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Abstract. Polymer injection in moulds with complicated shapes is com-
mon in todays industrial problems. A challenge is to optimize the mould
design which leads to the most homogeneous filling. Current commer-
cial softwares are able to simulate the process only partially. This paper
proposes a preliminary study of the capability of a two-fluid Lattice-
Boltzmann model to provide a simple and flexible approach which can
be easily parallelized, will include correct contact angles and simulate
the effect of the positioning of air-holes.
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1 Introduction

In the injection moulding process, as in many other scientific problems, numerical
simulations play an important role. Polymer injection pressure, injection points
and locations of air evacuation channels all affect the quality of the final object.
In particular, the re-attachment of two fronts of matter (weld lines) leads to
strong internal constraints and weakens its mechanical resitance.

Commercial softwares, such as MoldFlow, offer powerful tools to simulate the
moulding process in the free surface approximation. They provide a quantitative
description in which polymer properties can be adjusted. However, they offer
little flexibility to combine the simulation with a shape optimization procedure.
In addition, the free surface approximation does not allow the designer to study
the effect of the location of air evacuation points. Finally, parallelized versions
of such softwares are often not available.

There is a need among the practitioners of this field to develop new ap-
proaches. In particular, there seems to be a lack of tools offering a pre-modeling
of the injection process, with enough flexibility to investigate the impact of ge-
ometrical factors. There are several examples in which the mould geometry is



dominating in comparison with the fluid rheological properties. For instance,
a recent original method based solely on the propagation of distances demon-
strates that the injection process is more driven by the geometry of the mould
cavity than by the non-Newtonian features of the polymer. In other words, the
crucial hydrodynamic properties are mass conservation, forbidden regions and
behaviour at the mould boundaries.

Along this line, the use of mathematical morphology concepts [1, 2] for the
simulation of the propagation of matter in a cavity, with one or more points
of injection [3], is quite promising. The work by G. Aronsson [4] provides an
explicit link between the concept of propagation of distances and the spreading
of fluids with power-law stress tensors.

The goal of this paper is to exploit the flexibility and simplicity of the Lattice
Boltzmann (LB) method [5] to address the mould injection process at a pre-
model level. We consider the so-called Shan-Chen model [6] of two immiscible
fluids representing the polymer and air respectively. We assume that Newtonian
fluids will provide good approximations if geometrical factors are dominant. In
this preliminary study we shall not pay too much attention to the actual ratio
of densities and viscosities of the two fluids.

We will first test our approach on the so-called Hele-Shaw situation (see for
instance [7]) and then consider a more realistic mould cavity. The LB results
are compared with MoldFlow simulations. A discussion of the critical features
of our approach is finally given.

Note that, at the time of writing, we became aware of a similar work by
Ginzburg [8] in which a free-surface LB model is developed and applied to the
filling of a cavity. However, this model does not include air behaviour and does
not take into account the effect of air evacuation points.

2 The lattice Boltzmann model

Lattice Boltzmann (LB) models are historically derived from cellular automata
fluid models [9, 5]. These models are seen as an alternative to finite element
techniques for fluid flow computations. They have been successfully applied to
multi-phase and multi-component flows and several other applications. In the
present context, we propose to adapt the LB methods to the filling phase of an
injection moulding process.

2.1 The lattice Boltzmann equation for a single fluid

A LB model is built on a discrete space-time universe. The fluid is described
by density distributions function fk(x, t), k = 0 . . . z containing the amount of
fluid that enters lattice node x at time t, with velocity vk, k = 0 . . . z. The
possible velocities are constrained by the lattice topology. Typically, z is the
lattice coordination number and the discrete set of velocities is chosen so that,
in one time step ∆t, the particles travel one lattice spacing ∆x in any of the z



lattice directions. One also considers a rest population of fluid particles f0, with
velocity v0 = 0.

The usual physical quantities such as local density and velocity are obtained
from the fk by the following relations:

ρ =

z
∑

k=0

fk and u =

z
∑

k=0

fkvk. (1)

During time evolution, the fluid density functions are streamed on the lattice,
in the direction specified by k. After the streaming, a collision occurs between all
the fk entering the same lattice site. The result of this collision is to redistribute
mass and momentum to each lattice directions, thus creating the post collision
values of the fk. It can be shown that, provided that the collision operator is
properly chosen, the LB dynamics solves the Navier-Stokes equation [9, 5], in the
low Mach number regime.

It is also shown that the fluid pressure is related to the fluid density by the
ideal gas state equation p = c2

sρ, where c2
s is the speed of sound. Therefore, in

a LB model, there is no need to solve the pressure equation. It is all built-in in
the equation of motion for the fk.

In what follows, we consider a two-dimensional system, with z = 8. This
corresponds to the so-called D2Q9 model [5]. The collision is obtained by a
relaxation with coefficient ω to a truncated Maxwell-Boltzmann local equilibrium
distribution function f (eq), which depends only on the current local fluid density
ρ and velocity u. This approach is referred to as a LBGK model [9, 5].

The following equation summarizes the evolution rule:

fi(x + vi∆t, t + ∆t) − fi(x, t) = −ω
(

fi − f
(eq)
i

)

+ γF int · vi (2)

where Fint is a term which may account for extra interaction force acting on
the particle density distribution. The coefficient γ is a normalization parameter
which depends on the chosen lattice topology.

In order to model a system of two immiscible fluids (polymer and air) we
use the so-called Shan-Chen model [6]. Two sets of fk are defined, one for each
species. The values corresponding to the two fluids will be distinguished by a
supperscript σ ∈ 0, 1. Each fluid follows the dynamics of a single fluid system,
as given in eq 2. There are only two changes that must be made to describe the
interaction between the fluids.

First, the fluids define a common velocity and use it for the computation of
the equilibrium distribution in equation 2

u = u
(0) + u

(1) =

∑

σ,i fσ
i vi

∑

σ,i fσ
i

. (3)

Second, the term Fint is computed so as to produce a repulsive interaction
force between the two fluids. It depends on a parameter W that accounts for the
surface tension of the fluids:

F
(σ)
int (x, t) = Wρ(σ)

∑

k

Ψ (σ) (x + τvk) vk. (4)



In the bulk of the fluid, the quantity Ψ corresponds to the density of the other
fluid:

Ψ (σ) = ρ(1−σ). (5)

When one models immiscible fluids, one chooses an interaction force that is
sufficiently strong to keep the penetration between the fluids low. The simulated
flow field is thus separated in two regions, in each of which one fluid is dominant.
In a small range around the interface between those two regions, both fluids
coexist symmetrically. In this range, the density variations are large and the
approximation for an incompressible fluid is not valid any more. The results
must rather be understood as representative of some kind of interface dynamics
between the immiscible fluids.

3 Boundary conditions

On the boundaries of the domain, a specific dynamics is applied on the fluid
density distributions fσ

i in order to produce the desired effect: no-slip on a wall,
fixed air pressure on the air-holes and specific contact angle at the interface
between air, polymer and solid walls. Finally, polymer injection points also need
a special treatment. The boundary conditions we propose are discussed below.

3.1 Bounce back boundaries

We implement no-slip boundaries (i.e. boundaries on which the velocity is zero)
by assigning bounce back dynamics to the boundary nodes. Thus, the dynam-
ics (2) is replaced by a reflection rule:

f
(σ)
i (x, t + ∆t) = f

(σ)
oppositeOf (i)(x, t). (6)

The index oppositeOf (i) is the index associated with the direction opposite to
direction i: voppositeOf (i) = −vi.

The flow sites next to the boundaries interact with the boundary sites through
a wetting parameter g(σ). The value of Ψ from equation 4 is thus defined on the
boundary nodes by

Ψ (σ) = g(σ) (7)

The value of g(σ) determines the contact angle of the fluid interface on the
wall [10]. In our simulations, we have chosen g(σ) = −g(1−σ). The situation is
explained on Figure 1. On this figure, fluid 1 is wetting, and fluid 0 is non-wetting.
This effect is obtained by chosing g(0) > 0 and g(1) < 0.

3.2 Inlet and outlet boundaries.

As a boundary condition for the injection spot and the air-holes, we define semi-
permeable walls: one fluid is retained by a normal no-slip condition, while the
other fluid is injected or evacuated.



Fig. 1. Bounce back boundaries with a defined contact angle.
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Let us consider as an example the case of fluid 0 being evacuated through the
semipermeable wall. We chose to perform the evacuation at a constant pressure.
This is achieved by applying on fluid 0 the (constant pressure) outlet boundary
condition described in the reference [11]. Furthermore, an interaction term Ψ (1) =
ρ(0) is defined on the wall. This means that fluid 1 acts like a bulk node (5),
rather than a wall node (6).

For fluid 1 we implement a (no-slip) bounce-back dynamics on the wall.
Consistently with the presence of this semi-permeable wall, a wetting parameter
Ψ (0) = g(0) is defined.

4 Simulation of an injection in free space

A first validation of the numerical model is obtained from a simple simulation
with cylindrical symmetry. A polymer is injected at a spot in free space and
expands in the form of a disk of increasing radius R. This is the well known
Hele-Shaw model [7]. In this case, the boundary conditions have a subsidiary
importance. We can therefore verify whether the basic properties of the polymer
are properly resolved by the model.

4.1 Assumptions about material properties

In the particular case of injection moulding, we consider only very high viscous
fluids. In consequence, the inertial and gravitational terms will not be taken into
account in the momentum equation. This simplification leads to a well known
equation : the Stokes equation (see for instance [7]). During the filling phase, the
polymer is assumed to be incompressible. The resulting equations are :

∇.v = 0 (8)

−∇p + ∇.σn = 0 (9)

where v is the fluid velocity, p the pressure and σn the viscous strain tensor.



4.2 Hele-Shaw assumptions

The Hele-Shaw model describes the filling of a mould cavity whose thickness can
be neglected. The filling fluid flow is modelled according to the Stokes equation
between two plates separated by a short distance h.

We consider a cartesian coordinate system where the z-axis is in the thickness
direction. The x − y plane is on the mid plane of the cavity and the velocity
components ux ,uy and uz are respectively taken in the x, y and z directions.
The Hele-Shaw flow model consists of the following assumptions [12]:

– The z-component of the velocity is neglected with respect to the other ve-
locity components.

– The pressure is constant across the thickness. It only depends on x and y.
– The velocity gradient in the x and y directions is independent of the z

direction.

Applying the Hele-Shaw assumptions to the Stokes equation, one obtains the
simplified expressions:

∂p

∂x
=

∂

∂z

(

η
∂ux

∂z

)

,
∂p

∂y
=

∂

∂z

(

η
∂uy

∂z

)

,
∂p

∂z
= 0 (10)

with η the viscosity.
These equations can be solved explicitly in the case of a disk mould with a

constant injection rate Q [7].
Inside the injected polymer, the distribution of the pressure is predicted as

follows:
p(r) = a + b ln r (11)

where r < R is the distance to the injection point and a and b are constant. The
distribution of the velocity is given by

ρ(r)v(r) =
Q

2πr
(12)

Finally, the expression for the surface growth of the polymer follows directly
from the mass conservation in an incompressible fluid:

πR2 = Qt (13)

4.3 Numerical result

The geometry of the simulation is a square domain of size 201 × 201, initially
filled with air (fluid 1) at a density (pressure) of 1.0. At the boundary of the
domain, the pressure of fluid 1 is kept constant at this value.

Fluid 1 (the polymer) is injected in the middle of the system, on one lattice
site, with fixed density (pressure) ρ1 = 1.1. The two fluids have same viscosity
(relaxation coeficient ω = 1) and their mutual interaction is defined through
W = −0.3.



t = 4000 t = 40000 t = 80000 t = 140000

Fig. 2. Amount of polymer injected as a function of time, in a free space. In the later
stage, the anisotropy is due to the air which cannot escape fast enough out of the
boundaries.

The evolution of the system is represented at four chosen time steps in Fig-
ure 2. We expect from equation 13 that the radius of the injected disk increases
as a square root of the time. This fact is verified on the simulations, both from
the program MoldFlow and from the lattice Boltzmann model (see Figure 3).

We have measured the velocity and pressure profile in the simulation at the
time step t = 140000. The results inside a radius of r < 30 are shown in Figure 4.
They exclude the domain close to the free boundary that obeys special interface
dynamics. Note that the velocity v is the modulus of the velocity (ux, uy).

In agreement with the predictions of the Hele Shaw theory (equations 11
and 12), the datapoints are fitted with a logarithmic law for the density and an
r−1 law for the velocity. The value of Q used to fit the data is the one that is
measured in the simulation: our injection boundary condition at a given pressure
(density), fills the mould with a constant flow Q.

The above results show that Hele-Shaw model is correctly obeyed by the LB
simulation.

5 Simulation of a realistic moulding problem

5.1 Overview

As a second sample application, we consider the moulding of a charge card with
integrated chip. In this case, the space taken by the chip is excluded from the
moulding domain.

The aim of this application is to show that even somewhat complex geome-
tries can be addressed with the simulations. In general, the implementation of ap-
propriate boundary conditions is a very delicate topic. However, fairly appealing
results are obtained already with the simple boundaries we have implemented.

5.2 Results

In the simulation, the surface of the charge card is initially filled with air (at a
density ρ0 = 1.0). The polymer is injected on the side opposite to the chip, at a
level corresponding to the middle of the chip location.
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Fig. 3. Evolution of the disk radius during an injection in free space. On the left hand
side (a), the results from the program MoldFlow are presented, on the right hand side
(b) the results from a lattice Boltzmann simulation. On the upper part of the pictures,
the surface of the injected polymer is plotted at successive timesteps. On the lower
part, the curves for the time evolution of the radius are fitted with the predictions of
the Hele-Shaw theory.
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Fig. 4. Velocity profile (a) and pressure profile (b) at t = 140000 obtained from the
lattice Boltzmann simulation. The solid line shows a fit with the predictions of the Hele
Shaw theory.



The injection is made at a density ρin = 1.01. The air is evacuated on the
right boundary of the card at a constant density ρout = 1.0. All other boundaries
implement a bounce-back condition with g(0) = g(1) = 0, which produces a
contact angle of π/2. The surface tension is chosen at a value W = −0.3.

Figure 5 plots the area occupied by the polymer at successive timesteps, first
calculated by the commercial program MoldFlow and, secondly, calculated by
the LB method. The difference betweend (b) and (c) consists in the way the
boundary conditions are defined on the chip perimeter (see caption). The results
of both simulations are very similar in the beginning. In the second part of the
simulation, the LB method turns out to be more sensitive to the geometry of
the domain than the MoldFlow simulation.

(a) (b) (c)

Fig. 5. Mould of a charge card. The curves show the propagation front of the polymer
as computed from the program MoldFlow (a) and the lattice Boltzmann method (b,c).
In (b), a bounce-back condition is applied on the surface of the chip, whereas in (c),
the air is evacuated at constant density on the chip perimeter.

The sensitivity of the flow dynamics to the geometry of the domain that we
observe in the LB simulation is due to the pressure of the air on the polymer.
Indeed, one of the main advantages of the LB method, the ability to model the
influence of the air on the dynamics, also introduces some complications. If, as
in our simulations, the air is not evacuated fast enough, this can have a serious
impact of the flow dynamics; the resulting flow geometry may disagree with real
moulding applications, where the air is much lighter and less visous than the
polymer. In this context, some work still needs to be done either on the flow
properties of the air or on the boundary conditions.



6 Conclusion

The LB methods brings several interesting elements in the process of injection
modeling. The possibility to consider the full system of two fluids (air plus poly-
mers) and to include air traps makes it possible to model how air escapes from
the mould as the polymer expands. This feature is not offered by current soft-
wares. In this respect, our preliminary results are relevant. They are especially
encouraging in the case of the charge card with a complex geometrical shape.

One assumption of our preliminary study was that both fluids have the same
viscosity and density. The simulation shows that although this assumption is
sufficient for explaining some geometric properties of the moulded polymer, it is
too strong to be able to represent dynamic features such as the detailed polymer
front propagation profile. Therefore, future work might include a more realistic
model for the different physical properties of the polymer and the air. Our study
must be continued in order to give a reliable solution for polymer injection
moulding and to include optimization processes where the best injection points
and air-holes are determined to minimize weld lines formation.

In conclusion, we think that Lattice Boltzmann methods are promising can-
didates for the simulation of polymer injection moulding and for the solution of
current problems such as melt polymer/mould wall interaction.
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