
1

1

A Generic Framework for the

Engineering of Self-Adaptive

and Self-Organising Systems

Giovanna Di Marzo Serugendo

dimarzo@dcs.bbk.ac.uk

Birkbeck College, University of London

http://www.dcs.bbk.ac.uk/~dimarzo

In Collaboration with:

University of Newcastle, University of Luxembourg

2

Outline

� Introduction

� Requirements Engineering

� Generic Framework

� Design-time

� Run-time

� Control

� Applications

� Self-Adaptive

� Self-Organising

� Proofs of concepts

2

3

Self-* Systems

� Self-Adaptive

� Top-down

� Self-evaluation + Reconfigurable

� Autonomic Computing

� Self-Organising

� Bottom-up

� Emergent properties

4

Self-* Systems

� Self-Adaptive (Autonomic Computing)

3

5

Self-* Systems

� Self-Organising

6

Goal

� Answer the question:

How to build trustworthy and
controllable self-* systems?

• Dependability properties

• Evidence of dependability

• Human administrator controls system

• Despite self-* capabilities of system

4

7

Requirements Engineering

�Autonomous Components
�R: Decoupling of components

� Interoperability
�R: Decoupling of descriptions,

QoS, constraints, policies,
supporting infrastructure

8

Requirements Engineering

�Self-awareness
� R: Sensing/monitoring capabilities –

Reasoning/Acting (different levels)

�Behaviour guiding/bounding
� R: Individual and global goals/policies

Environmental constraints policies

5

9

Requirements Engineering

�Development process
� R: Design-time descriptions

• system’s / components’propertie

• behaviour patterns

• policies

� R: Run-time enforcement of policies

10

Generic Framework

� Service-oriented architecture
� R: Autonomous components

� Self-describing Components/Services
� R: Interoperability

� Run-time usage of Meta-Data

� R: interoperability + self-awareness

� Adaptation Mechanism
� R: design-time specification of adapting policies

� Executable Policies
� R: run-time implementation of adaptation mechanism

6

Application System Requirements

Self-*, Functional, QoS …

System

Architect

Synthesis &
Validation

SA / SO Architectural Design Patterns

Observer/Controller

Autonomic Manager

Stigmergy

SA / SO Adaptation Mechanisms

Replacement with equivalent service if QoS too low

Action / Goal / Utility Function

Pool of Patterns and Mechanisms

Application System Design

Executable Policies

E.g. Replacement

Design of Application

Components

E.g. Ants / Cars / Peers /

Autonomic Elements

Choice and instantiation of:

SA / SO Architectural Design Patterns

E.g. Autonomic Manager

Metadata Description

D
e
s
ig

n
 T

im
e

D
e
s
ig

n
 T

im
e

Metadata

Policies

Coordination/ Adaptation

Run-time Infrastructure
Application

Components

Enforcement of Policies

R
u
n
 T

im
e

Metadata

Policies

Coordination/ Adaptation

Run-time Infrastructure
Application

Components

Enforcement of Policies

Run-time Infrastructure

Self-* properties

Metadata

Self-description of

Components

Coordination Space
Environment

Metadata

Guiding Policies

Coordination Policies

Bounding Policies

Policies

Sensing/Monitoring

Acting/Adapting
Policies

Application

Components

(Services)

Enforcement of Policies

Service

Apply policy

Coordination/Adaptation

Service

Apply coordination

Metadata Acquisition

Sensing / Acting
Acquisition of
policies

7

Control and Feedback Loop

Reasoning
Enforcement of Policies

Apply policy

Sensing / Acting

Application

Components
(Services)

Metadata Policies

Acquisition of
policies

Control

14

Control

� Three different ways:

� Direct reconfiguration of components
• Remove / change

� Dynamic modification of metadata
• Indirect: changed metadata implies

changes in component behaviour

� Dynamic modification of policies
• Indirect: changed policy implies changes

in component behaviour

8

15

Applications

� Self-Adaptive

� Data resource centre (Kephart et al.)

� Two applications providing a service

• Demand for service varies over time

• Performance of application depends on demand and on

resources allocated to the application

• Service level agreement (QoS provided to consumer)

• Goal: optimise overall system performance

16

Applications

� Self-Adaptive

� Two applications managers handling resources

(servers)

• Resources are dynamically allocated on basis of

policies

• If application manager cannot apply its policy, asks a

Resource Arbiter for additional resources

S1 S2

AM1 AM2

RA

9

17

Applications

� Self-Adaptive (within framework)

� Components:

• Two Application Managers (AM1, AM2)

• Resource Arbiter (RA)

• Two Servers (S1, S2)

� Meta-data

• Servers transaction time

• Servers CPU availability

18

Applications

� Self-Adaptive (within framework)

� Policies (Action policies)

• AM-Policy1:

• increase CPU by 5% if response time is above 100 ms

• AM-Policy2:

• if transaction time > 100 ms and CPU availability > 98%

ask RA for more CPU

• RA-Policy:

• if request for CPU, grant and give priority to AM1

10

19

Applications

� Self-Adaptive: design-time validation

� Individual applications:

• response time < 100ms

� System

• Two services with response time < 100 ms

� If AM1 overloaded, then AM2 fails

20

Applications

� Self-Organising System

� Stigmergy / Car traffic flow
• Goal: maximise traffic throughput

� Components:
• Cars

• origin and destination, initial route

• Traffic light controllers

• insert traffic flow information at 8 branches of road
intersection

11

21

Applications

� Self-Organising System

� Metadata

• Traffic flow information

� Policies
• Car: if traffic flow down the path is above

threshold change direction and recalculate route

• TrafficLight policy: modify traffic lights duration

according to traffic flow observed

22

Concrete Case Study

� Self-Assembly

� Manufacturing cell

� Agentification of elements

� Framework supporting:

• dynamic re-configuration

• selection

• determination of best element

� Long term goal:

• Give high-level description

• System finds solution to actually build the product

12

23

Proofs of concept

� Acquisition and use of metadata

� Mediator system (Newcastle)

� Web services monitored by SubMediators
• Continuous observation of Web Services

• Availability, functionality, performance, faults,
exceptions

• Production of metadata

• SubMediators take dynamic decisions

• Most reliable Web service, quickest response, etc.

� Policies for QoS expressed through a policy
language

24

Proofs of concept

� Run-time infrastructure

� Service-oriented middleware supporting
• Self-description of services (functionality)

• Registration and requests of services on the
basis of specifications

� Allows
• Seamless binding of components

• No API (only based on descriptions)

• Dynamic reconfiguration (while code is
executing)

13

25

Predictability

� Enforcement of policies provides

predictability

� Matching of specifications / metadata

� Components Replacement

� Automated Reasoning

� Meta-policy

� Hierarchical policies

26

Summary

� Self-Organising Systems

� Traditionally use metadata (stigmergy)

� + Policies

� Allows to have overall control

o Self-Adaptive Systems

• Traditionally use policies

• + Metadata shared among components

� Inserts decentralised control and self-
organisation

