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Abstract. Protein translocation, the transport of newly synthesized
proteins out of the cell, is a fundamental mechanism of life. We are
interested in understanding how cells recognize the proteins that are to
be exported and how the necessary information is encoded in the so
called “Signal Sequences”. In this paper, we address these problems by
building a physico-chemical model of signal sequence recognition, us-
ing experimental data. This model was built using decision trees. In a
first phase the classifier were built from a set of features derived from
the current knowledge about signal sequences. It was then expanded by
feature generation with genetic algorithms. The resulting predictors are
efficient, achieving an accuracy of more than 99% with our wild-type
proteins set. Furthermore the generated features can give us a biological
insight about the export mechanism. Our tool is freely available through
a web interface.

1 Introduction

1.1 Signal Sequences

Proteins synthesized in the cell must be transported to the correct cellular com-
partment so that they can achieve their role. This process is called protein tar-
geting and is a fundamental aspect of cell protein metabolism [1]. For instance
blood plasma proteins and polypeptidic hormones must be delivered to the ex-
tracellular space. We are interested in the secretion pathway, which involves
the targeting and transport of the proteins out of the cell. The protein complex
(called translocon) which exports the proteins varies from one species to another.

All the proteins that must be exported, carry a particular region of conserved
function, the signal sequence (SS) or signal peptide, located in N-terminal ex-
tremity. The length varies slightly from 10 to 50 amino-acids (AA). The protein
is exported before folding and the SS is usually cleaved after the export. The
precise location where the cleavage occurs is called the cleavage site.

The most interesting feature of SS is their inter- and intra-species variability.
Their sequence as well as their length vary. Thus, they do not carry any system-
atic consensus. However, three properties have been proposed as distinguishing
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features of SS [2]: (i) They begin with an N-terminal region which includes one
or several positively charged lysine or arginine residues. This region is called the
N-Region. (ii) Following the N-Region, SS contain a stretch of hydrophobic AA
forming the so-called H-Region. (iii) In the majority of secreted proteins there
is a third region, the C-Region, located between the H-Region and the cleavage
site. It carries a weak consensus recognized by the leader-peptidase.

The above properties are too vague to easily determine whether or not a
protein will be secreted. The hypothesis that these three regions, as defined
above, characterize an exported protein is based on observations made on known
SS. However there are no experiments that confirm that these three properties
are sufficient and/or relevant for the recognition process. To address the problem
of correctly discriminating secreted proteins from the other ones (cytosolic),
artificial intelligence techniques have been considered.

1.2 Computer Predictions of Signal Sequences

Many methods for the recognition of SS have been proposed. For all these meth-
ods, the predictors are built by an algorithm based on supervised learning tech-
niques. The SignalP method is currently considered as the best classification
method [3] and is the most widely used. It consists of two feed-forward neural
networks [4]. The first is trained to recognize the SS itself; the second recognizes
the cleavage site.

SignalP cannot help us understand the physico-chemical properties recognized
by the translocon. The problem is intrinsic to the nature of classical neural
networks which does not allow the retrieval of high-level symbolic rules. Another
weakness resides in the fact that SignalP uses the existence of a valid cleavage site
as a strong classification criterion. Although it is true that most SS include such a
site, there are proteins like ovalbumin which are exported but lack a cleavage site.
Furthermore mutated SS are poorly recognized by existing predictors. Therefore
there is a need to develop new approaches with better prediction scores on such
proteins and which gives better insight into the mechanisms at work.

1.3 Decision Trees

In this paper we propose a novel approach based on decision tree classifiers to
understand how SS are recognized. Decision trees are classification programs that
can classify objects according to properties (or features). Different algorithms
exist to build such trees from a list of properties and a set of example objects
representative of the different classes. As it is the case with neural networks,
the learning strategy is supervised, i.e. based on a training set of sequences. The
output of this algorithm is a tree in which the non-terminal nodes are evaluations
based on the properties characterizing the objects being classified. The leaves of
the tree (the terminal nodes) are the possible classes.

An important advantage of decision tree building algorithms is that only the
properties necessary for the classification are retained. The most discriminant
properties appear at the root of the tree and the less discriminant ones are near
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the leaves. This allows us to identify the classification mechanisms explicitly,
from the most relevant to the least important one.

1.4 Machine Learning to Investigate Signal Sequences

Our goal was to apply the decision tree method to the problem of SS recogni-
tion. We started our investigation using only the N- and H-regions, because the
C-region is recognized by the cleavage enzyme after export but probably not by
the translocon itself.

Note that since these regions were only described qualitatively, it is necessary
to specify a procedure to measure them from a given protein sequence. We
propose in Sec. 2.2 a way to compute them.

The purpose of building a decision tree is not only the construction of a
new and better SS predictor, but also to show if one or more of the properties
mentioned above are relevant and sufficient. If we can reach good efficiency using
only these properties we can conclude that they are indeed sufficient. If not, an
extended set of features needs to be considered.

Hence, to generate these extra features (or to refine the parameters of existing
ones) we have considered feature generation with genetic algorithms. The evo-
lution will optimize individuals whose genes are potential new features. Those
features are mathematical functions modeling the various physico-chemical in-
teractions between translocon and the N-terminus of protein. For this purpose,
they compute a score for each protein according to the physico-chemical prop-
erties of the AA. To evaluate the fitness of the individuals, we add its gene (the
new features) to the existing features described above. The fitness is then the
performance of the resulting decision tree. This method can lead us not only
to improve our efficiency but to suggest new biological criteria and new wet-lab
experiments to confirm them.

In a first phase we focus our research on E. coli. This choice is motivated by
the large number of experimentally known secreted proteins and the existence
of a collection of mutant SS.

2 Decision Trees for Signal Sequences

2.1 Datasets

We used four datasets: (i) 104 wild-type E. Coli proven signal sequence proteins
dataset ; (ii) 160 wild-type E. Coli cytoplasmic proteins; (iii) a collection of 17
signal-defective mutants of the phoA, malE and rbsB genes; (iv) a collection of
145 maspin “gain-of-function” mutants and derived constructions.

The datasets (i) and (ii) were obtained from the UniRef100 database as fol-
lows: the set (i) was composed only the proteins with proven signal sequence
annotations after removal putative TAT proteins with the TatP predictor [5];
the set (ii) was composed of proteins containing the line: CC -!- SUBCELLULAR
LOCATION: Cytoplasm. The sequences of all datasets were truncated to the first
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70 AA. The final dataset was made by pooling together the four datasets for a
total of 427 instances (130 SS and 297 cytoplasmic proteins).

We lack space to describe properly the mutants collection, but all the datasets,
their descriptions and references are available online on [6].

2.2 Computation of the Signal Sequence Features

In order to build our decision tree and to assign specific values to the SS features
(properties), it is necessary to find a way to define the N- and H-regions and to
attribute them a score.

H-Region Features: The H-region score quantify the presence of a stretch of
hydrophobic AA. The difficulties in scoring the H-region are (i) to identify the
relevant stretch, (ii) to choose the most appropriate hydrophobicity scale and
(iii) to find the proper way to combine the hydrophobicity of each residue along
the stretch.

We compute four different H-region features, mixing two different hydropho-
bicity scales with two different calculations. The two scales are (i) AA hydropa-
thy [7]; (ii) percentage of buried residues [8]. The first is a composite index
obtained from different measurements and modified to match biological insight.
This scale is the most widely used in bioinformatics experiments. The second de-
rives from statistical structural data and only takes the distribution of a residue
at the surface or in the core of a set of globular proteins into account.

These two scales can be used in two different ways to define the H-region
feature score: we scan the sequence searching for the most hydrophobic stretch of
AA, or the longest one. A stretch is defined as a contiguous substring in which all
AA have an hydrophobic score larger than a given threshold (with respect to the
chosen scale). The threshold used is given by the average hydrophobicity of the
20 AA minus the standard deviation. Among all the stretches, we select the best
one. In the first calculation method we compute the sum of the hydrophobicity
of all its AA for each stretch. The H-region is then defined as the stretch with
highest sum. The final score is this largest sum. In the second calculation method,
the H-region is defined as the longest stretch. The final score is its length.

We chose the following terminology for these four features: HLK is the score
based on the Kyte-Doolittle scale and returning the longest stretch. H

V K
is based

on the same scale but returns the value of the most hydrophobic stretch. We use
the same notation scheme for the score derived from the percentage of buried
residues: H

LB
and H

V B
.

N-Region Features: In order to determine the N-region, we used the fact that
the N-region terminates where the H-region starts. Thus, the H-region had to
be computed first, as explained above. We observe that the four possible ways
to extract the H-Region give the same N-region. This is due to the fact that the
two hydrophobicity scales discussed above select the same AA as hydrophobic,
although they return different final values.
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Once the N-region has been identified, we compute its score. We again propose
two different features. The first one is the average charge N

Q
(p) of protein p and

the second one is the lysine-arginine density N
R
(p):

N
Q
(p) =

1
n(p)

n(p)+1∑

i=2

q(pi) , N
R
(p) =

1
n(p)

n(p)+1∑

i=2

r(pi)

where n(p) is the length of the N-Region, pi the ith AA of the protein and
q(pi) is the charge of AA pi. r(pi) is equal to 1 if pi is a lysine or arginine, 0
otherwise. The difference between these two features is that charged aspartate
and glutamate residues are neglected in N

R
.

2.3 Tree Building Algorithm and Test Procedure

We want to be able to classify a protein according to its location inside or
outside the cell, from the six features described above. Here we consider the
C4.5 tree building algorithm [9] because of the good open-source Weka 3 [10]
implementation. Several parameters of the C4.5 algorithm were tested, but the
best results were obtained by setting the pruning confidence parameter to 0.15
and the minimum number of instances parameter to 2.

We were mainly interested in the accuracy of the classifier: A = a+d
N where A

is the accuracy, a the number of true positives, d the number of true negatives
and N the total number of instances.

To detect over training we used stratified cross-validation tests. This technique
works as follows: the dataset (both signal and cytosolic sequences) is split in 10
subsets S1,...,S10 using random sampling preserving the ratio between positive
and negative instances. At each step 1 ≤ i ≤ 10, a tree Ti is built with all Sj

such that j �= i. The accuracy Ai of step i is computed by applying tree Ti

to Si. The final score is the average of Ai. Note that the final tree is the one
obtained with the full dataset. Thus, the stratified cross-validation method tests
the robustness of the tree building algorithm with respect to the dataset.

2.4 Results

The resulting tree, called SigTree, was built according to all properties discussed
above, and is presented in fig. 1. After a first score-node corresponding to the
N

Q
score, the tree splits in two main branches. The first one (low N

Q
score)

corresponds to 91.2% of all 297 cytosolic sequences, whereas the second branch,
corresponds to 77.7% of all 130 SS.

SigTree achieves an accuracy of 98.2% on the whole dataset, and a cross-
validation accuracy of 89.9% which is significant. We can now test separately
the wild type proteins (set i and ii) and the two mutants collections on the
resulting tree. The results are summarized on tab. 1.

As we said above, the detection of a cleavage site may not be a good indicator
of protein secretion. To verify this assumption, we built another tree by adding
a cleavage site feature as described in [11]. The results were almost identical to
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Fig. 1. SigTree. The circle nodes represent the features defined above. The square
leaves are the predicted classes. The first number between parenthesis represents the
total number of instances classified in the leaves; the second number is the number of
dataset sequences wrongly classified (it is omitted if all the sequences are well classified).
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Table 1. SigTree and SigTreeGA accuracy on the different datasets (computed on the
entire sets)

Dataset SigTree SigTreeGA

i+ii 97.4% 99.2%
iii 64.7% 70.6%
iv 89.7% 97.2%

the tree presented above. The cross-validation was only slightly better: 90.4%
instead of 89.9%. Therefore we decided to omit this feature in our predictor.

3 Features Generation with Genetic Algorithms

We now want to extend our set of six initial features using Genetic Algorithms
(GA). An individual in the GA population will code for a set of new features.
These features represent measures of interactions of the N-terminus of proteins
with the translocon. Since we do not know how many new features are necessary
to improve the classifiers, we used variable size individuals. Those indivuals
ranged between one and seven genes and were initialized with four random genes.

As those interactions are depending on the AA physico-chemical properties we
consider for each AA the values of its physico-chemical properties. However the
large number of AA properties compiled in the database AAIndex [12] (more
than 500) is impracticable. Thus we have reduced the existing set with the
method described in [13] to a set of 45 clusters. This set is available on-line
on [6]. A feature is now defined by two components: (i) one of the 45 physico-
chemical properties P ; (ii) a reduction function which combines the value of P
for the AA of the given protein. Each reduction function represents a possible
type of interaction between a newly synthesized protein and the translocon.

3.1 Genetic Algorithm Components

Genes: Each gene of the individuals is a possible feature. When a feature is
applied on a protein, we first generate a numeric array by replacing each AA
with its corresponding value of the coded property. The the reduction function
is then applied on this array and returns one number: the feature score for the
protein.

We have designed four types of reduction functions defined by an algorithm
and structural parameters. Those parameters are optimized by the GA evolution.
The reduction functions we chose and their associated parameters are:

Sliding Windows: A sliding window reduction returns the minimum or the max-
imum sum of all substring of l AA along the protein.
Parameters: the window size l, a Boolean indicating whether the max or min
of the sums is chosen.
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Stretch operator: This reduction works as the H-region feature of Sect. 2.2 but
now with an adjustable threshold value.
Parameters: a number representing the threshold, a Boolean indicating whether
the highest stretch or the lowest one is returned.

Helix Window: This function assumes that the SS has an helical structure (not
necessarily an α-helix) of period λ AA. For all λ possible offsets, it computes
the sum of the AA along the SS, with stride λ.
Parameters: an integer λ representing the helix period in AA, a Boolean indi-
cating whether the max or min of all the sums is chosen.

Sliding Helix Window: This reduction function is a combination of the sliding
window and the helix window. It proceeds like the latter but sums up only l AA
at time. For example, for λ = 3 and l = 4, we will first add AA with indices
0, 3, 6, 9, then AA with indices 1, 4, 7, 10 and so on.
Parameters: an integer λ representing the helix period, the window size l, a
Boolean indicating whether the max or the min is taken.

Individuals and Fitness: The fitness is computed by first including the fea-
tures of the individual to the previous set of six features described above and then
by training a decision tree with this extended feature set. The cross-validation
of the resulting classifier is computed on the whole dataset and returned. Note
that if the same feature appears more than once, the tree building algorithm will
use only one.

GA Operators: We chose the classical one-point crossover and point mutation
operators but adapted for variable size individuals. For the crossover we sim-
ply draw a different crossing point for each mate. For the mutation, we choose
randomly for each individual either to add a single gene or to delete an exist-
ing one. We used the n-genes, evolutionnary computing environment described
in [14] and available on [15].

3.2 Results

New Features. Different runs of our system converge to the same 3 new fea-
tures. The first two are interpretable: (i) F1: a Sliding Helix Window which
minimizes an hydrophobicity property with l = 4 and λ = 4; (ii) F2: an Heli-
cal window of period 3 which maximizes a turn/coil-propensity. We point out
that the periods found are good approximation of the α-helix period (3.6 AA).
These two new features are consistent with previous claims about the secondary-
structure of the signal-sequence [16].

The third feature, F3, is a stretch operator which minimizes a property which
results from a cluster (see Sect. 3) whose meaning is difficult to understand.

Resulting Tree. The resulting tree (SigTreeGA) is similar to SigTree in its
structure and the distribution of the instances. The performance is significantly
improved with a cross validation of 93.9%. The value on the specific datasets
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Fig. 2. SigTreeGA. The circle nodes represent the features defined above. The square
leaves are the predicted classes. The first number between parenthesis represents the
total number of instances classified in the leaves; the second number is the number of
dataset sequences wrongly classified (it is omitted if all the sequences are well classified).

are better too. On the entire wild-type protein dataset, we reach an impressive
accuracy score of 99.2% and the recognition of mutants is improved. The results
are summarized in tab. 1. This predictor is available on [6].
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If we analyze now the place of the new features in the tree, we can see that
these new features are placed below the first set of operators, allowing to refine
the result of the first classifier. The first two new features are placed in the low
N

Q
branch where the bulk of the non-secreted proteins are classified (271 out

of 297). The extra features and their usage in the tree indicate an important
role of secondary structure in SS recognition. Not only two of new features are
related to helical motives, but also the role of F2 in the tree can be viewed as
eliminating proteins whose propensity of coil/turn formation is to high.

4 Discussion

The first tree produced (SigTree) shows good performances on our datasets.
Further, the fact we can omit detection of a valid cleavage site is an indication
that our approach is not fooled by another signal which is only relevant to a
process taking place after the export.

However, the addition of new features generated by GA allow us to produce
a better classifier (SigTreeGA). This improvement justifies our approach and
emphasizes the need to provide a more complete theoretical description of SS.
Moreover the generated feature F1 and F2 give weight to the hypothesis of SS
(α-)helical structure.

Most of the mutants in our datasets are not explainable by the established
theory. We hope that our new features will eventually reveal how these mutations
have changed the export.

In the future we plan to extend our set of reduction functions to model other
possible interactions between the translocon and the SS. Furthermore, we will
train decision trees on taxonomic groups other than E. coli. Since our trees are
in fact biological models, the decisions trees of other species/groups can give
us insight into the biological differences between their translocons. Finally, this
method can be applied to other proteomic challenges, like the prediction of N-
terminal acetylation.
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