
Automatic annotation of COMMUNICATOR dialogue data for learning
dialogue strategies and user simulations

Kallirroi Georgila, Oliver Lemon, and James Henderson
Human Communication Research Centre

School of Informatics, University of Edinburgh�
kgeorgil,olemon,jhender6 � @inf.ed.ac.uk

Abstract

We present and evaluate an au-
tomatic annotation system which
builds “Information State Update”
(ISU) representations of dialogue
context for the COMMUNICATOR

(2000 and 2001) corpora of human-
machine dialogues (approx 2300 di-
alogues). The purposes of this
annotation are to generate train-
ing data for reinforcement learning
(RL) of dialogue policies, to gen-
erate data for building user simula-
tions, and to evaluate different dia-
logue strategies against a baseline.
The automatic annotation system
uses the DIPPER dialogue manager.
This produces annotations of user
inputs and dialogue context repre-
sentations. We present a detailed
example, and then evaluate our an-
notations, with respect to the task
completion metrics of the original
corpus. The resulting data has been
used to train user simulations and to
learn successful dialogue strategies.

1 Introduction

We present and evaluate an automatic an-
notation system which builds “Information

State Update” (ISU) representations of dia-
logue context (Larsson and Traum, 2000; Bos
et al., 2003; Lemon and Gruenstein, 2004) for
the COMMUNICATOR (2000 and 2001) cor-
pora of human-machine dialogues (2331 di-
alogues) (Walker et al., 2001). The purpose
of this annotation is to generate enough train-
ing data for a reinforcement learning (RL)
approach to dialogue management, and also
to be able to build user simulations, and to
evaluate different dialogue strategies against
a baseline. In general, for such an approach
we require data that has either been generated
and logged by ISU systems or that has been
subsequently annotated (or a mixture of both).

A particular problem is that although the
COMMUNICATOR corpus (recently released
by the LDC) is the largest corpus of speech-
act-annotated dialogues that we know of, it
does not meet our requirements on corpus
annotation for dialogue strategy learning and
user simulation. For example, the user dia-
logue inputs were not annotated with speech
act classifications, and no representation of
dialogue context was annotated. We explain
how we addressed such problems by build-
ing an automated annotation system which ex-
tends the COMMUNICATOR corpus, and we
evaluate the resulting annotations. Note that
prior work on ISU annotations (Poesio et al.,
1999) was not automated, and was not suit-
able for large-scale annotations. We first



survey basic principles for annotating dia-
logue data with feature values for learning ap-
proaches. Section 2 describes the annotation
system and section 3 presents our evaluation
of the automatic annotations.

1.1 The DATE annotation scheme

The DATE (Dialogue Act Tagging for Eval-
uation) scheme (Walker et al., 2001) was
developed for providing quantitative metrics
for comparing and evaluating the 9 different
DARPA COMMUNICATOR spoken dialogue
systems. The scheme employs three orthog-
onal dimensions of utterance classification:

� conversational domain: about task,
about communication, situation frame

� task-subtask: top level trip (origin, des-
tination, date, time, airline, trip type, re-
trieval, itinerary), ground (hotel, car)

� speech act: request info, present info,
offer, acknowledgement, status report,
explicit confirm, implicit confirm, in-
struction, apology, opening/closing.

The conversational domain dimension
categorises each utterance as belonging
to a particular “arena of conversational
action”. About task refers to the do-
main task (in COMMUNICATOR this is air
travel, hotel, and car-rental booking), and
about communication refers to conversational
actions managing the communication channel
(e.g. “are you still there?”). Situation frame
utterances manage the “culturally relevant
framing expectations” in the dialogue (e.g.
that the conversation will be in English, or
that the system cannot issue airline tickets).

The task-subtask dimension relates to a
model of the domain tasks that the dialogue
system is designed to support. In COMMU-
NICATOR there were 2 main tasks: booking a
flight (“top level trip”), and “ground” which
was to determine whether the user also wanted

to book a car rental and/or a hotel. The sub-
tasks were elements such as finding the dates
and times of the flights.

The speech act dimension relates to the ut-
terance’s communicative goal. The speech
acts used are relatively standard, and are de-
scribed in detail in (Walker et al., 2001). Note
that in the COMMUNICATOR data only the
system’s side of the dialogue is already anno-
tated using the DATE scheme.

1.2 Annotation principles for ISU
systems

The question arises of what types of infor-
mation should ideally be logged or anno-
tated for the purposes of building simulated
users and optimising ISU dialogue systems
via RL (Young, 2000). We can divide the
types of information required into 5 main
levels: dialogue-level, task-level, low-level,
history-level, and reward-level. We also di-
vide the logging and annotations required into
information about utterances, and informa-
tion about states. Utterances (by humans or
systems) will have dialogue-level, task-level,
and low-level features, while dialogue states
will additionally contain some history-level
information (see figure 2). Entire dialogues
will be assigned reward features, e.g. taken
from questionnaires filled by users.

A notable constraint on the information to
be useful for machine learning is that all cap-
tured features should in principle be available
to a dialogue system at runtime – so that a dia-
logue system using a learned policy can com-
pute a next action in any state. This excludes,
for example, word error rate from the state in-
formation usable for RL, since it can only be
computed after transcription of user speech.
In this case, for example, automatic speech
recognition (ASR) confidence scores should
be used instead. It also means that we need to
annotate the ASR hypotheses of the systems,
rather than the transcribed user utterances.

We now present an extended version of the



DATE scheme, producing sequences of dia-
logue information states that feed into learn-
ing algorithms and user simulations.

2 The automated annotation system

The annotation of the COMMUNICATOR data
with information states was implemented us-
ing DIPPER (Bos et al., 2003) and OAA
(Cheyer and Martin, 2001). Several OAA
agents have been developed:

The first OAA agent (readXMLfile) is used
for reading the original COMMUNICATOR

corpus XML files, which contain information
about dialogues, turns, utterances, transcrip-
tions, and so on. When the agent reads in-
formation from an XML file, a corresponding
DIPPER update rule fires and the dialogue in-
formation state is updated accordingly. Each
information state corresponds to an utterance
in the COMMUNICATOR data and a turn may
contain several utterances.

A second OAA agent (saveISsequence) ap-
pends the current information state values to
the file that will finally contain the whole se-
quence of information states (a DTD defining
the format of IS-sequence files is available).

2.1 Confidence scoring

Ideally we would have dialogue data that con-
tains ASR confidence scores. Unfortunately
the COMMUNICATOR data does not have this
information. However, the COMMUNICATOR

data contains both the output of the speech
recognition engine for a user utterance and
a manual transcription of the same utterance
carried out by a human annotator. We con-
sider the word error rate (WER) to be strongly
related to confidence scores and thus each
time a user utterance is read from the XML
file a third agent is called to estimate error
rates (the ComputeErrorRates agent). Four
different error rates are estimated: classical
WER, WER-noins, SER, and KER.

WER-noins is WER without taking into
account insertions. The distinction be-

tween WER and WER-noins is made be-
cause WER shows the overall recognition ac-
curacy whereas WER-noins shows the per-
centage of words correctly recognised. The
sentence error rate (SER) is computed on the
whole sentence. All the above error estima-
tions have been performed using the HRe-
sults tool of HTK (Young et al., 2002), which
is called by ComputeErrorRates. Finally the
keyword error rate (KER) is also computed by
ComputeErrorRates (after the utterance has
been parsed) and shows the percentage of the
correctly recognised keywords (cities, dates,
times, etc.). This is also a very important met-
ric regarding the efficiency of the dialogues.

2.2 Interpreting user utterances,
extending DATE

Even though all the above agents play a cru-
cial rule in the annotation task, the most im-
portant subtask is to interpret the user’s input
and find its effect on the dialogue, or in other
words to associate the user utterances with the
correct speech acts and tasks. Multiple levels
of parsing are thus required and are performed
using Prolog clauses (part of the DIPPER .re-
sources file).

Unfortunately, in the original COMMUNI-
CATOR data XML files there is no distinction
between the origin and destination cities in
multiple-leg trips. That is, the tag “dest city”
could be used for any type of destination,
regardless of whether the trip is single or
multiple-leg. However, we believe that it is
important to annotate these distinctions so that
there is no overwriting of the values in filled
slots such as “dest city”, “depart date”, etc.
Moreover, the COMMUNICATOR data does
not distinguish between departure and arrival
dates or times, and sometimes it has times la-
belled as dates.

We use the following extended tasks and
speech acts for annotating user utterances.
These are in addition to the DATE scheme
(Walker et al., 2001) used for the system



prompts annotation:

� Tasks which take values: con-
tinue dest city, depart date, con-
tinue depart date, return depart date,
arrive date, continue arrive date,
return arrive date, depart time, con-
tinue depart time, return depart time,
arrive time, continue arrive time,
return arrive time.

� Tasks which are either present or
absent: no continue trip, return trip,
no return trip, accept hotel offer, re-
ject hotel offer, accept flight summary,
reject flight summary, accept car offer,
reject car offer, accept ground offer,
reject ground offer, accept flight offer,
reject flight offer, hotel city,
car interest, car rental, rental company,
no airline preference, change airline,
flight interest, send itinerary,
price itinerary, id number, number, con-
tinue, request help, request repetition,
request stop, bye, nonstop flight,
start over.

� User speech acts: provide info, re-
provide info, correct info, reject info,
yes answer, no answer, question, com-
mand.

2.3 Computing grounding information

Part of our task is also to compute dia-
logue context information from the existing
COMMUNICATOR annotations – for example,
which utterances are grounded.

During processing the user’s utterance the
automatic annotation system will take into ac-
count the history of the dialogue and the labels
on previous system utterances and then de-
cide (via processing based on “patterns”, see
below) whether one or more slots should be
filled, grounded, or even emptied if the slot is
not confirmed. We define a piece of informa-
tion as “grounded” (according to the system’s

perspective) only if it has been positively con-
firmed. Thus grounding processing can only
take place after system utterances labelled as
explicit or implicit confirmation. Here one
could worry that our computation of ground-
ing information is based on the assumption
that the COMMUNICATOR systems had some
notion of grounding in their algorithms, but
that this kind of information is not included in
the original COMMUNICATOR corpus. Never-
theless, the fact that we attempt to ground a
slot only when the system attempts confirma-
tion makes our assumption “safe”. More-
over, only the speech recognition output is
used for processing and deciding on the slots
that will be filled or grounded. The human
transcription of the user’s input is only con-
sidered for computing error rates as explained
above. This also ensures that we do not base
our annotation on information that the sys-
tems did not have in runtime.

2.3.1 Example ISU annotation

We now examine an extract from the orig-
inal COMMUNICATOR 2001 data (figure 1)
and its new ISU annotation (figure 2). System
utterances are marked with “S(n)” and user
utterances as “U(n)” where n is the number
of the utterance. For the system utterances
the speech act and task pairs are given, for
the user utterances only the speech recogni-
tion output is provided.

In utterance (U3) the user gives the de-
parture date and time. However, the speech
recognition output “october three first” was
not considered by the system to be a valid
date so the system understands only the
time “late morning” and tries to confirm it
in (S6). As we see in (S6) the speech
act is “implicit confirm” and the task is
tagged as “depart arrive date” instead of “de-
part arrive time”. Similar phenomena cause
problems for correctly annotating the dia-
logues. In the above example, in (U3) our
automatic annotation system will fill slot “de-



(S1) what city are you leaving from?
(request_info, orig_city)

(U1) <CITY>hartford connecticut</CITY>
(S2) a flight from <CITY>hartford</CITY>

(implicit_confirm, orig_city)
(S3) where would you like to go?

(request_info, dest_city)
(U2) <CITY>orlando florida</CITY>
(S4) traveling to <CITY>orlando</CITY>

(implicit_confirm, dest_city)
(S5) on what date would you like to travel?

(request_info, depart_arrive_date)
(U3) <DATE_TIME>october three first

late morning</DATE_TIME>
(S6) traveling <DATE_TIME>late morning</DATE_TIME>

(implicit_confirm, depart_arrive_date)
(S7) on what date would you like to travel?

(request_info, depart_arrive_date)
(U4) <DATE_TIME>october thirty one</DATE_TIME>

Figure 1: Original COMMUNICATOR data.

part time” with the value “late morning” and
it will ground the “dest city” slot. Then it
reads the next system utterance (S6). Note
that if it considers only the task label (de-
part arrive date) it will attempt to ground the
wrong slot “depart arrive date”, or in other
words it will try to ground a slot that has not
been filled yet. Therefore routines have been
implemented so that the system can distin-
guish between valid dates or times.

In figure 2 we can see the automatically an-
notated Information State1 corresponding to
the dialogue context after U3 (the actual sys-
tem output is in XML, but we do not show
that here). Note especially the grounding of
“dest city” information in this move, and the
history level of the annotation, which contains
the sequences of speech acts and filled and
grounded slots for the entire dialogue.

Note that full dialogues are also annotated
with reward level features (e.g. actual task
completion) from the PARADISE evaluations
(Walker et al., 2000). These are used in rein-
forcement learning with the data.

In order to further explain the “patterns” we
use to compute grounding, consider a varia-
tion on the above example. Imagine that in
U3 the user does not give the departure date

1Items appearing between [brackets] are user inputs
(sometimes not annotated) and other items are system ac-
tions.

DIALOGUE LEVEL
Turn: user
TurnStartTime: 988306674.170
TurnEndTime: 988306677.510
TurnNumber: 5
Speaker: user
UtteranceStartTime: 988306674.170
UtteranceEndTime: 988306677.510
UtteranceNumber: 5
ConvDomain: [about_task]
SpeechAct: [provide_info]
AsrInput: <date_time>october three first late

morning</date_time>
TransInput: <date_time>october thirty first late

morning</date_time>
System Output:

TASK LEVEL
Task: [depart_time]
FilledSlotValue: [late morning]
FilledSlot: [depart_time]
GroundedSlot: [dest_city]

LOW LEVEL
WordErrorRatenoins: 20.00
WordErrorRate: 20.00
SentenceErrorRate: 100.00
KeyWordErrorRate: 50.00

HISTORY LEVEL
SpeechActsHist: [yes_answer],opening_closing,[],

opening_closing,instruction,request_info,
[provide_info],implicit_confirm,request_info,
[provide_info],implicit_confirm,request_info,
[provide_info]

TasksHist: [null],meta_greeting_goodbye,[],
meta_greeting_goodbye,meta_instruct,orig_city,
[orig_city],orig_city,dest_city,[dest_city],
dest_city,depart_arrive_date,[depart_time]

FilledSlotsHist: [null],[],[orig_city],[dest_city],
[depart_time]

FilledSlotsValuesHist: [yes],[],[hartford connecticut],
[orlando florida], [late morning]

GroundedSlotsHist: [],[],[],[orig_city],[dest_city]

Figure 2: Information State after U3.

but instead only replies to the confirmation
prompt about the destination city (S4). There
are 6 general ways the user could reply 2 :
yes-class, e.g. “yes”; no-class, e.g. “no”; yes-
class, city, e.g. “yes, orlando”; no-class, city,
e.g. “no, boston”; no-class, city, city, e.g. “not
orlando, boston”; city, e.g. “orlando”.

In the first 5 cases it is easy for the an-
notation system to infer that there is posi-
tive or negative confirmation and thus ground
the slot or not accordingly because of the ap-
pearance of “yes-class” or “no-class”. How-
ever, in the last case the annotation sys-
tem should compare the user’s utterance with

2The “yes-class” corresponds to words or expressions like
”yes”, “okay”, “right”, “correct”, etc. In the same way “no-
class” stands for “no”, “wrong”, and so on.



the previous system’s prompt for confirma-
tion in order to decide whether the slot
should be grounded or not. If the user
says “orlando” he re-provides information and
the slot “dest city” is grounded whereas if
he/she utters “boston” he/she corrects the sys-
tem (correct info), which means that the slot
“dest city” is not grounded and therefore its
current value will be removed. In the “no-
class, city, city” case the user rejects the value
of the slot and corrects it at the same time.
These are examples of the patterns used to
compute grounding.

2.3.2 Confirmation strategies

When computing grounding it is impor-
tant to take into account the different ways
in which COMMUNICATOR systems ground
information through various types of confir-
mation. In general all the COMMUNICA-
TOR systems follow one of 2 general con-
firmation strategies. In the first strategy
the system asks the user to fill a slot, then
asks for confirmation (explicit or implicit),
and moves to the next slot if the user con-
firms, or may keep asking for confirmation
if the user does not cooperate. In the sec-
ond strategy the system asks the user to fill
several slots and then attempts to confirm
them in one single turn. That means that the
system’s turn could consist of several utter-
ances labelled as “explicit confirm” or “im-
plicit confirm”. A third strategy, which is a
variation of the second strategy is when the
system tries to confirm several slots in a sin-
gle action, e.g. “explicit confirm, trip”, “im-
plicit confirm, orig dest city”. Before confir-
mation the slots could be filled either in a sin-
gle turn or in multiple turns.

For the first and third confirmation strate-
gies it proves adequate to look only 1 or 2
steps backwards in the history of system utter-
ances, whereas for the second strategy look-
ing further back is required. We consider
only the following speech acts: request info,

explicit confirm, implicit confirm, and offer.
Other utterances (e.g. instructions) are not
taken into account because they do not affect
whether a slot will be filled or grounded.

Note that first the annotation system ex-
tracts the speech acts and possible tasks re-
lated to the current user utterance and then at-
tempts to ground based on this information.
Any kind of disambiguation required , e.g.
to decide whether the speech act should be
tagged as “provide info” or “reprovide info”,
is done before grounding. We deal with
possible task ambiguity simultaneously with
grounding e.g. if the user uttered a “city”
name we cannot be sure whether it refers to
an origin or destination city until we consider
the context. The reason for this sequential
procedure is that we want grounding to be
computed exactly in the same way for both
our annotation and simulation systems, so that
we are able to straightforwardly compare our
simulated dialogues with COMMUNICATOR

data (Henderson et al., 2005). In simulation
the only information we have is the list of
tasks and speech acts for the user’s input and
not the ASR or real utterance transcription.
For the first two confirmation strategies the
annotation system should check whether the
tasks extracted by parsing the user’s utterance
are included in the task labels of the previ-
ous explicit- or implicit- confirmation system
prompts. The “explicit confirm, trip” case
adds further difficulty to grounding calcula-
tion because of the general task “trip”. Thus
the annotation system has to parse the system
prompt to detect the slots that the system at-
tempts to confirm. Then according to the type
of speech act (reprovide info, provide info,
correct info, etc.) the system grounds one
or more previously filled slots or fills one or
more new ones.

3 Evaluating the automatic annotations

We evaluated our automatic annotation sys-
tem by automatically comparing its output



with the actual (ATC) and perceived (PTC)
task completion metrics as they are given in
the COMMUNICATOR corpus. Our evaluation
is restricted in the 2001 corpus because no
such metrics are available for the 2000 data
collection. If the final state of a dialogue –
that is, the information about the filled and
grounded slots – agrees with the ATC and
PTC for the same dialogue, this indicates that
the annotation is consistent with the task com-
pletion metrics. We consider only dialogues
where the tasks have been completed success-
fully – in these dialogues we know that all
slots have been correctly filled and grounded3

and thus the evaluation process is simple to
automate. This automatic method cannot give
us exact results – it only indicates whether the
dialogue is annotated more or less correctly.

We have applied our automatic evalua-
tion method on the flight-booking portions
of the automatically annotated COMMUNICA-
TOR corpora. The results are that, for dia-
logues where ATC or PTC is marked as “1”
or “2” (i.e. where the flight booking portion of
the dialogue was successful or was considered
to be successful), the current automatic anno-
tations for the whole corpus showed 88.47%
of the required slots to be filled (“filled slots
accuracy”) and 71.56% of the slots to be
grounded (“grounded slots accuracy”). De-
tailed results are depicted in table 1.

The IBM system avoided confirmation and
therefore we could not obtain results for the
“grounded slots accuracy”. In cases where
the system attempts to confirm more than one
slots in a single turn (second and third con-
firmation strategies), if the user gives a sim-
ple “no answer” there is no way for the an-
notation system to detect the slot that the
“no answer” refers to. This can lead to
fewer slots being grounded. One of the rules
that the annotation system uses in ground-

3Error analysis showed that this assumption that the suc-
cessful dialogues had all slots grounded (not just filled) is too
strong.

System Number of Filled Confirmed
dialogues slots slots

ATT 122 91.15 65.31
BBN 126 86.17 84.96
CMU 114 80.09 69.08
COL 152 84.83 55.40
IBM 165 94.51 -
LUC 127 93.44 78.90
MIT 159 89.19 74.42
SRI 85 87.08 78.28
ALL 1050 88.47 71.56

Table 1: ISU annotation accuracy for COM-
MUNICATOR 2001 data.

ing calculation is that only filled slots can
be grounded, mostly to ensure that the sys-
tem policies trained with the COMMUNICA-
TOR annotated corpus (e.g. using RL) will
be reasonable. This rule can cause problems
in cases where for example the system knows
the user’s residence and therefore does not ask
for the “orig city” but in the sequel tries to
confirm it, or when the user gives a negative
confirmation to a filled slot value (thus the
filled slot is emptied) but the system performs
a second confirmation request with an alter-
native slot value. Now even if the user gives a
“yes answer” the slot will not be grounded be-
cause it is not filled anymore. The above ob-
servations explain the low scores of the Col-
orado and ATT systems (and to a lesser extent
CMU) for “grounded slots accuracy”.

Our future work will focus on dealing with
the above problems (e.g. by being more se-
lective as to where some rules are applied).
Moreover, we plan to perform manual eval-
uation of a portion of randomly selected an-
notated dialogues. Preliminary manual an-
notation has shown that not only the flight-
booking portions of the data have been anno-
tated with a high accuracy but also the hotel
and car rental bookings.

As described in (Henderson et al., 2005),
the first results of our supervised and rein-



forcement learning techniques trained with
the this data are promising, which also indi-
cates that a significant number of dialogues
have been annotated accurately.

4 Conclusion

We explained that the original COMMUNI-
CATOR data (2000 & 2001) is not sufficient
for our purposes (of learning dialogue strate-
gies and user simulations from a corpus) since
it does not contain speech-act annotations of
user utterances or representations of dialogue
contexts. We briefly reviewed the DATE an-
notation scheme, and our extensions to it. We
then described an automatic annotation sys-
tem which uses DIPPER. This annotates user
inputs and dialogue “information state” con-
text representations. We presented an ex-
ample, discussed grounding and confirmation
strategies, and evaluated our annotations with
respect to the task completion metrics of the
original corpus. This resulting data has been
used to learn successful dialogue strategies
(Henderson et al., 2005), and to train user sim-
ulations (Georgila et al., 2005).

Finally, we think that this automatic anno-
tation system could be extended and altered
for use in producing ISU annotations for other
dialogue corpora – in particular for human-
machine dialogue corpora where the seman-
tics of the system output is already logged by
the dialogue system itself.

Acknowledgements

This work is funded by the European Com-
mission’s 6th framework project “TALK: Talk
and Look, Tools for Ambient Linguistic
Knowledge” (IST 507802). We thank Jo-
hanna Moore for proposing this data set.

References

Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi
Oka. 2003. DIPPER: Description and Formalisa-
tion of an Information-State Update Dialogue Sys-

tem Architecture. In 4th SIGdial Workshop on Dis-
course and Dialogue, pages 115–124, Sapporo.

Adam Cheyer and David Martin. 2001. The Open
Agent Architecture. Journal of Autonomous Agents
and Multi-Agent Systems, 4(1/2):143–148.

Kallirroi Georgila, James Henderson, and Oliver
Lemon. 2005. Learning User Simulations for In-
formation State Update Dialogue Systems. In Eu-
rospeech, (submitted).

James Henderson, Oliver Lemon, and Kallirroi
Georgila. 2005. Hybrid Reinforcement/Supervised
Learning for
Dialogue Policies from COMMUNICATOR data.
In IJCAI workshop on Knowledge and Reasoning in
Practical Dialogue Systems, (submitted).

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the TRINDI Dia-
logue Move Engine Toolkit. Natural Language En-
gineering, 6(3-4):323–340.

Oliver Lemon and Alexander Gruenstein. 2004. Mul-
tithreaded context for robust conversational inter-
faces: context-sensitive speech recognition and in-
terpretation of corrective fragments. ACM Trans-
actions on Computer-Human Interaction (ACM
TOCHI), 11(3):241– 267.

M. Poesio, R. Cooper, S. Larsson, C. Matheson, and
D. Traum. 1999. Annotating conversations for in-
formation state update. In Proceedings of Amstel-
ogue’99 workshop on the semantics and pragmatics
of dialogue.

Marilyn A. Walker, Candace A. Kamm, and Diane J.
Litman. 2000. Towards Developing General Mod-
els of Usability with PARADISE. Natural Lan-
guage Engineering, 6(3).

Marilyn A. Walker, Rebecca J. Passonneau, and
Julie E. Boland. 2001. Quantitative and Qualita-
tive Evaluation of Darpa Communicator Spoken Di-
alogue Systems. In Meeting of the Association for
Computational Linguistics, pages 515–522.

Steve Young, Gunnar Evermann, Dan Kershaw, Gareth
Moore, Julian Odell, Dave Ollason, Dan Povey,
Valtcho Valtchev, and Phil Woodland. 2002. The
HTK Book. Cambridge University Engineering De-
partment. (for HTK version 3.2).

SJ Young. 2000. Probabilistic methods in spoken di-
alogue systems. Philosophical Transactions of the
Royal Society (Series A), 358(1769):1389–1402.


