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196 ®m Adaptive, Dynamic, and Resilient Systems

As described in the previous chapter, self-organizing systems exhibit adaptation
and resilience features, but the assessment and measurement of these features is not
trivial, even if it would be very useful in order to quantify the adaptation and the
resilience of different approaches and to compare systems. In this chapter, Matteo
Risoldi, Jose Luis Fernandez Marquez, and Giovanna Di Marzo Serugendo pro-
pose a framework, called DREF, which aims to support the assessment and the
measurement of these features in a quantitative manner. They use a case study to

show the applicability of their proposal.

11.1 Introduction

Resilience, intended as the persistence of dependability when facing changes [1],
is one of the central features of self-organizing (SO) systems due to their ability to
adapt their behavior following changes and faults. The assessment of resilience is
generally achieved with experiments and simulations. Robustness and adaptation
to some changes is obtained through specific SO mechanisms, which have their
limits and do not help overcoming any possible type of faults or change [2]. For
instance, digital pheromone in ant-based systems helps overcome the appearance
of obstacles in the environment or the disappearance of food but is of limited help
in case of faults (malicious or not) in the agent behavior (e.g., not properly fol-
lowing the pheromone). Therefore, in the process of development of a SO system,
a developer will often want to achieve better resilience by adding, removing, or
modifying the system’s behavior, then assessing the system to see whether and how
it has improved. Due to the complex behaviors of SO systems, however, it is not
easy to quantify how a new version of a SO system compares to the one it replaces.
Informal methods of comparison are generally effective only for relatively simple
and small-scale systems. As SO systems are often used to model large, complex
behaviors, a structured, systematic, and repeatable way to compare the resilient
properties of different versions of a system is necessary.

In this chapter, we show how the evolution process taking place during the
development of a SO system can benefit from a quantification of the satisfaction
of resilience-related properties by different versions of the system. To this end, we
will assist the classical “trial and error” development process (i.e., varying param-
eters and performing simulations) with a formal framework for the quantification
of resilience called DREF (dependability and resilience engineering framework) [3].
DREF provides a generic framework to organize resilience measures in a coherent,
formally defined way that is flexible and customizable. It supports a systematic
practice for assessing resilience and is applicable to any system of interest.

The main goal of this chapter is to show how a precise, quantitative definition
of resilience measures helps the developer in the choice of a particular version of a
system. We used DREF on a dynamic gradient case study with 20 nodes. To this
end, we selected specific measurable requirements: (1) probability of message delivery,
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Assessing the Resilience of Self-Organizing Systems ® 197

(2) accuracy of the gradient, and (3) the number of messages created. We then measured
quantitatively those requirements in a mobile scenario and assessed how modifying key
parameters in subsequent versions of the system impact (positively or negatively) the
resilience to this type of perturbation. Resilience is directly linked to the measures above
assessed across the different executions. For instance, the higher the accuracy of the
gradient, the higher the resilience of that version of the system to the mobility of nodes.

The chapter is organized as follows. Section 11.2 discusses how in SO systems
literature there is a growing interest in formal methods. Section 11.3 describes the
SAPERE framework used to create the case study described in Section 11.4. The
latter section also discusses the simulation environment used to assess identified
properties. Section 11.5 briefly introduces the notions of the DREF framework
essential to this chapter and how they apply to the case study. In Section 11.6, we
describe the resilience assessment results. Finally, Section 11.7 draws conclusions
and outlines the perspectives of this work.

11.2 Formal Methods in SO Systems

The development of SO systems, and multi-agent systems in general, is a soft-
ware-engineering activity like any other. The different paradigm made it so that,
during a certain time, development practices were still not as mature as in other
software-engineering fields. In 2000, Jennings argued [4] that one of the pitfalls of
agent-oriented software engineering (AOSE) is that “You forget you are developing
software: [...] the development of any agent system [is] a process of experimentation.
[S]oftware engineering good practice [is] ignored.”

Since then, there has been progress on this subject. In 2005, Bernon et al. [5]
reviewed several AOSE methodologies and proposed a unified meta-model in an effort
to standardize the conceptual framework behind multi-agent systems (MAS). More
advanced techniques, such as model-driven engineering, and formal methods slowly
but surely made their way into AOSE. A 2009 survey [6], catalogued about 50 works
from the previous 10 years that are concerned with the application of formal methods
to AOSE. A large number among them are concerned with validation and verifica-
tion of MAS. Several of them use a model-driven engineering approach. In addition
to novel approaches to simulation-based verification [7], there have been more rigorous
approaches to verify MAS using model checking with an accent on modeling [8], model
transformation [9], and requirements enrichment with business constraints [10].

Current methodologies specifically meant for developing SO systems [11] fol-
low the typical phases of software-engineering methodologies: requirements, anal-
ysis, design, implementation, verification, and test. Those methodologies all focus
on the design phase and, in some cases, on a series of design phases [12], in which
the self-organizing behavior is progressively modeled and, in some methodologies,
also simulated. Some of them consider analysis of faults [13], but none of them
specifically addresses assessment or quantification of resilience.
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198 ® Adaptive, Dynamic, and Resilient Systems

The cited works are a strong contribution to bringing AOSE and SO develop-
ment methods on par with other software-engineering domains but are mostly
oriented to the requirements and design stages of software development. In the
domain of SO systems, however, validation and verification methods should deal
with the dynamic changes in modes and contexts and address runtime assurance as
stated in [14]. The authors of [14] also agree that requirements for self-adapting sys-
tems should be expressed in a way that accounts for the uncertainty characterizing
this kind of systems. They argue that the very same nature of self-adapting systems
calls for models and development practices that blur the line between design-time
and runtime with models being “built and maintained at runtime” with evolutions
of the system being reflected at the model level. The DREF framework was built,
in part, with the goal of integrating requirements, assurance, and system evolutions
in the model itself. DREF is thus a suitable candidate to consider for assessing
resilience of SO systems as it considers both runtime aspects and design evolutions.

11.3 The SAPERE Framework

In this section, we present the SAPERE framework, used for implementing the
case study presented in this chapter. The SAPERE framework has been developed
under the SAPERE European Project.* SAPERE provides a theoretical and practi-
cal framework for decentralized deployment and execution of self-aware and adap-
tive services for future and emerging pervasive network scenarios.

The SAPERE framework combines two different technologies: (1) tuple space
systems, providing a shared space in which agent and services are advertised, and
(2) chemical-inspired systems, providing chemical rules (called eco-laws) that gov-
ern the behavior of the SAPERE system [15,16].

An innovative architecture is built on top of these two technologies. The main
motivation is to allow applications to rely on core services (e.g., spreading, gradient,
or evaporation) provided by the environment or by specific libraries, building spatial
structures across distributed (possibly mobile) nodes [17]. This architecture is organized
into different layers; it provides abstractions that ease the design and implementation
of new decentralized applications by relaying and reusing functionalities provided by
those core services. Chapter 9 discusses the corresponding architectural style [18].

In the SAPERE implementation the main concepts are the following:

B “Live Semantic Annotation” (LSA): A tuple that represents any information
about an agent or service. LSAs are injected in the LSA’s space representing
the (updated) state of their associated component.

B [SA’s space: A distributed, shared space in which context and information are
provided by a set of LSAs stored at given locations.

* http://www.sapere-project.ev/.
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B Eco-laws: Rules acting as chemical reactions that implement core services.
These rules act on the LSAs stored in each LSA’s space by deleting, updat-
ing, or moving LSAs between LSA’s spaces. In the same way that a biological
system’s processes obey nature’s laws, a SAPERE application is subject to eco-
laws that implement its active environment.

B LSA bonding: An LSA bond acts as a reference to another LSA and provides
fine-tuned control of what is visible or modifiable to each agent and what
is not. If an LSA of a given agent includes a bond to an LSA of another
agent, the former agent can inspect the state and interface of that other agent
(through the bond) and act accordingly. Bonds are a specific type of eco-laws.

B Agents: Execute in hosts and are able to locally access the LSA’s space avail-
able in that host.

Eco-laws reside in the LSA’s space and are implicitly and seamlessly triggered by tags
or properties appearing in the LSAs. An LSA can be subject to different eco-laws
depending on the specified properties or tags of the tuple. Core services provided by
the eco-laws include spread, decay, aggregate, and bond. Higher-level services, built
on top of those core services, are provided either by libraries or specialized agents.
They include services for building or exploiting spatial structures, such as Chemotaxis
or dynamic gradient, and application-level services, such as crowd steering,.

The SAPERE infrastructure encompasses a middleware [19] running on sta-
tionary and mobile platforms, situation-awareness [20], semantic resource discov-
ery [21], and crowd-steering applications [16].

11.4 Case Study: Dynamic Gradient

This section describes the dynamic gradient service, designed and implemented
using the SAPERE framework.

Gradients are spatial structures spread across nodes that provide information
about distance from and direction to the gradient source. Thus, when a piece of infor-
mation is propagated among nodes under the form of a gradient, additional informa-
tion about the sender distance and direction is progressively computed at each node.

Figure 11.1 shows an example of gradient spread over a network of 12 nodes.
The nodes represent devices with computational and connectivity capabilities
(e.g., laptops, smartphones, or tablets). The edges represent the connections
between nodes; two nodes are connected if they are in communication range.
In this example, the node with value 0 (source of the gradient) creates a gradient
that spreads across the network. The value inside each node increases at each hop.
When two or more gradient paths reach a node, the lowest gradient value is kept.
The number of hops provides information about the distance. The node within
communication range with the lowest hop count provides the direction to the
gradient source.
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200 ®m Adaptive, Dynamic, and Resilient Systems

Figure 11.1 Gradient example.

This section focuses on dynamic gradients. A dynamic gradient provides infor-
mation about the sender’s (i.c., gradient source) distance and direction that is peri-
odically updated. A dynamic gradient allows the maintainance (i.e., to update) of
the gradient structure even when nodes are moving.

Dynamic gradients may be used in a wide range of applications, such as routing
information in mobile ad hoc networks, crowd steering, or coordination in multi-
agent systems.

11.4.1 Dynamic Gradient Implementation

The dynamic gradient service is provided by the SAPERE framework as an external
library and is available in each node. The dynamic gradient service makes use of the
spread, aggregate, and decay eco-laws.

Spread allows the information to be spread across the network, increasing hop
counts at each node. Aggregate is in charge of selecting the value with the minimum
number of hops when information is coming through different gradient paths. The
combination of spread and aggregate eco-laws allow the creation of a gradient across
the network, but the gradient is not updated; thus, the information about the sender’s
distance and direction becomes outdated when the nodes are moving. To avoid this
problem, the dynamic gradient relies on the decay eco-law to periodically decrease
the lifetime of the gradient LSAs. When the lifetime value reaches 0, the SAPERE
middleware removes the gradient information LSA from the node. If the gradient
information LSA is removed from the node that created the dynamic gradient (i.e.,
the gradient source), the gradient LSA is injected again in the system by the dynamic
gradient service (library agent). This actually restarts a new gradient propagation thus
providing updated information about the sender’s distance and direction.

Eco-laws fire periodically, for example, sending information from one node to
another (spreading) and aggregating them. The frequency of eco-laws firing is a key
parameter that has an effect on the performance of the system. The decay eco-law is also
involved in the dynamic gradient and fires at the same frequency as the other eco-laws.
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A second key parameter in the case of the dynamic gradient service is the decay
value (i.c., the lifetime) of the gradient information. Intuitively a short lifetime
favors a fast adaptation but involves huge resource consumption (i.e., mainly band-
width), and a long lifetime saves resources but does not cope with topological net-
work changes. This parameter is exploited in the decay eco-law.

In chis case study, we analyze the evolution process of setting these two param-
eters involved in the dynamic gradient service. The experimental values in the evo-
lution process are assessed using the ONE simulator [22] introduced in the next
section.

Figure 11.2a shows the map of Helsinki we have used for the case study with
20 SAPERE nodes. Figure 11.2b represents the real geographical map used in the
simulations. We used a part of Helsinki city center (600 x 500 meters). We set the
number of moving nodes to 20. Nodes simulate people (and their devices) walking
on the streets. We used the mobility pattern called “shortest path based on map.”
Each node chooses a random destination, and it reaches the desired destination by
following the shortest path on the map (following roads). The speed of the nodes is
randomly chosen for each trajectory between 1-3 m/s. Each node has a wi-fi device
with 200 m of communications range, and the transmission speed is 250 KBps.
The simulation runs for 900 simulation steps, and each simulation step corresponds
to 1 s of simulated time.

Figure 11.3a shows the simulation scenario before the gradient creation; black
lines represent connections among nodes. Figure 11.3b depicts the gradient (black
lines) corresponding to the initial configuration. The black circle node is the gradi-
ent source (i.e., the node that initially creates the gradient). We observe two nodes
on the right that are disconnected. Figures 11.3¢ and 11.3d show subsequent updates
of the gradient once the nodes start moving. Notice that for clarity reasons, Figures
11.3b, 11.3¢, and 11.3d do not show the communication links representing the
physical connections between the nodes and do not show the circles representing
the communication range. They only show the gradient links.
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Figure 11.2  Scenario map: Helsinki area with SAPERE nodes (a), real geographical
map (b).
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202 m Adaptive, Dynamic, and Resilient Systems

(d)

Figure 11.3 Simulation scenario before gradient creation (a), after gradient cre-
ation (b), once nodes have moved (c) and (d).

11.4.2 The ONE Simulator

The case study described above has been implemented using The ONE simulator
[22], an open source network simulator providing a large range of realistic scenar-
ios. Among others, it allows the investigation of simulations composed of many dif-
ferent entities, such as pedestrians, cars, buses, and trams, to import real mobility
traces, to visualize the movement of nodes on Google maps, and to provide realistic
network-related simulations of bandwidth consumptions, time to send information
among nodes, or packet collisions.

We extended the ONE with the actual SAPERE middleware [19]. Consequently,
the dynamic gradient is implemented using the SAPERE middleware (libraries, eco-
laws, LSAs) running in the nodes, and the movement of nodes, visualization,
performance metrics, and connectivity between the nodes are done by the ONE
simulator.

Mainly, the ONE allows us to do the following:

B Simulate network connections, providing metrics about the network behavior
(e.g., message drops, messages properly received or bandwidth consumption).

B Provide different network interfaces to the entities participating in the sys-
tem, such as wi-fi or Bluetooth. This feature allows the creation of realistic
heterogeneous networks.
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B Use a library with many different mobility patterns.
B Execute the simulation with visualization or in batch mode, making it pos-
sible to use servers for very large-scale simulations.

11.5 The DREF Framework

DREEF [3] is a framework that formalizes the fundamental concepts used to define
dependability and resilience of ICT systems. It allows quantifying how the level of
satisfiability of system properties varies over an evolution axis when facing changes.
DREF formalizes a rather large set of core concepts related to the assessment of
resilience. While the complete definitions can be found in [3], we will summarize
here the ones that are useful in the context of this chapter:

Entities and properties: An entity is anything of interest that is considered. An
entity could be, for example, a program, a database, a person, a hardware device,
or a development process. In this chapter, we consider one entity Dyn, a dynamic
gradient system:

Ent = {Dyn}. (11.1)

A property is a basic concept used to characterize an entity. It can be, for example,
an informal requirement or a mathematical property. In this chapter, we consider
three relevant properties of the dynamic gradient system, namely, the probability of
message delivery dp, the average accuracy of the gradient ac (i.e., the distance of the
actual gradient from the ideal gradient that would exist if nodes were not moving),
and the number of messages created nm:

Prop = {dp,ac,nm} (11.2)

Evolution axis: An evolution axis is a set of values that is used to index a set of
entities or a set of properties. In the context of this chapter, the development of Dyn
went through different versions, which are indexed as Dyn, where i is the eco-law
firing interval, and & is the decay value (i.c., lifetime of gradient information)—the
two key parameters discussed in Section 11.4.1. We variated 7 between 1 and 3,
and d between 2 and 12 in two-step intervals. Thus, there are two evolution axes
indexed as

ev, =11, 2, 3} (11.3)

ev,=12,4, 6,8, 10} (11.4)
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204 ®m Adaptive, Dynamic, and Resilient Systems

Satisfiability: An entity will generally have to satisfy some property or require-
ment. This fact can be expressed with a satisfiability function, defined as follows. Let
Entbe a set of entities and Prop a set of properties. The satisfiability of properties by
entities is a function saz such that

sat : Prop X Ent - R U {1} (11.5)

Semantically, sa¢ quantifies how much an entity satisfies (or not) a property and is
defined depending on the application.

The satisfiability functions for the properties in our case study are defined as
follows. The dp property is measured in terms of the ratio between the messages
that are delivered and created:

deliveredmessages

sat(dp,e) = (11.6)

createdmessages

The ac property is measured as the average accuracy (i.e., percentage of nodes
with a correct value) of the gradient in the simulation:

n

E ac;

sat(ac,e) = =1— (11.7)
n

k.
where ac; = - is the accuracy of the gradient at step 7 of the simulation, £ is the
number of nodes for which the gradient value is correct, 20 is the number of nodes,

and 7 is the total number of simulation steps.
The nm property is measured as

20,000

— (11.8)
createdmessages

sat(nm,e) =

where 20,000 is an empirically established ideal value for the number of created
messages.

Nominal satisfiability: An additional relevant concept defined by DREF is
that of nominal satisfiability, denoted as nsaz, such that

nsat : Prop X Ent — R (11.9)

This is a satisfiability function used to represent the expected satisfiability—what
minimum satisfiability value is considered to be acceptable.
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The nominal satisfactions for the properties in our case study are defined as

follows:
nsat(dp,e) = 0.99 (11.10)
nsat(ac,e) = 0.8 (11.11)
nsat(nm,e) = 1 (11.12)

(i.e., the 7m property is exactly satisfied if a system creates 20,000 messages, over-
satisfied if it creates less, and under-satisfied if it creates more).

Failure: Given sat, a satisfiability function, and #sa#, a nominal satisfiability
function, we say there is a failure for a tuple (p, ¢) € dom(sat) if sat(p,e) < nsat(p,e).
In other words, an entity fails a property if its satisfiability is lower than the nomi-
nal satisfiability.

Let ¢ be an entity, p a property; a failure of property p by entity ¢ is denoted
Jail(p,e). It is defined as follows:

fail : Prop X Ent — R (11.13)

Jail (p,e) = nsar(p,e) - Min (nsat (p,e),sar (p,e)) (11.14)

and it quantifies how far the actual satisfiability is from satisfying the property.
Cumulative failure level: The cumulative failure level for an entity is the sum
of failures for @/l of its properties. The cumulative failure level for an entity e is

denoted sfzil, and is defined as

fail, = Y. fail(p,e) (0 if Prop=0) (11.15)

PEProp

11.6 Experimental Results

We took the case study system through two rounds of evolution, which will explore
some possible variations of the two parameters of the system. The parameters we
chose are the eco-law firing interval and the decay value (i.e., the lifetime of the
information in the nodes). The eco-law firing interval parameter is of major impor-
tance as it can cause network overload if its value is too high, and conversely, it
can prevent the gradient from updating properly if the value is too low. The decay
value is similarly important as a too-low value would prevent the information from
surviving long enough to form a gradient, and a too-high value would hamper
gradient updates.
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As explained in the previous sections, we modeled the case study using the
SAPERE framework, implemented it in the ONE simulator, and used DREF
to process the results and extract useful quantitative measures about property
satisfaction.

11.6.1 First Evolution: Fixing an Eco-Law Firing Interval

In the first evolution in the development of our dynamic gradient system, we
want to search for an appropriate eco-law firing interval. What we are looking
for is an interval that is sufficient to let the gradient establish itself while not
overloading the network. In this iteration, we will stop at the first value that
achieves good accuracy, leaving further optimization of the number of messages
for a further iteration.

We fix the decay value at 10, which, given the size of the network, is an educated
guess at a value high enough to let the information propagate through the network.
We then start by considering an eco-law firing interval of 1 s, increasing it one fur-
ther second for each new version (and simulation). Table 11.1 shows the satisfaction
values for the first three versions of Dy that we consider: Dyn,°, Dyn,” and Dyn}’.
We see that for all three properties there is a constant improvement (i.e., a reduc-
tion of the failure level fzil(p,e)) for each individual property. As a consequence, the
cumulative failure level sfzil, decreases with each new version, indicating that it is
an improvement over the previous one. What really matters here is the fzil(p,e) for
properties dp and ac. As soon as we find a failure level of 0 for both (i.e, in version
D)/néo), we can stop this first evolution.

Table 11.1  First Evolution: Varying the Eco-Law Firing Interval

e P sat(p,e) nsat(p,e) fail(p,e) sfail,
Dyn® dp 0.8380 0.99 0.152 1.1201
ac 0.5104 0.80 0.2896

nm 0.3215 1 0.6785

Dynl? dp 0.9649 0.99 0.0251 0.61
ac 0.7241 0.80 0.0759
nm 0.4910 1 0.5090

Dyn!° dp 0.9981 0.99 0 0.1462
ac 0.8144 0.80 0
nm 0.8538 1 0.1462
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In this second evolution, we want to search for an appropriate decay value.
Fixing the eco-law firing interval at 3 s, based on the results of the first itera-
tion, we will simulate the system for decay values ranging from 2 to 12, in

two-unit steps.

Table 11.2 shows the satisfaction values for the obtained versions of Dyn: Dy,
Dyn, DynS, Dyn, Dynl®, and Dyny® . The measures here follow a slightly more
interesting dynamic. The dp property is constantly satisfied by all versions, albeit
with some oscillations in values. The ac property is deeply under-satisfied by Dyn;,

then improves with versions until reaching nsar with Dy (even staying above

Table 11.2  Second Evolution: Varying the Decay Value

e P sat(p,e) nsat(p,e) fail(p,e) sfail,

Dyn? dp 1 0.99 0 0.7473
ac 0.0527 0.80 0.7473
nm 324 1 0

Dyn! dp 0.9984 0.99 0 0.1287
ac 0.6713 0.80 0.1287
nm 2.2629 1 0

Dyn® dp 0.9985 0.99 0 0
ac 0.8338 0.80 0
nm 1.2138 1 0

Dyn® dp 0.9934 0.99 0 0.0575
ac 0.8085 0.80 0
nm 0.9425 1 0.0575

Dyn!® dp 0.9981 0.99 0 0.1462
ac 0.8144 0.80 0
nm 0.8538 1 0.1462

Dyn!? dp 0.9965 0.99 0 0.2093
ac 0.8052v 0.80 0
nm 0.7907 1 0.2093
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208 m Adaptive, Dynamic, and Resilient Systems

nsat). The nm property instead follows a degradation pattern with the increase of
decay values, going from satisfaction in the first three versions, to a gradually deeper
under-satisfaction in the following ones. There is one version, Dynj, that satisfies
all three properties. We can thus conclude that, in this iteration, we established an
appropriate decay value to be 6.

11.6.3 Cumulative Failure Level as a Useful
Overall Assessment of Versions

It is rather evident that just by using the satisfiability sa#(p,¢), shown in Figure
11.4,* it is not immediate to the eye of the developer whether a version is better than
another at satisfying properties. Even by looking at the individual failure levels
Jail(p,e) for each property, shown in Figure 11.5, the assessment may not be simple
as the failure values series may vary independently from one version to another.’
This is the main reason for the existence of the cumulative failure level indicator
sfail,: It gives a concise quantification of how much a version is failing. The hypo-
thetical developer behind our example would easily be able to plot the values for all
the created versions and quickly spot the lower points that identify the best versions
(shown in Figure 11.6).

Figure 11.7 shows how the gradient continuously recovers from the mobility of

nodes for the case of Dyns. The red line shows the evolution of ac,. The blue line
shows the average of ac; from time 1 to time 7 (note that at time 900, it is equal to

:at(ac,Dyng ).

3
25
2
15
0.5 ) |

sat (pe)

O | | | bre | | | |
Dyni® Dyn}® Dyni® Dyn} Dyny Dyn§ Dyn§ Dyn}?
Versions

Figure 11.4 sat(p,e) levels for each property versus evolution for versioned
entity Dyn (n.b.: sat(nm,Dyn:f) =32.4 is off scale for readability).

* In this figure, as well as in Figures 11.5 and 11.6, the entity Dyn;” only appears once, although
it is part of both evolutions.

7 Admittedly, in this case study, there is a version that stands out for having all three failure
levels at 0, that is, Dyng, however, this is far from being the general case.
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11.6.4 Possible Further Evolutions

We stopped this example with the second evolution for the sake of brevity. However,
it is easy to imagine that there could be a third evolution to answer the question
of whether a further exploration of larger eco-law firing intervals could further
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Figure 11.8  Evolution of our example over two coordinated axes.

improve the performance of the system. In this way, we could picture that the
evolution of the system in our example, which is occurring over two coordinated
axes (shown in Figure 11.8), could continue by adding further versions indexed on
the axis (possibly adding more indexes to the axes or even additional axes). Also,
instead of a manually defined evolution path like the one we followed, one could
perform a complete exploration of all combinations of parameter values encom-
passed by given bounds if the available resources allowed for it.

11.6.5 Tolerance

In this example, we considered that a property is either satisfied (i.e., saz(p,e) 2
nsat(p,e)) or not. However, in DREF, it is possible to define a tolerance threshold
for a property, that is, a level smaller than nsat(p,e) that indicates a satisfaction value
that does not quite satisfy a property but is still within acceptable limits. This is a
particularly relevant concept for resilient systems as it can be used to describe toler-
ated failures (whether foreseen or out of the envelope). In our example, a tolerance
threshold of 0.85 could be introduced for, for example, property nm, which would
result in versions Dyn§ and Dynk to be also considered satisfactory.

11.7 Conclusion and Perspectives

This chapter showed how the DREF framework can be used to quantitatively assess
the resilience of SO systems during their development process. Through a case
study, based on the SAPERE framework, we showed how the indicators defined in
DREF can offer a useful synthesis of simulation results in order to compare and
choose among different versions of a system.

DREF also defines other indicators, not discussed here but found in [3], that
bring other useful information to the table. This chapter only focused on failures,
allowing one to choose the version that “fails less.” However, in other cases, it might
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be interesting to choose the version that “satisfies more” among several versions that
are all correct. In this respect, DREF defines, for example, the concept of global
satisfiability, which is a unique indicator measuring the cumulative level of satisfac-
tion of all properties of an entity, possibly taking into account different property
weights when applicable.

One of the main advantages of DREF is that we can use the cumulative failure
level in order to easily compare different versions. Using the cumulative failure
level, one could implement an evolutionary algorithm, such as a genetic algorithm,
in order to automate the creation and selection of different versions. Thus, the sys-
tem would start with random versions that would evolve through the execution of
the evolutionary algorithm until the cumulative failure level of one of the versions
is below a desired value (i.e., the cumulative failure level would be used as the evo-
lutionary fitness function in case of using a genetic algorithm).

Our future perspectives for this study include the integration of DREF in
the ONE simulator in order to systematically apply quantitative assessments of
resilience in simulated systems. In a first instance, this will assist us in systemati-
cally investigating resilience of classified self-organizing mechanisms [23] against a
range of faults and perturbations. In the long term, in conjunction with identified
metrics, this will constitute a definite step toward the establishment of benchmarks
and assessments for self-* systems.
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