
Natural Language Engineering 15 (3): 315–353. c© 2009 Cambridge University Press

doi:10.1017/S1351324909005105 Printed in the United Kingdom
315

Automatic annotation of context and speech acts

for dialogue corpora

K A L L I R R O I G E O R G I L A1, O L I V E R L E M O N2,

J A M E S H E N D E R S O N3 and J O H A N N A D. M O O R E2

1Institute for Creative Technologies, University of Southern California,

13274 Fiji Way, Marina del Rey, CA 90292, USA
2School of Informatics, University of Edinburgh,

10 Crichton Street, Edinburgh, EH8 9AB, UK
3Department of Computer Science, University of Geneva,

Battelle bâtiment A, 7 route de Drize, 1227 Carouge, Switzerland

e-mails: kgeorgila@ict.usc.edu, olemon@inf.ed.ac.uk,

james.henderson@cui.unige.ch, j.moore@ed.ac.uk

(Received 14 June 2006; revised 2 August 2007, 5 March 2009)

Abstract

Richly annotated dialogue corpora are essential for new research directions in statistical

learning approaches to dialogue management, context-sensitive interpretation, and context-

sensitive speech recognition. In particular, large dialogue corpora annotated with contextual

information and speech acts are urgently required. We explore how existing dialogue corpora

(usually consisting of utterance transcriptions) can be automatically processed to yield new

corpora where dialogue context and speech acts are accurately represented. We present a

conceptual and computational framework for generating such corpora. As an example, we

present and evaluate an automatic annotation system which builds ‘Information State Update’

(ISU) representations of dialogue context for the Communicator (2000 and 2001) corpora of

human–machine dialogues (2,331 dialogues). The purposes of this annotation are to generate

corpora for reinforcement learning of dialogue policies, for building user simulations, for

evaluating different dialogue strategies against a baseline, and for training models for context-

dependent interpretation and speech recognition. The automatic annotation system parses

system and user utterances into speech acts and builds up sequences of dialogue context

representations using an ISU dialogue manager. We present the architecture of the automatic

annotation system and a detailed example to illustrate how the system components interact

to produce the annotations. We also evaluate the annotations, with respect to the task

completion metrics of the original corpus and in comparison to hand-annotated data and

annotations produced by a baseline automatic system. The automatic annotations perform

well and largely outperform the baseline automatic annotations in all measures. The resulting

annotated corpus has been used to train high-quality user simulations and to learn successful

dialogue strategies. The final corpus will be made publicly available.

1 Introduction

Richly annotated dialogue corpora are essential for new research directions in statist-

ical learning approaches to dialogue management (Walker, Fromer and Narayanan

316 K. Georgila et al.

1998; Singh et al. 1999; Levin, Pieraccini and Eckert 2000; Henderson, Lemon

and Georgila 2005, 2008), user simulation (Scheffler and Young 2001; Georgila,

Henderson and Lemon 2005a, 2006; Schatzmann, Georgila and Young 2005a, 2006;

Schatzmann, Thomson and Young 2007; Georgila, Wolters and Moore 2008b),

context-sensitive interpretation, and context-sensitive speech recognition (Gabsdil

and Lemon 2004). In particular, large dialogue corpora annotated with contextual

information and speech acts are urgently required for training and testing dialogue

strategies and user simulations. However, hand annotations are expensive and time

consuming. In addition, they cannot be reused for the annotation of new corpora

even if they share the same domain. We explore how existing dialogue corpora

(usually consisting of utterance transcriptions) can be automatically processed to

yield new corpora where dialogue context and speech acts are represented. We

present a conceptual and computational framework for generating such corpora.

In particular, we propose the use of dialogue system simulation for automatically

annotating dialogue corpora.

Later, we present and evaluate an automatic annotation system which builds

‘Information State Update’ (ISU) representations of dialogue context (Larsson and

Traum 2000; Bos et al. 2003; Lemon and Gruenstein 2003) for the Communicator

(2000 and 2001) corpora of spoken human–machine dialogues (2,331 dialogues)

in the domain of telephone flight reservations (Walker et al. 2001a, 2002; Walker,

Passonneau and Boland 2001b). Users of the Communicator systems try to book a

flight and they may also make hotel or car-rental arrangements. This is one instance

of our approach to the problem of automatic annotation of large corpora.

1.1 The automatic annotation task

In general, spoken or written dialogue corpora consist of transcribed (or auto-

matically recognised) speaker turns, with possibly some additional annotations,

such as timing information, gestures, and perhaps some type of dialogue-act or

speech-act tagging. For statistical learning approaches, we need to construct from

these data sets, a more richly annotated version of the corpora where dialogue

contexts and speech acts are represented.1 In general we need to compute a function

from (Speakeri, Utterancej) to (Contextj , Speech acti,j). That is, after every speaker

utterance we desire a representation of the speech act of that utterance, and of the

whole dialogue context after that utterance.

In the case of open-domain human–human corpora, this is a very challenging

task, because computing the context relies on computing the speech act and content

of each utterance. However, for human–machine corpora in limited domains, the

problem becomes more tractable, because often the speech act and/or content of the

1 The utterances of a dialogue are primarily communicative acts between the two conversants.
For the specific case of natural language utterances the term speech act was first used by
Searle (1969). Another term used for the same concept is dialogue act (Traum 2000). We
will use the terms speech act and dialogue act interchangeably. Dialogue context is defined
as what has been established so far in the conversation (Lemon and Gruenstein 2003), e.g.
the status of the slots (whether they are filled or confirmed) in a slot-filling task, the history
of speech acts, etc.

Automatic annotation of context and speech acts 317

machine-generated utterances are known and logged, and because limited-domain

dialogues can feasibly be parsed using keyword spotting or relatively simple semantic

parsing techniques.

We thus distinguish six basic levels of the task in descending order of difficulty

(1) Human–human open-domain corpora.

(2) Human–machine open-domain corpora.

(3) Human–human closed-domain corpora.

(4) Human–machine closed-domain corpora consisting of transcribed and/or

recognised utterances.

(5) Human–machine closed-domain corpora consisting of transcribed and/or

recognised utterances, where machine speech acts and/or content are already

tagged.

(6) Human–machine closed-domain corpora consisting of transcribed and/or

recognised utterances, where both human and machine speech acts and/or

content are already tagged.

Our approach relates to levels 3–6. We provide a tool (at level 5) for task-oriented

dialogues that maps from a human–machine corpus (Communicator) consisting of

utterances and machine dialogue act tags to full context representations including

speech act tags for user utterances (either transcribed or recognised). Note that

our tool can reconstruct information that was not logged during the course of the

dialogue. For example, many dialogue systems do not log information about the

dialogue context or semantic interpretations of the user’s utterances. In addition, in

‘Wizard-of-Oz’ experiments (where a human pretends to be a machine) (Georgila

et al. 2008a; Rieser and Lemon 2008) usually only the wizard’s actions are logged

with semantic tags, with no information about the underlying wizard’s strategy or the

context in which these actions take place. Thus it is important to have a tool for post-

processing such logs and the users’ utterances in order to extract context information.

In Section 8 we discuss how our tool has also been used for automatically annotating

a corpus generated in a Wizard-of-Oz experiment (Georgila et al. 2008a).

The contribution of this work thus lies in several areas

• principles for context annotation,

• principles for speech act annotation,

• a proposed standard document type definition (DTD) for context and speech

act annotations,

• extension of the DATE annotation scheme (Walker and Passonneau 2001),

• a computational tool and framework for automatic annotation of task-oriented

dialogue data,

• a richly annotated dialogue corpus – the first dialogue corpus to be annotated

with full ‘Information State’ context representations.

1.2 The ‘Information State Update’ approach

To provide us with a principled approach to defining the dialogue contexts which

we annotate, we adopt the ‘Information State Update’ (ISU) approach to dialogue

318 K. Georgila et al.

modelling. The ISU approach supports the development of generic and flexible

dialogue systems by using rich representations of dialogue context.

‘The term Information State of a dialogue represents the information necessary to distinguish

it from other dialogues, representing the cumulative additions from previous actions in the

dialogue, and motivating future action’ (Larsson and Traum 2000).

Technically, Information States represent dialogue context as a large set of features,

e.g. speech acts, tasks, filled information slots (e.g. destination = Paris), confirmed

information slots, speech recognition confidence scores, etc. Update rules then

formalise the ways that information states or contexts change as the dialogue

progresses. Each rule consists of a set of applicability conditions and a set of effects.

The applicability conditions specify aspects of the information state that must be

present for the rule to be appropriate. Effects are changes that are made to the

information state when the rule has been applied. For full details see Larsson and

Traum (2000) and Bos et al. (2003).2

By using these information states as our notion of dialogue context, a dialogue

corpus annotated with contexts can be used in a number of ways

• data for training reinforcement learning (RL) approaches to dialogue manage-

ment,

• data for training and testing user simulations,

• baseline for evaluating new dialogue strategies,

• data for training models for context-dependent interpretation and speech

recognition.

In general, for such research we require data that has either been generated and

logged by context-tracking dialogue systems (Gabsdil and Lemon 2004; Lemon,

Georgila and Henderson 2006a; Lemon et al. 2006b) or that has been subsequently

annotated (or a mixture of both). Both preliminary versions of our annotations and

the version that we present here have been used successfully in Georgila et al. (2005a,

2006), Henderson et al. (2005, 2008), Schatzmann et al. (2005a, 2005b), Frampton

and Lemon (2006). Note that prior work on dialogue context annotations (Poesio

et al. 1999) was not automated, and was not suitable for large-scale annotations.

The outline of the paper is as follows: In Section 2 we survey basic principles for

annotating dialogue data with feature values for learning approaches. In Section 2.1

we describe briefly the original Communicator corpora which we take as our

example. Section 3 describes the annotation system. In Section 4 a detailed example

is provided. Section 5 focuses on specific methods required for the Communicator

data and Section 6 presents our evaluation of the automatic annotations. Section 7

2 All dialogue systems have internal dialogue states for storing information required through
the course of the dialogue. Information States provide a general theoretical framework
for building dialogue systems and may include aspects of dialogue state as well as more
mentalistic notions such as beliefs, intentions, plans, etc. It is very easy to model a dialogue
state as an Information State, which makes our approach applicable to corpora derived
from systems that were not based on the ISU approach. However, the opposite is not
necessarily true. For a full discussion on the difference between information states and
dialogue states see Larsson and Traum (2000).

Automatic annotation of context and speech acts 319

describes how the annotation system was ported from the flight reservations domain

to the city information domain and how it could be used in different types or

genres of dialogue, such as tutorial dialogue. Section 8 discusses its limitations and

Section 9 presents our conclusions.

2 Context annotation principles

In current research, the question arises of what types of information should ideally

be logged or annotated for the purposes of building simulated users, optimising

context-based dialogue systems via Reinforcement Learning (Walker et al. 1998;

Singh et al. 1999; Levin et al. 2000; Young 2000), and training dialogue-context

models. We focus on task-oriented dialogues and our approach is to divide the

types of information required into five main levels (see Figure 2): dialogue-level,

task-level, low-level, history-level, and reward-level. We also divide the logging and

annotations required into information about utterances and information about states.

Utterances (by humans or systems) will have dialogue-level, task-level, and low-

level features, while dialogue states will additionally contain some history-level

information (see Figure 2). Entire dialogues are assigned reward features, e.g. taken

from questionnaires filled by users. This framework has also been adopted by Rieser,

Kruijff-Korbayová and Lemon (2005a, 2005b), Andreani et al. (2006) and Rieser

and Lemon (2006, 2008).

As discussed in Section 7 the structure of the information state may have to be

modified for other types of dialogue. For example, for tutorial dialogues, there would

be additional annotation levels and Information State fields to encode the progress of

the student and the tutor’s tutoring style. Furthermore, some Information State fields

related to task-oriented slot-filling dialogues (e.g. ‘FilledSlot’, ‘FilledSlotsHist’, etc.,

depicted in Figure 2) would be redundant. Thus, our context annotation principles

can be extended and/or modified to deal with more complex or different types of

dialogue.

The dialogue annotation task has two main components: annotating utterances

and annotating states. In the original Communicator corpus, only the system

utterances are annotated. Our annotation system adds annotations for the user

utterances, and constructs context annotations for the states which follow each

utterance.

2.1 The original Communicator corpora

The Communicator corpora (2000 and 2001) consist of spoken human–machine

dialogues in the domain of telephone flight reservations. The users always try to

book a flight but they may also try to select a hotel or rent a car. The dialogues are

primarily ‘slot-filling’ dialogues, with information being presented to the user at the

end of the conversation.

The Communicator corpora have recently been released by the Linguistic Data

Consortium (LDC). A particular problem is that although the Communicator

corpus is the largest publicly available corpus of speech-act-annotated dialogues,

320 K. Georgila et al.

turn start_time = "988306674.170"

end_time = "988306677.510"

speaker = "user"

number = "5"

utterance start_time = "988306674.170"

end_time = "988306677.510"

number = "5"

asr = october three first late morning

ne_asr = <DATE_TIME>october three first late morning</DATE_TIME>

transcription = october thirty first late morning

ne_transcription = <DATE_TIME>october thirty first late morning</DATE_TIME>

Fig. 1. Example user turn from the original Communicator corpus, simplified from the

original XML format; asr is the output of the speech recogniser, and ne asr is the output of

the speech recogniser tagged with named entity information.

it does not meet our requirements on corpus annotation for dialogue strategy

learning, user simulation, and representation of dialogue context. For example,

the user dialogue inputs were not annotated with speech act classifications, and no

representation of dialogue context was included. Moreover, there was no information

about the status of the slots, which is critical for learning dialogue strategies and

user simulations.

The original Communicator corpora have previously been annotated (but only

for the system’s side of the dialogue) using the DATE (Dialogue Act Tagging for

Evaluation) scheme (Walker and Passonneau 2001) described in Section 2.2. Figure 1

shows an extract from the 2001 collection. For user utterances both the speech

recognition output and the human transcription of the user’s input are provided but

there is no speech act tagging. Also, for each dialogue there is information about

the actual and perceived task completion and user satisfaction scores, based on the

PARADISE evaluation framework (Walker, Kamm and Litman 2000). For the user

satisfaction scores, users had to answer questions in a Likert scale (1–5) about the

ease of the tasks they had to accomplish, whether it was easy or not to understand

the system, their expertise, whether the system behaved as expected, and if they

would use the system again in the future or not.

The 2000 collection contains 648 dialogues recording the interactions of humans

with nine systems, and the 2001 collection contains 1,683 dialogues with eight

systems. Table 1 shows some statistics of the two collections. In the 2000 collection

each turn contains only one utterance but in the 2001 corpus a turn may contain

more than one utterance. More details about the Communicator corpora can be

found in Walker et al. (2001a, 2001b, 2002).

We now present the DATE scheme used in the original Communicator corpus and

then our extension of it, including the dialogue information state annotations. This

annotation scheme has become known as the ‘TALK context annotation framework’

and it has an associated XML document type definition (DTD).3

3 Available at http://homepages.inf.ed.ac.uk/olemon/talk2005v2.dtd

Automatic annotation of context and speech acts 321

Table 1. Statistics of the 2000 and 2001 Communicator data

2000 2001 Total

Number of dialogues 648 1,683 2,331

Number of turns 24,728 78,718 103,446

Number of system turns 13,013 39,419 52,432

Number of user turns 11,715 39,299 51,014

Number of utterances 24,728 89,666 114,394

Number of system utterances 13,013 50,159 63,172

Number of user utterances 11,715 39,507 51,222

Number of system dialogue acts 22,752 85,881 108,633

2.2 The DATE annotation scheme

The system utterances in the original Communicator corpus are annotated using

the DATE scheme (Walker and Passonneau 2001). The DATE scheme was developed

for providing quantitative metrics for comparing and evaluating the nine different

DARPA Communicator spoken dialogue systems. The scheme employs the following

three orthogonal dimensions of utterance classification:

• conversational domain: about task, about communication,

situation frame,

• task–subtask: top level trip (orig city, dest city, depart arrive date,

depart arrive time, airline, trip type, retrieval, itinerary),

ground (hotel, car),

• speech act: request info, present info, offer, acknowledgement, status

report, explicit confirm, implicit confirm, instruction, apology,

opening closing.

The conversational domain dimension categorises each utterance as belonging

to a particular ‘arena of conversational action.’ Here ‘about task’ refers to the

domain task (in Communicator this is air travel, hotel, and car-rental booking),

and ‘about communication’ refers to conversational actions managing the commu-

nication channel (e.g. ‘are you still there?’). ‘situation frame’ utterances manage the

‘culturally relevant framing expectations’ in the dialogue (e.g. that the conversation

will be in English, or that the system cannot issue airline tickets).

The task–subtask dimension relates to a model of the domain tasks that the

dialogue system is designed to support. In Communicator there were two main

tasks: booking a flight (top level trip), and ‘ground’ which was to determine

whether the user also wanted to book a car rental and/or a hotel. The subtasks

were elements such as finding the dates and times of the flights.

The speech act dimension relates to the utterance’s communicative goal. The

speech acts used are relatively standard, and are described in detail in Walker and

Passonneau (2001). Note that in the Communicator data only the system’s side of

the dialogue is already annotated using the DATE scheme.

322 K. Georgila et al.

2.3 Extending DATE: The new utterance annotation scheme

Given these system utterance annotations, the first part of our task of producing the

new annotations is to interpret the user’s input and find its effect on the dialogue

context. In other words, we need to associate the user utterances with the correct

speech acts and tasks. This process is complicated by the fact that each utterance

may involve multiple tasks and that each task could include multiple speech acts.

To accommodate the annotation of user utterances, we needed to extend the

DATE scheme in several ways. One problem was that the original annotation of

the Communicator data does not distinguish between the different origin and

destination cities for different legs of a multiple-leg trip. Thus the tag ‘dest city’

could be used for any type of destination, regardless of whether the trip is single or

multiple-leg. However, we believe that it is important to annotate these distinctions

so that there is no overwriting of the values in filled slots such as ‘dest city,’

‘depart date,’ etc. For this reason we extended the set of subtasks to include the

distinction between different journey legs. Another problem is that the original

annotation of the Communicator data does not distinguish between departure and

arrival dates or times, and sometimes it contains times which have been labelled as

dates. Thus we also made this distinction, and fixed these mislabellings.

We use the following extended tasks (the equivalent of subtasks in the DATE

scheme) and speech acts for annotating user utterances. These are in addition to

the DATE scheme (Walker and Passonneau 2001) used for the system prompts

annotation

• User speech acts: provide info, reprovide info, correct info,

reject info, yes answer, no answer, question, command.

• Tasks which take values: continue dest city, depart date,

continue depart date, return depart date, arrive date,

continue arrive date, return arrive date, depart time,

continue depart time, return depart time, arrive time,

continue arrive time, return arrive time, hotel city,

hotel location, hotel name, car city, car rental,

rental company, id number, number.

• Tasks which are either true or false: continue trip, no continue trip, re-

turn trip, no return trip, accept flight offer,

reject flight offer, accept flight summary, reject flight summary,

accept car offer, reject car offer, accept ground offer, reject

ground offer, accept hotel offer, reject hotel offer,

car interest, no airline preference, change airline,

flight interest, send itinerary, price itinerary, continue,

request help, request repetition, request stop, nonstop flight, bye,

start over.

Assigning 〈speech act, task〉 pairs to user utterances is basically a dialogue act

recognition task4 where each dialogue act tag is a 〈speech act, task〉 pair. Our

4 Other equivalent terms are dialogue act classification, dialogue act detection, and dialogue
act tagging.

Automatic annotation of context and speech acts 323

case is very similar to dialogue act tagging with multidimensional tag sets, which

assigns a combination of tags to each utterance segment (Lesch, Kleinbauer and

Alexandersson 2005). Although only one tag can be assigned per utterance segment

(‘from Boston’ is unambiguously a ‘provide info(orig city)’ and ‘to Orlando’ a

‘provide info(dest city)’), each user utterance may consist of more than one seg-

ment, the boundaries of which are not defined, thus possibly leading to disagreements

in the number of tags assigned to that utterance by different annotation systems or

human annotators. This makes the task of our automatic annotation system even

more challenging.

Several dialogue act recognition techniques have been described in the literature

so far, e.g. n-grams (Reithinger and Maier 1995; Reithinger and Klesen 1997;

Webb, Hepple and Wilks 2005), hidden Markov models (Ries 1999; Stolcke et al.

2000), Bayesian networks (Keizer and op den Akker 2007), neural networks (Kipp

1998; Ries 1999), transformation-based learning (Samuel, Carberry and Vijay-

Shanker 1998), etc. All these techniques assume that some part of the corpus

is already annotated with dialogue acts and can be used for training statistical

models. None of these statistical methods can be applied in our case because

the original Communicator corpus does not include any annotations for the

user’s side of the dialogue; in other words, there is no complete corpus that

could be split for training and testing purposes. Therefore we are restricted to

use traditional parsing techniques for each user utterance taking into account

information from the previous system utterances. In particular, the speech acts and

tasks are computed using a phrase spotting semantic parser which we describe in

Section 3.1.

As already mentioned, because a given user utterance may contain multiple speech

acts and tasks, each user utterance is potentially annotated with lists of these features.

These lists are kept synchronised so that the lengths and ordering of the features are

kept equal. For example, if the user gives the departure date, reprovides information

about the origin city and also provides new information about the destination city

then ‘SpeechAct’ will be ‘[provide info, reprovide info, provide info]’ and ‘Task’

will be ‘[depart date, orig city, dest city].’ This representation allows the pairing

of speech acts and tasks to be extracted from the annotation.

2.4 The TALK context annotation scheme

Using these annotations of the system and user utterances, our system then computes

context annotations for the states which follow each utterance. Figure 2 shows an

example information state as it has been annotated by this automated annotation

system. It corresponds to the state following the user utterance shown in Figure 1.

Dialogue annotations are saved in XML format but here the information state is

presented in plain text for reasons of readability. Several of these features simply

specify the utterance annotations for the previous utterance. Others specify various

book-keeping features such as turn number, or low-level features (discussed in

Section 5.2). The most interesting features from the point of view of context

annotations are those specifying which slots have been filled or confirmed, and

those which accumulate information about the whole dialogue history.

324 K. Georgila et al.

DIALOGUE LEVEL

Turn: user

TurnStartTime: 988306674.170

TurnEndTime: 988306677.510

TurnNumber: 5

Speaker: user

UtteranceStartTime: 988306674.170

UtteranceEndTime: 988306677.510

UtteranceNumber: 5

ConvDomain: [about task]

SpeechAct: [provide info]

AsrInput: (date time) october three first late morning (date time)

TransInput: (date time) october thirty first late morning (date time)

System Output:

TASK LEVEL

Task: [depart time]

FilledSlot: [depart time]

FilledSlotValue: [late morning]

ConfirmedSlot: [dest city]

LOW LEVEL

WordErrorRatenoins: 20.00

WordErrorRate: 20.00

SentenceErrorRate: 100.00

KeyWordErrorRate: 50.00

HISTORY LEVEL

FilledSlotsStatus: [orig city],[dest city],[depart time]

FilledSlotsValuesStatus: [hartford connecticut],[orlando florida],[late morning]

ConfirmedSlotsStatus: [orig city],[dest city]

SpeechActsHist: [yes answer],opening closing,[],opening closing,instruction,

request info,[provide info],implicit confirm,request info,[provide info],implicit confirm,

request info,[provide info]

TasksHist: [null],meta greeting goodbye,[],meta greeting goodbye,meta instruct,

orig city,[orig city],orig city,dest city,[dest city],dest city,

depart arrive date,[depart time]

FilledSlotsHist: [null],[],[orig city],[dest city],[depart time]

FilledSlotsValuesHist: [yes],[],[hartford connecticut],[orlando florida],[late morning]

ConfirmedSlotsHist: [],[],[],[orig city],[dest city]

Fig. 2. Example dialogue context/Information State. User-provided information appears

between [] brackets.

Computing context annotations for the state which follows each utterance means

computing the internal state of the system at that point in the dialogue. Thus

our automatic annotation system can be thought of as a dialogue system running

in a reverse mode (reading backwards from the system prompts and recognised

user utterances) and therefore there is no guarantee that the state produced by the

automatic annotation system will be an accurate simulation of the real state that

the dialogue system was in. Nevertheless, as will be shown in Section 6, the states

produced by the automatic annotation system are good approximations of the real

Automatic annotation of context and speech acts 325

states. We must also keep in mind that the purpose of the automatic annotations is to

generate corpora to be used in machine learning experiments for learning dialogue

strategies, user simulations, and models for context-dependent interpretation and

speech recognition. Machine learning methods are good at compensating for errors

in the training data.

The most difficult problem to solve in annotating dialogue contexts is determining

(via processing discussed in Section 3) what slots have been filled, confirmed, or

even emptied, by a user utterance. We define a piece of information as ‘confirmed’

(according to the system’s perspective) only if it has been positively confirmed.

Thus confirmation processing can only take place after system utterances labelled

as explicit or implicit confirmation. There is no need to have a separate field for the

value of the confirmed slot because the value which is confirmed must be the same

as the value with which the slot has been filled.

One concern about labelling confirmation using only the information available in

the original Communicator corpus (and not the real state of the dialogue system

itself) is that it assumes that the Communicator systems had some notion of

confirmation in their algorithms. For this reason, we only specify slot confirmation

when the systems attempt confirmation via an explicit or implicit confirmation

action. Moreover, only the speech recognition output is used for processing and

deciding on the slots that will be filled or confirmed. The human transcription of the

user’s input is only considered for computing error rates, as explained in Section 5.2.

This also ensures that we do not base our annotation on information that the

systems did not have at runtime.

Note that the history-level annotations/logs of states should be computable from

the other levels over the history of utterances. Therefore the features of the dialogue,

task, and low levels can be expanded after the annotation/logging is completed.

With some dialogue managers, e.g. those by Larsson and Traum (2000) and Bos

et al. (2003), this can be achieved by logging whole Information States.

Note also in Figure 2 the difference between the groups of Information State fields

{FilledSlotsHist, FilledSlotsValuesHist, ConfirmedSlotsHist} and {FilledSlotsStatus,

FilledSlotsValuesStatus, ConfirmedSlotsStatus}. The former fields give us informa-

tion about the exact order in which slots have been filled or confirmed and may

contain several instances of the same slot, e.g. slot ‘orig city’ could be confirmed

twice. The latter fields (‘FilledSlotsStatus,’ etc.) inform us about the current status

of the slots and thus may only contain one instance per slot. This is very important

because if a confirmed slot is refilled with a new value it will remain in the

‘ConfirmedSlotsHist’ field even though its new value has not been confirmed yet.

The history of speech acts and tasks is also included in our annotations.

Regarding the reward level, task completion (actual and perceived) metrics and

user satisfaction scores, e.g. based on the PARADISE evaluation framework (Walker

et al. 2000), may be used. As mentioned in Section 2.1 the original Communicator

corpora included such metrics, and these features are used in Henderson et al. (2005,

2008). Other reward features that could be computed are the dialogue duration, the

number of turns, whether the user hung up, the number of slots that were filled and

confirmed in a slot-filling dialogue, etc.

326 K. Georgila et al.

The TALK project context annotation framework was initially developed specific-

ally for annotating the Communicator data. It has also been used for a corpus of

in-car MP3 player dialogues (Rieser et al. 2005a, 2005b; Rieser and Lemon 2006,

2008) and has been adopted for the DiSCoH project (Andreani et al. 2006), but in

general there are several other features one might want to include in dialogue context

annotations. For the dialogue level, such features include changes to issues/questions

under discussion (Ginzburg 1996), changes to common ground (Clark and Brennan

1991; Traum 1994), obligations (Traum and Allen 1994), system and user intentions

(Grosz and Sidner 1986), syntactic and semantic parses, and salient NPs. For the

task level, such features include the number of database query results (for slot-

filling/information-seeking dialogues), user goals, and confidence in each slot (e.g.

low/medium/high). For the low level, such features include the amplitude of the

speech signal, and word-based confidence scores. For multimodal systems, one might

also want to log information about the input modalities, available output modalities,

and XY co-ordinates of mouse or touch-screen gestures.

A notable constraint on the information to be useful for machine learning of

dialogue strategies and context-dependent interpretation and speech recognition is

that all captured features should in principle be available to a dialogue system

at runtime – so that, for example, a dialogue system using a learnt policy can

compute its next action in any state. This excludes, for example, word error rate

from the state information usable for Reinforcement Learning, since it can only be

computed after transcription of user speech. In this case, for example, automatic

speech recognition (ASR) confidence scores should be used instead. It also means

that we need to automatically annotate the ASR hypotheses of the systems, rather

than the transcribed user utterances.

3 The automated annotation system

The annotation of the Communicator data with information states was implemented

using the DIPPER dialogue management system (Bos et al. 2003) and the Open

Agent Architecture (OAA) (Cheyer and Martin 2001), a hub-based architecture for

asynchronous communication between separate processes or ‘agents.’ Several OAA

agents have been developed, with DIPPER being responsible for controlling their

interaction. Figure 3 illustrates the components of the automatic annotation system.

In Figure 3, the OAA agent labelled dme is the DIPPER dialogue manager.

The DIPPER tools support building (multimodal) dialogue systems, by offering a

Dialogue Move Engine and interfaces to speech recognisers, speech synthesisers,

parsers, and other agents. DIPPER is built on top of the Prolog or Java language

depending on the DIPPER version5 and all the processing that is not handled by

the agents is performed by Prolog or Java clauses. Here we use the Prolog version.

The flow chart of the automatic annotation task is depicted in Figure 4.

The OAA agent labelled readXMLfile is used for reading the original Communic-

ator corpus XML files, which contain information about dialogues, turns, utterances,

5 DIPPER is freely available at http://www.inf.ed.ac.uk/research/isdd/

Automatic annotation of context and speech acts 327

Fig. 3. The automatic annotation system viewed using the OAA monitor (the agent labelled

‘dme’ is the DIPPER dialogue manager).

Fig. 4. The flow chart of the automatic annotation task (‘basic processing’ refers to tagging

of system utterances, ‘advanced processing’ refers to contextual parsing of user utterances).

328 K. Georgila et al.

transcriptions, and so on (see Figure 1). When the agent reads information from an

XML file, a corresponding DIPPER update rule fires and the dialogue information

state is updated accordingly. Each information state corresponds to an utterance in

the Communicator data and a turn may contain several utterances. Most of the

time one turn includes utterances of the same speaker. Though there are cases in

which both the user and the system speak within the same turn. This does not cause

problems in annotation since everything is computed on the utterance level. The

readXMLfile agent reads the Communicator XML file line by line. For each line,

an information state is created by DIPPER. However, in the XML file there are

lines that contain no information and just signal the end of the utterance or the

turn. Thus at the end of each dialogue some state merging is required to ensure that

the resulting annotations contain only information states that correspond to system

or user actions.

In Figure 4 the boxes labelled ‘basic’ and ‘advanced’ DIPPER processing refer to

tagging of system utterances and contextual parsing of user utterances, respectively.

They will be discussed later.

An OAA agent labelled saveISsequence appends the current information state

values to the output XML file that will finally contain the whole sequence of

information states (the format of context representations is defined by the TALK

DTD). The information state of Figure 2 corresponds to the user utterance depicted

in Figure 1.

3.1 Parsing utterances in context

Note that in the original Communicator corpus only the system’s side of the

dialogue was already annotated using the DATE scheme. The first job of the auto-

matic annotation system is thus to compute speech acts and content for the user’s

side of the dialogue. In order to do this multiple stages of parsing are required – to

determine the content of the user’s utterance and then to determine the speech act

that it performs in context.

These computations are performed using Prolog clauses in DIPPER. In the

original Communicator corpus, the user utterances (both speech recognition output

and human transcription) are enriched with tags indicating the semantics of some

words, e.g. cities, dates, airlines, etc. (see Figure 1). This, in addition to the fact

that user utterances tend not to be very complex in this type of dialogue, facilitates

parsing and thus a keyword-based parser seems to be adequate for this first stage

of parsing in our task. Thus if the user says ‘from Los Angeles’ it is straightforward

for the parser to fill the slot ‘orig city’ with the value ‘Los Angeles.’ If however, the

user said ‘Los Angeles’ the parser would need information from the previous context.

If the previous system utterance was tagged as ‘request info(orig city)’ then the

parser would understand that ‘Los Angeles’ is related to the ‘orig city’ slot. As we

will see in the confirmation strategies (Section 3.2) and the example that follows

(Section 4), the inferences required here are not always so simple. Since some system

dialogue moves in the Communicator data were not always reliably annotated, the

automatic annotation system does not always rely only on the original speech act

and task tags of the system utterances but also parses the system utterances.

Automatic annotation of context and speech acts 329

3.2 Confirmation strategies

When computing confirmation, it is important to take into account the different ways

in which dialogue systems use various types of confirmation. In general, the systems

in the Communicator corpus typically follow one of three general confirmation

strategies.

In the first strategy the system asks the user to fill a slot, then asks for confirmation

(explicit or implicit), and moves to the next slot if the user confirms, or may keep

asking for confirmation if the user does not cooperate. In the second strategy the

system asks the user to fill several slots and then attempts to confirm them in one

single turn. That means that the system’s turn could consist of several utterances

labelled as ‘explicit confirm’ or ‘implicit confirm.’ A third strategy, which is a

variation of the second strategy is when the system tries to confirm several slots in a

single utterance, e.g. ‘explicit confirm(trip),’ ‘implicit confirm(orig dest city).’

Before confirmation the slots could be filled either in a single turn or in multiple turns.

For the first and third confirmation strategies it proves adequate to look only

one or two steps backwards in the history of system utterances, whereas for the

second strategy looking further back is required. To cover all these cases, when

the annotation system parses the user input, it looks backwards to all the system

utterances between the last user utterance and the current one (not including the last

user utterance). From these system utterances, we take into account only utterances

with the following speech acts: request info, explicit confirm, implicit confirm,

and offer. Other utterances (e.g. instructions) are not taken into account because

they do not affect whether a slot will be filled or confirmed.

Note that the annotation system first extracts the speech acts and possible tasks

related to the current user utterance and then attempts to detect confirmation based

on this information. Any kind of disambiguation required, e.g. to decide whether the

speech act should be tagged as ‘provide info’ or ‘reprovide info,’ is done before

confirmation. However, if speech act or task ambiguity remains unresolved it will

be dealt simultaneously with confirmation, e.g. if the user uttered a city name we

cannot be sure whether it refers to an origin or destination city until we consider

the context. The reason for this sequential procedure is that it could be the case in

a different corpus that the user’s speech acts and tasks were already annotated. In

that case the annotation system would only have to compute the confirmed slots.

Thus the separation of parsing and confirmation computations serve the purpose of

modularisation.

For the first two confirmation strategies, the annotation system should check

whether the tasks extracted by parsing the user’s utterance are included in the

task labels of the previous explicit or implicit confirmation system prompts. Then

according to the type of speech act (yes answer, no answer, reprovide info,

provide info, correct info, etc.) the system confirms one or more previously filled

slots or fills one or more new ones.

The third confirmation strategy involves system utterances such as ‘You are

travelling from Boston to Chicago on the 5th of May. Is that correct?’ If the user

says ‘yes’ then this is a confirmation of three different slots, so the value of the

‘Task’ feature is ‘[orig city, dest city, depart date].’ To infer this the annotation

330 K. Georgila et al.

(S1) what city are you leaving from?

(request_info, orig_city)

(U1) <CITY>hartford connecticut</CITY>

(S2) a flight from <CITY>hartford</CITY>,

(implicit_confirm, orig_city)

(S3) where would you like to go?

(request_info, dest_city)

(U2) <CITY>orlando florida</CITY>

(S4) traveling to <CITY>orlando</CITY>,

(implicit_confirm, dest_city)

(S5) on what date would you like to travel?

(request_info, depart_arrive_date)

(U3) <DATE_TIME>october three first late morning</DATE_TIME>

(S6) traveling <DATE_TIME>late morning</DATE_TIME>,

(implicit_confirm, depart_arrive_date)

(S7) and what date would you like to travel?

(request_info, depart_arrive_date)

(U4) <DATE_TIME>october thirty one</DATE_TIME>

Fig. 5. Original Communicator data extract.

system has to parse the system utterance as well. Because the ‘SpeechAct’ feature

needs to be aligned with the ‘Task’ feature, its value is ‘[yes answer, yes answer,

yes answer].’

In the Appendix, the processes for assigning speech acts and tasks to each

utterance, and calculating confirmations and dialogue context, are presented in the

form of pseudocode.

4 Example context annotation

We now examine an extract from the original Communicator 2001 data (see

Figure 5) and its new context annotation (see Figure 2). System utterances are

marked with ‘S(n)’ and user utterances as ‘U(n)’ where n is the number of the

utterance. For the system utterances the speech act and task pairs are given, for the

user utterances only the speech recognition output is provided.6

In utterance (U3) the user gives the departure date and time. However, the

speech recognition output ‘october three first’ was not considered by the original

Communicator system to be a valid date, so the system understands only the time

‘late morning’ and tries to confirm it in (S6). As we see in (S6) the speech act

is ‘implicit confirm’ and the task is tagged as ‘depart arrive date’ instead of

‘depart arrive time.’ Similar phenomena cause problems for correctly annotating

the dialogues. In this example, in (U3) our automatic annotation system fills slot

‘depart time’ with the value ‘late morning’ and confirms the ‘dest city’ slot. Then

it reads the next system utterance (S6). Note that if it considers only the task label

‘depart arrive date’ it will attempt to confirm the wrong slot ‘depart arrive date,’

6 The human transcription of the user input is also available but not used for the reasons
discussed in Section 2.4.

Automatic annotation of context and speech acts 331

or in other words it will try to confirm a slot that has not been filled yet. Therefore

routines have been implemented so that the system can distinguish between valid

dates or times. Moreover, date/time mislabellings have been corrected.

In Figure 2 we can see the automatically annotated Information State7 corres-

ponding to the dialogue context after U3 (the actual system output is in XML,

but we do not show it over here for reasons of readability). Note especially the

confirmation of ‘dest city’ information in this move, and the history level of the

annotation, which contains the sequences of speech acts and filled and confirmed

slots for the entire dialogue.

In order to further explain how we compute confirmation, consider a variation of

the above example. Generally, in common types of dialogue, after a system request

for confirmation the user may decide to (1) ignore this request and proceed to

provide new information (especially after system requests for implicit confirmation);

(2) proceed to ask for clarification or help, request repetition, etc.; or (3) accept or

reject the system request. Imagine that in U3 the user does not give the departure date

(which would be case 1) but instead only replies to the confirmation prompt about

the destination city (S4), i.e. chooses to reply to the system request for confirmation

(case 3). In the Communicator corpus we have observed six general ways the user

accepts or rejects a system confirmation request8: yes-class, e.g. ‘yes’; no-class, e.g.

‘no’; yes-class, city, e.g. ‘yes, Orlando’; no-class, city, e.g. ‘no, Boston’; no-class,

city, city, e.g. ‘not Orlando, Boston’; or city, e.g. ‘Orlando.’

In the first five cases it is easy for the annotation system to infer that there

is positive or negative confirmation and thus confirm the slot or not accordingly

because of the appearance of ‘yes-class’ or ‘no-class.’ However, in the last case the

annotation system should compare the user’s utterance with the previous system’s

prompt for confirmation in order to decide whether the slot should be confirmed

or not. If the user says ‘Orlando’ he/she re-provides information and the slot

‘dest city’ is confirmed whereas if the user utters ‘Boston’ he/she corrects the

system (correct info), which means that the slot ‘dest city’ is not confirmed and

therefore its current value will be removed. In the ‘no-class, city, city’ case the

user rejects the value of the slot and corrects it at the same time. These are examples

of the patterns used to compute confirmation.

5 Specific methods required for the Communicator data

Up to now, all the methods we have presented are generally applicable for the case

of annotating human–machine dialogue corpora for limited-domain information-

seeking applications. In this section, for the sake of completeness, we note the

particular methods that we used to deal with the peculiarities of the Communicator

data.

7 Items appearing between [] brackets are user inputs (sometimes not annotated) and other
items are system actions.

8 The ‘yes-class’ corresponds to words or expressions like ‘yes,’ ‘okay,’ ‘right,’ ‘correct,’ etc.
In the same way ‘no-class’ stands for ‘no,’ ‘wrong,’ and so on.

332 K. Georgila et al.

5.1 Specific parsing rules for the Communicator data

As discussed in Section 2.3 when the annotation system parses the user input it

has to decide whether the information provided refers to a single or a multiple-

leg trip. For a continuation trip, user input parsed as dest city, depart date,

depart time, arrive date and arrive time will be tagged as continue dest city,

continue depart date, continue depart time, continue arrive date, and

continue arrive time. In the same way, for a return trip, depart date, depart time,

arrive date, and arrive time will be tagged as return depart date, return

depart time, return arrive date, and return arrive time. For a continuation

trip the origin city of one leg is the destination city of the previous leg. For a return

trip, the origin city of the inward leg is the destination city of the outward leg and

the destination city of the inward leg is the origin city of the outward leg. Thus we do

not need tags such as continue orig city, return orig city, return dest city.

5.2 Confidence scoring for the Communicator data

Ideally, in future dialogue corpora, we would have dialogue data that contains

ASR confidence scores. Unfortunately the Communicator data does not have this

information. However, the Communicator data contains both the output of the

speech recognition engine for a user utterance and a manual transcription of the

same utterance carried out by a human annotator. We consider the word error

rate (WER) to be strongly related to confidence scores and thus each time a user

utterance is read from the XML file a third agent is called to estimate error rates (the

ComputeErrorRates agent). Four different error rates are estimated: classic WER,

WER-noins, sentence error rate (SER), and keyword error rate (KER).

The classic WER, is defined by the following formula:

WER = 100

(
Nins + Ndel + Nsub

N

)
%

where N is the number of words in the transcribed utterance, and Nins, Ndel, Nsub

are the number of insertions, deletions, and substitutions, respectively, in the speech

recognition output. WER-noins is WER without taking into account insertions. The

distinction between WER and WER-noins is made because WER shows the overall

recognition accuracy whereas WER-noins shows the percentage of words correctly

recognised. The sentence error rate (SER) is computed on the whole sentence, based

on the principle that the speech recognition output is considered to be correct only

if it is exactly the same as the manually transcribed utterance. All the above error

estimations have been performed using the HResults tool of HTK (Young et al.

2005), which is called by the ComputeErrorRates agent. Finally the keyword error

rate (KER) is also computed by ComputeErrorRates (after the utterance has been

parsed by DIPPER) and shows the percentage of the correctly recognised keywords

(cities, dates, times, etc.). This is also a very important metric regarding the efficiency

of the dialogues. Similarly to WER, KER cannot be computed at runtime but we

assume that it is strongly correlated with the confidence score of the parser.

Automatic annotation of context and speech acts 333

It should be noted that speech phenomena such as pauses, fillers, noises, etc.

that are transcribed by human annotators are not taken into account when error

rates are estimated because most speech recognisers do not include them in their

outputs, even though they are considered by their acoustic models. Therefore if

such phenomena were included while estimating errors there would not be a fair

comparison between the speech recognition output and the human transcription of

the utterance.

6 Evaluating the automatic annotations

We pursued two types of evaluations of the automatically annotated data. First,

automatic evaluation using the task completion metrics in the corpus, and second,

comparison with human hand annotation of the same corpus.

We also developed a baseline automatic annotation system that tags a user

utterance with the 〈speech act, task〉 pair that best matches the previous system

request. Thus, if the previous system utterance is tagged as ‘request info(orig city)’

the baseline system will tag the user utterance as ‘provide info(orig city)’ regard-

less of what the user actually said. Confirmed slots are computed in the same

way as the automatic annotation system. Also after system utterances tagged

as ‘explicit confirm’ if the user says ‘yes’ the user utterance will be tagged as

‘yes answer’ and the task will depend on the previous system prompt, e.g. after ‘ex-

plicit confirm(orig dest city)’ a ‘yes’ answer will be tagged as ‘yes answer(orig

city), yes answer(dest city).’ Similarly, after a system action tagged as ‘expli-

cit confirm(trip)’ the baseline system will parse the system utterance to infer the

tasks associated with the ‘yes answer’ speech act of the user. The same applies to

‘no’ answers. This forms a strong baseline since 79 per cent of the time in the corpus

users tend to reply to system prompts by providing exactly the information requested

by the system. Obviously, a majority class baseline system (i.e. a baseline that always

produces the most frequent 〈speech act, task〉 pair) or a random baseline system (i.e.

a baseline that randomly generates 〈speech act, task〉 pairs) would be much weaker

than our baseline. As will be shown in the sequel, our baseline system did not

perform as well as the advanced automatic annotation system that we developed.9

6.1 Automatic evaluation

We evaluated our automatic annotation system by automatically comparing its

output with the actual (ATC) and perceived (PTC) task completion metrics as

recorded in the original Communicator corpus. Our evaluation is restricted in the

2001 corpus because no such metrics are available for the 2000 data collection.

Systems in the 2001 collection were generally more complex and there was a large

performance improvement in every core metric from 2000 to 2001 (Walker et al.

2002). Therefore if the 2001 annotations are evaluated as successful, it is expected

9 Both systems are automatic but from now on and for clarity we will refer to the advanced
one as ‘automatic annotation system’ and to the baseline one as ‘baseline system.’

334 K. Georgila et al.

that the same will be true for the 2000 annotations. If the final state of a dialogue –

that is, the information about the filled and confirmed slots – agrees with the ATC

and PTC for the same dialogue, this indicates that the annotation is consistent

with the task completion metrics. We consider only dialogues where the tasks

have been completed successfully – in these dialogues we know that all slots have

been correctly filled and confirmed10 and thus the evaluation process is simple to

automate.11 For example, if a dialogue that is marked as successful consists of a single

leg and a return leg then the expected number of slots to be filled and confirmed

is six (‘orig city,’ ‘dest city,’ ‘depart date,’ ‘depart time,’ ‘return depart date,’

and ‘return depart time’). If the automatic annotation system filled three and

confirmed two slots then the accuracy for this particular dialogue for filled slots and

confirmed slots would be 50 per cent and 33.3 per cent, respectively. For dialogues

that are marked as unsuccessful or not marked at all (as in the 2000 corpus) there

is no straightforward way to calculate the number of slots that should have been

filled or confirmed. This automatic evaluation method cannot give us exact results

– it only indicates whether the dialogue is annotated more or less correctly.

We have applied our automatic evaluation method on the flight-booking portions

of the automatically annotated Communicator corpus. The results are that, for

dialogues where ATC or PTC is marked as ‘1’ or ‘2’ (i.e. where the flight-booking

portion of the dialogue was successful or was perceived by the user to be successful),12

the current automatic annotations for the whole corpus showed 93.9 per cent of

the required slots to be filled (filled slots accuracy) and 75.2 per cent of the slots to

be confirmed (confirmed slots accuracy). For the baseline annotations the accuracy

for the filled and confirmed slots was 65.4 per cent and 50.9 per cent, respectively.

Therefore when we use the advanced automatic annotations the absolute increase

in accuracy of the filled and confirmed slots over the baseline annotations is 28.5

per cent and 24.3 per cent, respectively. Detailed results are depicted in Table 2.

The IBM system did not confirm and therefore we could not obtain results for

the ‘confirmed slots accuracy.’ In cases where the system attempts to confirm more

than one slot in a single turn (second and third confirmation strategies), if the user

gives a simple ‘no answer’ there is no way for the annotation system to detect the

slot that the ‘no answer’ refers to. The system assumes that the ‘no answer’ refers

to all the slots under confirmation. This can lead to fewer slots being confirmed.

One of the rules that the annotation system used for confirmation calculation in the

version described in Georgila, Lemon and Henderson (2005b) was that only filled

10 Error analysis showed that this assumption that the successful dialogues had all slots
confirmed (not just filled) is too strong.

11 Note that the only reason we do not include unsuccessful dialogues in our automatic
evaluation is that there is no way to automatically calculate the expected number of
filled or confirmed slots. The uncompleted dialogues are not necessarily more difficult to
annotate. It is often the case that successfully completed dialogues are very complex, e.g.
there are several misunderstandings and the dialogue flow later becomes smooth after
several user requests for restarting the dialogue.

12 ATC is marked as ‘1’ for actually completed dialogues and ‘0’ otherwise. PTC is marked
as ‘1’ for dialogues in which only the air requirements were perceived as completed, ‘2’ for
dialogues in which both the air and ground requirements were perceived as completed and
‘0’ otherwise.

Automatic annotation of context and speech acts 335

Table 2. Automatic ISU annotation accuracy for the Communicator 2001 data

(automatic evaluation, AUTO: automatic annotation system, BASE: baseline system)

Number of

System Total number evaluated dialogues Filled slots Confirmed slots

name of dialogues (ATC or PTC = 1 or 2) accuracy (%) accuracy (%)

AUTO/BASE AUTO/BASE

ATT 258 123 94.2/66.5 62.6/38.0

BBN 162 131 89.2/63.1 83.5/58.9

CMU 151 121 85.5/68.7 72.6/56.0

COL 217 152 97.8/63.3 66.6/35.0

IBM 240 166 95.4/58.1 NA/NA

LUC 214 128 98.6/76.6 84.4/68.0

MIT 213 162 96.8/54.8 79.4/39.4

SRI 228 99 92.1/84.2 81.2/76.9

ALL 1683 1082 93.9/65.4 75.2/50.9

slots could be confirmed, mostly to ensure that the system policies trained with

the Communicator annotated corpus (e.g. using Reinforcement Learning) would

be reasonable. This rule caused problems in cases where for example the system

knew the user’s residence and therefore did not ask for the ‘orig city’ but in the

sequel tried to confirm it, or when the user gave a negative confirmation to a filled

slot value (thus the filled slot was emptied) but the system performed a second

confirmation request with an alternative slot value. In that case even if the user gave

a ‘yes answer’ the slot would not be confirmed because it was not filled anymore.

The above observations explain the low scores of the COL and ATT systems (and to

a lesser extent CMU) for ‘confirmed slots accuracy’ in the earlier work of Georgila

et al. (2005b). In the current version of the automatic annotation system the rule that

caused problems (of not being able to confirm a slot unless it had been filled first)

has been removed and the COL and CMU scores for confirmed slots accuracy have

risen significantly (especially COL). The results presented in Table 2 show that the

baseline annotations are generally poor and that the user does not always behave

as expected. Therefore user utterances should be properly parsed in their context

instead of just being tagged with the 〈speech act, task〉 pair that best matches the

previous system request. In particular, IBM, MIT, and also COL had very general

opening questions in their dialogues, e.g. ‘What are your travel plans?’ or ‘Please

tell me about the first leg of the trip.’ that prompted the user to provide much

information at the same time, which was beyond the capabilities of the baseline

system.

6.2 Evaluation with respect to hand-annotated data

The results of the automatic evaluation tell us whether the system succeeded in

filling and confirming the right slots but not whether their values were correct.

By inspection of the annotated Communicator dialogues it appears that most of

336 K. Georgila et al.

the time slots are filled and confirmed with the correct values or they are not

filled/confirmed at all. However, in order to have more accurate results, evaluation

with respect to hand-annotated data was also performed. We randomly selected six

dialogues from each system of the 2001 collection, making forty-eight dialogues in

all for hand annotation. There were no constraints regarding whether the dialogues

were actually completed or perceived by the user as completed. The only constraint

was not to have more than one dialogue from the same user so that more variety

was captured.

We extracted the final information state of the flight-booking portion of the

automatically annotated dialogues and examined the ‘FilledSlotsStatus,’ ‘FilledSlots-

ValuesStatus,’ and ‘ConfirmedSlotsStatus’ fields. As mentioned in Section 2.4, these

fields give us information about the current status of the slots, i.e. whether they

are filled or confirmed, and their values. For example, if ‘orig city’ is filled with

the value ‘Boston’ and then with the value ‘Orlando,’ only the value ‘Orlando’

will be saved in the ‘FilledSlotsValuesStatus’ field. Then we manually inspected the

flight-booking portion of the dialogue from beginning to end and we noted down

the slots that should be filled or confirmed and their values, according to what

happened in the dialogue and with respect to the ASR hypotheses, rather than the

utterance transcriptions. By comparing the status of the slots as produced by our

automatic annotation system with the status that the slots should have according to

the manual annotation, we can measure the precision, the recall, and the F -score of

our automatic annotations.

Precision and recall are defined by the following formulae:

Precision =
C

C + I1 + I2

Recall =
C

C + I1 + MC

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall

where C is the number of correctly tagged slots, I 1 is the number of incorrectly

tagged slots that should have been tagged with a different value, I 2 is the number

of incorrectly tagged slots that should not have been tagged at all, and MC is

the number of slots that were missed by the automatic annotation system or the

baseline system (i.e. not tagged at all). Using the above formulae, precision, recall,

and consequently F -score can be computed for filled slots and confirmed slots.

In our manual annotation a slot is considered as correctly filled if it is filled

with the correct value. Moreover, a slot is considered as confirmed only if the

system attempted to confirm it. It will not be considered as confirmed just because

the user accepted the flight offer. This is in order to have a fair comparison with

our automatic annotations. Both the automatic annotation system and the baseline

system tag a slot as confirmed only after the dialogue system has explicitly or

implicitly tried to confirm that particular slot. In addition, a slot is confirmed if its

value in the ‘FilledSlotValue’ field has been confirmed.

Automatic annotation of context and speech acts 337

Table 3. Precision, recall, and F-score of filled slots (including their values) for the

Communicator 2001 data (manual evaluation, AUTO: automatic annotation system,

BASE: baseline system)

System name Precision (%) Recall (%) F -score (%)

AUTO/BASE AUTO/BASE AUTO/BASE

ATT 88.9/92.6 86.5/67.6 87.7/78.1

BBN 93.3/95.5 82.3/61.8 87.5/75.0

CMU 91.7/100 86.8/81.6 89.2/89.9

COL 95.6/93.8 95.5/68.2 95.5/79.0

IBM 82.4/86.1 90.4/67.4 86.2/75.6

LUC 46.1/36.8 34.3/20.0 39.3/25.9

MIT 92.1/92.3 87.5/60.0 89.7/72.7

SRI 88.6/89.3 81.6/69.5 85.0/78.2

ALL 85.8/87.8 81.8/62.6 83.8/73.1

ALL 89.5/92.6 87.6/68.0 88.5/78.4

(except LUC)

Table 4. Precision, recall, and F-score of confirmed slots (including their values) for the

Communicator 2001 data (manual evaluation, AUTO: automatic annotation system,

BASE: baseline system)

System name Precision (%) Recall (%) F -score (%)

AUTO/BASE AUTO/BASE AUTO/BASE

ATT 95.7/100 81.5/55.6 88.0/71.5

BBN 95.8/100 67.7/47.0 79.3/63.9

CMU 93.3/95.5 80.0/62.9 86.1/75.8

COL 96.6/100 93.3/56.7 94.9/72.4

IBM 90.0/83.3 81.8/50.0 85.7/62.5

LUC 50.0/40.0 34.5/20.7 40.8/27.3

MIT 90.3/94.7 75.7/48.6 82.4/64.2

SRI 96.0/100 85.7/77.8 90.6/87.5

ALL 89.6/90.8 74.5/52.0 81.4/66.1

ALL 94.2/97.4 80.2/56.5 86.6/71.5

(except LUC)

Detailed results of precision, recall, and F -score for filled and confirmed slots are

given in Tables 3 and 4, respectively.

The results for precision, recall, and F -score for the automatic annotation system

are relatively high for all systems apart from LUC. For ATT, CMU, and COL

the scores computed for confirmed slots from the evaluation with regard to the

hand-annotated data are much higher than the automatically derived scores of

Section 6.1, which proves that the assumption that the successful dialogues had

all slots confirmed is too strong. Precision of confirmed slots is much higher than

338 K. Georgila et al.

Table 5. Precision and recall of 〈speech act, task〉 pairs for the Communicator

2001 data (manual evaluation, AUTO: automatic annotation system, BASE: baseline

system)

Source of error Precision (%) Recall (%)

AUTO/BASE AUTO/BASE

70.5/64.0 76.4/64.6

(null-null)-(provide-null) 1.8/1.1 2.0/1.2

(null-null)-(yes-null or no-null) 1.7/2.2 1.9/2.2

(provide info)-(reprovide info) 2.4/0.7 2.6/0.7

recall, which means that the automatic annotation system decides to tag a slot as

confirmed only if there is strong evidence for doing so.

As with the automatic evaluations reported earlier, the recall and the F -score of

the baseline system for the confirmed slots are low for ATT, BBN, COL, IBM, MIT,

and to a lesser extent CMU. The performance of the baseline for LUC is poor for

the same reasons that the automatic annotation fails to produce good precision and

recall values (details are given in Section 6.4). The precision of the baseline system

is very high, some times even higher than the precision of the automatic annotation

system, due to the fact that the baseline is very conservative in its predictions.

However, the recall is always considerably lower than the recall of the automatic

annotation system for both filled and confirmed slots.

By using the automatic annotations instead of the baseline ones the absolute gain

in the F -score for filled and confirmed slots is approximately 10 per cent and 15 per

cent, respectively, with or without including the poor results of LUC.

For these forty-eight dialogues we also manually tagged each user utterance with

〈speech act, task〉 pairs and used this as our gold standard with which we compared

both the automatic and the baseline annotations. The results are depicted in Tables 5

and 6.

Table 5 shows that the precision and recall of the automatic annotation system

for all 〈speech act, task〉 pairs are 70.5 per cent and 76.4 per cent, respectively.

The precision is a little lower than the recall because the automatic annotation

system had the tendency to overgenerate. For example if the ASR output was

‘yes I’d no I’m travelling to London’ the automatic annotation system would tag

it as ‘[yes answer(null), no answer(null), provide info(dest city)]’ instead of

‘[provide info(dest city)].’ This is due to the fact that the keyword-based parser

cannot handle speech repairs. Each row in Table 5 gives the gain we can get in

precision and recall by ignoring some unimportant sources of error. Thus, if we

ignore cases that are tagged with empty values for both the speech act and the

task by the system but the human annotators tag them as ‘provide info(null)’

or the opposite, precision rises to 72.3 per cent and recall to 78.4 per cent. Also,

both the automatic annotation system and the baseline system tag user utterances

which contain the words ‘yes’ or ‘no’ as ‘yes answer’ or ‘no answer,’ respectively even

though the utterance is not necessarily an answer. That of course does not cause

Automatic annotation of context and speech acts 339

Table 6. Precision, recall, and F-score per slot type for the Communicator 2001 data

(manual evaluation, AUTO: automatic annotation system, BASE: baseline system)

Slot type Precision (%) Recall (%) F -score (%)

AUTO/BASE AUTO/BASE AUTO/BASE

orig city 68.9/69.0 84.3/56.1 75.8/61.9

dest city 74.8/73.7 79.2/58.3 76.9/65.1

depart date 74.3/72.3 82.1/64.5 78.0/68.2

depart time 63.9/71.7 67.1/54.4 65.5/61.9

arrive time 71.4/75.0 23.8/14.3 35.7/24.0

continue dest city 69.7/70.2 65.3/62.1 67.4/65.9

continue depart date 52.0/53.3 66.7/61.5 58.4/57.1

continue depart time 79.2/87.5 67.9/50.0 73.1/63.6

return depart date 82.0/87.2 83.7/83.7 82.8/85.4

return depart time 82.1/86.4 67.7/79.2 74.2/82.6

airline 95.0/71.4 70.4/18.5 80.9/29.4

problems with the status of the filled and confirmed slots, and if it is ignored the

precision of the automatic annotation system rises from 70.5 per cent to 72.2 per

cent and the recall from 76.4 per cent to 78.3 per cent. If the distinction between

‘provide info’ and ‘reprovide info’ is ignored the gains for precision and recall are

2.4 per cent and 2.6 per cent, respectively. As we can see the results for the baseline

are consistently lower. By ignoring all of the three above-mentioned sources of

error the best results that can be obtained are 76.4 per cent and 82.9 per cent for

the automatic annotation system (precision and recall) and 68.0 per cent and 68.7

per cent for the baseline system. The initial F -scores for the automatic annotation

system and the baseline system are 73.3 per cent and 64.3 per cent, respectively and

the best F -scores we can obtain by ignoring the three sources of error are 79.5 per

cent and 68.3 per cent. All the values in Table 5 have been calculated without taking

into account cases where both the human annotators and the systems tagged the

user utterance with empty lists for both the speech act and the task, i.e. when they

agreed that the utterance did not contain relevant information to the dialogue task.

If we want to give some credit to the automatic annotation system and the baseline

system for successfully detecting such cases then the results for precision, recall, and

F -score become for the automatic annotation system 71.0 per cent, 76.3 per cent,

and 73.5 per cent and for the baseline 65.7 per cent, 66.2 per cent, and 66.0 per cent.

The improvement becomes higher if we also ignore the problems of distinguishing

between ‘provide info’ and ‘reprovide info,’ etc.

Table 6 shows precision, recall, and F -score per slot type. Again the automatic

annotation system outperforms the baseline one. The recall for ‘arrive time’ (both

in the automatic and baseline annotations) and for ‘airline’ (only in the baseline

annotations) is very low because there are not many instances of these slots and

thus the effect of each error on the total score is inflated. Furthermore, the ‘airline’

slot is optional and the dialogue systems rarely prompt the user to provide this slot,

which explains the low recall of the baseline.

340 K. Georgila et al.

Manual annotation has also shown that the hotel and car rental bookings have

been well annotated.

6.3 Indirect evaluation via user simulations

As a form of indirect evaluation we build user simulation models. For learning

dialogue strategies it is rarely (if ever) the case that enough training data from real

dialogues with human users is available to sufficiently explore the vast space of

possible dialogue states and strategies. Thus, simulated users are critical for training

stochastic dialogue systems (often of the order of 100,000 training dialogues are

required), and for evaluating candidate dialogue policies. Simulated users simulate

real-user behaviour, i.e. the way users would interact with the system in order to

accomplish their goals (e.g. book a flight, get tourist or product information, etc.).

The basic idea is to use small corpora to train stochastic models for simulating real-

user behaviour. Once such a simulated user is available, any number of dialogues

can be generated through interaction between the simulated user and the dialogue

policy, and these simulated dialogues can be used with statistical optimisation

methods such as RL (Georgila et al. 2005a, 2006, 2008b; Schatzmann et al. 2005a).

Also user simulations make it feasible to test the performance of different dialogue

policies against simulated users in an efficient and inexpensive way.

We train n-grams of 〈speech act, task〉 pairs from both the automatic system

annotations and the baseline annotations. Our reasonable assumption is that the

higher the quality of the user simulation model the better the training data it

was trained on. To assess our user models we need to compare their output with

real responses given by users in the same context. For this purpose we run our

user simulation models through the 〈speech act, task〉 pairs of the hand-annotated

data.13 As explained previously, user simulations are to be used for automatic

dialogue strategy learning. For this reason we desire user simulations which do not

always act in the same way in identical states – we need to explore the policy space,

so some reasonable amount of variation is required. Our n-gram models produce

actions based on a probability distribution learnt from the training data and not

always the action with the highest probability. Therefore our evaluation metrics

should take into account this distribution. We use expected precision (EP) and

expected recall (ER) to quantify how closely the synthetic turn resembles the real-

user turn. Unlike precision and recall that are calculated always choosing the action

with the highest probability (Schatzmann et al. 2005a), EP and ER are calculated

taking into account the probability distribution of actions that the user model can

produce at a given state. Thus we measure the expected value of precision and

recall if we ran the user model for a large number of times through the same states

found in the data, each time generating an action according to the distribution

produced by the model. We also use perplexity (PP) as a measure of the number

of possible actions that the user model has to choose between at a given state.

For a full discussion on the above metrics see Georgila et al. (2005a, 2006) and

13 The hand-annotated data was not enough for building user simulation models.

Automatic annotation of context and speech acts 341

Table 7. Expected precision, expected recall, and perplexity obtained when n-gram user

simulation models trained on the automatic and baseline annotations run through the

hand-annotated data (AUTO: user simulations trained on the automatic annotations,

BASE: user simulations trained on the baseline annotations)

Expected precision (%) Expected recall (%) Perplexity

AUTO/BASE AUTO/BASE AUTO/BASE

5-gram 49.3/45.7 49.2/42.9 10.0/14.4

4-gram 47.3/45.2 47.5/42.5 8.9/14.2

3-gram 40.6/40.1 41.0/37.7 8.6/16.8

2-gram 27.4/28.5 27.8/26.8 10.3/21.7

Schatzmann et al. (2005a, 2006). Results are depicted in Table 7. The user model

based on the automatic annotations performs better than the one trained on the

baseline annotations, which once more proves that the automatic annotation system

is superior to the baseline one. The automatic annotations are especially better with

regard to expected recall and for higher values of n. For low values of n, the baseline

user model suffers less from data sparsity issues since the baseline annotations do

not produce the variety of the automatic ones. With regard to perplexity again the

user model trained on the automatic annotations performs better.

Another indirect indication of the good quality of the annotations and proof of

their usefulness is that they have been used to train successful dialogue strategies

(Henderson et al. 2005, 2008; Frampton and Lemon 2006) and user simulations in

Georgila et al. (2005a, 2006) and Schatzmann et al. (2005a, 2005b).

Furthermore, in Lemon et al. (2006a) we have demonstrated that a policy learnt

from our Communicator 2001 automatically annotated dialogues performs better

than a state-of-the-art hand-coded dialogue system in experiments with real users.

The experiments were done using the ‘TownInfo’ multimodal dialogue system of

Lemon et al. (2006b). The learnt policy (trained on the Communicator data) was

ported to the city information domain, and then evaluated with human subjects.

The learnt policy achieved an average gain in perceived task completion of 14.2 per

cent (from 67.6 per cent to 81.8 per cent at p < .03) compared to a state-of-the-art

hand-coded system.

6.4 Additional error analysis

We now explore some additional patterns of error in the automatic annotations,

which are specific to the flight reservations domain. In all systems there are system

prompts asking the user whether he/she would like to have a continuation or return

trip. Unfortunately the DATE tag ‘continue trip’ or ‘return trip,’ respectively, is

the same regardless of whether the user chooses to have a continuation/return trip

or not. The automatic annotation system has to parse the system prompt and the

user reply and decide on the type of trip. For all systems except LUC, these system

prompts always have a consistent form. For example, for continuation trips ATT

342 K. Georgila et al.

Table 8. Precision, recall, and F-score for filled and confirmed slots (including their

values) and 〈speech act, task〉 pairs, automatic annotation of the TALK corpus

Precision (%) Recall (%) F -score

Filled slots 88.4 98.7 93.3

Confirmed slots 92.0 89.2 90.6

〈speech act, task〉 pairs 80.4 82.3 81.3

always uses the following type of question ‘Is Detroit your final destination?’ Thus if

the user replies ‘yes’ there will be no continuation trip. On the other hand, for CMU

the structure of the question is different: ‘Would you like to go to another city after

Los Angeles?’ Here ‘yes’ means the opposite, that is, there will be a continuation

trip. LUC switches between the two types of questions, which means that if the

annotation system fails to parse the system output there is no default solution to

follow as in the other systems. In addition, in the LUC dialogues sometimes there

is no question about continuation or return trips and the annotation system has

to deduce that from the context, which makes the annotation task even harder. As

a result, sometimes the new values from continuation or return legs overwrite the

initial values of the outward trip. This mistake was not captured by the automatic

evaluation because the annotation system did not recognise the existence of a

continuation/return trip, and thus the number of slots that it computed as expected

to be filled or confirmed did not include continuation and return slots.

7 Porting to other domains and applications

The current implementation is generic enough to be easily ported from the flight-

reservations domain to other slot-filling applications in different domains. As a proof

of concept we modified the automatic annotation system in order to automatically

annotate the TALK city information corpus. The TALK corpus consists of human–

machine dialogues in the city-information domain collected by having real users

interact with the TALK ‘TownInfo’ dialogue system (Lemon et al. 2006a, 2006b).

Users are asked to find a hotel, bar, or restaurant in a town. The dialogue system is

mixed-initiative, i.e. users are allowed to provide information about multiple slots at

the same time or provide information different from what the system has requested.

We compare the annotations produced by the modified automatic annotation

system with the log files of the ‘TownInfo’ dialogue system. Table 8 shows precision,

recall, and F -score for filled and confirmed slots and for 〈speech act, task〉 pairs.

For filled and confirmed slots we take into account not only whether the correct

slot has been filled or confirmed but also whether its value is correct or not. The

values for 〈speech act, task〉 pairs have been calculated without taking into account

cases that are tagged with empty lists both in the automatic annotations and the

dialogue system logs, i.e. when the utterance did not contain relevant information to

the dialogue task. If we want to give some credit to the automatic annotations for

Automatic annotation of context and speech acts 343

detecting such cases (as in Section 6.2), the results for precision, recall, and F -score

become 84.7 per cent, 86.2 per cent, and 85.4 per cent, respectively.

The results are good and prove that the automatic annotation system can be

easily ported to other slot-filling tasks. In particular, it took one day to modify the

automatic annotation system and run the evaluation tests. All values are high, even

higher than the scores of the automatic annotations for the Communicator corpus

because our city information domain required fewer slots to be filled and confirmed

and did not have cases similar to multiple leg or return trips that accounted for a

high percentage of the errors in the Communicator automatic annotations.

The question also arises as to what extent our automatic annotation system is

portable to other types or genres of dialogue, such as tutorial dialogue (Zinn, Moore

and Core 2002; Litman and Fobes-Riley 2006). Obviously the structure of tutorial

dialogues is very different from the structure of task-oriented applications. Therefore

to process tutorial dialogues the Information States and the annotation tool would

have to be extensively modified.

Depending on the tutoring style (e.g. didactic versus Socratic), the automatic

annotation task could be easier or harder. Core, Moore and Zinn (2003) hypothesised

that didactic tutoring corresponds to system-initiative dialogue management whereas

Socratic tutoring is related to mixed-initiative dialogue strategies. However, their

findings from analysing a corpus in the domain of basic electricity and electronics

showed that the opposite was true, i.e. students had initiative more of the time

in the didactic dialogues than in the Socratic dialogues. Furthermore, Socratic

dialogues were more interactive than didactic dialogues. The students produced a

higher percentage of words in Socratic dialogues whereas tutor turns and utterances

were shorter. On the contrary, in didactic dialogues tutors tended to give longer

explanations. It is hard to say which type of tutoring would be easier for an automatic

annotation tool to deal with. Again the success of the automatic annotations would

depend heavily on the parser employed. In didactic dialogues with long tutor

explanations having the tutor’s part already annotated would certainly help. With

respect to Socratic dialogues and given that the tutor’s part was already tagged

with speech act information, it would be easier to interpret the student input in

cases where the tutor asked sequences of targeted questions with strong expectations

about plausible answers (Core et al. 2003).

In terms of multimodal dialogue systems where the user can provide input to

the system through different modalities at the same time (e.g. gestures and speech),

much of the success of the automatic annotation tool will depend on the parser and

its ability to process and combine asynchronous information from different input

modalities. The Information States would have to be updated with fields related to

multimodality. For slot-filling multimodal dialogue systems no other major changes

would be required.

8 Discussion

We have shown that the automatic annotation system can be successfully ported

to similar slot-filling applications with minimal effort. The current system has

344 K. Georgila et al.

automatically annotated two corpora in both of which the dialogue system speech

act annotations were already available. However, the annotation tool is designed not

to rely on the available annotations of the system’s utterances but will also parse

them to compensate for possible errors in the available annotations. This is also

important for cases such as ‘explicit confirm(trip)’ where the annotation system

has to parse the system utterance to infer the tasks associated with the general tag

‘trip.’ In addition, to decide on whether a user speech act should be ‘provide info’

or ‘reprovide info’ the annotation tool also has to parse the system utterances (see

Section 3.2). Thus the tool as it is currently implemented is appropriate also for

annotating closed-domain human–human or human–machine slot-filling dialogues

in which neither side of the dialogue is tagged with speech acts (levels 3 and 4 in

Section 1.1) – including dialogues collected with Wizard-of-Oz experiments. As is

the case with a dialogue system, the more complex the dialogue structure the more

advanced the parser that is required. For the Communicator corpora and the TALK

corpus a keyword-based parser proved adequate, which would not be the case for

human–human dialogues.

Recently, we also used the automatic tool to process dialogues collected from a

Wizard-of-Oz experiment where both older and younger human users interacted

with a human wizard to book an appointment at a hospital. The idea was that

human annotators would be provided with the automatic annotations as a starting

point and correct them instead of having to annotate the corpus from scratch

(Georgila et al. 2008a). It took approximately three days to modify the automatic

annotation tool to process this corpus (more than the time required for the corpus

in the city information domain). This is due to the fact that dialogues were more

complex than the Communicator dialogues or the ones in the city information

domain because older people produced longer dialogues than younger users, had a

richer vocabulary, and used a larger variety of speech acts (Georgila et al. 2008a).

Nevertheless, the automatic annotation system performed well and significantly

accelerated the manual annotation process.14

Our annotation tool was not designed to handle open-domain dialogues, e.g. spon-

taneous dialogues between humans or dialogues between a human and a ‘chatbot’

that do not aim to accomplish a particular task. Chatbots are conversational agents

designed to simulate open-domain conversations with humans. Instead of parsing

and interpreting user inputs, and planning next dialogue acts so as to achieve domain

goals, chatbots use shallow pattern-matching techniques to retrieve a next system

move from a dataset. Chatbots therefore have no understanding of the contents of

the user utterances or of what they are saying in response, or indeed of why they

are saying it. Even if our system could sufficiently interpret (e.g. perhaps by using

a wide-coverage semantic parser) the utterances of humans and chatbots, it would

still be very challenging to maintain a well-structured Information State representing

14 We cannot compute the actual gain in time by using the automatic annotation system to
bootstrap the manual annotations compared to annotating manually from scratch because
we did not follow the latter approach. However, based on the annotators’ comments, having
the automatic annotations to start with proved to be very helpful.

Automatic annotation of context and speech acts 345

the conversants’ beliefs, goals, etc. for open-domain dialogues. This constitutes a

significant open problem for future research.

Regarding the resulting annotated corpus, it is certainly true that such corpora

as Communicator are likely to aid further research in automatically learning

dialogue strategies, user simulations, and context-dependent interpretation and

speech recognition, only for slot-filling applications rather than more complex types

of dialogue. Indeed the Communicator corpus only includes dialogues for slot-

filling tasks of limited complexity. However, the Communicator corpus is the largest

publicly available corpus and there are currently no other large and richly annotated

corpora available for more complex human–machine dialogues. In particular, for

automatically learning dialogue strategies and user simulations it is clear that the

type of the corpus used will influence the resulting models. One way to deal with

this problem is to learn user simulation models that allow for some deviation from

the user behaviour observed in the corpus and subsequently use these simulated

user models to learn more complex dialogue strategies. On the other hand, learning

dialogue strategies and user simulations is a difficult problem with several open

research questions even for simple slot-filling tasks. The state space is very large

(Henderson et al. 2005, 2008) and the required computations can easily become

intractable. For example, Williams and Young (2005) and Schatzmann et al. (2007)

use a ‘summary-space’ mapping technique to deal with intractability and their task

is less complex than the Communicator task. Therefore it is very important that we

show that machine learning techniques work well for simple slot-filling tasks first,

before we move to more complex applications where the problems of intractability

will become even more severe.

9 Conclusions

We provide a general framework and tools for the automatic annotation of dialogue

corpora with additional contextual and speech act information. These more richly

annotated corpora are essential for emerging statistical learning techniques in

dialogue systems research. We explained the concepts behind context and speech act

annotation, and the general methods for converting a standard corpus (of utterance

transcriptions) into a corpus with context representations.

We then focused on the automatic annotation system applied to the Commu-

nicator corpus of human–machine flight booking dialogues. The original Com-

municator data (2000 and 2001) is not sufficient for our wider purposes (of

learning dialogue strategies and user simulations from a corpus, and context-

sensitive interpretation and speech recognition) since it does not contain speech

act annotations of user utterances or representations of dialogue context. We briefly

reviewed the DATE annotation scheme, and our extensions to it. We then described

the automatic annotation system which uses the DIPPER dialogue manager. This

annotates user inputs with speech acts and creates dialogue ‘Information State’

context representations. We discussed confirmation strategies, presented examples,

and evaluated our annotations with respect to the task completion metrics of the

original corpus and in comparison to hand-annotated data.

346 K. Georgila et al.

Both automatic and manual evaluation results establish the good quality of the

automatic annotations. More evidence of the adequacy of the automatic annotations

is that the resulting data has been used to learn successful dialogue strategies

(Henderson et al. 2005, 2008; Frampton and Lemon 2006; Lemon et al. 2006a), and

high quality user simulations (Georgila et al. 2005a, 2006; Schatzmann et al. 2005a,

2005b). The final annotated corpus will be made publicly available, for use by other

researchers.15 We expect that the conceptual framework and the tools described

here can be used to convert other existing dialogue corpora into rich, context-

annotated dialogue corpora useful for statistical learning techniques. In future work

we intend to make the required adjustments to the tool so that it can also be publicly

distributed.

Acknowledgements

Georgila was supported by SHEFC HR04016 – Wellcome Trust VIP Award. Lemon

and Henderson were partially supported by EPSRC grant number: EP/E019501/1.

This work was partially funded by the EC under the FP6 project ‘TALK: Talk and

Look, Tools for Ambient Linguistic Knowledge’ http://www.talk-project.org, IST-

507802 and under the FP7 project ‘CLASSiC: Computational Learning in Adaptive

Systems for Spoken Conversation’ http://www.classic-project.org, IST-216594. The

TALK city information corpus collection was conducted in collaboration with

Steve Young, Jost Schatzmann, Blaise Thomson, Karl Weilhammer, and Hui Ye at

Cambridge University and their work is gratefully acknowledged. We would also

like to thank the anonymous reviewers for their helpful comments.

References

Andreani, G., Di Fabbrizio, G., Gilbert, M., Gillick, D., Hakkani-Tür, D., and Lemon, O.

2006. Let’s DiSCoH: collecting an annotated open corpus with dialogue acts and reward

signals for natural language helpdesks. In Proceedings of the IEEE/ACL Workshop on

Spoken Language Technology, Aruba, 2006, pp. 218–21.

Bos, J., Klein, E., Lemon, O., and Oka, T. 2003. DIPPER: description and formalisation of an

Information-State Update dialogue system architecture. In Proceedings of the 4th SIGdial

Workshop on Discourse and Dialogue, Sapporo, Japan, pp. 115–24.

Cheyer, A., and Martin, D. 2001. The open agent architecture. Journal of Autonomous Agents

and Multi-Agent Systems, 4(1/2): 143–8.

Clark, H. H., and Brennan, S. E. 1991. Grounding in communication. In L. Resnick, J. Levine,

and S. Teasely (eds.), Perspectives on Socially Shared Cognition, pp. 127–49. American

Psychological Association.

Core, M. G., Moore, J. D., and Zinn, C. 2003. The role of initiative in tutorial dialogue.

In Proceedings of the 10th Conference of the European Chapter of the Association for

Computational Linguistics (EACL), Budapest, Hungary, pp. 67–74.

15 There is currently an example of a complete annotated dialogue available both
in XML (http://homepages.inf.ed.ac.uk/kgeorgil/annot comm sample dialogue.xml) and
text (http://homepages.inf.ed.ac.uk/kgeorgil/annot comm sample dialogue.txt) formats.

Automatic annotation of context and speech acts 347

Frampton, M., and Lemon, O. 2006. Learning more effective dialogue strategies using limited

dialogue move features. In Proceedings of the 44th Annual Meeting of the Association for

Computational Linguistics (ACL), Sydney, Australia, pp. 185–92.

Gabsdil, M., and Lemon, O. 2004. Combining acoustic and pragmatic features to predict

recognition performance in spoken dialogue systems. In Proceedings of the 42nd Meeting

of the Association for Computational Linguistics (ACL), Barcelona, Spain, pp. 344–51.

Georgila, K., Henderson, J., and Lemon, O. 2005a. Learning user simulations for Information

State Update dialogue systems. In Proceedings of the 9th European Conference on Speech

Communication and Technology (INTERSPEECH–EUROSPEECH), Lisbon, Portugal,

pp. 893–6.

Georgila, K., Henderson, J., and Lemon, O. 2006. User simulation for spoken dialogue

systems: learning and evaluation. In Proceedings of the 9th International Conference on

Spoken Language Processing (INTERSPEECH–ICSLP), Pittsburgh, PA, pp. 1065–68.

Georgila, K., Lemon, O., and Henderson, J. 2005b. Automatic annotation of

COMMUNICATOR dialogue data for learning dialogue strategies and user simulations. In

Proceedings of the 9th Workshop on the Semantics and Pragmatics of Dialogue (SEMDIAL:

DIALOR), Nancy, France, pp. 61–8.

Georgila, K., Wolters, M., Karaiskos, V., Kronenthal, M., Logie, R., Mayo, N., Moore, J. D.,

and Watson, M. 2008a. A fully annotated corpus for studying the effect of cognitive ageing

on users’ interactions with spoken dialogue systems. In Proceedings of the International Con-

ference on Language Resources and Evaluation (LREC), Marrakech, Morocco, pp. 938–44.

Georgila, K., Wolters, M., and Moore, J. D. 2008b. Simulating the behaviour of older

versus younger users when interacting with spoken dialogue systems. In Proceedings of the

46th Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies (ACL–HLT), Columbus, OH, pp. 49–52.

Ginzburg, J. 1996. Dynamics and semantics of dialogue. In Jerry Seligman and Dag

Westerstahl (eds.), Logic, Language, and Computation, Vol. 1. CSLI Publications, Stanford,

CA.

Grosz, B. J., and Sidner, C. L. 1986. Attention, intentions, and the structure of discourse.

Computational Linguistics, 12(3): 175–204.

Henderson, J., Lemon, O., and Georgila, K. 2005. Hybrid reinforcement/supervised learning

for dialogue policies from COMMUNICATOR data. In Proceedings of the 4th Workshop

on Knowledge and Reasoning in Practical Dialogue Systems, International Joint Conference

on Artificial Intelligence (IJCAI), Edinburgh, UK, pp. 68–75.

Henderson, J., Lemon, O., and Georgila, K. 2008. Hybrid reinforcement/supervised learning

of dialogue policies from fixed datasets. Computational Linguistics 34(4): 487–511.

Keizer, S., and op den Akker, R. 2007. Dialogue act recognition under uncertainty using

Bayesian networks. Journal of Natural Language Engineering 13(4): 287–316.

Kipp, M. 1998 The neural path to dialogue acts. In Proceedings of the 13th European

Conference on Artificial Intelligence (ECAI), Brighton, UK, pp. 175–9.

Larsson, S., and Traum, D. 2000. Information state and dialogue management in the TRINDI

Dialogue Move Engine Toolkit. Journal of Natural Language Engineering 6(3–4): 323–40.

Lemon, O., Georgila, K., and Henderson, J. 2006a. Evaluating effectiveness and portability of

reinforcement learned dialogue strategies with real users: the TALK TownInfo evaluation.

In Proceedings of the IEEE/ACL Workshop on Spoken Language Technology, Aruba,

pp. 178–81.

Lemon, O., Georgila, K., Henderson, J., and Stuttle, M. 2006b. An ISU dialogue system

exhibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK in-

car system. In Proceedings of the 11th Conference of the European Chapter of the Association

for Computational Linguistics (EACL), Trento, Italy, pp. 119–22.

Lemon, O., and Gruenstein, A. 2003. Multithreaded context for robust conversational

interfaces: context-sensitive speech recognition and interpretation of corrective fragments.

ACM Transactions on Computer–Human Interaction (ACM TOCHI), 11(3): 241–67.

348 K. Georgila et al.

Lesch, S., Kleinbauer, T., and Alexandersson, J. 2005. A new metric for the evaluation of dialog

act classification. In Proceedings of the 9th Workshop on the Semantics and Pragmatics of

Dialogue (SEMDIAL: DIALOR), Nancy, France, pp. 143–6.

Levin, E., Pieraccini, R., and Eckert, W. 2000. A stochastic model of human–machine

interaction for learning dialog strategies. IEEE Transactions on Speech and Audio Processing

1: 11–23.

Litman, D., and Forbes-Riley, K. 2006. Correlations between dialogue acts and learning in

spoken tutoring dialogues. Journal of Natural Language Engineering 12(2): 161–76.

Poesio, M., Cooper, R., Larsson, S., Matheson, C., and Traum, D. 1999. Annotating

conversations for information state update. In Proceedings of the 3rd Workshop on

the Semantics and Pragmatics of Dialogue (SEMDIAL: AMSTELOGUE), Amsterdam,

Netherlands.

Reithinger, N., and Klesen, M. 1997. Dialogua act classification using language models.

In Proceedings of the 5th European Conference on Speech Communication and Technology

(EUROSPEECH), Rhodes, Greece, pp. 2235–8.

Reithinger, N., and Maier, E. 1995. Utilizing statistical dialogue act processing in

VERBMOBIL. In Proceedings of the 33rd Annual Meeting of the Association for

Computational Linguistics (ACL), Cambridge, MA, pp. 116–21.

Ries, K. 1999. HMM and neural network based speech act detection. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Phoenix,

AZ, pp. 497–500.

Rieser, V., Kruijff-Korbayová, I., and Lemon, O. 2005a. A corpus collection and annotation

framework for learning multimodal clarification strategies. In Proceedings of the 6th SIGdial

Workshop on Discourse and Dialogue, Lisbon, Portugal, pp. 97–106.

Rieser, V., Kruijff-Korbayová, I., and Lemon, O. 2005b. A framework for learning multimodal

clarification strategies. In Proceedings of the 7th International Conference on Multimodal

Interfaces (ICMI), Trento, Italy.

Rieser, V., and Lemon, O. 2006. Using machine learning to explore human multimodal

clarification strategies. In Proceedings of the 44th Annual Meeting of the Association for

Computational Linguistics (ACL), Sydney, Australia, pp. 659–66.

Rieser, V., and Lemon, O. 2008. Learning effective multimodal dialogue strategies from

Wizard-of-Oz data: Bootstrapping and evaluation. In Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies

(ACL–HLT), Columbus, OH, pp. 638–46.

Samuel, K., Carberry S., and Vijay-Shanker, K. 1998. Dialogue act tagging with

transformation-based learning. In Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and 17th International Conference on Computational

Linguistics (ACL–COLING), Montreal, Quebec, Canada, pp. 1150–6.

Schatzmann, J., Georgila, K., and Young, S. 2005a Quantitative evaluation of user simulation

techniques for spoken dialogue systems. In Proceedings of the 6th SIGdial Workshop on

Discourse and Dialogue, Lisbon, Portugal, pp. 45–54.

Schatzmann, J., Stuttle, M. N., Weilhammer, K., and Young, S. 2005b. Effects of the

user model on simulation-based learning of dialogue strategies. In Proceedings of the

IEEE Automatic Speech Recognition and Understanding Workshop, San Juan, Puerto Rico,

pp. 220–5.

Schatzmann, J., Thomson, B., and Young, S. 2007. Statistical user simulation with a hidden

agenda. In Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, Antwerp,

Belgium, pp. 273–82.

Schatzmann, J., Weilhammer, K., Stuttle, N., and Young, S. 2006. A survey of statistical

user simulation techniques for reinforcement-learning of dialogue management strategies.

Knowledge Engineering Review 21(2): 97–126.

Scheffler, K., and Young, S. 2001. Corpus-based dialogue simulation for automatic

strategy learning and evaluation. In Proceedings of the Workshop on Adaptation in

Automatic annotation of context and speech acts 349

Dialogue Systems, North American Chapter of the Association for Computational Linguistics

(NAACL), Pittsburgh, PA, pp. 64–70.

Searle, J. 1969. Speech Acts: An Essay in the Philosophy of Language. Cambridge University

Press: Cambridge, UK.

Singh, S., Kearns, M., Litman, D., and Walker, M. 1999. Reinforcement learning for spoken

dialogue systems. Advances in Neural Information Processing Systems 12: 956–62.

Stolcke, A., Coccaro, N., Bates, R., Taylor, P., Ess-Dykema, C. V., Ries, K., Shriberg, E.,

Jurafsky, D., Martin, R., and Meteer, M. 2000. Dialogue act modelling for automatic

tagging and recognition of conversational speech. Computational Linguistics 26(3):

339–74.

Traum, D. 1994. A computational theory of grounding in natural language conversation. PhD

Thesis, Department of Computer Science, University of Rochester.

Traum, D. 2000. Twenty questions for dialogue act taxonomies. Journal of Semantics 17(1):

7–30.

Traum, D. R., and Allen, J. 1994. Discourse obligations in dialogue processing. In Proceedings

of the 32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces,

NM, pp. 1–8.

Walker, M., Aberdeen, J., Boland, J., Bratt, E., Garofolo, J., Hirschman, L., Le, A., Lee, S.,

Narayanan, S., Papineni, K., Pellom, B., Polifroni, J., Potamianos, A., Prabhu, P., Rudnicky,

A., Sanders, G., Seneff, S., Stallard, D., and Whittaker, S. 2001a. DARPA Communicator

dialog travel planning systems: The June 2000 data collection. In Proceedings of the

7th European Conference on Speech Communication and Technology (EUROSPEECH),

Aalborg, Denmark, pp. 1371–4.

Walker, M. A., Fromer, J. C., and Narayanan, S. 1998. Learning optimal dialogue strategies:

a case study of a spoken dialogue agent for email. In Proceedings of the 36th Annual

Meeting of the Association for Computational Linguistics and 17th International Conference

on Computational Linguistics (ACL–COLING), Montreal, Quebec, Canada, pp. 1345–51.

Walker, M. A., Kamm, C. A., and Litman, D. J. 2000. Towards developing general models

of usability with PARADISE. Journal of Natural Language Engineering (Special Issue on

Best Practice in Spoken Dialogue Systems) 6(3): 363–77.

Walker, M. A., Passonneau, R. J., and Boland, J. E. 2001b. Quantitative and qualitative

evaluation of DARPA Communicator spoken dialogue systems. In Proceedings of the

39th Meeting of the Association for Computational Linguistics (ACL), Toulouse, France,

pp. 515–22.

Walker, M., and Passonneau, R. 2001. DATE: a dialogue act tagging scheme for evaluation of

spoken dialogue systems. In Proceedings of the Human Language Technologies Conference,

San Diego, CA, pp. 1–8.

Walker, M., Rudnicky, A., Aberdeen, J., Bratt, E., Garofolo, J., Hastie, H., Le, A., Pellom, B.,

Potamianos, A., Passonneau, R., Prasad, R., Roukos, S., Sanders, G., Seneff, S., Stallard, D.,

and Whittaker, S. 2002. DARPA communicator evaluation: progress from 2000 to 2001. In

Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP),

Denver, CO, pp. 273–6.

Webb, N., Hepple, M., and Wilks, Y. 2005. Dialogue act classification based on intra-utterance

features. In Proceedings of the AAAI Workshop on Spoken Language Understanding,

Pittsburgh, PA.

Williams, J. D., and Young, S. 2005. Scaling up POMDPs for dialog management: the

“summary POMDP” method. In Proceedings of the IEEE Automatic Speech Recognition

and Understanding Workshop, San Juan, Puerto Rico, pp. 177–82.

Young, S. 2000. Probabilistic methods in spoken dialogue systems. Philosophical Transactions

of the Royal Society (Series A) 358(1769): 1389–402.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, T., Moore, G., Odell, J., Ollason, D.,

Povey, D., Valtchev, V., and Woodland, P. 2005. The HTK Book (for HTK version 3.3).

Cambridge University Engineering Department.

350 K. Georgila et al.

Zinn, C., Moore, J. D., and Core, M. G. 2002. A 3-tier planning architecture for managing

tutorial dialogue. In Proceedings of the Intelligent Tutoring Systems, Sixth International

Conference (ITS), Biarritz, France, pp. 574–84. Lecture Notes in Computer Science

vol. 2363, Berlin: Springer.

Appendix: The algorithm of the automatic annotation system

function main()

{

indx_utt = 0;

while not EOF {

read utterance;

utter[indx_utt] = utterance;

if speaker[indx_utt]=system {

save_information_state;

go to beginning of loop;

}

/* in the following loop the annotation system looks backwards to all

the system utterances between the last user utterance and the

current one (not including the last user utterance) and parses them */

k = indx_utt-1;

indx_prev_utt = 0;

while true {

if speaker[k]=user

exit loop;

prev_utt[indx_prev_utt] = utter[k];

extract prev_utt_speechact[indx_prev_utt];

/* consider only request_info, explicit_confirm, etc. */

res = member(prev_utt_speechact[indx_prev_utt], considered_speechacts);

if res=false {

k = k-1;

go to beginning of loop;

}

extract prev_utt_task[indx_prev_utt];

parse((i)prev_utt[indx_prev_utt], (o)prev_utt_keywords[indx_prev_utt],

(o)prev_utt_values[indx_prev_utt]);

correct_date_time_tags;

indx_prev_utt = indx_prev_utt+1;

k = k-1;

}

/* parse the current user utterance */

parse((i)utt[indx_utt], (o)utt_keywords[indx_utt], (o)utt_values[indx_utt]);

extract utt_speechact[indx_utt];

extract utt_task[indx_utt];

/* this is specific to the COMMUNICATOR corpus */

decide_on_leg_of_trip;

disambiguate_speechact_task((i)prev_utt_keywords, (i)prev_utt_values,

(i)prev_utt_speechact, (i)prev_utt_task, (i)utt_keywords[indx_utt],

(i)utt_values[indx_utt], (i)utt_speechact[indx_utt], (i)utt_task[indx_utt],

(o)utt_speechact_new[indx_utt], (o)utt_task_new[indx_utt]);

Automatic annotation of context and speech acts 351

fill_slots_and_values((i)utt_keywords[indx_utt], (i)utt_values[indx_utt],

(i)utt_speechact_new[indx_utt], (i)utt_task[indx_utt],

(o)FilledSlots[indx_utt], (o)FilledSlotsValues[indx_utt]);

detect_confirmedslots((i)prev_utt_keywords, (i)prev_utt_values,

(i)prev_utt_speechact, (i)prev_utt_task,

(i)utt_keywords[indx_utt], (i)utt_values[indx_utt],

(i)utt_speechact_new[indx_utt], (i)utt_task_new[indx_utt],

(o)confirmed_slots[indx_utt], (o)confirmed_slots_values[indx_utt],

(o)unconfirmed_slots[indx_utt], (o)unconfirmed_slots_values[indx_utt],

(o)utt_speechact_final[indx_utt], (o)utt_task_final[indx_utt]);

remove unconfirmed_slots[indx_utt] from CurrentlyFilledSlots;

remove unconfirmed_slots_values[indx_utt] from CurrentlyFilledSlotsValues;

further update CurrentlyFilledSlots, CurrentlyFilledSlotsValues, CurrentlyConfirmedSlots;

save_information_state;

indx_utt = indx_utt+1;

}

}

function disambiguate_speechact_task((i)prev_utt_keywords, (i)prev_utt_values,

(i)prev_utt_speechact, (i)prev_utt_task,

(i)utt_keywords, (i)utt_values,

(i)utt_speechact, (i)utt_task,

(o)utt_speechact_new, (o)utt_task_new)

{

for i=0 to length(utt_speechact) {

if utt_speechact[i]=provide_reprovide_info {

res1 = member(explicit_confirm, prev_utt_speechact);

res2 = member(implicit_confirm, prev_utt_speechact);

if (res1=true or res2=true) {

res = compare(utt_keywords, utt_values,

prev_utt_keywords, prev_utt_values);

if res=true

utt_speechact_new[i] = reprovide_info;

}

else if utt_speechact[i-1]=reject_info

utt_speechact_new[i] = correct_info;

else

utt_speechact_new[i] = provide_info;

}

else

utt_speechact_new[i] = utt_speechact[i];

}

for i=0 to length(utt_task)

if utt_task[i] is marked as ambiguous

compare(prev_utt_keywords, prev_utt_task,

utt_keywords[i], utt_task[i], utt_task_new[i]);

else

utt_task_new[i] = utt_task[i];

}

function fill_slots_and_values((i)utt_keywords, (i)utt_values,

(i)utt_speechact, (i)utt_task,

(o)FilledSlots, (o)FilledSlotsValues)

352 K. Georgila et al.

{

for i=1 to length(utt_speechact) {

if utt_speechact[i]=provide_info or utt_speechact[i]=correct_info

or utt_speechact[i]=reprovide_info {

associate_keywords_with_slots_and_values((i)utt_keywords,

(i)utt_values, (i)utt_task, (o)Slots, (o)SlotsValues);

add Slots to FilledSlots;

add SlotsValues to FilledSlotsValues;

}

}

}

function detect_confirmedslots((i)prev_utt_keywords, (i)prev_utt_values,

(i)prev_utt_speechact, (i)prev_utt_task,

(i)utt_keywords, (i)utt_values, (i)utt_speechact, (i)utt_task,

(o)confirmed_slots, (o)confirmed_slots_values,

(o)unconfirmed_slots, (o)unconfirmed_slots_values,

(o)utt_speechact_res, (o)utt_task_res)

{

/* initialise the output speech act and task lists as empty lists */

utt_speechact_res = [];

utt_task_res = [];

for i=1 to length(prev_utt_speechact) {

res1 = member(explicit_confirm, prev_utt_speechact[i]);

res2 = member(implicit_confirm, prev_utt_speechact[i]);

if (res1=true or res2=true) {

if length(utt_speechact)=1 {

if utt_speechact[1]=yes_answer {

associate_keywords_with_slots_and_values((i)prev_utt_keywords[i],

(i)prev_utt_values[i], (i)prev_utt_task[i],

(o)Slots, (o)SlotsValues);

add Slots to confirmed_slots;

add SlotsValues to confirmed_slots_values;

add yes_answer to utt_speechact_res;

add prev_utt_task[i] to utt_task_res;

}

else if utt_speechact[1]=no_answer {

associate_keywords_with_slots_and_values((i)prev_utt_keywords[i],

(i)prev_utt_values[i], (i)prev_utt_task[i],

(o)Slots, (o)SlotsValues);

add Slots to unconfirmed_slots;

add SlotsValues to unconfirmed_slots_values;

add no_answer to utt_speechact_res;

add prev_utt_task[i] to utt_task_res;

}

}

else {

for k=1 to length(utt_speechact) {

if utt_speechact[k]=provide_info or

utt_speechact[k]=reject_info or

utt_speechact[k]=correct_info {

associate_keywords_with_slots_and_values((i)prev_utt_keywords[i],

(i)prev_utt_values[i], (i)prev_utt_task[i],

(o)Slots, (o)SlotsValues);

add Slots to unconfirmed_slots;

add SlotsValues to unconfirmed_slots_values;

}

Automatic annotation of context and speech acts 353

else if utt_speechact[k]=reprovide_info {

associate_keywords_with_slots_and_values((i)prev_utt_keywords[i],

(i)prev_utt_values[i], (i)prev_utt_task[i],

(o)Slots, (o)SlotsValues);

add Slots to confirmed_slots;

add SlotsValues to confirmed_slots_values;

}

add utt_speechact[k] to utt_speechact_res;

add utt_task[k] to utt_task_res;

}

}

}

}

}

