Designing Fault-Tolerant Mobile Systems

Giovanna Di Marzo Serugendo University of Geneva, Switzerland

Alexander Romanovsky University of Newcastle upon Tyne, UK

Fidji'02 / November 2002

Université de Genéve

Outline

- Mobile Agents
- Fault-Tolerance and Mobile Agents
- Example
 - Electronic marketplace using mobile e-purses
- Techniques
 - Meta-Agent
 - Coordinated Atomic Actions
 - Asynchronous resolution
 - Self-Repair
 - Proof Carrying Code

Mobile Agents = ...

- Agents
 - Autonomous running entities, able to take decisions and initiatives
 - · Work on behalf of some user (or other system)
 - Several agents can work co-operatively (to solve some task) or in **competition** (for acquiring some resource)
- Mobile agents
 - Moves from one platform to another
 - · Weak mobility: code only moves, not internal state;
 - Strong mobility: both code and internal state moves, execution is resumed at remote location

Mobile Agents = ...

- Mobile Systems characteristics:
 - · Open: an agent interacts with other agents or systems
 - · Large-scale size (agents roam the whole Internet)
 - Asynchronous communication (use of a blackboard)
 - Decentralised (no central control)
- Platforms
 - · Need of full portability of mobile code
 - Usually Java-based platforms

Fault-Tolerance and Mobile Agents

- Abnormal Situations
 - Underlying components failures
 - Platform: memory, disk usage, unavailable resources
 - · Network: communication delays, node crashes, disconnection
 - Tolerated by underlying support
 - Partner's errors
 - · Impossibility of interaction, failures
 - Co-operative resolution
 - · Agents own faults
 - Local resolution

Fault-Tolerance and Mobile Agents

- Mobile Agents Requirements
 - Recovery from errors at remote locations
 - Light recovery code
 - · Impossible to maintain checkpoints (backward error recovery)
 - · Mobile agents cannot stay in transactions
 - Unanticipated abnormal situations
 - · Unknown locations of mobile agents

Fault-tolerance at the application level

Forward-error recovery

Fault-Tolerance and Mobile Agents

- Evaluation Criteria
 - Structuring Fault Tolerance (Built-in/Separated)
 - Error processing/Error Confinement
 - Recursive Structuring and Scalability
 - Overheads
 - · Flexibility, Run-time reconfigurability

Fault-Tolerance Techniques

- Meta-Agent
- Coordinated Atomic Actions
- Asynchronous Resolution
- ▶ Self-Repair
- Proof Carrying Code

Meta-Agent

- Characteristics
 - Error handling code downloaded at run-time
 - Several exception handlers available simultaneously
 - No overhead in the agent code size
- Good for ...
 - Asynchronous recovery from local errors
 - No need for a co-operative resolution scheme
- Application domains
 - Wireless applicationsActive networks

Coordinated Atomic Actions

Coordinated Atomic Actions

- Characteristics
 Define damage area (CA action)
 - Recursive System
 Structuring
- Good for ...
 Complex applications involving co-operating agents
 - Need for co-operative handling of exceptions
- Application domains
 - Active documentsWorkflow management applications

Self-Repair

- Characteristics
 Scales to large-size systems
- Good for ...
 - Agent having full autonomyAgent needs to recover even partially
- Error confined in the agent
 Overhead in the code size
 Age part
- · May employ meta-agents
- Decentralised control for
- functionality and faulttolerance
- Situations requiring quick resolution
- Application domains
 - Wireless applicationsRemote device control
 - Active Networks

Proof Carrying Code Conclusion • Good for ... Characteristics Mobile Agent Systems · Proof is part of the agent, not Agents interacting with · Specific characteristics: decentralised, dynamic, roaming entities customizable unknown agents, or . · Specific abnormal situations: migration errors, resources and ... agents using different standards · Limited flexibility for security problems, partner's failures recovering unanticipated errors Investigation of new techniques for fault-tolerance at: Application domains • Overhead of code size and execution time to execute the application level + forward error recovery Service discovery and composition at run-time • Application to: proof · biologically inspired systems • portable devices applications (physical mobility)