High-Level System Design Using Foresight

Giovanna Di Marzo Serugendo
IT / CE

Outline

- Development Process
- HW/SW Co-Design
- Foresight: a Modelling and Simulation tool
- ALICE DAQ System
Development Process (1)

- Separate Functionality from Architecture
 - Design system functionality before thinking at hardware/software implementation details

- Formal Specification and Verification
 - Mathematical definition of system (unambiguous)
 - Semantics of specification provides a model
 - Behaviour of model = behaviour of system
 - Verification: model behaves correctly (simulation, model checking)

Development Process (2)

- First Phase: Functional Requirements
 - Abstract specification: interfaces, functionality
 - Verification: incomplete/inconsistent functional requirements, performance problems, design errors
 - Analysis: critical parameters, maximum (minimum) performances, particular conditions

- Second Phase: Architectural Concerns
 - Detailed specifications: algorithms, hardware choices, alternative architectures
 - Verification, analysis: check requirements and performances
HW/SW Co-design

- Foresight Systems, Inc.
- System Design
 - Foresight tool
 - Specification Execution
- System Co-design
 - Foresight co-design tool
 - Foresight specification with hw/sw components
 - Specification Execution
- HW/SW Components
 - HDL simulation environment
 - Seamless CVE

Foresight (1)

- Foresight Tool
 - System Level Modeling and Simulation Tool
- Specification
 - Hierarchical Specifications
 - Data Flow Diagrams (event-driven processes, events, control)
 - State Transitions
 - Mini-specs
 - Real-time parameters
Foresight (2)

- Analysis
 - Type checking, input/output checking, syntax errors

- Execution of Specification (Simulation)
 - Real-time execution of specification
 - Stand-alone executable specification
 - Animation of Diagrams
 - Real-time constraint validation
 - Debugging functions (breakpoints, monitors windows)
 - Simulation is NOT formal verification!
 - Works on Sun workstation

ALICE DAQ

- Model of whole ALICE DAQ System
 - Trigger System (L0, L1, L2)
 - Trigger and Tracking Detectors
 - DAQ (with sub-event building, event building, storage)
 - Parameters (buffer sizes, etc.)

- Evaluation of Performances
 - Whole system: maximal bandwidth / real bandwidth
 - For each detector: buffer occupancy, bandwidth usage

- Alternative Algorithms
 - Event building computing
 - L2 trigger decision
ALICE: Overall System

ALICE: Tracking Detectors
ALICE: FSM, Mini-Spec

Results

Maximal Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>L0</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>137</td>
<td>133</td>
<td>92</td>
</tr>
<tr>
<td>Dimuon</td>
<td>462</td>
<td>457</td>
<td>585</td>
</tr>
<tr>
<td>Dielectron</td>
<td>159</td>
<td>152</td>
<td>197</td>
</tr>
<tr>
<td>Minbias</td>
<td>747</td>
<td>714</td>
<td>409</td>
</tr>
<tr>
<td>Misc</td>
<td>203</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>1997</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After 1 sec (6038 ev)

Expected at L2:

<table>
<thead>
<tr>
<th>Buffer Full</th>
<th>Bandwidth</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>23</td>
<td>14200 MB/18000Mb/</td>
</tr>
<tr>
<td>TRD</td>
<td>43</td>
<td>1627MB/1800MB/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>MB</th>
<th>DM</th>
<th>DIEL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>20H</td>
<td>20H</td>
<td>650 Hz</td>
<td>200 Hz</td>
<td>890 Hz</td>
</tr>
</tbody>
</table>
Conclusion

- Separate Functionality from Architecture
- Foresight Systems provides integrated tools
 - Formal Specification and Execution
 - Seamless replacement of formal components by hardware/software components
 - http://www.nuthena.com/
- Advantage
 - Correct errors before implementation
 - Think about the functional level (correct interfaces)