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9 Abstract In the last decade, bio-inspired self-organising

10 mechanisms have been applied to different domains,

11 achieving results beyond traditional approaches. However,

12 researchers usually use these mechanisms in an ad-hoc

13 manner. In this way, their interpretation, definition,

14 boundary (i.e. when one mechanism stops, and when

15 another starts), and implementation typically vary in the

16 existing literature, thus preventing these mechanisms from

17 being applied clearly and systematically to solve recurrent

18 problems. To ease engineering of artificial bio-inspired

19 systems, this paper describes a catalogue of bio-inspired

20 mechanisms in terms of modular and reusable design pat-

21 terns organised into different layers. This catalogue uni-

22 formly frames and classifies a variety of different patterns.

23 Additionally, this paper places the design patterns inside

24 existing self-organising methodologies and hints for

25 selecting and using a design pattern.

26

27Keywords Self-organising systems �
28Bio-inspired mechanisms � Design patterns

291 Introduction

30Nowadays, emergent technologies are providing new com-

31munication devices (e.g. mobile or smart phones, PDAs,

32smart sensors, laptops) that form complex infrastructures not

33widely exploited due to their requirements such as scalabil-

34ity, real-time responses, or failure tolerance. To deal with

35these features, a new software tendency is to provide entities

36in the system with autonomy and pro-activity and to incre-

37ment the interaction between them. This betting on incre-

38menting interaction and decentralising responsibilities over

39entities, so-called self-organisation, provides systems with

40better scalability, robustness, and reduces the computation

41requirements of each entity.

42Self-organising mechanisms usually involve decentrali-

43sation (no central entity coordinating the re-organisation of

44the other system’s entities) and locality (individual entities

45have information about their local neighbourhood, i.e. the

46list of adjacent nodes, information about or provided by

47these nodes), but no global information, since it is too

48costly to maintain it up-to-date. Additionally, computation

49at the micro-level, i.e. at the level of individual entities,

50involves the execution of relatively simple rules or com-

51mands, compared to the complex results these computa-

52tions reach when considered at a macro-scale. Key

53characteristics of these mechanisms are robustness and

54adaptation to changing environmental conditions. Typical

55self-organising mechanisms are those using stigmergy, like

56ant foraging for coordinating behaviour, schooling and

57flocking for coordinating movements, or gradients based

58systems (de Castr 2006; Di Marzo Serugendo et al. 2011).
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59 Self-organising mechanisms are usually inspired by nature,

60 and in particular, by biological systems . Those systems

61 show appealing characteristics for pervasive scenarios,

62 since they are robust and resilient, able to adapt to envi-

63 ronmental changes and able to achieve complex behaviours

64 using a limited set of basic rules (Dressler 2010).

65 Self-organising mechanisms have already been applied

66 to various domains, usually in an ad hoc manner, with

67 varying interpretations and no defined boundary among the

68 used mechanisms. This paper provides a catalogue of bio-

69 inspired mechanisms for self-organising systems. The

70 mechanisms presented are uniformly described and framed

71 using a software design pattern structure identifying when

72 and how to use each pattern, and describing the relation

73 between the different mechanisms. This catalogue of

74 mechanisms is a step forward to engineering self-organ-

75 ising systems in a systematic way.

76 2 Related work

77 The idea of engineering self-organising systems has

78 attracted many researchers since 2004. Nagpal et al. (2004)

79 present a set of biologically-inspired primitives that

80 describe how organising principles from multi-cellular

81 organisms may apply to multi-agent systems. That paper

82 was a first attempt towards assembling a catalogue of

83 primitives for multi-agent control. However, those primi-

84 tives are not presented together with an implementation

85 process or by taking into consideration the different sce-

86 narios to which the primitives can be applied. It is then

87 difficult to use them in a systematic way for engineering

88 artificial self-organising systems. Mamei et al. (2006)

89 propose a taxonomy to classify self-organising mechanisms

90 and describe a set of mechanisms. These descriptions can

91 drive the implementation of these mechanisms, but they are

92 not expressed as patterns and cannot be used systemati-

93 cally. However, that work motivates to go further and

94 raises new questions: What are the problems that each

95 mechanism can solve? To what solution contributes each

96 pattern? What are the main trade-offs to consider in the

97 implementation? To answer those questions and make the

98 self-organising mechanisms applicable more systemati-

99 cally, some authors have focused on proposing descriptions

100 of self-organising mechanisms under the form of software

101 design patterns (Gamma et al. 1995). The idea of the

102 design pattern structure makes it easy to identify the

103 problems that each mechanism can solve, the specific

104 solution that it brings, the dynamics among the entities and

105 the implementation. Gardelli et al. (2007) propose a set of

106 design patterns for self-organising systems all related with

107 the ant colonies behaviour, together with the idea that a

108 mechanism can be composed from other mechanisms. The

109provided model, however, presents too many constraints to

110be generalised and the examples of usage are not related to

111self-organising systems. Based on the set of mechanisms

112proposed in Mamei et al. (2006), Sudeikat et al. (2008)

113discuss how intended multi-agent systems (MAS) dynam-

114ics can be modelled and refined to decentralised MAS

115designs, proposing a systematic design procedure that is

116exemplified in a case study. De Wolf (2007) presents an

117extended catalogue of mechanisms as design patterns for

118self-organising emergent applications. The patterns are

119presented in detail and can be used to systematically apply

120them to engineering self-organising systems. However,

121relations among the patterns are missed, i.e. the authors do

122not describe how patterns can be combined to create new

123patterns or adapted to tackle different problems.

1243 A model to describe bio-inspired design patterns

125This section presents the computational model used in this

126paper to describe the dynamics of the patterns and the

127relations between the different entities involved in each

128pattern. The proposed model is clearly inspired by biology

129but specialised for the artificial world where the patterns

130will be engineered.

131In biological systems, two main entities can be observed:

132(1) the organisms that collaborate in the biological process

133(e.g. ants, fish, bees, cells, virus, etc.) and (2) the environ-

134ment, a physical space where the organisms are located. The

135environment provides resources that the organisms can use

136(e.g. food, shelter, raw material) and events that can be

137observed by the organisms and can produce changes in the

138system (e.g. toxic clouds, storms, thunders, or fires).

139Organisms can communicate with each other, sense from the

140environment and act over the environment. Moreover,

141organisms are autonomous and proactive and they have a

142partial knowledge of the world. The environment is dynamic

143and acts over the resources and over the organisms (e.g. it can

144kill organisms, destroy resources, change the topology of the

145space where the organisms are living, change the food

146location, remove food, add new food, etc.). The communi-

147cation between the organisms can be direct (e.g. dolphins

148sending ultra-sounds through the water, beavers emitting

149sounds to alert about a predator presence, etc.) or indirect

150using the environment to deposit information that other

151organisms can sense (e.g. pheromone in ants colonies,

152morphogens in the specialisation of cells, etc).

153The biological model may be summarised by two layers:

154organisms and environment, see Fig. 1a. In order to create

155a computational model inspired by the biological model, a

156new layer is added, Fig. 1b. This new layer, called the

157infrastructure layer, is necessary because, in an engineered

158system, the software agent must be hosted in a device with
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160 ability to interact with the environment (i.e. sensing the

161 environment through sensors or acting in the environment

162 through actuators) and to communicate with other agents.

163 The entities proposed in the computational model are:

164 (a) the agents, that are autonomous pro-active software

165 entities, (b) the infrastructure, that contains hosts with

166 computational power, sensors and actuators and (c) the

167 environment, the real world space where the infrastructure

168 is located. Events are phenomena of interest that appear in

169 the environment, can be sensed by the agents using the

170 host’s devices. Each agent needs a host to be executed, to

171 communicate with other agents, to sense events or to act in

172 the environment. Thus, the infrastructure provides the

173 agents with all the necessary tools to simulate organisms’

174 behaviour and a place where information can be stored and

175 possibly read by other agents. In most biological processes,

176 the environment plays a key role, due to its ability to act

177 over the entities present in the system (e.g. spreading and

178 removing chemical signals in the environment). To tackle

179 this ability, each host in the infrastructure has an embedded

180 software, called Infrastructural Agent (IA). Both IA’s and

181 agent’s behaviours must be designed to follow self-

182 organising patterns. IAs play an important role when agents

183 can move freely over the hosts. For instance, IAs may be

184 responsible for managing information deposited in hosts by

185 the agents or spreading information over other hosts. In

186 other cases, the IA stands for software embedded into a

187 middleware providing built-in features (e.g. evaporation of

188 digital pheromone).

189 Figure 2 shows the different layers of the computational

190 model and their corresponding interactions. The top layer

191 represents software agents in the system. Agents use the

192 infrastructure layer to host themselves, communicate with

193 each other, sense and act with the environment and to

194 deposit information that other agents can read. There are

195 two variants in the model: when agents can move freely

196 over the hosts (e.g. mobile agents) or when they are cou-

197 pled to the host (e.g. swarm of robots). The separation

198between the agents layer and the infrastructure enables to

199cover a larger variety of scenarios. On the one hand,

200software agents may be mobile or may be coupled with

201hosts. On the other hand the infrastructure may be fixed

202(i.e. stationary hosts) or mobile. Mobile hosts may be

203controlled by the agents (e.g. a robot) or not (e.g. PDA’s

204movements under the control of its owner). This is typical

205of pervasive scenarios where several mobile devices, such

206as, PDAs, laptops, or mobile phones are located in a

207common physical space (e.g a shopping mall, a museum,

208etc.), forming what is usually referred to as an opportu-

209nistic infrastructure, where the nodes are moving according

210to the movements of the user carrying them, and the agents

211freely jump from one node to another. An example of this

212architecture is the Hovering Information Project (Fernan-

213dez-Marquez et al. 2011), where information is an active

214entity storing itself and its replica according to some

215specified spatial structure. Sensor networks are instead a

216good example of systems where agents are mobile and

217hosts are not but, on the other hand, they also well repre-

218sent systems where not only hosts but also agents are static,

219as reported in (Vinyals et al. 2011).

220To summarise, the entities used in the computational

221model are:

222– Agents autonomous and pro-active software entities

223running in a host.

224– Infrastructure the infrastructure is composed of a set of

225connected Hosts and Infrastructural Agents. A Host is

226an entity with computational power, communication

227capabilities and may have sensors and actuators. Hosts

228provide services to the agents. An Infrastructural Agent

229is an autonomous and pro-active entity, acting over the

230system at the infrastructure level. Infrastructural Agents

231may be in charge of implementing those environmental

232behaviours present in nature, such as diffusion, evap-

233oration, aggregation, etc.

234– Environment the Environment is the real world space

235where the Infrastructure is located. An Event is a

236phenomenon of interest that appears in the Environment
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237 and that may be sensed by the Agents using the sensors

238 provided by the Hosts.

239 In this paper, we regard a system as composed of

240 Agents, Infrastructure, Infrastructural Agents, Hosts, and

241 Environment. The behaviour of Agents and Infrastructural

242 Agents is defined by a set of rules (hereafter referred to as

243 transition rules), while Hosts are defined by the interface

244 they provide.

245 4 Design patterns as part of methodologies for self-

246 organising systems

247 Current methodologies for self-organising systems (Puvi-

248 ani et al. 2012) follow the typical phases of software

249 engineering methodologies: requirements, analysis, design,

250 implementation, verification and test. Even though these

251 methodologies all put focus on different aspects, they each

252 accommodate a specific design phase where interaction

253 mechanisms are identified, modelled, refined and possibly

254 simulated. Consequently, self-organising design patterns

255 are best exploited during the design phase of a chosen

256 methodology.

257 The design patterns come into play during the design

258 phase, which we propose to split into three distinct steps

259 (Fig. 3): (1) the choice of design patterns is made during an

260 early phase of design. Self-organising design patterns serve

261 to identify the problem to solve as well as to determine the

262 appropriate solution to bring to the problem. In particular,

263 they help determining the boundaries of each problem and

264 its corresponding solution provided by the pattern; (2)

265 during a refined phase, actual entities and their dynamics

266 are defined. The patterns’ dynamics serve to refine the

267 model and to identify the entities and their precise inter-

268 actions, individual responsibilities and to anticipate the

269 emergent behavior; (3) finally, during the simulation step,

270the patterns implementation description will serve to

271establish implementation details in relation with the

272underlying computational model. These three steps can be

273iterated in a loop in order to progressively refine or review

274the model. An important issue with self-organising mech-

275anisms concerns the parameters tuning. Patterns come with

276a description of the main parameters involved in the pattern

277and their effect on the resulting behavior. The simulation

278phase is then crucial for determining the parameters values.

2795 Design patterns’ catalogue

280To create the patterns’ catalogue, we analysed the inter-

281relations among the self-organising mechanisms for engi-

282neering self-systems existing in the literature, in order to

283understand how they work and to facilitate their adaptation

284or extension to tackle new problems. The classification

285process started by selecting those high-level mechanisms

286that are well-known in the literature and have been applied

287successfully to different self-* systems. By analysing their

288behaviours, we identified common lower-level mechanisms,

289some of them basic (atomic) and other composed of basic

290ones. As a result, we classified the patterns into three layers.

291The basic mechanisms that can be used individually or in

292composition to form more complex patterns are at the bottom

293layer. At the middle layer, there are the mechanisms formed

294by combinations of the bottom layer mechanisms. The top

295layer contains higher-level patterns that show different ways

296to exploit the basic and composed mechanisms.

297Figure 4 shows the different design patterns collected in

298the catalogue and their relations. The arrows indicate how the

299patterns are composed. A dashed arrow indicates that it is

300optional (e.g. the Gradient Pattern can use evaporation, but

301the evaporation is not necessary to implement gradients).

302This classification aims at listing existing mechanisms

303from the literature, identifying their own boundaries (i.e.

304when one mechanism stops, and when another starts), their

305inter-relations and the recurrent problem they solve. For

306example, Gossip has been applied to many works in dif-

307ferent ways, but all implementations share the fact that
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308 gossip is a process composed of the spreading and aggre-

309 gation mechanisms. The catalogue provided in this paper

310 does not intend to be exhaustive. Instead it is meant to be

311 open to new additions. New basic (atomic) mechanisms

312 can be added to the catalogue once they are identified and

313 described under the form of patterns. Similarly, any new

314 identified combination of basic or higher level patterns can

315 be as well added to the catalogue.

316 Patterns are described in Table 1. For each pattern,

317 besides its name and other known appellations, the problem

318 it addresses and the solution it provides are clearly iden-

319 tified. Additional fields precise the biological inspiration

320 for the pattern, the effect of key parameters involved in the

321 pattern, the entities involved and their dynamics, as well as

322 environmental requirements. Implementation or simulation

323 descriptions are provided, together with references to

324 known uses in the literature, consequences of the use of the

325 pattern and a list of other patterns that are used by or that

326 exploit the considered pattern.

327 The behaviour of patterns is described through transition

328 rules using the following simple notation. Each information

329 in the system is modelled as a tuple hL;Ci; where L is the

330 location where the information is stored, and C is its cur-

331 rent content, e.g. in the form of a list with one or more

332 arguments of different types, such as numbers, strings or

333 structured data, according to the application specific

334 information content.

335 Transition rules are chemical-resembling reactions

336 working over patterns of tuples. They are of the kind:

name :: hL1;C1i; . . .; hLn;Cni�!
r hL01;C01i; . . .; hL0m;C0mi

338338 where (i) the left-hand side (reagents) specifies which tuples

339 are involved in the transition rule: they will be removed as an

340 effect of the rule execution; (ii) the right-hand side (products)

341specifies which tuples are accordingly to be inserted back in

342the specified locations: they might be new tuples, transfor-

343mation of one or more reagents or even unchanged reagents;

344and (iii) rate r is a rate, indicating the speed/frequency at

345which the rule is to be fired, namely, its scheduling policy.

346Rules are then equipped with a set of transition rules that

347determine the right-hand side variables as functions of the

348left-hand side ones. Such functions (including e.g. evapo-

349ration slope) may be subject to conditions and constrains,

350which will be specified together with the reaction. Note that

351such functions could be:

3521. fixed parameters of the system we model;

3532. automatically extracted from reagents, e.g. an infor-

354mation item also stores the function it should be

355applied to; or

3563. actually specified in the transition rule.

357Our model of transition rules intentionally abstracts

358from these aspects. As a notational convenience, we will

359use notation fx; y; z; . . .g for sets, and ðx; y; z; . . .Þ for

360ordered sequences.

3615.1 Basic patterns

362Basic patterns are atomic patterns, used to compose more

363complex patterns appearing at the middle layer (Sect. 5.2)

364and at the top layer (Sect. 5.3). These patterns describe

365basic mechanisms that have been frequently used in the

366literature.

3675.1.1 Spreading pattern

368The Spreading Pattern is based on direct communication

369among agents for progressively sending information over

Table 1 Description fields

Name The pattern’s name

Aliases Alternative names used for the same pattern

Problem Which problem is solved by this pattern and situations where the pattern may be applied

Solution The way the pattern can solve the problems

Inspiration Biological process inspiring the pattern

Forces Prerequisites for using the pattern and aspects of the problem that lead the implementation, including parameters (trade-offs)

Entities Entities that participate in the pattern and their responsibilities. Entities are agents, infrastructural agents, and hosts

Dynamics How the entities of the pattern collaborate to achieve the goal. A Typical scenario describing the run-time behaviour of the

pattern

Environment Infrastructural requirements of the pattern

Implem./

simulation

Hints of how the pattern could be implemented, including parameters to be tuned

Known uses Examples of applications where the pattern has been applied successfully

Consequences Effect on the overall system design

Related patterns Reference to other patterns that solve similar problems, can be beneficially combined or present conflicts with this pattern

Description and Composition of Bio-Inspired Design Patterns

123
Journal : Large 11047 Dispatch : 21-4-2012 Pages : 25

Article No. : 9324
h LE h TYPESET

MS Code : h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

370 the system. The spreading of information in multi-agent

371 systems allows the agents to increment the global knowl-

372 edge of the system. Figure 5 shows the different steps of

373 the spreading process: (a) an agent initiates the spreading

374 process (black node); (b) the information spreads over the

375 network; and (c) the process finishes when information

376 reaches all the nodes in the network.

377 Aliases spreading is also known as information diffusion

378 (Khelil et al. 2002), information or data dissemination

379 (Sabbineni 2005), flooding (Yi 2003), broadcast (Tseng

380 et al. 2002), or epidemic spreading (Khelil et al. 2002).

381 Problem in systems, where agents perform only local

382 interactions, agents’ reasoning suffers from the lack of

383 knowledge about the global system.

384 Solution a copy of the information (received or held by

385 an agent) is sent to neighbours and propagated over the

386 network from one node to another. Information spreads

387 progressively over the system and reduces the lack of

388 knowledge of the agents while keeping the constraint of the

389 local interaction.

390 Inspiration spreading is a basic pattern extended or

391 exploited by most other patterns presented in this cata-

392 logue. Spreading appears in important processes, such as,

393 Morphogenesis, Chemotaxis or Quorum Sensing (Sect. 5.3)

394 In nature, spreading is a process done by the environment.

395 Forces if spreading occurs with high frequency, the

396 information spreads over the network quickly but the

397 number of messages increases. A quick spread is desired

398 when the environment is continuously changing and the

399 agents must know the new values and adapt themselves. It

400 may happen that the information is only interesting for

401 agents close to the source. In that case, the information

402spreads only up to a determined number of hops, reducing

403the number of messages. Another way to reduce the

404number of messages is to determine the number of neigh-

405bouring nodes that receive the information. It was dem-

406onstrated that it is not necessary to send the information to

407all the neighbouring nodes in order to ensure that every

408node has received the information (Birman et al. 1999).

409Entities-Dynamics-Environment the entities involved in

410the spreading process are the hosts, agents, and infra-

411structural agents. The spreading process is initiated by an

412agent that first spreads the information in the host it is

413residing in. When this information arrives to neighbouring

414nodes, the infrastructural agent is in charge to re-send the

415information to neighbouring nodes, producing the spread-

416ing of the information over the whole system.

417Each infrastructural agent forwards the information

418received to a specified number of neighbours and up to the

419specified number of hops. The dynamics is usually exten-

420ded to avoid infinite loops and wasted duplicate deliveries

421(e.g. when one agent receives the same information it has

422sent before, the agent does not resend that information).

423Transition Rule (1) describes more formally the

424Spreading Pattern.

spreading :: hL;Ci�!
rspr hL1;C1i; . . .;hLn;Cni

where ðL1; . . .;LnÞ¼ mðLÞ;ðC1; . . .;CnÞ¼ rðC;LÞ
ð1Þ

426426A function m(L) is given for determining the sequence of

427locations, among the neighbours of L, to which the infor-

428mation in input has to be spread. The set of such locations

429cannot be empty, cannot be composed of L only, but can be

430composed of all the neighbourhood of L including L itself.

Start

Broadcast the inf. 
received

Stop

input event?

yes

No

Same value
broadcasted 

before?

yes

 no

Infrastructural Agent behaviour

HostAgent
Neighbour

Hosts
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Host
Infrastructural
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Neighbour
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send(inf)
send(inf)

send(inf)
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Fig. 5 Spreading: infrastructural agent behaviour (a), corresponding initialisation (b), and interactions with its host and neighbouring hosts (c)
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431 A function r(C, L) is given for computing the new infor-

432 mation content, which may change within the spreading

433 process.

434 Implementation the most common algorithm used to

435 spread the information to the neighbours is the broadcast

436 algorithm.

437 It is well known that broadcast causes what is called as

438 the Broadcast Storm Problem (Tseng et al. 2002). The

439 Broadcast Storm Problem appears when the radius of the

440 signal of many nodes overlaps. Thus, a straightforward

441 broadcasting by flooding will result in serious redundancy,

442 contention and collision. In order to solve the Broadcast

443 Storm Problem, an optimised broadcast can be imple-

444 mented, which can follow a probabilistic, counter-base,

445 distance-base, location-base or cluster-base schema (Tseng

446 et al. 2002). As time goes by, new proposals for efficient

447 ways of spreading the information are proposed.

448 This work presents a basic implementation to illustrate

449 how spreading works and how it has been implemented in

450 the literature. Further comparison between different kinds

451 of spreading implementations and their performances is out

452 of the scope of this work.

453 Figure 5a shows the flow chart where the information

454 spreads after it is received. Figure 5b shows the interaction

455 diagram of the spreading initialisation. Figure 5c repre-

456 sents the interactions when the information arrives to a

457 neighbour.

458 Known uses the spreading mechanism has been applied

459 to several applications: Swarm motion coordination

460 (Parunak et al. 2002), coordination in games (Mamei

461 2004), and problem optimisation (Blu 2005). More refer-

462 ences of applications can be found in higher level patterns

463 that exploit the Spreading Pattern (i.e. Gradient Pattern,

464 Morphogenesis Pattern, Chemotaxis Pattern and Quorum

465 Sensing Pattern).

466 Consequences when the Spreading Pattern is applied,

467 the agents in the system sense information from beyond

468 their local sensing. Then, there is an increment of the

469 network load (i.e. messages and memory). This increment

470 becomes extreme when the environment is very dynamic

471 and the agents have to keep the information updated as

472 soon as possible.

473 Related Patterns spreading is used in higher level pat-

474 terns such as Gradient (Sect. 5.2.1), Morphogenesis (Sect.

475 5.3.3), or Chemotaxis Pattern (Sect. 5.3.2).

476 5.1.2 Aggregation pattern

477 The Aggregation Pattern is a basic pattern used for infor-

478 mation fusion. The dissemination of information in large

479 scale systems, either deposited by the agents or taken from

480 the environment, may produce network and memory

481 overload. The Aggregation Pattern was introduced as a way

482to reduce the amount of information in the system by

483synthesising meaningful information (Gardelli et al. 2007).

484Alias aggregation is also known as fusion (Niu 2005).

485Problem in large systems, excess of information pro-

486duced by the agents may produce network and memory

487overloads. Information must be distributively processed in

488order to reduce the amount of information and to obtain

489meaningful information.

490Solution aggregation consists in locally applying a

491fusion operator to process the information and synthesise

492macro information. This fusion operator can take many

493forms, such as filtering, merging, aggregating, or trans-

494forming (Chen 2002).

495Inspiration in nature, the aggregation (sum) of ant’s

496pheromones allows the colony to find the shortest path to

497the food, and to discard longer paths. (i.e. two pheromone

498scents together create an attractive field bigger than a

499single pheromone scent). In nature the aggregation is a

500process performed by the environment. Even when there

501are no agents present in the system, the environment con-

502tinues performing the aggregation process.

503Forces aggregation applies to all the information

504available locally or only on part of that information. The

505parameter involved is the amount of information that is

506fused; it relates to the memory usage in the system.

507Entities-Dynamics-Environment aggregation is executed

508either by agents or by infrastructural agents. In both cases

509the agents aggregate the information they access locally.

510Information may come from the environment or from other

511agents. Information coming from the environment is typi-

512cally read by sensors (e.g. temperature, humidity, etc.).

513According to the model presented in Sect. 3, aggregation is

514executed by an agent that receives information from the

515host where the agent is residing. Such host is either a sensor

516reading information from the environment or a communi-

517cation device receiving information from neighbouring

518hosts. Aggregation may be applied by any agent that

519receives information independently of the underlying

520infrastructure. The aggregation process is not repetitive and

521finishes when one agent executes the aggregation function.

522The Transition Rule for aggregation (2) is as follows:

523information in input (possibly a set of information) is

524transformed into a new set of information with smaller

525cardinality then the input set through an aggregation

526function a.

aggregation :: hL;C1i; . . .; hL;Cni�!
raggr hL;C01i; . . .; hL;C0mi

where fC01; . . .;C0mg ¼ aðfC1; . . .;CngÞ ð2Þ

528528Implementation available information takes the form of a

529stream of events. Aggregation or fusion of information

530can take various forms: from a simple operator (sum,

531multiplication or average) like in ACO, to more complex
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532 operators (e.g. Kohonen Self-Organising Maps aggregating

533 sensor data in clusters, Lee 2004). Fusion operators are

534 classified into four different groups (Chen 2002): (1) filter:

535 this operator selects a subset of the received events (e.g. the

536 sensor takes 10 measures per second, but the application

537 processes only 1 per second); (2) transformer: this operator

538 changes the type of the information received in input (e.g.

539 inputs are GPS coordinates and outputs are the countries

540 where the positions are located); (3) merger: this operator

541 unifies all information received and outputs all information

542 received as a single piece of information (e.g. input is the

543 position of many sensors and the output is the corresponding

544 tuple of positions); (4) aggregator: this operator applies a

545 specific operation (e.g. max, min or avg) to one or more

546 incoming information; input and output types can all be

547 different. The flow chart 6a shows that the aggregation

548 process starts when the agent receives the information (an

549 event). Then, it applies the fusion operator and sends the

550 aggregated information back to the host. Figure 6b shows

551 how the agent or infrastructural agent uses the interface

552 provided by the host to get the data, applies a fusion operator,

553 and deposits the aggregated data back in the host.

554 Known uses aggregation has been used in the ACO algo-

555 rithm (Dorigo 1999) to aggregate pheromones, emulating

556 higher concentrations when two or more pheromones are

557 close to each other. Aggregation is also used in digital pher-

558 omones for autonomous coordination of swarming UAVs

559 (Parunak et al. 2002). Moreover, aggregation has been used

560 in the field of information fusion, which studies how to

561 aggregate individual belief bases into a collective one

562 (Grégoire 2006), or for truth-tracking in MAS (Pigozzi 2007).

563 Consequences aggregation increases the efficiency in

564 networks (e.g. sensor networks, ad-hoc or P2P), by reducing

565 the number of messages, i.e. increasing the battery life and

566the scalability of the system. Also aggregation provides a

567mechanism to extract macro-information in large-scale

568systems, such as extracting meaningful information from

569data reads obtained from many sensors. Thus, the amount of

570memory used by the system is reduced.

571Related Patterns the Aggregation Pattern can be

572implemented together with Evaporation and Gradient Pat-

573terns to form digital pheromones (Parunak et al. 2002).

574Evaporation can be used with aggregation in order to

575aggregate information recently collected from the envi-

576ronment. The Gossip Pattern (Sect. 5.2.3) is a pattern

577composed of the Aggregation Pattern and the Spreading

578Pattern (Sect. 5.1.1).

5795.1.3 Evaporation pattern

580Evaporation is a pattern that helps dealing with dynamic

581environments where information used by agents can

582become outdated. In real world scenarios, the information

583appears and changes with time and its detection, prediction,

584or removal is usually costly or even impossible. Thus,

585when agents have to modify their behaviour taking into

586account information from the environment, information

587gathered recently must be more relevant than information

588gathered a long time ago. Evaporation is a mechanism that

589progressively reduces the relevance of information. Thus,

590recent information becomes more relevant than informa-

591tion processed some time ago. Evaporation was proposed

592as a design pattern for self-organising multi-agent systems

593in (Gardelli et al. 2007) and is usually related to Ant

594Colony Optimisation (ACO) (Dorig 1992).

595Aliases evaporation is also known as decay (Huebel

596et al. 2008), temporal degradation function (Ye et al. 2008)

597or freshness (Ranganathan et al. 2004).

598Problem outdated information cannot be detected and it

599needs to be removed, or its detection involves a cost that

600needs to be avoided. Agent decisions rely on the freshness

601of the information presented in the system, enabling correct

602responses to dynamic environments.

603Solution evaporation is a mechanism that periodically

604reduces the relevance of information. Thus, recent infor-

605mation becomes more relevant than older information.

606Inspiration evaporation is present in nature. For

607instance, in ant colonies (Deneubourg et al. 1983), when

608ants deposit pheromones in the environment, these phero-

609mones attract other ants and drive their movements from

610the nest to the food and vice-versa. Evaporation acts over

611the pheromones reducing their concentration along the time

612until they disappear. This mechanism allows the ants to

613find the shortest path to the food, even when environment

614changes occur (such as, new food locations or obstacles in

615the path). Ants are able to find the new shortest paths by

616discarding the old paths.

Flow
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Fig. 6 Aggregation: agent behaviour
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617 Forces evaporation is controlled by the parameters

618 evaporation factor (i.e. how much the information is

619 evaporated) and the evaporation frequency (i.e. frequency

620 of evaporation execution), used to decrement the relevance

621 of the information. The evaporation factor and evaporation

622 frequency must deal with the dynamics of the environ-

623 ment: if evaporation is too fast, we may lose information;

624 if evaporation is too slow, the information may become

625 outdated and misguide the agents’ behaviour. A higher

626 evaporation factor releases memory, but also reduces the

627 information available in the system for the agents. When

628 the evaporation is applied to collaborative search or

629 optimisation algorithms, the evaporation factor controls

630 the balance between exploration and exploitation: high

631 evaporation rates reduce agents’ knowledge about the

632 environment, increasing the exploration, and producing

633 fast adaptation to environment changes. However, a

634 higher evaporation factor decreases the performance when

635 no environment changes occur (due to an excess of

636 exploration).

637 Entities-Dynamics-Environment evaporation can be

638 applied to any information present in the system. Periodi-

639 cally, its relevance decays over time. Thus, recent infor-

640 mation becomes more relevant than information processed

641 some time ago.

642 Evaporation is performed by the agent or infrastructural

643 agent periodically executing Transition Rule (3).

evaporation :: hL;Ci�!rev hL;C0i

where C0 ¼ �ðCÞ
ð3Þ

645645 The rule affects the relevance value contained in C

646 applying the function � that can, for instance, impose

647 that RelC’ = RelC * Evfactor with Evfactor 2 ½0; . . .; 1� or that

648 RelC’ = RelC - Evfactor. The requirement for �ðCÞ is that

649 the relevance value decreases with the application of the

650 rule.

651Implementation the Evaporation Pattern is executed by

652an agent that needs to update the relevance of its internal

653information, or by infrastructural agents that change the

654relevance of the information deposited in an environment.

655We distinguish two approaches. In the first approach, an

656agent encapsulates the information and decays its own

657relevance. In this case, the agent follows the flow chart 7a

658and the corresponding interaction diagram 7b. In the sec-

659ond approach, the information is deposited by one agent in

660a host and an infrastructural agent interacts with the host to

661decay the information’s relevance. The host provides an

662interface for reading and changing the relevance value. In

663this case, the interaction between the infrastructural agent

664and the host is shown in Fig. 7c.

665Known uses evaporation has been used mainly in

666Dynamic Optimisation. Examples of algorithms using

667evaporation are ACO (Dorigo 1999) and Quantum Swarm

668Optimisation Evaporation (QSOE) (Fernandez-Marquez

6692009). In some other works, evaporation is performed

670using a parameter called freshness associated to the infor-

671mation (Weyns et al. 2006).

672Consequences evaporation enables adaptation to envi-

673ronmental changes. However, the use of evaporation in

674static scenarios may decrease the performance, due to the

675loss of information associated to this mechanism. The

676Evaporation Pattern provides the ability of self-adapting to

677environmental changes increasing the tolerance to noise, as

678shown in (Fernandez-Marquez 2010).

679Related Patterns the Evaporation Pattern is used by

680higher level patterns such as Digital Pheromone Pattern

681(Sect. 5.2.2) or Gradient Pattern (Sect. 5.2.1).

6825.1.4 Repulsion pattern

683The Repulsion Pattern is a basic pattern for motion coor-

684dination in large scale MAS. The Repulsion Pattern enables
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Agent flow
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685 the agents to get a uniform distribution in a specific area or

686 to avoid collision among them. Moreover, using repulsion,

687 agents can adapt their position when the desired area

688 changes or when some nodes disappear.

689 Alias none to our knowledge.

690 Problem agents’ movements have to be coordinated in a

691 decentralised manner in order to achieve a uniform distri-

692 bution and to avoid collisions among them.

693 Solution the Repulsion Pattern creates a repulsion vector

694 that guides agents to move from regions with high con-

695 centrations of agents to regions with lower concentrations.

696 Thus, after few iterations agents reach a more uniform

697 distribution in the environment.

698 Inspiration the repulsion mechanism appears in a wide

699 range of biological self-organising processes, such as the

700 diffusion process in physical science, the flocking of birds

701 or schools of fish. For instance, the diffusion process

702 describes the spread of particles through random motion

703 from regions of higher concentration to regions of lower

704 concentration. Figure 8 illustrates the different steps of the

705 diffusion process. First, a concentration of ink is deposited

706 in the glass of water, step (a). We observe the initial state

707 where the particles concentrate in one corner of the glass.

708 The corner with the particles, therefore, contains a higher

709 concentration of ink’s particles. Second, the particles begin

710 to move in the diffusion process, from regions of higher

711 concentration to regions of lower concentration, step (b).

712 The closer the particles are to the corner, the higher the

713 concentration, thus creating a so called concentration gra-

714 dient. This gradient is provided by the difference in con-

715 centration between neighbouring particles. Finally, we

716 observe how the diffusion process has randomly moved

717 around all the particles inside the water, producing a uni-

718 form random distribution of the particles. At this point the

719 different ink’s concentrations disappear. Inside a container,

720 the particles reach a uniform distribution after the diffusion

721 process. However, in an open space, the diffusion process

722 spreads the particles until the concentration is so low that it

723 is considered negligible. As Fig. 8 shows, the diffusion

724 process finishes when the particles reach a uniform distri-

725 bution, i.e. when the concentration gradient becomes zero.

726 The repulsion mechanism is also alternatively presented as

727 inspired by the gas theory (Cheng et al. 2005). In the case

728of gas theory, the time to reach a uniform concentration is

729shorter than in the case of the diffusion process.

730Forces the main parameters involved in the Repulsion

731Pattern are the repulsion frequency (i.e. how frequent the

732repulsion is applied) and the repulsion radius (i.e. how

733strong the repulsion is). A high repulsion frequency

734involves a faster spreading of the agents and a faster

735adaptation when the desired formation (or area) changes.

736However, it increases the number of messages, because the

737Repulsion Pattern requires information about the position

738of neighbours. The repulsion radius should be limited to the

739communication range of the agents, because it makes not

740sense to move to one location where the concentration of

741agents is unknown and also because the agent can not jump

742to a host that is not in the communication radius. Thus, the

743movement of one agent in each repulsion step must be

744restricted to its communication range.

745Entities-Dynamic-Environment repulsion can be applied

746in systems where the agents are residing in mobile hosts

747(e.g. robotic swarms) or in software agents that are moving

748freely in a network composed of (stationary or not) hosts.

749In both cases the dynamics between them is the same.

750When repulsion is applied, the agent that executes the

751repulsion sends a position request to all its neighbouring

752agents. After the agent receives the positions of neigh-

753bouring hosts, it calculates the desired position and moves

754to that position. When the environment is not continuous,

755as in the mobile agents case, the agent moves to the host

756closest to the desired position. In this case the position

757request must be sent also to the hosts.

758To apply the Repulsion Pattern, each agent should know

759its position and its neighbourhood. The Repulsion Pattern

760may apply also to information that might need to be spa-

761tially distributed.

762Transition Rule (4) precises the repulsion behaviour:

repulsion :: hL;Ci; hL1;C1i; . . .; hLn;Cni�!
rev

hL0;Ci; hL1;C1i; . . .; hLn;Cni

where L0 ¼ qðfhL;Ci; hL1;C1i; . . .; hLn;CnigÞ ð4Þ

764764A function qðfhL;Ci; hL1;C1i; . . .; hLn;CnigÞ is given for

765computing the new location of the information or of the

766agent according to the spatial distribution of the neighbours

767and to its actual position. An example of such a function

768follows. Function q depends also on the values of attributes

769contained in C, for instance the concentration of particles

770in each location.

771Implementation one possible implementation to reach a

772uniform distribution, involves a transition rule that calculates

773a repulsion vector between the particles that is inversely

774proportional to the distance between them. The transition

775rule is then implemented as follows: Let R be the repulsiveFig. 8 Diffusion in science
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776 radius; di the distance between a given node and neigh-

777 bouring node i; p the position of the given node and pi the

778 position of the neighbouring node i. Then, the position pt?1

779 of the agent at time t ? 1 and the movement vector m are

780 given by:

ptþ1 ¼ pt þm ð5Þ

782782 m ¼
X

i

p� pi

di
ðR� diÞ ð6Þ

784784 Figure 9 shows how agent 1 is repelled by agents 2 and

785 3 when it applies the repulsion mechanism. In Fig. 9a agent

786 1 executes Eq. (6) to create the repulsion vector. In Fig. 9b

787 agent 1 moves by following the repulsion vector.

788 Figure 10a shows the behaviour of an agent that is exe-

789 cuting the Repulsion Pattern. At the beginning the agents

790 send a position request to all the agents in the communication

791 range. When positions are received, the repulsion vector is

792 calculated following Eq. (6) and then, the new desired

793position by using Eq. (5). At this step if the system is com-

794posed of a swarm of robots, the robot that is executing the

795Repulsion Pattern would move to the desired position. If the

796Repulsion Pattern is executing using a mobile agents tech-

797nology, the agent would move to the closest node to the

798desired position. Figure 10b shows the interaction between

799the agent that is executing the Repulsion Pattern, the host

800where the agent is running and their neighbouring hosts.

801Known uses repulsion has not been proposed as a pattern

802so far. Several applications have used the repulsion

803mechanism, such as swarm robotics for pattern formation

804(Cheng et al. 2005), where the system achieves shape

805formation by simultaneously allowing agents to disperse

806within a defined 2D shape. In Particle Swarm Optimisation

807(PSO), Repulsion coordinates the position of explorer

808particles in a multi-swarm approach (Fernandez-Marquez

8092009). In (Fernandez-Marquez et al. 2011), the repulsion is

810used to coordinate the position of pieces of information,

811ensuring the accessibility to this information in a specific

812area of interest using the minimum possible memory.

813Consequences repulsion does not involve replication,

814i.e. during the repulsion process no new agents are created,

815contrarily to spreading. Repulsion is a continuous process

816that produces a uniform distribution of the agents in the

817system. Even when the agents are uniformly distributed in

818the environment, the repulsion mechanism continues

819working, producing a self-adaptation process when the

820number of agents changes (i.e. self-repairing formation in

821swarms of robots) or environmental changes occur.

822Related Patterns the Repulsion Pattern is used in the

823Flocking Pattern (Sect. 5.3.5).Fig. 9 Repulsion
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824 5.2 Composed patterns

825 This section analyses compositions of basic patterns,

826 widely used in the literature. It provides composed patterns

827 that can be used on their own or extended in turn by higher

828 level patterns.

829 5.2.1 Gradient pattern

830 The Gradient Pattern is an extension of the Spreading

831 Pattern where the information is propagated in such a way

832 that it provides an additional information about the sen-

833 der’s distance: either a distance attribute is added to the

834 information; or the value of the information is modified

835 such that it reflects its concentration - higher concentration

836 values meaning the sender is closer, such as in ants’

837 pheromones. Additionally, the Gradient Pattern uses the

838 Aggregation Pattern to merge different gradients created by

839 different agents or to merge gradients coming from the

840 same agent but through different paths. Different cases may

841 apply: either only the information with the shortest distance

842 to the sender is kept, or the concentration of the informa-

843 tion increases.

844 Aliases the Gradient Pattern is a particular kind of

845 computational fields (Bea 2009) (i.e. physical fields based

846 abstractions).

847 Problem agents belonging to large systems suffer from

848 lack of global knowledge to estimate the consequences of

849 their actions or the actions performed by other agents

850 beyond their communication range.

851 Solution information spreads from the location it is

852 initially deposited and aggregates when it meets other

853 information. During spreading, additional information

854 about the sender’s distance and direction is provided: either

855 through a distance value (incremented or decremented); or

856 by modifying the information to represent its concentration

857 (lower concentration when information is further away).

858 Thus, agents that receive gradients have information that

859 come from beyond their communication range, increasing

860 the knowledge of the global system not only with gradients

861 information but also with the direction and distance of the

862 information source. During the aggregation process, a filter

863 operator keeps only the information with the highest (or

864 lowest) distance, or it modifies the concentration. Gradients

865 can deal with network topology changes. In this case the

866 information spreads periodically and is subject to evapo-

867 ration, reducing its relevance along the time, and enabling

868 the gradients to adapt to networks topology changes. Such

869 gradients are called active gradients (Clement 2003).

870 Inspiration gradients appear in many biological pro-

871 cesses. The most known are Ant Foraging, Quorum Sens-

872 ing, Morphogenesis, and Chemotaxis processes. In these

873 processes, gradients support long-range communication

874among entities (cells, bacteries, etc..) through local

875interaction.

876Forces adaptation to environmental changes is faster

877when updating frequencies are high, thus increasing net-

878work overload. Lower updating frequencies reduce net-

879work overload, but can lead to outdated values when

880environmental changes occur. There is a trade-off between

881the diffusion radius (number of hops) and the load in the

882network. A higher diffusion radius brings information

883further away from its source, providing guidance to distant

884agents. However, it increments the load and may over-

885whelm the network (Bea 2009).

886Entities-Dynamic-Environment entities acting in the

887Gradient Pattern are Agents, Hosts, and Infrastructural

888Agents. Analogously to the Spreading Pattern, when a

889gradient is created, it is spread to its neighbours.

890The transition rules for the Gradient Pattern are specific

891instances of Transition Rule (1) and Transition Rule (2).

892An example is given in Transition Rules (7). We assume

893that each tuple contains a D attribute that represent the

894distance from the current host to the source of the gradient.

spreading :: hL; ½D;C�i�!
rspr hLk; ½D� DD;C�i

where Lk ¼ randomðfL1; . . .; LngÞ

aggregation :: hL; ½D1;C�i; . . .; hL; ½Dn;C�i�!
raggr hL; ½D0;C�i

where D0 ¼ min=maxðfD1; . . .;DngÞ ð7Þ

896896The first transition rule models the spreading of informa-

897tion modifying the distance attribute by incrementing or

898decrementing its value so to get to a cone-shaped gradient

899with the vertex down or up. Moreover, the rule specifies a

900specific instance of the function m(L) introduced in Tran-

901sition Rule (1) for determining the sequence of locations,

902among the neighbours of L, to which the information in

903input has to spread. Such a function randomðfL1; . . .; LngÞ
904chooses randomly one location among all the neighbouring

905locations of L. The second transition rule models the cor-

906responding case of aggregation when multiple tuples with

907the same content but different distance attribute are locally

908present. This particular rule models the case of an aggre-

909gation where only the information with the shortest / lon-

910gest distance is kept. It is important to note that D could

911also represent concentrations instead of distances.

912Implementation agents start the process by sending

913information to all their neighbours, as shown in Fig. 11 b for

914the case with distance value. When one agent receives the

915information it increments the distance attribute, or it reduces

916accordingly the concentration value of the information, and

917forwards the gradient again to all its neighbours (Spreading

918Pattern) as shown on diagram flow Fig. 11a and sequence

919diagram Fig. 11b for the case with distance value. When a

920host receives the gradient, infrastructural agents spread it
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921 further. Notice that this pattern can be also executed by

922 agents. When an agent receives more than one gradient, it

923 employs aggregation (Aggregation Pattern) as shown on

924 sequence diagram Fig. 11c. For instance, it may filter only

925 the gradient with the lowest distance attribute.

926 Self-healing gradients (i.e. gradients that adapt to net-

927 work changes) and their implementations are proposed in

928 (Beal et al. 1969–1975; Viroli et al. 2011).

929 Known uses the Gradient Pattern has been used in prob-

930 lems such as coordination of swarms of robots (Parunak

931 et al. 2002), coordination of agents in video games (Mamei

932 2004), or routing in AD-HOC networks (Perkins 1999).

933 Consequences the Gradient Pattern adds an extra infor-

934 mation (distance). Distance can be used to limit the number

935 of hops during the spreading process.

936 Related Patterns the Gradient Pattern is a composition

937 of the Spreading and Aggregation Patterns, extended with

938 the distance value or concentration information. It is used

939 by the Morphogenesis Pattern (Sect. 5.3.3), the Chemotaxis

940 Pattern (Sect. 5.3.2), and the Quorum Sensing Pattern

941 (Sect. 5.3.4). The Gradient Pattern may be combined with

942 the Evaporation Pattern to create active gradients to sup-

943 port adaptation when agents change theirs positions or

944 network topology changes.

945 5.2.2 Digital pheromone pattern

946 The Digital Pheromone Pattern is a swarm coordination

947 mechanism based on indirect communication. In this pat-

948 tern, agents deposit digital pheromones in hosts. A digital

949 pheromone is a mark that spreads a gradient over the

950 environment and persists in the environment for a while,

951 fading away with time. Other agents beyond the commu-

952 nication range can then receive the information conveyed

953 by digital pheromones. Digital pheromones are stored in

954the hosts and stay active even when agents that deposited

955digital pheromones disappear. Digital pheromones can be

956identical to each others, like in Ant Colony Optimisation

957Algorithm (Dorigo 1999) or can be specialised to a specific

958task, like in swarming vehicle control (Sauter et al. 2005).

959Digital pheromones are a particular case of stigmergy

960communication. Stigmergy is more general and stands for

961any indirect communication through the environment, not

962necessarily a sign that behaves like a Digital Pheromone.

963Alias none to our knowledge.

964Problem coordination of agents in large scale environ-

965ments using indirect communication.

966Solution digital pheromone provides a way to coordinate

967agent’s behaviour using indirect communication in high

968dynamic environments. Digital pheromones create gradi-

969ents that spread over the environment, carrying information

970about their distance and direction. Thus, agents can per-

971ceive pheromones from the distance and increase the

972knowledge about the system. Moreover, as time goes by

973digital pheromones evaporate, providing adaptation to

974environmental changes.

975Inspiration the Digital Pheromone Pattern takes inspi-

976ration from ant colonies. Ant colonies are able to find the

977shortest paths from the nest to food sources using local

978interactions and indirect communication based on phero-

979mones. Pheromones are deposited in the environment by

980ants to mark the path they are following from the nest to

981the food source and back. Pheromones quickly evaporate

982so they must be continuously released to maintain the

983information of the path. Colonies are able to adapt to

984environment changes (such as, new obstacles, new food

985sources, food sources that become empty, etc. . .).

986Forces the implementation of the Digital Pheromone

987Pattern involves the implementation of the Gradient and

988Evaporation Patterns in order to create an active gradient
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989 (Nagpa 2004). The main difference between active gradi-

990 ents and digital pheromones is that pheromone involves

991 indirect communication, while a gradient spreads from

992 agents to agents. Thus, the main forces to consider are the

993 following: (i) as for the Evaporation Pattern, how much and

994 how frequent evaporation is used at each iteration; (ii) as

995 for the Gradient Pattern, the Digital Pheromone Pattern is

996 composed of the Aggregation and Spreading Patterns, thus,

997 the more frequent the spreading of pheromone, the higher

998 the bandwidth used. In addition, spreading pheromones to

999 far away distances, allows more agents to receive the

1000 information, but consumes more memory and bandwidth.

1001 Entities-Dynamic-Environment agents are the only

1002 entities that can deposit pheromones. Pheromones are

1003 deposited in hosts, infrastructural agents then apply

1004 spreading, aggregation, and evaporation mechanisms (see

1005 Appendix Table 2). Thus, pheromones are spread though

1006 the network, aggregated in each host when two or more

1007 pheromones’ information arrive, and evaporated along the

1008 time until they disappear. During a pheromone life time,

1009 the pheromone can be perceived even beyond the host’s

1010 communication range, where the pheromone is actually

1011 hosted, due to the effect of the Spreading Pattern.

1012 The transition rule for the Digital Pheromone Pattern is

1013 obtained composing the three basic patterns: Spreading,

1014 Aggregation and Evaporation, as shown in Transition

1015 Rules (8).

spreading :: hL; ½PhV ;C�i�!
rspr hLk; ½PhV�DPhV ;C�i

where Lk ¼ randomðfL1; . . .;LngÞ

aggregation :: hL; ½PhV1;C�i; . . .;hL; ½PhVn;C�i�!
raggr hL; ½PhVi;C�i

where PhVi¼maxðfPhV1; . . .;PhVngÞ

evaporation :: hL; ½PhV ;C�i�!rev hL; ½PhV 0;C�i

where PhV 0 ¼PhV �Evfactor ð8Þ

10171017 Similar to the Gradient Pattern, the first transition rule

1018 models the spreading of information modifying the PhV

1019 concentration attribute by decreasing its value by a DPhV

1020 interval, representing for instance the distance between two

1021 locations. The selection of the target location is the same as

1022 for the Gradient Pattern. The second transition rule models

1023 the corresponding case of aggregation where only the

1024 pheromone with the biggest value is kept. The third tran-

1025 sition rule models the evaporation of pheromones, with the

1026 Evfactor in the range [0..1].

1027 Implementation digital pheromones are usually imple-

1028 mented using multiplicative static evaporation (i.e. the same

1029 evaporation factor is used periodically over the pheromone’s

1030 information). Independently of the patterns used to imple-

1031 ment the Digital Pheromone Pattern, pheromones can be

1032 deposited in hosts, (i.e. following the proposed model),

1033simulated by software (Sauter et al. 2005), or implemented

1034using RFID sensors (Mamei 2007). In the Digital Phero-

1035mone Pattern, the agents just deposit pheromones and sense

1036from them. Infrastructural Agents are in charge of spreading,

1037aggregating and evaporating the pheromones. The way the

1038agents exploit the digital pheromones involves new patterns

1039that are explained in the next sections.

1040Known uses digital pheromones have been used mainly

1041in autonomous coordination of swarming UAVs (Parunak

1042et al. 2002; Sauter et al. 2005). Moreover, applications of

1043digital pheromones can be found in the Ant Foraging

1044Pattern description (Sect. 5.3.1).

1045Consequences as reported in (Sauter et al. 2005), the

1046implementation of Digital Pheromones for swarm coordi-

1047nation provides the following issues to the system: (1)

1048simplicity, compared with the logic necessary in a centra-

1049lised approach, (2) scalability, the digital pheromones work

1050in a totally decentralised manner, i.e. they are applicable in

1051large scale MAS, and (3) robustness, due to decentralisa-

1052tion and the continuous self-organising process the digital

1053pheromones provide, some agents may fail but the system

1054is robust enough to overcome these failures.

1055Related Patterns the Digital Pheromone Pattern is com-

1056posed of the Evaporation and the Gradient Patterns, the latter

1057itself composed of the Aggregation and the Spreading Pat-

1058terns, so that we can say that the Digital Pheromone Pattern

1059involves the basic patterns Spreading and Evaporation. All

1060these patterns are described in Appendix Table 2. The

1061Digital Pheromone Pattern is exploited by the Ant Foraging

1062Pattern (Sect. 5.3.1) from the high level patterns.

10635.2.3 Gossip pattern

1064The goal of the Gossip Pattern is to obtain a shared agreement

1065about the value of some parameters in the system in a de-

1066centralised way. All the agents in the system collaborate to

1067progressively reach this agreement: all of them contribute

1068with their knowledge by aggregating their own knowledge

1069with the neighbours’ knowledge and by spreading this

1070aggregated knowledge. Thus, the Aggregation Pattern

1071increases the knowledge and reduces the uncertainty of a

1072single agent by taking into account the knowledge of other

1073agents. Gossip was proposed as an Amorphous computing

1074primitive mechanism by Abelson et al. (2000).

1075Alias none to our knowledge.

1076Problem in large-scale systems, agents need to reach an

1077agreement, shared among all agents, with only local per-

1078ception and in a decentralised way.

1079Solution information spreads to neighbours, where it

1080is aggregated with local information. Aggregates are

1081spread further and their value progressively reaches the

1082agreement.
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1083 Inspiration gossip is inspired from the human social

1084 behaviour linked to spreading rumors. People add their

1085 own information to information received from other peo-

1086 ple, they increase their knowledge and spread this knowl-

1087 edge further. When the process is repeated several times,

1088 people start to share the same knowledge that results from

1089 the sharing of the knowledge of different people.

1090 Forces the Gossip Pattern is composed of the Spreading

1091 and Aggregation Patterns. It thus presents the same trade-

1092 offs (see Sects. 5.1.1, 5.1.2). As in spreading, the main

1093 problem of gossip is the network overload that is produced

1094 by the continuous broadcast performed by the agents. In

1095 order to reduce the network overload, optimised broadcast

1096 can be applied (e.g. not all the neighbours receive the

1097 information). The number of neighbours that receive

1098 the information is the trade-off of this pattern. The more the

1099 neighbours that receive the information, the more robust the

1100 system is in the case of failures, but more network overload

1101 is produced. Robustness is linked with the network density,

1102 higher nodes’ adjacency leads to a more robust system.

1103 Entities-Dynamics-Environment the entities involved in

1104 the gossip mechanism are agents, infrastructural agents and

1105 hosts. Gossip is a composed pattern. The dynamics between

1106 the entities is then the same as for aggregation and spreading.

1107 Analogously to spreading, only an agent can initiate the

1108 process. When one agent desires to initiate a gossip process,

1109 it sends the information (e.g. parameters and values) to a

1110 subset of its neighbours. If an agent is hosted in one of the

1111 neighbouring nodes, the agent gets the information, aggre-

1112 gates the information received with its own information and

1113 re-sends the aggregated information to a subset of its own

1114 neighbours nodes. The same behaviour is produced by the

1115 infrastructural agents when no agent is hosted in one host

1116 and the host receives an information, in this case the Infra-

1117 structural Agent aggregates all the received information and

1118 re-sends it. One agent or infrastructural agent ends the gossip

1119 process when the information received and the information

1120 previously sent are the same, that means that an agreement

1121 has been reached.

1122 Transition Rules (9) describe gossip. Information

1123 received from the neighbours (denoted with the attribute

1124 Recd) is aggregated to local information and sent to a set of

1125 neighbours.
1126

1127The first transition rule models the spreading of informa-

1128tion to a set of locations within the neighbourhood, without

1129modifying its content C, but indicating that the information

1130is sent by a neighbour. As for the spreading, the set of such

1131locations cannot be empty, cannot be composed of

1132L only, but can be composed of all the neighbourhood of

1133L including L itself. The second transition rule models the

1134aggregation of the information received with the local

1135information producing a smallest set of information that the

1136agent then broadcasts again. The process finishes when

1137there is no more broadcast in the system that means, the

1138agents have reached an agreement (i.e. the information

1139received by an agent is the same as its own knowledge).

1140Implementation regarding implementation, optimised

1141broadcast can be applied. One interesting example of

1142implementation appears in (Haas et al. 2006), where a

1143probabilistic gossip is proposed. It was demonstrated that

1144executing the gossip (broadcast) with a probability between

11450.6 and 0.8 is enough to ensure that almost every node gets

1146the message in almost every execution. This optimisation

1147decrements the number of messages by 35 %. Figure 12a

1148shows the flow chart for the standard gossip mechanism

1149where the information spreads using the broadcast. Fig-

1150ure 12b shows the interaction between the agent that ini-

1151tiates the gossip process, the host where the agent is

1152running and the neighbour hosts. Once the gossip has

1153started, the agents and infrastructural agents follow the

1154behaviour presented in Fig. 12c.

1155Known uses Kempe et al. (2003) analyse a simple gos-

1156sip-based protocol for the computation of sums, averages,

1157random samples, quantiles, and other aggregate functions.

1158Norman et al. (2010) propose a gossip algorithm where the

1159aggregation is based on Evolutionary Algorithm, and apply

1160this mechanism for coordinating large convention spaces

1161(finding a common vocabulary (lexicon) in their case). The

1162Evolutionary Algorithm approach keeps the diversity

1163throughout the agreement process (not 100 % of agents get

1164the same agreement), this guarantees that when the envi-

1165ronment changes the system can quickly achieve a new

1166agreement. It was demonstrated that this approach is

1167resilient to unreliable communications and guarantees the

1168robust emergence of conventions.

spreading :: hL;Ci�!
rspr hL1; ½Recd;C�i; . . .; hLn; ½Recd;C�i

where fL1; . . .; Lng ¼ mðLÞ

aggregation :: hL;C1i; . . .; hL;Cmi; hL; ½Recd;Cmþ1�i; . . .; hL; ½Recd;Cn�i�!
raggr hL;C01i; . . .; hL;C0ki

where fC01; . . .;C0kg ¼ aðfC1; . . .;CngÞ

ð9Þ
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1169 Consequences the main advantage of gossip is the

1170 robustness. Even in the presence of failures, the pattern is

1171 able to reach the agreement. Moreover, gossip provides a

1172 continuous adaptation when new values arrive in the

1173 system.

1174 Related Patterns the Gossip Pattern is composed of the

1175 Spreading Pattern (Sect. 5.1.1) and the Aggregation Pattern

1176 (Sect. 5.1.2).

1177 5.3 High-level patterns

1178 This section describes the three high level patterns used in

1179 the literature whose contribution in different fields have

1180 been demonstrated. For instance, other interesting appli-

1181 cations using the Gradient exist in the literature, however

1182 their contributions are only focused on one field and no

1183 generalisation has been proposed. We present here only

1184 those patterns that have been widely accepted and used as

1185 mechanisms.

1186 5.3.1 Ant foraging pattern

1187 Ant foraging is the activity where a set of ants collaborate

1188 to find food. The Ant Foraging Pattern is a decentralised

1189 collaborative search pattern. Mainly, the Ant Foraging

1190 Pattern has been applied to optimisation problems and used

1191 for swarm robotics.

1192 Aliases Ant Colony Optimisation (Dorigo 2002).

1193 Problem large scale optimisation problems that can be

1194 transformed into the problem of finding the shortest path on

1195 a weighted graph.

1196 Solution the Ant Foraging Pattern provides rules to

1197 explore the environment in a decentralised manner and to

1198 exploit resources.

1199 Inspiration the Ant Foraging Pattern is inspired by the

1200 Ant Colony Foraging behaviour. In ant colonies, ants

1201coordinate their behaviour to find the shortest path from

1202the nest to the food. Ant colonies use a stigmergic com-

1203munication means, i.e. ants modify the environment by

1204depositing a chemical substance called pheromone. This

1205pheromone drives the behaviour of other ants in the colony,

1206pheromone concentrations being used to recruit other ants.

1207Following the highest pheromone concentration, ants find

1208the shortest path from the nest to the food, and adapt this

1209path when obstacles appear or when food is depleted.

1210Forces each ant has a probability of following the gra-

1211dient produced by the pheromones. When one ant is not

1212following the gradient, it walks randomly in the environ-

1213ment looking for new resources (exploration). When the

1214probability of exploration is high (i.e. low probability of

1215following the gradient), ants adapt faster to environmental

1216changes but are slower in reaching the resources (exploi-

1217tation). Whereas, with a low exploration (i.e. high proba-

1218bility of following the gradient), ants are quick in

1219exploiting the resources since most of the ants follow the

1220path to the resource. However, due to the lack of explo-

1221ration, when the resource is depleted the ants spend more

1222time to find new resources and adaptation is slower.

1223Additionally, the Ant Foraging Pattern presents the same

1224forces as the Digital Pheromone Pattern (Sect. 5.2.2). If the

1225evaporation rate of the pheromone is too low, the phero-

1226mone scent does not evaporate quickly enough and stays

1227where it has been laid down. The environment gets filled

1228with pheromone and the exploitation is not efficient. A

1229high evaporation rate causes the pheromone to evaporate

1230before ants can build a path and maintain it, reducing the

1231exploitation and incrementing the exploration.

1232Entities-Dynamic-Environment the entities involved in

1233the Ant Foraging Pattern are the same as for the Digital

1234Pheromone Pattern (Sect. 5.2.2). When one agent senses

1235the presence of a digital pheromone, it decides to follow

1236the gradient or to move randomly.
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1237 Transition Rule (10) describes the ant foraging behav-

1238 iour. It extends Transition Rule (8) that creates the field of

1239 pheromones.

1240 The first rule models an agent that senses the values of

1241 the pheromone field in its location and in the neigh-

1242 bourhood, and then follows the direction of the highest

1243 gradient value to find food. The second rule models an

1244 agent that moves randomly. Both rules are subject to a

1245 rate which regulates the exploitation vs exploration

1246 activities.

1247 Implementation according to some exploration proba-

1248 bility, agents either follow scouts (i.e. are recruited to

1249 exploit food), or perform some random search. In the case

1250 of ants, scouts deposit pheromones in their environment,

1251 that are later sensed by other ants to find food sources.

1252 Figure 13a shows the general behaviour of ants, Fig. 13b

1253 shows the behaviour of ants looking for food, following a

1254 trail or taking a random path, finally Fig. 13c show the

1255 return to the nest, dropping pheromone, once a piece of

1256 food has been found.

1257 Known uses the Ant Foraging Pattern has been mainly

1258 applied in Ant Colony Optimisation (ACO) (Dorig 1992) in

1259 applications such as, scheduling (Blu 2005; Martens et al.

1260 2007), vehicle routing problems (Bachem 1996; Secomand

1261 2000; Toth 2002), or assignment problems (Lourenço

1262 1998).

1263Consequences the system achieves high quality perfor-

1264mance in NP-Hard search problems.

1265

1266Related Patterns the Ant Foraging Pattern exploits the

1267Digital Pheromone Pattern (Sect. 5.2.2). Thus, the Ant

1268Foraging Pattern uses Evaporation, Spreading and Aggre-

1269gation Patterns (see Appendix Table 2 for details about

1270these patterns).

12715.3.2 Chemotaxis pattern

1272The Chemotaxis Pattern provides a mechanism to perform

1273motion coordination in large scale systems. Chemotaxis

1274was initially proposed by Nagpal (Nagpa 2004). The

1275Chemotaxis Pattern extends the Gradient Pattern: agents

1276identify the gradient direction to decide the direction of

1277their next movements.

1278Alias none to our knowledge.

1279Problem decentralised motion coordination aiming at

1280detecting sources or boundaries of events.

1281Solution agents locally sense gradient information and

1282follow the gradient in a specified direction (i.e. follow

1283higher gradient values, lower gradient values, or equipo-

1284tential lines of gradients).

1285Inspiration in biology, chemotaxis is the phenomenon

1286in which single or multi-cellular organisms direct their
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Fig. 13 Ant foraging: general

flow (a), looking for food (b),
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up move :: hL; ½PhV1;C�i; . . .; hLn; ½PhVn;C�i�!
rumovehLi; ½PhVi;C�i

where PhVi ¼ maxðfPhV1; . . .;PhVngÞ

random move :: hL;C�i�!rrmovehLi;C�i

where Li ¼ randomðfL1; . . .; LngÞ ð10Þ
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1287 movements according to certain chemicals present in their

1288 environment. Examples in nature include: leukocyte cells

1289 moving towards a region of a bacterial inflammation or

1290 bacteria migrating towards higher concentrations of nutri-

1291 ents (Wolpert et al. 2007). Notice that in biology, chemo-

1292 taxis is also a basic mechanism of morphogenesis. It guides

1293 cells during development so that they will be placed in the

1294 final right position. In this paper, following (Nagpa 2004),

1295 the term chemotaxis is used as motion coordination fol-

1296 lowing gradients, while the term morphogenesis is used for

1297 triggering specific behaviours based on relative positions

1298 determined through a gradient.

1299 Forces the Chemotaxis Pattern exploits the Gradient

1300 Pattern (see Sect. 5.2.1 to find information about the forces

1301 involved in the Gradient Pattern). In the Chemotaxis Pattern

1302 the communication range plays an important role. When the

1303 communication range is long, agents move faster following

1304 the gradients. This, however, causes problems for precisely

1305 locating sources. On the other hand, short communication

1306 ranges need a higher number of hops to follow the gradient,

1307 but they allow to find sources with high precision.

1308Entities-Dynamic-Environment the concentration of

1309gradient guides the agents’ movements in three different

1310ways, as shown in Fig. 15: (1) attractive movement,

1311when agents change their positions following higher

1312gradient values, (2) repulsive movement, when agents

1313follow lower gradient values, incrementing the distance

1314between the agent and the gradient source, and (3)

1315equipotential movement, when agents follow gradients

1316between thresholds.

1317Given the Transition Rule (7) that creates the gradient,

1318Transition Rule (11) determines the agent movement

1319towards the highest, lowest, or equipotential gradient value

1320(depending on the cases).

move :: hL; ½D1;C�i; . . .; hLn; ½Dn;C�i�!
rmove hLi; ½Di;C�i

where Di ¼ min=max=equalðfD1; . . .;DngÞ ð11Þ

13221322Implementation chemotaxis can be implemented in

1323two different ways. First, using gradients existing in the

1324environment to coordinate the agent’s positions or directions

1325(e.g. using attractive and equipotential movements to detect

1326the contour of diffuse events (Ruairı́ 2007), or using attractive

1327movements to detect diffuse event sources (Fernandez-

1328Marquez et al. 2012) through a multi-agent approach over a

1329sensor network infrastructure). Second, using gradient fields

1330generated by agents (e.g. using a gradient-based approach to

1331coordinate the position of bots in the Quake 3 Arena video

1332game (Mamei 2004)). Diagram 14a, b show a particular case

1333of implementation, where agents get information about

1334neighbouring gradients, before taking a decision about

1335where to go next. As shown in Diagram 14a, each agent

1336chooses n random neighbouring host and sends them a

1337gradient concentration request. The agent chooses the

1338neighbouring host that has a highest gradient concentration
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1339 and moves there. By repeating this process the agent is able to

1340 find the gradient source.

1341 Known uses Mamei et al. (2004) use Chemotaxis to

1342 coordinate the position of a swarm of simple mobile robots.

1343 Chemotaxis is also used in (Viroli et al. 2011), where

1344 chemotaxis is applied to route messages in pervasive

1345 computing scenarios.

1346 Related Patterns the Chemotaxis Pattern extends the

1347 Gradient Pattern (Sect. 5.2.1).

1348 5.3.3 Morphogenesis pattern

1349 The goal of the Morphogenesis Pattern is to select different

1350 agent’s behaviour depending on the agent’s position in the

1351 system. The Morphogenesis Pattern exploits the Gradient

1352 Pattern: relative spatial position information is assessed

1353 through one or multiple gradient sources generated by

1354 other agents. Morphogenesis was proposed as a self-

1355 organising mechanism in (Mamei et al. 2006; Sudeikat

1356 2008). The morphogenesis process in biology has been

1357 considered as an inspiration source for gradient fields.

1358 Alias none to our knowledge.

1359 Problem in large-scale decentralised systems, agents

1360 decide on their roles or plan their activities based on their

1361 spatial position.

1362 Solution specific agents spread morphogenetic gradients.

1363 Agents assess their positions in the system by computing their

1364 relative distance to the morphogenetic gradients sources.

1365 Inspiration in the biological morphogenetic process

1366 some cells create and modify molecules (through aggre-

1367 gation) which diffuse (through spreading), creating gradi-

1368 ents of molecules. The spatial organisation of such

1369 gradients is the morphogenesis gradient, which is used by

1370 the cells to differentiate the role that they play inside the

1371 body, e.g. in order to produce cell differentiations.

1372 Forces the forces presented in this pattern are the same

1373 as the ones of the Gradient Pattern (Sect. 5.2.1).

1374 Entities-Dynamic-Environment the entities involved in

1375 the morphogenesis process are Agents, Hosts, and Infra-

1376 structural Agents. At the beginning, some of the agents

1377 spread one or more morphogenesis gradients, implemented

1378 using the Gradient Pattern. Other agents sense the mor-

1379 phogenetic gradient in order to calculate their relative

1380 positions. Depending on their relative positions, the agents

1381 adopt different roles and coordinate their activities in order

1382 to achieve collaborative goals.

1383 Given Transition Rule (7) that creates the gradient,

1384 Transition Rule (12) models an agent sensing its local

1385 gradient values and adapting its behaviour depending on its

1386 relative position with respect to the gradient source.

state evolution :: hL; ½D; State;C�i�!rmove hL; ½D; State0;C�i

where State0 ¼ pðDÞ ð12Þ

13881388Function p(D) changes the state variables of the agent,

1389evolving its state according to the information it locally

1390perceives in the environment.

1391Implementation an interesting implementation of the

1392morphogenesis gradient to estimate positions is proposed in

1393(Bea 2009), where a self-healing gradient algorithm with a

1394tunable trade-off between precision and communication

1395cost is proposed. In (Mamei et al. 2004) the motion coor-

1396dination of a swarm of robots is implemented by using both

1397Morphogenesis and Chemotaxis Patterns (Sect. 5.3.2).

1398Diagram 16a, b show agents estimating their position in

1399response to gradient information propagated by neigh-

1400bouring hosts.

1401Known uses the Morphogenesis Pattern is used to

1402implement control techniques for modular self-reconfigu-

1403rable robots (meta-morphic robots) (Bojinov et al. 2001) .

1404Morphogenesis is also employed to create a robust process

1405for shape formation on a sheet of identically programmed

1406agents (origami) (Nagpa 2002).

1407Consequences the Morphogenesis Pattern equips the

1408agents with a mechanism to coordinate their activities

1409based on their relative positions. Like the other mecha-

1410nisms previously presented, robustness and scalability are

1411properties ensured by this pattern.

1412Related Patterns the Morphogenesis Pattern extends the

1413Gradient Pattern (Sect. 5.2.1). The Morphogenesis Pattern

1414can be combined with the Digital Pheromone Pattern where

1415the role and behaviour of the agents depend on the dis-

1416tances to the pheromone sources.

14175.3.4 Quorum sensing pattern

1418Quorum sensing is a decision-making process for coordi-

1419nating behaviour and for taking collective decisions in a

1420decentralised way. The goal of the Quorum Sensing Pattern
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Fig. 16 Morphogenesis: agent behaviour (a), agent interaction (b)
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1421 is to provide an estimation of the number of agents (or of

1422 the density of the agents) in the system using only local

1423 interactions. The number of agents in the system is crucial

1424 in those applications, where a minimum number of agents

1425 are needed to collaborate on specified tasks.

1426 Alias none to our knowledge.

1427 Problem collective decisions in large-scale decentralised

1428 systems, requiring a threshold number of agents or esti-

1429 mation of the density of agents in a system, using only

1430 local interactions.

1431 Solution the Quorum Sensing Pattern allows to take

1432 collective decisions through an estimation by individual

1433 agents of the agents’ density (assessing the number of other

1434 agents they interact with) and by determination of a

1435 threshold number of agents necessary to take the decision.

1436 Inspiration the Quorum Sensing Pattern is inspired by

1437 the Quorum Sensing process (QS), which is a type of

1438 intercellular signal used by bacteria to monitor cell density

1439 for a variety of purposes. An example is the bioluminescent

1440 bacteria (Vibrio Fischeri) found in some species of squids.

1441 These bacteria self-organise their behaviour to produce

1442 light only when the density of bacteria is sufficiently high

1443 (Miller 2001). The bacteria constantly produce and secrete

1444 certain signalling molecules called auto-inducers. In pres-

1445 ence of a high number of bacteria, the level of auto-

1446 inducers increases exponentially (the higher the auto-

1447 inducer level a bacteria detects, the more auto-inducer it

1448 produces). Another interesting example is given by the

1449 colonies of ants (Leptothorax albipennis) (Sahin 2002),

1450 when the colony must find a new nest site. A small portion

1451 of the ants search for new potential nest sites and assess

1452 their quality. When they return to the old nest, they wait for

1453 a certain period of time before recruiting other ants (higher

1454 assessments produce lower waiting periods). Recruited ants

1455 visit the potential nest site and make their own assessment

1456 about the nest quality returning to the old nest and

1457 repeating the recruitment process. Because of the waiting

1458 periods, the number of ants present in the best nest will

1459 tend to increase. When the ants in this nest sense that the

1460 rate at which they encounter other ants exceeds a particular

1461 threshold, the quorum number is reached. Other swarms

1462 like honeybees or wasps use the same technique for nest

1463 finding.

1464 Forces the Quorum Sensing Pattern uses gradients pre-

1465 senting the same parameters as the Gradient Pattern (Sect.

1466 5.2.1). The threshold, indicating that the quorum number

1467 has been reached, triggers the collaborative behaviour.

1468 Quorum Sensing provides an estimation of the density of

1469 agents in the system. However, this pattern does not pro-

1470 vide a solution to calculate the number of agents necessary

1471 to carry out a collaborative task (i.e. to identify the

1472 threshold value).

1473Entities-Dynamic-Environment the entities involved in

1474the Quorum Sensing Pattern are the same as in the Gradient

1475Pattern. Namely, Agents, Hosts, and Infrastructural Agents.

1476The concentration is estimated by the aggregation of the

1477gradients.

1478The transition rule for the Quorum Pattern can be

1479modelled through Transition Rule (12), where the evolu-

1480tion function p(D) has the form given by Eq. (13):

pðDÞ ¼ State if D� threshold
State0 if D [ threshold

�
ð13Þ

14821482Implementation there is no specific implementation for

1483the Quorum Sensing Pattern. However, biological systems

1484presented above give us some ideas about how to

1485implement the pattern. Here we propose two different

1486approaches to implement the Quorum Sensing Pattern: (1)

1487to use the Gradient Pattern to simulate the auto-inducers

1488like in the bioluminescent bacteria. In this case the gradient

1489concentration provides the agents with an estimation of the

1490agents’ density; (2) as in ants’ systems, the agents’ density

1491can be estimated through the frequency to which agents are

1492in communication range. The use of gradients provides

1493better estimations than the use of frequencies. However, it

1494is more expensive computationally and it requires more

1495network communications. Diagram 17a, b show agents

1496identifying whether the concentration gradient has reached

1497the threshold, in response to gradient information

1498propagated by neighbouring hosts.

1499Known uses the Quorum Sensing Pattern is used to

1500increase the power saving in Wireless Sensor Networks

1501(Britton 2004). Quorum sensing permits to create clusters

1502based on the structure of the observed parameters of

1503interest, and then only one node for each cluster sends the
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Fig. 17 Quorum sensing: agent behaviour (a), agent interaction (b)

J. L. Fernandez-Marquez et al.

123
Journal : Large 11047 Dispatch : 21-4-2012 Pages : 25

Article No. : 9324
h LE h TYPESET

MS Code : h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

1504 information on behalf of the quorum. Another known

1505 example is the coordination of Autonomous Swarm Robots

1506 (Sahin 2002).

1507 Consequences each agent can estimate the density of

1508 nodes or the density of other agents in the system using

1509 only local information received from neighbours, even

1510 when the system is really large and agents are anonymous.

1511 Related Patterns the Quorum Sensing Pattern, depend-

1512 ing on its implementation, uses the Gradient Pattern (Sect.

1513 5.2.1).

1514 5.3.5 Flocking pattern

1515 Flocking is a kind of self-organising motion coordination

1516 behaviour of a herd of animals of similar size and body

1517 orientation, often moving en masse or migrating in the

1518 same direction and with a common group objective. The

1519 Flocking Pattern is able to control dynamic pattern for-

1520 mations and move the agents over the environment while

1521 keeping the formation pattern, interconnections between

1522 them and avoiding collisions.

1523 Different disciplines have been interested in the emer-

1524 gent behaviour of flocking, swarming, schooling and

1525 herding. Several examples can be found in (Olfati-Sabe

1526 2006). The forces that drive the flocking behaviour were

1527 proposed in 1986 by Craig W. Reynolds (Reynold 1987).

1528 They are known as Reynolds rules: (1) cohesion (flock

1529 centering), (2) separation (obstacle avoidance and crowd

1530 avoidance) and (3) alignment (velocity and direction

1531 matching). Cohesion captures the intuition that individuals

1532 try to keep close to nearby flockmates because they always

1533 try to move towards the flocking center. Separation pursues

1534 collision avoidance with nearby flockmates and other

1535 obstacles. Alignment is related to the ability to move the

1536 flock with all the individuals at the same speed. Flocking is

1537 typically used for motion coordination of large scale MAS,

1538 mainly 2D or 3D simulations.

1539 Problem dynamic motion coordination and pattern for-

1540 mation of swarms.

1541 Solution the Flocking Pattern provides a set of rules for

1542 moving groups of agents over the environment while

1543 keeping the formation and interconnections between them.

1544Inspiration this pattern is inspired by the behaviour of a

1545group of birds when they are foraging or flying and by

1546schools of fish when they are avoiding a predator attack or

1547foraging. For example, when a school of fish is under a

1548predator attack, the movement of the first fish sensing the

1549predator presence, produces a fast movement alerting the

1550other fishes by waves of pressure sent through the water.

1551The schools of fish then changes its formation for avoiding

1552the predator attack, recovering the initial formation after

1553the attack. It is similar for obstacle avoidance.

1554Forces parameters such as, avoidance distance, maxi-

1555mum velocity and maximum acceleration must be tuned to

1556achieve the desired motion coordination.

1557Entities-dynamic-environment the entities participating in

1558the Flocking Pattern are only Agents using direct com-

1559munication. Basically, agents sense the position of their

1560neighbours and keep a constant desired distance. When the

1561distance changes due to external perturbations, each agent

1562responds in a decentralised way to control the distance and

1563to recover the original formation pattern.

1564The transition rule for the Flocking Pattern is formalised

1565in Transition Rule (4), where the specific instance of q for

1566computing the new position is described in the following.

1567Implementation details about the algorithm and theory

1568can be found in (Olfati-Sabe 2006). Here we present some

1569basic concepts about the algorithm and the implementation.

1570Analogously to the free-flocking algorithm presented in

1571(Olfati-Sabe 2006), each agent’s motion is controlled by

1572Eq. (14).

ui ¼
Z
�
g

i

þ
Z
�
d

i

þ
Z
�
c

i

ð14Þ

15741574where
R
�g

i is a gradient based term that represents the

1575cohesion and separation Reynolds rules (1) & (2).
R
�d

i is a

1576velocity consensus/alignment term that represents the

1577alignment rule (3). Finally,
R
�c

i is the navigational feedback

1578term that drives the group to the objective.

1579Figures 18 represents two agents that coordinate their

1580behaviour according to the first term (cohesion and sepa-

1581ration): (a) agents are attracted to each other, because they

Fig. 18 Metric distance

model—movements
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1582 are situated in an attracting zone; (b) agents repel each

1583 other because they are too close; finally, in (c) agents are in

1584 the neutral zone where the term becomes zero. When all

1585 the agents of the flocks are situated in the neutral area, they

1586 form a stress-free structure. Analogously to the Repulsion

1587 Pattern (Sect. 5.1.4), the interactions between the entities

1588 participating in the Flocking Pattern are the same as the

1589 interactions shown in the Repulsion Pattern (Sect. 5.1.4).

1590 The only difference is that the Flocking Pattern applies

1591 more rules, not only repulsion.

1592 Known uses the first application of the Flocking Pattern

1593 was modelling animal behaviour for movies. Specifically,

1594 it was used to generate realistic crowds moves. Flocking

1595 has also been used to control the behaviour of Unmanned

1596 Air Vehicles (UAVs) (Crowther 2002), Autonomous

1597 mobile robots (Hayes 2002; Jadbabaie et al. 2003), Micro

1598 or Miniature Aerial Vehicles (MAV) (Nardi et al. 2006)

1599 and Mobile Sensor Networks (La 2009, 2009).

1600 Consequences flocking tries to generalise the behaviour of

1601 flocking, independently of individuals (birds, penguins, fish,

1602 etc.). Its behaviour does not depend on the methods used for

1603 the generation of agents’ trajectories. The Flocking Pattern

1604 provides robustness and self-healing properties when faced

1605 with agents’ failures and communication problems.

1606 Related Patterns the Flocking Pattern extends the

1607 Repulsion Pattern (Sect. 5.1.4). In fact, repulsion can be

1608 seen as a simplification of the Flocking Pattern where only

1609 the repulsion vector is taken into account for calculating

1610 the next position.

16116 Conclusion and future work

1612This paper proposes a catalogue of bio-inspired self-

1613organising mechanisms uniformly expressed as modular

1614and reusable design patterns, which we organised into

1615different layers. On the one hand the design pattern

1616description allows us to give a detailed information about

1617how and when each mechanisms should be used. On the

1618other hand, the classification and relations between the

1619mechanisms provide a better understanding of their

1620behaviours, and allows engineers to design and implement

1621bio-inspired systems by adding modular bio-inspired

1622functionalities. Future work will consider the inclusion of

1623additional mechanisms in the catalogue, further investiga-

1624tion of the patterns’ usage and how applications can be

1625built on top of a bio-inspired framework where the dif-

1626ferent mechanisms can be provided by the underlying

1627environment and requested on demand (preliminary results

1628can be found in (Fernandez-Marquez et al. 2011)), thus,

1629allowing applications to be designed and implemented in a

1630modular way (i.e. reusing code).

1631Appendix

16321. Design patterns summary

1633Table 2 summarises each design pattern giving the prob-

1634lem its solves and the solution it provides.

Table 2 Patterns table

Pattern’s name Problem and solution

Spreading

(Sect. 5.1.1)

In systems, where agents perform only local interactions, agents’ reasoning suffers from the lack of knowledge about the global system.

a copy of the information (received or held by an agent) is sent to neighbours and propagated over the network from one node to

another. Information spreads progressively over the system and reduces the lack of knowledge of the agents while keeping the

constraint of the local interaction

Aggregation

(Sect. 5.1.2)

In large systems, excess of information produced by the agents may produce network and memory overloads. Information must be

distributively processed in order to reduce the amount of information and to obtain meaningful information. aggregation consists in

locally applying a fusion operator to process the information and synthesise macro information. This fusion operator can take many

forms, such as filtering, merging, aggregating, or transforming (Chen 2002)

Evaporation

(Sect. 5.1.3)

Outdated information cannot be detected and it needs to be removed, or its detection involves a cost that needs to be avoided. Agent

decisions rely on the freshness of the information presented in the system, enabling correct responses to dynamic

environments.evaporation is a mechanism that periodically reduces the relevance of information. Thus, recent information becomes

more relevant than older information

Repulsion

(Sect. 5.1.4)

Agents’ movements have to be coordinated in a decentralised manner in order to achieve a uniform distribution and to avoid collisions

among them. The Repulsion Pattern creates a repulsion vector that guides agents to move from regions with high concentrations of

agents to regions with lower concentrations. Thus, after few iterations agents reach a more uniform distribution in the environment

Gradients

(Sect. 5.2.1)

Agents belonging to large systems suffer from lack of global knowledge to estimate the consequences of their actions or the actions

performed by other agents beyond their communication range. Information spreads from the location it is initially deposited and

aggregates when it meets other information. During spreading, additional information about the sender’s distance and direction is

provided: either through a distance value (incremented or decremented); or by modifying the information to represent its

concentration (lower concentration when information is further away). Thus, agents that receive gradients have information that come

from beyond their communication range, increasing the knowledge of the global system not only with gradients information but also

with the direction and distance of the information source. During the aggregation process, a filter operator keeps only the information

with the highest (or lowest) distance, or it modifies the concentration. Gradients can deal with network topology changes. In this case

the information spreads periodically and is subject to evaporation, reducing its relevance along the time, and enabling the gradients to

adapt to networks topology changes. Such gradients are called active gradients (Clement 2003)
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Table 2 continued

Pattern’s name Problem and solution

Digital pheromone

(Sect. 5.2.2)

Coordination of agents in large scale environments using indirect communication. Digital pheromone provides a way to coordinate

agent’s behaviour using indirect communication in high dynamic environments. Digital pheromones create gradients that spread over

the environment, carrying information about their distance and direction. Thus, agents can perceive pheromones from the distance

and increase the knowledge about the system. Moreover, as time goes by digital pheromones evaporate, providing adaptation to

environmental changes

Gossip (Sect. 5.2.3) in large-scale systems, agents need to reach an agreement, shared among all agents, with only local perception and in a decentralised

way. Information spreads to neighbours, where it is aggregated with local information. Aggregates are spread further and their value

progressively reaches the agreement

Ant foraging

(Sect. 5.3.1)

Large scale optimisation problems that can be transformed into the problem of finding the shortest path on a weighted graph. The Ant

Foraging Pattern provides rules to explore the environment in a decentralised manner and to exploit resources

Chemotaxis

(Sect. 5.3.2)

Decentralised motion coordination aiming at detecting sources or boundaries of events. agents locally sense gradient information and

follow the gradient in a specified direction (i.e. follow higher gradient values, lower gradient values, or equipotential lines of

gradients)

Morphogenesis

(Sect. 5.3.3)

In large-scale decentralised systems, agents decide on their roles or plan their activities based on their spatial position. specific agents

spread morphogenetic gradients. Agents assess their positions in the system by computing their relative distance to the morphogenetic

gradients sources

Quorum sensing

(Sect. 5.3.4)

Collective decisions in large-scale decentralised systems, requiring a threshold number of agents or estimation of the density of agents

in a system, using only local interactions. The Quorum Sensing Pattern allows to take collective decisions through an estimation by

individual agents of the agents’ density (assessing the number of other agents they interact with) and by determination of a threshold

number of agents necessary to take the decision

Flocking (Sect. 5.3.5) Dynamic motion coordination and pattern formation of swarms. The Flocking Pattern provides a set of rules for moving groups of

agents over the environment while keeping the formation and interconnections between them
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