Nonparametric Bayesian Models, Dirichlet Process

Andrea Gesmundo

May, 15, 2009
Introduction

- Maximum Likelihood Estimation
- Bayesian Methods
- Beta Distribution
- Dirichlet Distribution
- Dirichlet Process
Problem:
Given the task of learning to predict a label y for an observed variable x based on an iid sample of training instances x_1, \ldots, x_N and their labels y_1, \ldots, y_N
Problem:
Given the task of learning to predict a label y for an observed variable x based on an iid sample of training instances $x_1, ..., x_N$ and their labels $y_1, ..., y_N$

$x_n \in X, y_n \in Y$

Ex:
- X is a set of words and Y set of tags
Problem:
Given the task of learning to predict a label y for an observed variable x based on an iid sample of training instances $x_1, ..., x_N$ and their labels $y_1, ..., y_N$

$$x_n \in X, y_n \in Y$$

Ex:
- X is a set of words and Y set of tags
- Coin flip: X contains single element, $Y = \{H, T\}$
Statistical Estimation Approach:
Devise a class of joint probability distributions (model) parameterized by θ

$$p_\theta(x, y)$$
Statistical Estimation Approach:
Devise a class of joint probability distributions (model) parameterized by θ

$$p_{\theta}(x, y)$$

Predicting the label for x_n then becomes the task of finding

$$y_n = \arg\max_y p_{\theta}(y, x_n) = \arg\max_y p_{\theta}(y | x_n)$$
Maximum-Likelihood Estimation

Common method for determining the parameters θ. MLE choose the θ that maximizes the probability of the training corpus

$D = (x_1, y_1) \cdots (x_N, y_N)$

$$\hat{\theta} = \arg \max_{\theta} p_{\theta}(D) = \arg \max_{\theta} p_{\theta}(x_1, y_1) \cdots p_{\theta}(x_N, y_N)$$
Maximum-Likelihood Estimation

Common method for determining the parameters θ. MLE choose the θ that maximizes the probability of the training corpus $D = (x_1, y_1) \ldots (x_N, y_N)$

$$\hat{\theta} = \arg \max \theta \ p_\theta(D) = \arg \max \theta \ p_\theta(x_1, y_1) \cdots p_\theta(x_N, y_N)$$

MLE is prone to overfitting: The estimated distribution only acknowledges events that occurred in the training data.
x is a constant, $y \in \{H, T\}$ and $\theta \equiv \{\theta_1, \theta_2\}$

Model as Bernoulli distribution:

$$p_\theta(x, y) = \begin{cases}
\theta_1 & \text{if } y=H \\
\theta_2 & \text{if } y=T
\end{cases}$$

Where $\theta_2 = 1 - \theta_1$.
\(x \) is a constant, \(y \in \{H, T\} \) and \(\theta \equiv \{\theta_1, \theta_2\} \)

Model as Bernoulli distribution:

\[
p_\theta(x, y) = \begin{cases}
\theta_1 & \text{if } y = H \\
\theta_2 & \text{if } y = T
\end{cases}
\]

Where \(\theta_2 = 1 - \theta_1 \).

Therefore the likelihood function \(p_\theta(D) \) is the Binomial:

\[
p_\theta(D) = \theta_1^H \theta_2^T
\]
Find the parameters with MLE

$$\hat{\theta} = \max \arg_{\theta} p_{\theta}(D) = \left\{ \frac{\#H}{\#H + \#T}, \frac{\#T}{\#H + \#T} \right\}$$

Where $\#H$ is the number of heads in the training data D.
Find the parameters with MLE

\[\hat{\theta} = \max \arg_y \ p_\theta(D) = \left\{ \frac{\# H}{\# H + \# T}, \frac{\# T}{\# H + \# T} \right\} \]

Where \#_H is the number of heads in the training data D.

Imagine what happens when we toss the sequence \{H, T, T\}

\[\hat{\theta} = \left\{ \frac{1}{3}, \frac{2}{3} \right\} \]

Our estimator would be biased toward tails
How is possible to avoid overfitting?
How is possible to avoid overfitting?

Bayesian Model:
- Treat the model parameters as random variables
- Assign a prior distribution to the parameter

prior: $p(\theta)$, is a distribution over distributions
Graphical representation:
All the possible value of θ can be represented with a segment
Graphical representation:
Associate a probability density value to each point = parameter vector = distribution
Bayesian models work with a posterior distribution:

\[p(\theta|D) = \frac{p(D|\theta) \ p(\theta)}{p(D)} \]
Bayesian models work with a posterior distribution:

\[p(\theta|D) = \frac{p(D|\theta) p(\theta)}{p(D)} \propto p(D|\theta) p(\theta) \]
Bayesian models works with a posterior distribution:

$$p(\theta|D) = \frac{p(D|\theta) \ p(\theta)}{p(D)} \propto p(D|\theta) \ p(\theta)$$

Bayes formula comes from:

$$p(D|\theta) \ p(\theta) = p(D, \theta) = p(\theta, D) = p(\theta|D) \ p(D)$$
How do we work with a $p(\theta|D)$ instead a $\hat{\theta}$?
Bayesian models

How do we work with a $p(\theta|D)$ instead a $\hat{\theta}$?

MLE: $y_n = \arg \max_y p_{\hat{\theta}}(y|x_n)$
How do we work with a $p(\theta|D)$ instead a $\hat{\theta}$?

MLE : $y_n = \arg \max_y p_{\hat{\theta}}(y|x_n)$

Bayesian: Marginalization

$$P(y_n|D) = \int_\theta P(y_n|\theta) \ p(\theta|D) \ d\theta$$
We can compute Likelihood from Data (Binomial):

\[p(D|\theta) = \theta_1^{\#H} \theta_2^{\#T} \]

Choose prior:

- It is convenient to chose a prior that gives a posterior that is easy to integrate
We can compute Likelihood from Data (Binomial):

\[p(D|\theta) = \theta_1^{\#H} \theta_2^{\#T} \]

Choose prior:

- It is convenient to chose a prior that gives a posterior that is easy to integrate
- Given the likelihood we can chose the prior in such a way the resulting posterior distribution is of the same form of the prior and thus has a closed-form solution
We can compute Likelihood from Data (Binomial):

\[p(D|\theta) = \theta^H_1 \theta^T_2 \]

Choose prior:

- It is convenient to choose a prior that gives a posterior that is easy to integrate
- Given the likelihood we can choose the prior in such a way that the resulting posterior distribution is of the same form as the prior and thus has a closed-form solution
- Such priors are called *Conjugate*
We can compute Likelihood from Data (Binomial):

\[p(D|\theta) = \theta_1^{#H} \theta_2^{#T} \]

Choose prior:
The prior of the Binomial is the Beta distribution: *Beta*(\(\alpha_H, \alpha_T\)) given by the pdf:

\[p(\theta; \alpha_H, \alpha_T) = \frac{\theta_1^{(\alpha_H-1)} \theta_2^{(\alpha_T-1)}}{C} \]
Posterior:

\[
p(\theta|D) \propto p(D|\theta) \ p(\theta) \\
\propto \theta_1^{\#H} \ \theta_2^{\#T} \ \theta_1^{(\alpha_H-1)} \ \theta_2^{(\alpha_T-1)} \\
= \theta_1^{(\#H+\alpha_H-1)} \ \theta_2^{(\#T+\alpha_T-1)}
\]

Therefore we have:

\[
\theta|D \sim Beta(\#_H + \alpha_H, \#_T + \alpha_T)
\]
Estimate probability of a 'head' toss

\[
P(H|D) = \int_\theta P(H|\theta) \, p(\theta|D) \, d\theta
\]

\[
= \int_\theta \theta_1 \, p(\theta|D) \, d\theta
\]

\[
= E[\theta_1|D]
\]

\[
= \frac{\#H + \alpha_H}{\#H + \alpha_H + \#T + \alpha_T}
\] (2)
Coin Flip Example with Bayesian model

Estimate probability of a ’head’ toss

\[
P(H|D) = \int_{\theta} P(H|\theta) \ p(\theta|D) \ d\theta
\]

\[
= \int_{\theta} \theta_1 \ p(\theta|D) \ d\theta
\]

\[
= E[\theta_1|D]
\]

\[
= \frac{\#_H + \alpha_H}{\#_H + \alpha_H + \#_T + \alpha_T}
\]

- When sample D is small \(\alpha\) parameters dominate
Coin Flip Example with Bayesian model

Estimate probability of a 'head' toss

\[P(H|D) = \int_{\theta} P(H|\theta) \ p(\theta|D) \ d\theta \]

\[= \int_{\theta} \theta_1 \ p(\theta|D) \ d\theta \]

\[= E[\theta_1|D] \]

\[= \frac{\#H + \alpha_H}{\#H + \alpha_H + \#T + \alpha_T} \]

- When sample D is small \(\alpha \) parameters dominate
- MLE interpretation: prepend D with \(\alpha_H \) head tosses and \(\alpha_T \) tail tosses

Andrea Gesmundo
Beta Distribution Examples

\[
\begin{align*}
\alpha = \beta &= 0.5 \\
\alpha = 5, \beta &= 1 \\
\alpha = 1, \beta &= 3 \\
\alpha = 2, \beta &= 2 \\
\alpha = 2, \beta &= 5
\end{align*}
\]
Rewrite Beta distribution parameters α_1, α_2 as:

- **Concentration Parameter, α:**
 \[\alpha = \alpha_1 + \alpha_2 \]

- **Distribution Mean, (α'_1, α'_2):**
 \[\alpha'_i = \frac{\alpha_i}{\alpha} \]

If $\alpha > 2$ distribution is concentrated near the mean
If $\alpha < 2$ distribution is concentrated far from the mean, sparsity
Generalize for all ‘N’

\[Y = \{ H, T \} \]

\[\theta = \{ \theta_1, \theta_2 \} \quad \text{with } \theta_1 + \theta_2 = 1 \]

\[p(D|\theta) = \theta_1^{\#_H} \theta_2^{\#_T} \]

\[p(\theta; \alpha_H, \alpha_T) \propto \theta_1^{(\alpha_H-1)} \theta_2^{(\alpha_T-1)} \]

\[p(\theta|D) \propto p(D|\theta) \; p(\theta) \propto \theta_1^{(\#_H+\alpha_H-1)} \theta_2^{(\#_T+\alpha_T-1)} \]

\[P(H|\theta) = \theta_1 \]

\[P(H|D) = \frac{\#_H + \alpha_H}{\#_H + \alpha_H + \#_T + \alpha_T} \]

Andrea Gesmundo
Generalize for all 'N'

\[Y = \{ \psi_1, \psi_2 \} \]
\[\theta = \{ \theta_1, \theta_2 \} \quad \text{with} \quad \theta_1 + \theta_2 = 1 \]
\[p(D|\theta) = \theta_1^{\#\psi_1} \theta_2^{\#\psi_2} \]
\[p(\theta; \alpha_1, \alpha_2) \propto \theta_1^{(\alpha_1-1)} \theta_2^{(\alpha_2-1)} \]
\[p(\theta|D) \propto p(D|\theta) \ p(\theta) \propto \theta_1^{(\#\psi_1+\alpha_2-1)} \theta_2^{(\#\psi_2+\alpha_2-1)} \]
\[P(\psi_i|\theta) = \theta_i \]
\[P(\psi_i|D) = \frac{\#\psi_i + \alpha_i}{\#\psi_1 + \#\psi_2 + \alpha_1 + \alpha_2} \]
Generalize for all ’N’

\[Y = \{\psi_1, ..., \psi_N\} \]

\[\theta = \{\theta_1, ..., \theta_N\} \quad \text{with} \quad \sum_{n=1}^{N} \theta_n = 1 \]

\[p(D|\theta) = \prod_{n=1}^{N} \theta_n^{\#\psi_n} \]

\[p(\theta; \alpha_1, ..., \alpha_N) \propto \prod_{n=1}^{N} \theta_n^{(\alpha_n-1)} \]

\[p(\theta|D) \propto p(D|\theta) \ p(\theta) \propto \prod_{n=1}^{N} \theta_n^{(\#\psi_n+\alpha_n-1)} \]

\[P(\psi_i|\theta) = \theta_i \]

\[P(\psi_i|D) = \frac{\#\psi_i + \alpha_i}{\sum_{n=1}^{N} \#\psi_n + \sum_{n=1}^{N} \alpha_n} \]
Dirichlet distribution is a multi-parameter generalization of the Beta distribution.

It is the Conjugate of the Multinomial.

It defines a distribution over distribution.

\[
p(\theta; \alpha_1, \ldots, \alpha_N) = \frac{\prod_{n=1}^{N} \theta_n^{(\alpha_n-1)}}{C}
\]

\[
\theta \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_N)
\]
Dirichlet Distribution with N=3

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10)

Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9)
Rewrite Dirichlet distribution parameters $\alpha_1, \ldots, \alpha_N$ as:

- **Concentration Parameter, α:**
 $$\alpha = \sum_{n=1}^{N} \alpha_n$$

- **Distribution Mean, $(\alpha'_1, \ldots, \alpha'_N)$:**
 $$\alpha'_i = \frac{\alpha_i}{\alpha}$$

If $\alpha > N$ distribution is concentrated near the mean
If $\alpha < N$ distribution is concentrated far from the mean, sparsity
Note that \((\alpha'_1, \ldots, \alpha'_N) = h\) can be considered a distribution on the event space \(Y\) as \(\theta = (\theta_1, \ldots, \theta_N)\)
• Note that \((\alpha'_1, ..., \alpha'_N) = h\) can be considered a distribution on the event space \(Y\) as \(\theta = (\theta_1, ..., \theta_N)\).

• With \(\alpha \to \infty\) we have \(\theta \to h = (\alpha'_1, ..., \alpha'_N)\).
Note that \((\alpha'_1, \ldots, \alpha'_N) = h\) can be considered a distribution on the event space \(Y\) as \(\theta = (\theta_1, \ldots, \theta_N)\).

With \(\alpha \to \infty\) we have \(\theta \to h = (\alpha'_1, \ldots, \alpha'_N)\).

Note that:

\[
\text{Dirichlet}(\alpha_1, \ldots, \alpha_N) \equiv \text{Dirichlet}(\alpha \alpha'_1, \ldots, \alpha \alpha'_N)
\]

or \(\text{Dirichlet}(\alpha, h)\)
Polya Urn Model

- Many probability distributions can be obtained using urn models

- Polya Urn Model is the one that corresponds to the Dirichlet Distribution
Consider an urn with α balls
Consider an urn with α balls

Each ball can have one of N different colours
Consider an urn with α balls

Each ball can have one of N different colours

There are α_n balls of colour 'n', with $1 \leq n \leq N$
Polya Urn Model

Consider an urn with α balls

Each ball can have one of N different colours

There are α_n balls of colour ’n’, with $1 \leq n \leq N$

We draw balls at random, repleace the ball we drew with two balls of the same colour.
Polya Urn Model

\[P(ball_1 = n) = \frac{\alpha n}{\alpha} \]
Polya Urn Model

\[P(ball_1 = n) = \frac{\alpha_n}{\alpha} \]

\[P(ball_2 = n) = \frac{\#_{n,1} + \alpha_n}{1 + \alpha} \]

\[\vdots \]

\[P(ball_{k+1} = n) = \frac{\#_{n,k} + \alpha_n}{k + \alpha} \]
Polya Urn Model

\[P(ball_1 = n) = \frac{\alpha_n}{\alpha} \]

\[P(ball_2 = n) = \frac{\#_{n,1} + \alpha_n}{1 + \alpha} \]

\[\vdots \]

\[P(ball_{k+1} = n) = \frac{\#_{n,k} + \alpha_n}{k + \alpha} \]

with \(k \rightarrow \infty \) the proportions of different colors in the urn will be distributed according to the \(Dirichlet(\alpha_1, \ldots, \alpha_N) \)
Generalize for all 'N'

\[Y = \{ \psi_1, ..., \psi_N \} \]

\[\theta = \{ \theta_1, ..., \theta_N \} \quad \text{with} \quad \sum_{n=1}^{N} \theta_n = 1 \]

\[p(D|\theta) = \prod_{n=1}^{N} \theta_n^{\#\psi_n} \]

\[p(\theta; \alpha_1, ..., \alpha_N) \propto \prod_{n=1}^{N} \theta_n^{(\alpha_n-1)} \]

\[p(\theta|D) \propto p(D|\theta) \cdot p(\theta) \propto \prod_{n=1}^{N} \theta_n^{(\#\psi_n+\alpha_n-1)} \]

\[P(\psi_i|\theta) = \theta_i \]

\[P(\psi_i|D) = \frac{\#\psi_i + \alpha_i}{\sum_{n=1}^{N} \#\psi_n + \sum_{n=1}^{N} \alpha_n} \]
Generalize for $N \rightarrow \infty$

- Y becomes a continuous space
Generalize for $N \to \infty$

- Y becomes a continuous space
- θ was a PMF and becomes a PDF
Generalize for $N \to \infty$

- Y becomes a continuous space

- θ was a PMF and becomes a PDF

- In a PDF we are interested in probabilities of $y \in \Psi_i$ with $\Psi_i \subseteq Y$
Generalize for $N \to \infty$

- Y becomes a continuous space

- θ was a PMF and becomes a PDF

- In a PDF we are interested in probabilities of $y \in \Psi_i$ with $\Psi_i \subseteq Y$

- θ_i was the $P(y = \psi_i)$, now we write $\theta(\Psi_i)$ for $P(y \in \Psi_i)$
Dirichelt Process

DP is an extension of the Dirichelet distribution to continuous spaces
DP is an extension of the Dirichelet distribution to continuous spaces

Definition:
Let H be a distribution over event space Y, and let α be a positive real number.
A distribution θ over Y is said to be drawn from a Dirichlet Process with base distribution H and concentration parameter α

$$\theta \sim DP(\alpha, H)$$

if for every measurable partition Ψ_1, \ldots, Ψ_r of Y

$$(\theta(\Psi_1), \ldots, \theta(\Psi_r)) \sim Dirichlet(\alpha H(\Psi_1), \ldots, \alpha H(\Psi_r))$$
Dirichlet Process Properties

- $E[\theta(\psi)] = H(\psi)$
- $V[\theta(\psi)] = \frac{H(\psi)(1 - H(\psi))}{\alpha + 1}$
Dirichlet Process Properties

- $E[\theta(\psi)] = H(\psi)$

- $V[\theta(\psi)] = \frac{H(\psi)(1 - H(\psi))}{\alpha + 1}$

Note:
From the discrete case:

- If $\alpha > N$ distribution is concentrated near the mean
- If $\alpha < N$ distribution is concentrated far from the mean, sparsity

In the continuous case $N \to \infty$ and so $\alpha \ll N$
So we can imagine that the draw from the DP will be really sparse
This observation introduce to the most important DP Property
It may seem that θ is continuous since H is continuous.
• It may seem that θ is continuous since H is continuous

• But the draw from the DP are so sparse that θ consist of countably infinite point probability masses
It may seem that θ is continuous since H is continuous.

But the draw from the DP are so sparse that θ consist of countably infinite point probability masses.

Therefore values observed from a DP previously have a non-zero probability of occurring again.
The Urn is empty at the beginning
- The Urn is empty at the beginning
- Y is a continuous interval of colours
The Urn is empty at the beginning

\(Y \) is a continuous interval of colours

We select an \(\alpha > 0 \) and a distribution \(H \) over \(Y \)
The Urn is empty at the beginning

\(Y \) is a continuous interval of colours

We select an \(\alpha > 0 \) and a distribution \(H \) over \(Y \)

In each subsequent step \(k + 1 \) either:

- a colour \(\psi_{k+1} \) is drawn from \(H \) with probability \(\frac{\alpha}{\alpha+k} \), and a ball is colored with it and added to the urn

- or with probability \(\frac{k}{\alpha+k} \) a ball is drawn from the urn, its color is used to color a new ball and both balls are added to the urn.
Blackwell-MacQueen formula

\[P(y_{k+1} = \psi_n | y_{1:k}) = \begin{cases} \frac{\#\psi_n, k}{\alpha + k} & \text{if } \exists j \leq k, \ s.t. \ y_j = \psi_n \\ \frac{\alpha}{\alpha + k} H(\psi_n) & y_j \neq \psi_n, \ \forall \ 1 \leq j \leq k \end{cases} \]
A way to construct a distribution $G \sim DP(\alpha, H)$

$$\beta_k \sim Beta(1, \alpha)$$

$$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$$

$$\psi_k \sim H$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\psi_k}$$

Recursively breaking the remaining stick ar ratio β_k to obtain π_k

And assign a proportional probability to the value $\psi_k \in Y$ extracted from H
Combining entries of probability vectors preserves Dirichlet property, for example:

\[(\pi_1, \pi_2, \ldots, \pi_n) \sim \text{Dirichlet}(\alpha_1, \alpha_2, \ldots, \alpha_n)\]

\[\Rightarrow (\pi_1 + \pi_2, \ldots, \pi_n) \sim \text{Dirichlet}(\alpha_1 + \alpha_2, \ldots, \alpha_n)\]
Combining entries of probability vectors preserves Dirichlet property, for example:

\[(\pi_1, \pi_2, ..., \pi_n) \sim Dirichlet(\alpha_1, \alpha_2, ..., \alpha_n)\]

\[\Rightarrow (\pi_1 + \pi_2, ..., \pi_n) \sim Dirichlet(\alpha_1 + \alpha_2, ..., \alpha_n)\]

Generally, if \((l_1, ..., l_k)\) is a partition of \((1, ..., n)\).

\[(\sum_{i \in l_1} \pi_1, ..., \sum_{i \in l_k} \pi_n) \sim Dirichlet(\sum_{i \in l_1} \alpha_1, ..., \sum_{i \in l_k} \alpha_i)\]
Splitting entries of probability vectors preserves Dirichlet property, for example:

\[
\begin{align*}
(p_1, p_2, \ldots, p_n) & \sim \text{Dirichlet}(\alpha_1, \alpha_2, \ldots, \alpha_n) \\
(q_1, q_2) & \sim \text{Dirichlet}(\alpha_1 \beta_1, \alpha_2 \beta_2)
\end{align*}
\]

with \(\beta_1 + \beta_2 = 1\)
Splitting entries of probability vectors preserves Dirichlet property, for example:

\[(\pi_1, \pi_2, \ldots, \pi_n) \sim \text{Dirichlet}(\alpha_1, \alpha_2, \ldots, \alpha_n)\]

\[(\tau_1, \tau_2) \sim \text{Dirichlet}(\alpha_1 \beta_1, \alpha_2 \beta_2)\]

with \(\beta_1 + \beta_2 = 1\)

\[\Rightarrow \quad (\pi_1 \tau_1, \pi_1 \tau_2, \pi_2, \ldots, \pi_n) \sim \text{Dirichlet}(\alpha_1 \beta_1, \alpha_1 \beta_2, \alpha_2, \ldots, \alpha_n)\]
A Dirichlet Process is an "infinitely decimated" Dirichlet distribution:

\[\begin{align*}
1 & \sim \text{Dirichlet}(\alpha) \\
(\pi_1, \pi_2) & \sim \text{Dirichlet}(\alpha/2, \alpha/2) \quad \pi_1 + \pi_2 = 1 \\
(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) & \sim \text{Dirichlet}(\alpha/4, \alpha/4, \alpha/4, \alpha/4) \quad \pi_{i1} + \pi_{i2} = \pi_i \\
& \vdots \\
\text{Each decimation step involves drawing from a Beta Distribution,} \\
\text{and multiplying into the relevant entry.}
\end{align*} \]
Dirichlet Processes are used for:

- Density/Function Estimation
- Semiparametric Modelling
- Sidestepping model averaging/selection
- Parametric Function estimation (e.g. regression, classification)

 Data: $x = \{x_1, x_2, \ldots\}$, $y = \{y_1, y_2, \ldots\}$

 Model: $y_i = f(x_i \mid w) + \mathcal{N}(0, \sigma^2)$
Function Estimation

- Parametric Function estimation (e.g. regression, classification)
 Data: \(x = \{x_1, x_2, \ldots \} \), \(y = \{y_1, y_2, \ldots \} \)
 Model: \(y_i = f(x_i|w) + \mathcal{N}(0, \sigma^2) \)
- Prior over parameters
 \(p(w) \)
Parametric Function estimation (e.g. regression, classification)

Data: $x = \{x_1, x_2, \ldots\}$, $y = \{y_1, y_2, \ldots\}$

Model: $y_i = f(x_i|w) + \mathcal{N}(0, \sigma^2)$

Prior over parameters

$$p(w)$$

Prosterior over parameters

$$p(w|x, y) = \frac{p(w)p(y|x, w)}{p(y|x)}$$
Parametric Function estimation (e.g. regression, classification)

Data: \(x = \{x_1, x_2, \ldots \} \), \(y = \{y_1, y_2, \ldots \} \)

Model: \(y_i = f(x_i|w) + \mathcal{N}(0, \sigma^2) \)

Prior over parameters

\(p(w) \)

Posterior over parameters

\[
 p(w|x, y) = \frac{p(w)p(y|x, w)}{p(y|x)}
\]

Prediction with posteriors

\[
 p(y_i|x_i, x, y) = \int p(y_i|x_i, w)p(w|x, y)dw
\]
Parametric Function estimation (e.g. regression, classification)
Data: \(x = \{x_1, x_2, \ldots \} \), \(y = \{y_1, y_2, \ldots \} \)
Model: \(y_i = f(x_i) + \mathcal{N}(0, \sigma^2) \)

Prior over functions
\[f \sim GP(\alpha, H) \]

Posterior over functions
\[p(f|x, y) = \frac{p(f)p(y|x, f)}{p(y|x)} \]

Prediction with posteriors
\[p(y_i|x_i, x, y) = \int p(y_i|x_i, f)p(f|x, y)df \]
Parametric density estimation (e.g. mixture models)

Data: \(x = \{x_1, x_2, \ldots \} \)

Model: \(x_i|w \sim F(\cdot|w) \)

Prior over parameters

\[p(w) \]

Posterior over parameters

\[p(w|x) = \frac{p(w)p(x|w)}{p(x)} \]

Prediction with posteriors

\[p(x_i|x) = \int p(x_i|w)p(w|x)dw \]
Bayesian nonparametric density estimation with Dirichlet processes

Data: $x = \{x_1, x_2, \ldots\}$
Model: $x_i \sim F$

Prior over distribution

$$F \sim DP(\alpha, H)$$

Posterior over distributions

$$p(F|x) = \frac{p(F)p(x|F)}{p(x)}$$

Prediction with posteriors

$$p(x_i|x) = \int p(x_i|F)p(F|x)dF$$
Bayesian nonparametric density estimation with Dirichlet processes

Data: \(x = \{x_1, x_2, \ldots \} \)

Model: \(x_i \sim F \)

Prior over distribution
\[
F \sim DP(\alpha, H)
\]

Posterior over distributions
\[
p(F|x) = \frac{p(F)p(x|F)}{p(x)}
\]

Prediction with posteriors
\[
p(x_i|x) = \int p(x_i|F)p(F|x)dF = \int F'(x_i)p(F|x)dF
\]
Parametric density estimation (e.g. mixture models)

Data: \(x = \{x_1, x_2, \ldots \} \)

Models: \(p(\theta_k | M_k), p(x | \theta_k, M_k) \)

Marginal likelihood

\[
p(x | M_k) = \int p(x | \theta_k, M_k) p(\theta_k | M_k) d\theta_k
\]

Model selection

\[
M = \arg\max_{M_k} p(x | M_k)
\]

Model averaging

\[
p(x_i | x) = \sum_{M_k} p(x_i | M_k) p(M_k | x)
\]
Model Selection/Averaging

- Parametric density estimation (e.g. mixture models)
 Data: \(x = \{x_1, x_2, \ldots \} \)
 Models: \(p(\theta_k|\mathcal{M}_k), p(x|\theta_k, \mathcal{M}_k) \)

- Marginal likelihood
 \[
 p(x|\mathcal{M}_k) = \int p(x|\theta_k, \mathcal{M}_k)p(\theta_k|\mathcal{M}_k)d\theta_k
 \]

- Model selection
 \[
 \mathcal{M} = \arg\max_{\mathcal{M}_k} p(x|\mathcal{M}_k)
 \]

- Model averaging
 \[
 p(x_i|x) = \sum_{\mathcal{M}_k} p(x_i|\mathcal{M}_k)p(\mathcal{M}_k|x)
 \]
 \[
 = \sum_{\mathcal{M}_k} p(x_i|\mathcal{M}_k)\frac{p(x|\mathcal{M}_k)p(\mathcal{M}_k)}{p(x)}
 \]
Marginal likelihood is usually extremely hard to compute.

\[p(x|M_k) = \int p(x|\theta_k, M_k)p(\theta_k|M_k)d\theta_k \]

Model selection/averaging is to prevent underfitting and overfitting

But reasonable and proper Bayesian methods should not overfit

Use a really large model \(M_\infty \), and let the data speak for themselves.
A finite mixture model is defined as follows:

\[\phi_k \sim H \]
\[\pi \sim \text{Dirichlet}(\alpha/K, \ldots, \alpha/K) \]
\[z_i | \pi \sim \text{Discrete}(\pi) \]
\[x_i | \phi_{z_i} \sim F(\cdot | \phi_{z_i}) \]

- Model selection/averaging over:
 - Hyperparameters in \(H \).
 - Dirichlet parameter \(\alpha \).
 - Number of components \(K \).

- Determining \(K \) hardest.
Imagine that \(K \gg 0 \) is really large.

If parameters \(\phi_k \) and mixing proportions \(\pi \) integrated out, the number of latent variables left does not grow with \(K \)—no overfitting.

At most \(n \) components will be associated with data, aka “active”.

Usually, the number of active components is much less than \(n \).

This gives an infinite mixture model.