
vation is illustrated in figure 1, where there are two vari-
ables and three computation steps. In the initial computa-
tion step the pattern of activation represents the information
Mary(x)^John(y)^subject(x)^object(y)^active. Then
some of the links of the network propagate activation from
the “Mary” unit to the “MARY” unit, resulting in the pat-
tern shown in the second and subsequent period. These
links implement the rule8z,Mary(z))MARY(z). Informa-
tion that is not predicated of a variable is represented with
units that do not pulse, and thus stay active across phases.
Such a unit is shown in figure 1 labeled “active” (for ac-
tive voice, as opposed to passive voice). These units can be
used to represent global context, and to coordinate compu-
tation across variables. In effect they are a subpart of the
recurrent network that is not time-multiplexed. Any aspect
of a task for which systematicity is not applicable can be
handled within this subpart.8

un
its

Mary

John

subject

object

active

MARY

time

Figure 1: An example of how temporal synchrony can be
used to represent variable bindings. Each solid line shows
the output of a unit over time. The dashed lines divide this
temporal pattern into periods.

The above discussion of temporal synchrony variable
binding demonstrates that this technique can be interpreted7While the periodic firing of groups of neurons at the same fre-
quency is overly simplistic, it appears to be an appropriatemodel
at this level of abstraction. The only necessary propertieshere are
that groups of neurons can achieve some form of synchronous fir-
ing and maintain that synchrony over some period of time, which
they can do (Gray et al., 1991).8For a more thorough presentation of temporal synchrony vari-
able binding and how it can be used to implement a syntactic
parser, see either (Henderson, 1994a) or (Henderson, 1994b).

as an implementation of a classical computational architec-
ture. However, it is not amereimplementation. The inher-
ent nature of systematicity in temporal synchrony variable
binding networks and the biological evidence for this im-
plementation method means that the pervasiveness of sys-
tematicity in cognitive activities is explained by this choice
of implementation. This is in contrast to the situation in
classical approaches, where compositionality is used to
capture systematicity. Compositionality has no indepen-
dent motivations (other than mathematical simplicity), and
thus should be considered a description of the phenomena
of systematicity, and not an explanation of it. The bio-
logical evidence for temporal synchrony variable binding
has also been used to explain other cognitive phenomena
that were previously described in classical terms, such as
Miller’s (1956) bound on short term memory of seven plus
or minus two things (Shastri and Ajjanagadde, 1993). Fur-
thermore, the less abstract level of description provided by
temporal synchrony variable binding has provided insights
into cognitive phenomena that have not been achieved at
the classical level. For example, some constraints on long
distance dependencies in natural language (wh- movement)
can be explained by the inability of simple temporal syn-
chrony variable binding networks to generalize over pairs
of constituents (Henderson, 1994b). By accounting for
these particular phenomena at the implementation level, the
classical competence theory of long distance dependencies
is greatly simplified. Because temporal synchrony vari-
able binding helps bridge the gap between low level bio-
logical evidence and high level cognitive phenomena, more
such insights are likely in the future. Even now it is abun-
dantly clear that temporal synchrony variable binding is not
merelyan implementation of a classical computational ar-
chitecture.

The parallel between the use of time in recurrent net-
works and the use of time in temporal synchrony variable
binding means that methods for training recurrent networks
can be generalized to temporal synchrony variable binding
networks. Thus just as a recurrent network can learn that
“the” is usually followed by a noun regardless of where
it occurs in the sentence, a temporal synchrony variable
binding network can learn that “Mary” is usually a noun
phrase regardless of what syntactic position it has in the
sentence. Some complications arise when it is necessary
to learn when to introduce new entities, but these are or-
thoganal to the issue of systematicity. Methods for effective
learning in temporal synchrony variable binding networks
is an area of active research by the author and Shastri.

Conclusion
Temporal synchrony variable binding (Shastri and Ajjana-
gadde, 1993) is a connectionist method for representing
multiple entities, each with multiple features. It uses the
time dimension to represent the binding between the dif-
ferent features of a given entity (i.e. variable bindings). Be-
cause the effect of a link weight on the network’s compu-
tation is independent of the time at which the computation
occurs, the learned parameters of the network are inher-
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ently independent of its variable bindings. In other words,
learned parameters inherently generalize across entities. In
particular, information learned about words and informa-
tion learned about syntactic positions will both generalize
to new pairings of words with syntactic positions. This is
the criteria Hadley (1994a) develops in his formalization
of Fodor and Pylyshyn’s (1988) concept of systematicity.
Thus we have succeeded in showing that temporal syn-
chrony variable binding is a connectionist architecture that
accounts for systematicity. In the process, we have clarified
the notion of systematicity and shown its implications for
variable binding techniques.

While this demonstration has been couched in the terms
of natural language interpretation, it is clear that the ability
to generalize across entities is applicable to a broad range
of higher level cognitive activities. Arguably, it is precisely
the lack of this generalization ability that has prevented
standard connectionist networks from matching the abili-
ties of symbolic systems in these tasks. The work presented
in this paper indicates how the impressive learning abilities
of connectionist networks for pattern matching tasks can be
extended to the more complex domains typical of higher
level cognition.
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