
 
MSc Computer Science Project Report 

School of Computer Science and Information Systems 
Birkbeck College 

University of London 
 

2008 
 
 
 
 
 

Autonomous Agents and Emergent 
Behaviour 

 
 

“Burds” Simulation 
 
 
 

By Robyn Backhouse 
 
 
 

 
 
This report is substantially the result of my own work, expressed in my own words, except 

where explicitly indicated in the text. I give my permission for it to be submitted to the JISC 

Plagiarism Detection Service.  

 

The report may be freely copied and distributed provided the source is explicitly 

acknowledged.  



MSc Computer Science Project Report : Robyn Backhouse i

TABLE OF CONTENTS: 
 
Chapter: 
 

Page 

1: Abstract………………………………………………………………………………………1 
 

2: Introduction and Motivation………………………………………………………..............2 

2.1   Applications of Autonomous Agents using Swarm Intelligence………………..............2 

2.2   Aims and Objectives………………………………………………………………….…4 
 

3: Related Works……………………………………………………………………………….6 
 

4: Behavioural Rules and Model………………………………………………………………9 

4.1  General Model Overview………………………………………………………...…..…..9 

     4.1.1   Neighbourhood……………………………………………………………..……..10 

     4.1.2   Division by Zero Prevention………………………………………………..…….10 

4.2  Behaviour Rules in Detail………………………………………………………...…….11 

     4.2.1   Update Birds Position and Destination……………………………………..…….11 

     4.2.2   Cohesion Rule…………………………………………………………………….13 

     4.2.3   Separation Rule……………………………………………………………..…….14 

     4.2.4    Alignment Rule…………………………………………………………….…….15 

     4.2.5    Obstacle Avoidance Rule…………………………………………………..…….16 

     4.2.6    Predator Avoidance Rule…………………………………………………..…….17 

     4.2.7    Supporting Algorithms……………………………………………………..…….18 

              4.2.7.1    Euclidean Distance……………………………………………………….18 

              4.2.7.2    Angle Bird Facing………………………………………………….…….19 

              4.2.7.3    Angle Between Birds…………………………………………………….20 

              4.2.7.4    Bird Distance Controller…………………………………………...…….20 

              4.2.7.5    Speed Inhibitors…………………………………………………….…….21 

              4.2.7.6    Birds Basic Behaviour - Individual Destinations or Follow Leader….….22 

                       4.2.7.6.1    Birds with Individual Destinations……………………………….22 

                       4.2.7.6.2    Birds Following a Leader…………………………………..…….23 

              4.2.7.7    Random Destination Changes for All Birds………………………..…….24 

              4.2.7.8    New Destination for Birds………………………………………………..24 
 

5: Design and Development………………………………………………………………..…25 

5.1   Implementation Platform and Language……………………..…………………..…….25 

5.2   Feasibility……………………………………………………………..…………..…....25 

5.3   Object Oriented Approach and Class Organisation……………………………..……..26 

     5.3.1    Overview of XNA Provided Skeleton……………………………………...…….26 

     5.3.2    Class Organisation…………………………………………........................……..26 



MSc Computer Science Project Report : Robyn Backhouse ii

            5.3.2.1   Game1 Class……………………………………………………………..…26 

            5.3.2.2   Bird Class (base class)…………………………………………………...…27 

                    5.3.2.2.1   FlockBird Inherited Class…………………………………………...28 

                    5.3.2.2.2   Predator Inherited Class…………………………………………….29 

            5.3.2.3   Obstacle Class……………………………………………………………...29 

            5.3.2.4   User Target Class……………………………………………………….….30 

            5.3.2.5   Random Number Generator Class…………………………………….……30 

     5.3.3    Encapsulation…………………………………………………………………….31 

5.4   Agile Approach and Iterative Development…………………………....………………32 

     5.4.1   Iterations Implemented during Development (Brief Overview)………………….32 

5.5   Test Driven Development………………………………………..……..……………...34 

5.6   Refactoring……………………………………………………....………..……………37 

5.7    Class Diagram……………………………………………………………..……..……39 

5.8   Sequence Diagrams………………………………………………………...………..…40 

     5.8.1    Overall Simulation……………………………………………………………….40 

     5.8.2    Update Function (in Game1 Class)………………………………………………41 

     5.8.3    Update Bird Individuals………………………………………………………….42 

     5.8.4    Calculate Corrected Heading All Birds………………………………………..…42 

     5.8.5    Update Predator Function……………………………………………………...…43 

     5.8.6    Calculate New Heading Predator……………………………………………...…43 

     5.8.7    Draw Function (in Game1 Class)……………………………………...…………44 

     5.8.8    Euclidean Distance Function………………………………………………..……44 

     5.8.9    Cohesion Rule……………………………………………………………………45 

     5.8.10  Obstacle Avoidance Rule…………………………………………………...……45 
 

6: Graphical User Interface………………………………………………………………..…46 

6.1 Steering and Behaviour Rules…………………………………………………...…….46 

6.2 Pause Simulation…………………………………………………………….…...……47 

6.3 Birds have Individual Destinations or Follow a Leader…………………….…...……47 

6.4 Speed at which Birds Move………………………………………………….…..……47 

6.5 User Placed Obstacles……………………………………………………….…...……47 

6.6 Random Direction Changes………………………………………………….…..……47 

6.7 Predator Bird Option……………………………………………………….…….……48 

6.8 Addition of More Birds to Flock………………………………………….……..….…48 

6.9 User Selected Destination for All Birds…………………………………………….…48 

6.10 Data Visualisation……………………………………………………………….…….48 

6.11 Screen Explained………………………………………………………………..……..49 
 

 



MSc Computer Science Project Report : Robyn Backhouse iii

7: Results………………………………………………………………………….………...…50 

7.1 Emergent Behaviour with Steering Rules …………………………………….....……50 

     7.1.1    All Steering Rules On……………………………………………………...…….50 

     7.1.2    Cohesion and Separation Rules…………………………………………….…….53 

     7.1.3    Alignment Rule…………………………………………………………….…….56 

     7.1.4    Obstacle Avoidance Rule…………………………………………………..…….58 

     7.1.5    Cohesion and Obstacle Avoidance Rules Only…………………………….…….59 

     7.1.6    User Placed Obstacles……………………………………………………...…….60 

     7.1.7    User Selects Target Destination for All Birds……………………………...…….61 

     7.1.8    3D Implementation of Simulation………………………………………….…….62 

7.2    Problems Identified……………………………………………………………...…….64 

     7.2.1   Shared destination and Parallel Motion…………………………………….…….64 

     7.2.2   Birds Not Facing Direction of Travel…………………………………………….65 

     7.2.3   User Click to Target Bird Destination……………………………………...…….66 

     7.2.4   Neighbourhood of Bird……………………………………………………..…….67 

     7.2.5   Flying Continually towards Negative Co-ordinates………………………..…….67 

     7.2.6   User Placed Obstacles…………………………………………………………….68 

     7.2.7   Flockbirds Surrounding a Predator……………………………………………….68 

     7.2.8   Dynamic Array Allocation during Runtime………………………………...…….69 

     7.2.9   Difficulties Encountered with XNA………………………………………...…….70 

             7.2.9.1   Inability to Publish to a Standalone Application…………………….…….70 

             7.2.9.2   User Interface………………………………………………………..…….70 
 

8: Conclusion…………………………………………………………………………………..71 

8.1   General Discussion…………………………………………………………………….71 

8.2   Future Enhancements…………………………………………………………………..72 

8.3   Final Note……………………………………………………………………………...73 
 

9: References…………………………………………………………………………………..74 
 

10: List of Appendices…………………..………………………………….…………………..77 
 

 

 



MSc Computer Science Project Report : Robyn Backhouse iv

APPENDICES: 
 

List of Appendices…………………..………………………………………….…………………..77 
 

Appendix A:     Quick Guide to User Control Keys……………………………………………...78 
 

Appendix B:     Project Proposal Form…………………………………………………………...79 
 

Appendix C:     Specification for Project on Birkbeck Website…………………………............81 
 

Appendix D:     Code for 2D Flocking Birds……………………………………………………...82 

D.1     Program class………………………………………………………………….……..82 

D.2     Game1 class………………………………………………………………………….83 

D.3     Birds Base class………………………………………………………………..…….95 

             D.4     Flock Bird inherited class……………………………………………………..……103 

             D.5     Predator Bird inherited class…………………………………………………..……108 

D.6     Obstacle class………………………………………………………….…………...110 

D.7     User Target class…………………………………...………………………........…112 

D.8     Random Number Generator class……………………………………………....…..114 
     

Appendix E:     Code for Unit Test Suite…………………………………………………...........115 
 

Appendix F:     Code Generated by XNA GS when Creating a New Windows Game………..121
 

Appendix G:     Class Diagrams for Refactored Bird Class……………………………..….….123 
 

Appendix H:     CD and User Instructions………………………………………………………124 

             H.1    Running the Simulation…………………………………………..…………………124 

             H.2    What’s on the CD…………………………………………………………………...125 

             H.3    List of Movies……………………………………………………………………….126 
 

Appendix I:      Online tutorials accessed to learn XNA and C# Game Programming…….…128 
 

 

 

 

 



 

 
 

 

 
 



MSc Computer Science Project Report : Robyn Backhouse 1

1: ABSTRACT: 
 

Autonomous Agents are the subject of much research due to their myriad of potential uses notably 

in areas such as military weapons, medicine, graphics and communications.  As research expands in 

this area it is essential that software can support these applications in the real world by simulating 

group behaviour effectively, allowing robots and agents to interact with their environment and each 

other unassisted by human intervention.   

 

This simulation sets out to explore this area by emulating the natural flocking behaviour of birds 

requiring behavioural rules for cohesion, separation, alignment and avoidance of obstacles and 

predators.  The birds effectively “think” for themselves and move in a self-organising manner 

allowing study of their emergent behaviour.  A graphical user interface allows the user to select 

different combinations of rules, observing the resultant behavioural changes which occur.  When all 

rules are selected the birds move around the screen in a cohesive flock avoiding obstacles, fleeing 

from predators, and for the most part avoiding collisions with each other. 

 

The resulting simulation appears superior to many currently available, demonstrating improved 

collision avoidance between individual birds, and between birds and obstacles, both static and 

mobile.  The simulation has also achieved all the original objectives set for the project.  The next 

stage of development will be an adaptation from the current 2D implementation into 3D. 

  

 

 

Supervisor:   Giovanna Di Marzo Serugendo 



MSc Computer Science Project Report : Robyn Backhouse 2

2: INTRODUCTION AND MOTIVATIONS: 
 

When deciding upon a project I had several requirements which I hoped would be fulfilled.  I 

wanted to improve my programming skills and I wanted something which would be both 

challenging and interesting, consolidating and expanding the knowledge and skills learned during 

the MSc course providing me with a solid foundation upon which to build a future career in IT.  I 

was also hoping to study an area of current interest and technological advancement 

 

After consideration of several ideas I chose one suggested on the Birkbeck Computer Science 

website (Appendix C) studying autonomous agents and their emergent behaviour [MAN07] as it 

sounded very interesting, extremely challenging, and would certainly improve and greatly expand 

my programming skills as well as being an area of extensive current research and development. 

 

I felt this would provide a great challenge and an excellent learning opportunity for further 

development.  It presented the opportunity to learn more about graphics programming as well as a 

far greater affinity to the C# language specifically and object oriented programming in general.  It 

also provided an opportunity to become more proficient at creating graphical user interfaces, as 

these are required for the vast majority of software applications and are therefore an essential 

programming skill.   

 

Autonomous agents are currently being heavily researched across a wide range of fields and it is 

likely that commercial production of such systems will increase rapidly in the near future as 

systems currently under development progress to the point where they are ready for implementation  

within the real world in area’s for which they are being designed.  This project provided the 

opportunity to learn about how autonomous agents work and to gain a greater understanding of 

their capabilities, functionality and practical applications. 

 

There are numerous types of autonomous agents being developed each working in different ways 

but which are all based on collections of individual units working in unison with a high level of 

autonomy.  These include Complex Adaptive Systems, Population-based Adaptive Systems, Swarm 

Intelligence, Swarm Engineering, Multi-Agent Systems and Self Organising Systems [DAV05].  This 

project is a study of Swarm Intelligence. 

 

2.1 Applications of Autonomous Agents using Swarm Intelligence: 

 

Artificial intelligence is becoming more popular within military, scientific, industrial and 

commercial arenas as researchers strive to develop more autonomous robots for use in a wide range 

of applications and environments.  Uses for autonomous agents are many and varied and are 



MSc Computer Science Project Report : Robyn Backhouse 3

increasing dramatically as technology advances.  Some areas in which autonomous agents are used 

include games and movies, computer graphics and artificial life and even art, but the major use of 

Swarm Intelligence based autonomous agents is in the field of intelligent robotics [DAV05].   

 

One type of autonomous agent is the swarm robot which is being heavily researched and developed 

due to the potential military and scientific uses.  The popular press often reports on development of 

military swarms that will in future be sent into warfare or reconnaissance situations without the 

need for continuous direct human control such as the current ones require.  Currently reported 

examples include “insect like” robots resembling things such as spiders, dragonflies and even 

worms which can carry out reconnaissance, communicate conditions to human troops, identify and 

monitor hostile targets, and even carry weapons [GIL08, USA08].   

 

Another area in which such swarms would be invaluable is exploration as they will be capable of 

going into areas which are inhospitable to humans such as space, deep sea or radioactive areas.  

Even in rescue operations swarms may one day be used with large numbers of tiny robots searching 

for survivors of earthquakes or collapsed buildings etc., possibly even forming “teams” which can 

work together to move rubble [GAR08]. 

 

Swarms of small robots have several advantages over single large “humanoid” type robots: they are 

far cheaper with a whole “swarm” potentially costing less than a single large robot, they can cover 

large areas due to their numbers, and if one is destroyed or malfunctions the remaining ones simply 

rearrange themselves with minimal or no loss of overall function of the swarm [PAL08, GIL08].   

 

Medicine is another important area for future swarm robots with hopes that swarms of “nanobots” 

or “nanites” will be capable of circulating in peoples bloodstreams attacking cancer cells or 

cleansing poisons and toxins from the blood [WIK08b].  Some authors even go so far as to predict 

that these nanites will one day be capable of such efficiency that humans will be able to breath toxic 

gases or fall from “10 storey buildings” without permanent injury, change sex at will, no longer 

suffer viral infections, pain or bruising, and that even the aging process itself may be halted 

[BRO00].  Perhaps closer to becoming reality within the immediate future are much larger robots 

working around hospitals in teams, communicating with each other and staff - locating and 

notifying doctors or other staff as they are needed, providing almost instant communication 

between staff throughout the hospital via voice and video links, cleaning, assisting visitors, and 

monitoring for such events as safety hazards (such as fluid on floors or obstructions) and patients 

falling [FRA07]. 

 

Movies and games commonly contain artificially created flocks or herds of animals, birds, fish, 

insects, or even humanoids using groups of autonomous agents.  The first movie to use this type of 



MSc Computer Science Project Report : Robyn Backhouse 4

flocking behaviour was Batman Returns (swarming bats and armies of penguins) with Craig 

Reynolds pioneering and implementing this approach [MIL07].  Others soon followed and swarm 

behaviour is now commonly seen in movies such as The Matrix Revolutions (swarms of insect-like 

robots forming an animated face), The Lion King (herds of wildebeest) and Finding Nemo (schools 

of fish).  Many modern games now boast  stunning visuals which include flocks of birds, schools of 

fish and other lifelike non-playable characters, many of which interact with each other in very 

realistic ways often fighting and killing each other if their paths cross.  Some particularly beautiful 

current examples of these include World of Warcraft and Guild Wars. 

 

Swarms are even being used by artists creating interactive art using swarm intelligence where a 

“swarm” follows a users movements on a screen and dynamic artworks are created by the 

movements of swarming objects [BOY04, JAC07, JAC06]. 

 

Other potential uses seem endless and include areas such as routing of telecommunication 

networks, planetary mapping, controlling unmanned vehicles (e.g. for exploration, warfare or 

mining), data mining, power-grid controllers and interferometry [WIK08a, REY99].   

 

2.2 Aims and Objectives: 

 

In nature it is wonderful to observe groups of animals moving in unison such as schools of fish, 

herds of buffalo or flocks of birds.  A flock of birds moves as a single entity flowing gracefully as if 

with a single consciousness yet clearly it is comprised of many individuals each with it's own 

characteristics [REY87].  As there is no known telepathic link between these individuals it is 

assumed they must base their movement within a group on a set of behaviours in order for the 

group as a whole to function cohesively.  In nature these behaviours would depend on the creatures 

“senses” such as sight, sound and touch and would be instinctive and natural rather than deliberate 

and planned.  In order to simulate this on a computer, rules and algorithms must be designed which 

artificially mimic these natural behaviours. 

 

The main aim of this project was to create a flock of autonomous “characters” (in this case birds) 

which move around in a self-organising manner, and to provide them with a set of steering rules 

mimicking the natural movement of birds so their emergent behaviour may be observed when under 

the influence of various combinations of some or all of these rules.  Additional secondary 

objectives were the addition of obstacle avoidance and finally predators into the simulation if time 

permitted. 

 

Looking at existing simulations it is evident that some give a very natural looking flocking motion 

while others fall considerably short of this goal giving jerky or mechanical un-natural looking 



MSc Computer Science Project Report : Robyn Backhouse 5

movement, and in many cases having poor anti collision control resulting in birds continually 

moving into each other and colliding.  The vision was to develop a simulation which combined the 

best features of existing simulations while hopefully improving upon the weaker areas such as 

collision avoidance and non-fluid motion. 

 

Due to a complete lack of any prior graphics programming experience it was decided to implement 

the model primarily in 2D.  The 2D implementation certainly appears more popular with other 

authors and allowed more focus to be put on the movement and behaviours themselves rather than 

on the complex modelling of 3D environments and drawing.  This was more in keeping with the 

original aim of the project which was to explore emergent behaviour of autonomous agents rather 

than study 3D graphics and game programming. 

 

Several elements required in order to achieve these objectives included development of a model for 

the simulation of the birds’ behaviour using algorithms for steering and behaviour rules, production 

of a graphical user interface permitting the user to influence the birds behaviour, and a visualisation 

of the simulation.   



MSc Computer Science Project Report : Robyn Backhouse 6

3: RELATED WORKS: 
 

There is a great deal of published literature on swarm intelligence and flock behaviour from many 

authors, most of whom appear to have based their work on that of Craig Reynolds.  As the foremost 

authority on steering behaviour for autonomous characters (a type of autonomous agent used in 

computer animation such as games and virtual reality) Reynolds may be seen as the “father” of the 

flocking model introducing his original Boids model in 1987 which was a groundbreaking 

innovation at that time, being the first well known successful implementation of a natural looking 

flocking system, and which has been used extensively ever since particularly in areas such as 

visualisations in games and movies [REY01, REY99, REY88, REY87].   

 

His model describes behaviour in a three layer hierarchy: 

• Action Selection - strategy, goals and planning 

• Steering - path determination 

• Locomotion - animation, articulation  [REY99]  

 

Action Selection is defined as “noticing that the state of the world has changed and setting a goal” 

[REY99].  Steering is the art of selecting a path by which to reach the goal, turning appropriately, 

avoiding collisions and obstacles etc., and Locomotion is the actual act of moving along the path to 

reach the goal or final destination [REY99]. 

 

The focus of this project is predominantly the middle layer - steering, which is itself composed of 

several rules which the autonomous agent must obey in order to interact appropriately with the 

world and with other autonomous agents.  Reynolds’ original Boids model contained three steering 

rules: separation, cohesion and alignment, with further behaviours being added in subsequent years 

including obstacle avoidance and flee behaviour (e.g. from a predator).  Avoidance of obstacles is 

only necessary when the obstacle lies directly in the birds’ path (a bird may fly parallel to a wall 

without difficulty), whereas flee causes the bird to move away from the predator regardless of it’s 

position in relation to the bird as long as it is within a certain distance. 

 

Reynolds goes on to describe how some behaviours are inherently combined (e.g. fleeing from a 

predator while simultaneously avoiding obstacles), while others are not (e.g. stopping to eat while 

fleeing from a predator) [REY99].   

 

Many authors have been inspired by Reynolds’ model using it as a basis for their own work, some 

of which are presented briefly below.  Parker [PAR07 ] produced pseudo code based directly upon 

Reynolds’ model, while Davison [DAV05] discussed a Java implementation of the model in his book 



MSc Computer Science Project Report : Robyn Backhouse 7

Killer Game Programming.  Both were referred to during development of the cohesion, separation 

and alignment rules for this project.   

 

There appear to be numerous examples of flock simulations available and many have been studied 

to discern the most desirable attributes for inclusion into this simulation.  Apart from Reynolds’ 3D 

java applet simulation [REY01] two of the earliest simulations viewed (and therefore used as a 

starting point for planning this simulation) were those of Buckland [BUC05] and Bourg and Seemann 

[BOU04].  Buckland’s simulation appeared to have no collision avoidance and no obstacles or 

predators, with the only user control being an option to show a neighbourhood circle around a bird. 

The flock movement however was flowing and natural looking and as one of the earliest 

simulations seen it formed an initial idea upon which the graphical representation of this project 

was based.  It used 2D triangles to represent the birds which is what has been used in this 

simulation and indeed many others viewed since.  Bourg and Seemann’s simulation had very good 

obstacle avoidance with the birds avoiding obstacles and continuing in the same general direction 

rather than bouncing back from them as with most other simulations, however it is almost 

impossible to discern whether or not collisions occur between individual birds due to the graphical 

representation and the speed of movement.   

 

Most authors who have implemented obstacle avoidance appear to have birds avoiding obstacles by 

selecting a different destination rather than continuing on their original path, and indeed when 

natural birds are observed this may often be seen.  LaLena [LAL08] and Grubb [GRU07] both used 

this course altering behaviour when obstacles were encountered and this method was the one 

implemented into this simulation.   

 

Grubb’s [GRU07] user interface appeared well designed, again providing idea’s which were 

incorporated into this simulation.  He included the ability to enable and disable all steering rules 

individually, allowing the user to experiment with different combinations of rules to explore the 

resultant behaviour.  It is very interesting to observe this altered behaviour and makes checking 

effectiveness of the rules simple - if only one rule is on at a time it is quite obvious whether or not it 

is working effectively.  This was seen as an essential addition to my simulation and was 

implemented quite early. 

 

Most simulations appear to have very poor or often non-existent collision avoidance (with other 

birds).  Grubb’s [GRU07], LaLena’s [LAL08], Buckland’s [BUC05], and Wiley’s [WIL99, WIL99a, 

WIL99b] characters all continually collide, often moving permanently on top of each other.  This was 

seen as highly undesirable and much work went into trying to overcome this problem for my 

simulation.  The original algorithm did not work sufficiently well so was modified until acceptable 

results were obtained.  It is now uncommon for birds to collide unless they are crowded from 



MSc Computer Science Project Report : Robyn Backhouse 8

multiple sides simultaneously while avoiding the predator in which case occasional collisions 

occur, but these are instantly rectified.  Unlike the above simulations my birds do not “travel” on 

top of one another.   

 

Most simulations viewed appear to have smooth flowing motion apart from some of Wiley’s 

[WIL99] which do not appear to flock at all but rather flash random groups of characters around the 

screen.  The way in which the rules control the birds appear to produce this flowing motion in most 

simulations with large jerky movements being prevented by the proximity and motion of the near 

neighbours.  Another of Wiley’s simulations [WIL99b] claims to run much faster than any others by 

using a different way of checking neighbours.  He reports that instead of checking all birds in the 

flock to decide which ones are in the immediate neighbourhood it checks only the ones which were 

within the neighbourhood distance the previous time, along with their neighbours.  This would 

certainly increase speed of the simulation however it may mean that some neighbours are missed 

and therefore not included in calculations, particularly if birds suddenly changed direction.  It 

would seem that if new birds joined the flock they would not be considered as they would not 

previously have been neighbours to any existing birds.   

 

Richmond [RIC07] presents a visually stunning 3D simulation of birds flocking in mountains with a 

camera slowly rotating around the full panorama and the birds scaling nicely in size as they move 

nearer or further from the viewer.  They seem to disappear permanently after the simulation runs for 

some time although they may still be heard.  The flock moves slowly around and stays together in a 

realistic looking way although it is difficult to see whether or not they collide due to them appearing 

so distant and small.  Again some basic user controls are present although these do not appear to 

make much difference to the birds’ behaviour and although there are predator controls, no predator 

is apparent.  If an advanced 3D version is to be implemented in future the visualisation of 

Richmond’s would indeed be something to aspire towards, although better camera control and user 

options would be suggested as would obstacles and an obvious predator.   

 

Reynolds also presents a very simple 3D version on his website [REY01] which has no obstacles or 

predators, but which does appear to have very good anti-collision control.   

 

 



MSc Computer Science Project Report : Robyn Backhouse 9

4: BEHAVIOURAL RULES AND MODEL: 
 

4.1 General Model Overview: 
 

There are several methods by which a flock of birds, or indeed any group of creatures moving 

together such as schools of fish or herds of wildebeest, may be modelled.  To create a realistic 

looking flock of birds it would be possible to hard code the flight path of every bird individually 

however this would be very difficult to update (for instance if the flight path was to be altered), and 

it would also be difficult to ensure that collisions never occurred as the flock turned and changed 

direction [REY87].  It also has the limitation of the finite length of hard coding – what happens to the 

birds once they have flown their set path?  They may simply repeat their flight path in an endless 

loop however this would look very artificial and would be limited to a set area of the world not 

taking into account other environmental factors within their vicinity.  If the simulation was being 

used in a game for instance, the flock would be local to just one area of the world and each area 

would have to have it's own individual hard coded flock.  When thinking of real world 

implementations for autonomous agents this would be completely unworkable as it removes their 

autonomy and their ability to function within a changing environment.  
 

In order to create a model which is more accurate, realistic looking, easily updated and mobile 

within various settings it is better to give autonomy to each bird so that it can make it's own 

“decisions” based on it's surroundings and immediate environment [REY87].  Each bird follows a set 

of behaviour rules by which it can interact with other birds in a similar way to that in which a real 

bird might interact.  This obviously gives much greater flexibility to the flock as it can then fly 

anywhere using the same set of rules.  If it is used in a game the same flock can fly in virtually any 

area in a natural looking way without being specifically hard coded to that environment.  Similarly 

when considering the broader spectrum of uses for autonomous agents such as robots or weapons 

their ability to adapt themselves to different environments is highly desirable if not essential.   
 

This model is based upon Craig Reynolds’ flocking model whereby in order to simulate a flock 

those behavioural characteristics which are relevant to a bird being a successful member of a flock 

are simulated [REY87].  However the more autonomous the birds become the more difficult it 

becomes to directly control their movements.  Reynolds reported that not being able to foresee how 

a simulation will react to set behaviours and conditions is “one of the charming aspects” [REY87].  

Birds need to have certain behaviours in order to flock effectively.  The two main behaviours 

required may be seen as opposing – those of flying closely together in a flock while simultaneously 

avoiding collisions with other birds.  Drawing together, but repulsing apart at the same time.  
 

In order to create a flocking model in this way three main rules are required:   

• Cohesion: Birds try to move towards the centre of their group of immediate neighbours. 



MSc Computer Science Project Report : Robyn Backhouse 10

                     Diagram from [REY99] 

• Separation: Birds must not hit each other 

• Alignment: Birds move towards the average destination of all their neighbours. 

 

In addition to these basic rules for flight, if obstacles and/or predators are being introduced to the 

model then two further rules are required: 

• Obstacle Avoidance:  Birds must avoid running into obstacles 

• Predator Avoidance:  Birds must avoid being eaten by predators 

 

4.1.1 Neighbourhood: 
 

Each birds perception of the flock is quite local to itself.  For 

instance in nature a flock may number several hundred or even 

several thousand.  It would be virtually impossible for an 

individual bird to consider every single flock member 

continuously.  Instead it simply considers those immediately 

surrounding it – it's “nearest neighbours”.  Using this approach the 

rest of the flock outside it’s immediate neighbours can be 

effectively ignored by each individual bird but because every bird follows the same behaviour the 

flock as a whole “works”, regardless of its size.  In this simulation therefore, a neighbourhood 

distance is set and any bird outside that radius is effectively ignored by each individual bird.   
 

Neighbourhood distance is not only defined as a set distance from the bird but also within a set 

angle to that which the bird is currently facing so that a bird behind it will be ignored.  This is 

achieved by calculating the angle between the direction in which the bird is facing and the angle at 

which the second bird is positioned in relation to the direction of the original bird.  If the second 

bird is “within sight” of the first bird (i.e. within the grey area on the diagram) then it is considered 

to be within the neighbourhood.  If it is in the “blind spot” of the first bird (i.e. behind it) it is 

ignored.   
 

 

4.1.2 Division by Zero Prevention: 
 

Checks are made to ensure that co-ordinates used as a denominator when carrying out vector 

division are not zero otherwise an exception will occur.  In this simulation if they are found to be 

zero they are changed to the value of 0.1.  All such calculations use float values.  Although this may 

be unacceptable in critical systems in which even the slightest change may prove fatal to a system, 

for the purpose of this graphical simulation this figure is so small as to have no noticeable effect on 

the birds’ destinations or positions, being imperceptible to the human eye, and was therefore 

acceptable. 



MSc Computer Science Project Report : Robyn Backhouse 11

4.2 Behaviour Rules in Detail: 

 

The first three rules are those observed by Craig Reynolds [REY01] which are cohesion, separation 

and alignment, followed by obstacle avoidance and predator avoidance. 

 

Each rule is weighted according to its level of importance.  It was felt that separation (not bumping 

into each other) for instance was more important than cohesion or alignment so separation was 

given a much higher weight than the others.  Avoidance of both obstacles and predators also has a 

higher weight than cohesion or alignment as it is assumed that to a real bird not flying into 

obstacles and potentially becoming injured, or indeed being eaten by a predator, are probably of far 

higher immediate priority than staying with other birds.  

 

Each bird has a set of position co-ordinates (x, y) and a set of destination co-ordinates (x, y).  The 

bird moves fractionally from its current position towards its destination each time it is “updated” 

which occurs approximately 60 times per second for each bird.  Each time a birds co-ordinates are 

updated it is redrawn on screen in it's new position. 

 

When a bird moves beyond the “edge” of the window it is wrapped around to the other side as if the 

window is an opened out map of the earth (like a globe flattened to a 2D map). 

 

 

4.2.1 Update Bird’s Position and Destination: 

 

The procedure which updates the position and destination of each bird calls all behaviour rules 

which are currently selected and adds the resulting vectors together, along with the birds current 

destination and position.  Each rule returns a vector of how much the birds destination should be 

changed by that particular rule, so simply adding all of these to the birds’ current destination very 

effectively points the bird to its new corrected destination.   

 

To update a bird’s destination the current destination is added to the sum of all the steering rules 

which are currently selected.  So for instance a bird has a destination of x and y co-ordinates.  Each 

steering rule gives a new set of x and y co-ordinates which are added to the bird’s current 

destination vector co-ordinates, so the new destination is simply the sum of the old destination and 

the values returned from all the behavioural rules which are selected at that time.   

 

To find the new position the bird is moved a fraction of the distance between it’s current position 

and it’s newly calculated destination. 

 



MSc Computer Science Project Report : Robyn Backhouse 12

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final destination vector is put through a “distance inhibitor function” which “normalises” the 

vector prior to the new position being calculated.  In order to control the speed of the birds the new 

destination and new position vectors are further controlled by speed limiting functions and 

controllers (speed and distance inhibitors discussed later).  

 

Algorithm : Update Position of Bird  
 

1. procedure NEWPOSITION 

2.      for every bird in flock 

3.           Crule = vector returned from cohesion rule 

4.           Srule = vector returned from separation rule 

5.           Arule = vector returned from alignment rule 

6.           Orule = vector returned from obstacle avoidance rule 

7.           Prule = vector returned from predator avoidance rule 

8.           oldDest = current destination co-ordinates of bird  

9.           oldPos = current vector co-ordinates of bird  

10.           newDest = new updated destination co-ordinates of bird (initially NULL) 

11.           newPos = new updated position co-ordinates of bird (initially NULL)  

………………………. 

12.           newDest = oldDest + Crule + Srule + Arule + Orule + Prule 

13.           newPos = oldPos + (fraction of)newDest 

14.      end for   
15. end procedure  



MSc Computer Science Project Report : Robyn Backhouse 13

 

 
 

(Diagram from Craig Reynolds [REY01] ) 

4.2.2  Cohesion Rule 

 

The Cohesion rule brings the birds together into a flock or group.  The birds try to move towards 

the centre of their group of immediate neighbours.   
 

Calculation is straightforward.  The positions of all 

neighbouring birds are added together then divided by the 

number of birds within that neighbourhood, giving the 

average position of all birds within that neighbourhood.   
 

The centre of a birds neighbourhood may be calculated by 

the following algorithm: 

 
 

 

The neighbourhood centre is then multiplied by the weighting for the cohesion rule before being 

returned and added to the bird’s current destination (along with the other rules) so the new 

destination may be calculated. 

 

The code for this rule was originally based on pseudo code by Conrad Parker [PAR07] but after some 

experimentation it was found to give unacceptable results in this simulation so it was changed 

considerably and now appears to give consistently reliable results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm : Cohesion Rule 
 

1. Cohesion_ vector = new vector (0, 0) 

2. bird1 = original bird 

3. bird2 = 2nd bird being compared to original bird1 

4. while more birds in flock 

5.      if bird2 is within set neighbourhood distance to bird1 

6.           Add bird2 position to Cohesion_vector 

7.      end if      
8. end while   

9. if number of neighbours > 0 

10.      return ( Cohesion_vector / number of birds in neighbourhood) – position of 

bird1 

11. else return vector of value (0, 0) 

12. end if else      

Centre of neighbourhood = sum of all bird positions / number of birds in neighbourhood 



MSc Computer Science Project Report : Robyn Backhouse 14

  
 

(Diagram from Craig Reynolds [REY01]) 

4.2.3  Separation Rule 
 

Birds must avoid bumping into each other as they move 

maintaining a minimum distance between themselves and their 

neighbours.  (also referred to as “collision avoidance”). 
 

The bird’s distance from every other bird in the flock is calculated 

individually (the Euclidean distance) and if they are found to be 

closer to any other bird than the set minimum “collision distance” 

(i.e. the minimum distance which they should keep between 

them) they must move apart.   
 

A separation vector is created with co-ordinates (0, 0).  If birds are found to be too close together the 

separation vector is updated to equal its current value minus the position difference between the two 

birds.  This is repeated for every bird in the flock which is closer than this minimum distance.  The 

separation vector is then returned and added to the new destination for the bird.  The pseudo code for the 

separation rule was based on pseudo code by Conrad Parker [PAR07].   
 

For this rule the neighbourhood distance is not used as it would result in reduced performance by simply 

creating a redundant check due to the structure of the bird flock which is an array.  It was felt that as 

every bird in the flock had to be tested for distance from the original bird in order to ascertain whether 

they were within the neighbourhood distance then it would be more efficient to simply check directly for 

collision distance rather than checking first for neighbourhood distance then rechecking those a second 

time for collision distance if they were within the neighbourhood distance.   In real life birds would only 

consider those in their immediate vicinity and this would be done by direct visualisation, however a 

computer simulation using an array must check every bird in the flock in order to ascertain it's position 

in relation to the original bird.   
 

Again a weight is used as a multiplier for the final result, so that this rule may be given a higher 

importance in the final destination vector than other rules as it was felt that the most important thing 

while flying is not to hit anything – either other birds or obstacles.   

 

 

 

 

 

 

 

 

 

 

Algorithm : Separation Rule 
1. Separation_vector = new vector (0, 0) 

2. bird1 = original bird 

3. bird2 = 2nd bird being compared to original bird1 

4. while more birds in flock 

5.      if bird2 is within collision distance to bird1 

6.           Separation_vector = Separation_vector – (position of bird2 – position of bird1)

7.      end if      
8. end while   

9. return Separation_vector * weight      



MSc Computer Science Project Report : Robyn Backhouse 15

 

(Diagram from Craig Reynolds [REY01]) 

4.2.4  Alignment Rule 

 

Birds move towards the average destination of their 

neighbours keeping the flock in alignment and moving 

together towards the same general heading. 

 

The alignment rule calculates the average destination of 

all birds within a set neighbourhood distance from the 

original bird (including the destination of the original 

bird) and returns the average of those destinations.   

 

The destinations of all birds within the neighbourhood distance from the original bird are added 

together and divided by the number of birds within that neighbourhood.  The destination of the 

original bird is then subtracted from this averaged destination and the result divided by 8 (to add 

approximately an 8th of the resultant vector to the birds current destination [PAR07] ).  This result is 

then multiplied by the weight for this rule and returned.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm : Alignment Rule 
 

1. Alignment_vector = destination of original bird 

2. bird1 = original bird 

3. bird2 = 2nd bird being compared to original bird1 

4. while more birds in flock 

5.      if bird2 is within neighbourhood distance to bird1 

6.           Alignment_vector = Alignment_vector + destination of bird2) 

7.      end if      
8. end while   

9. Alignment_vector = Alignment_vector / number of birds in neighbourhood 

10. return ( ( Alignment_vector – destination of bird1)  /  8 )  *  weight      



MSc Computer Science Project Report : Robyn Backhouse 16

4.2.5  Obstacle Avoidance Rule 

 

Birds must avoid hitting obstacles as they fly while still obeying all the other rules of cohesion, 

separation and alignment.  Each time a bird is updated it checks each obstacle in the obstacle array.  

When an obstacle is found to be within a minimum set distance to a bird, the bird moves away from 

the object in order to avoid it.  This rule has a high weighting as it would be important for real birds 

not to fly into obstacles and this is reflected in the simulation. 

 

Currently (and in line with most other flock simulations 

examined) when a bird comes within a set minimum 

distance to an obstacle it avoids it by almost “bouncing” 

away.  This is by far the easiest method to implement and 

looks quite natural due to the softening of harsh angles by 

the presence of surrounding flock-mates, as the other 

steering rules also continue to affect the birds behaviour thus 

reducing the angular effect of this movement. 

 

It is achieved by subtracting the co-ordinate position of the obstacle from a vector initially of (0, 0), 

then subtracting the birds current position from the resultant vector.  It remains correct for negative 

co-ordinate positions as well as positive ones, as subtracting a negative number will effectively add 

its positive value (e.g. 10 – ( –5 ) = 10 + 5 = 15  ). 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm : Obstacle Avoidance Rule 
 

1. obstacle_avoid_vector = new vector (0, 0) 

2. while more obstacles in world (in array of obstacles) 

3.      if bird is within collision distance to obstacle 

4.           obstacle_avoid_vector = obstacle_avoid_vector – (position of obstacle + half 

radius of obstacle) – position of bird 

5.      end if      
6. end while   

7. return obstacle_avoid vector * weight      



MSc Computer Science Project Report : Robyn Backhouse 17

4.2.6  Predator Avoidance Rule 

 

The Predator Avoidance algorithm is the same as that used for stationary obstacle avoidance.  If the 

bird is within a preset “predator avoid distance” the avoidance rule will be applied.  Again a weight 

is applied to the rule to increase it’s importance and influence.  When the Predator is “On” and the 

bird is within range, the bird obeys only Predator avoidance, Obstacle avoidance and Separation 

rules – it flies away from the predator while avoiding hitting anything else.  Alignment and 

Separation rules are ignored until the bird is “safe” as it was felt this was more likely to be how real 

birds would act.  When a bird is “caught” by the predator, that bird is “eaten”, being permanently 

removed from the array and from the simulation. 

 

 

 

 

 

 

 

 

 

 

Algorithm : Predator Avoidance Rule 
 

1. predator_avoid_vector = new vector (0, 0) 

2. if bird is closer than minimum distance to predator 

3.     predator_avoid_vector = predator_avoid_vector – (position of predator – position 

of bird) 

4. end if 
5. return predator_avoid_vector * weight      



MSc Computer Science Project Report : Robyn Backhouse 18

4.2.7 Supporting Algorithms: 

 

4.2.7.1  Euclidean Distance: 

 

For all the above steering rules the distance between birds or birds and obstacles needs to be 

calculated.  This is accomplished by calculating the Euclidean distance between them.  This is a 

straightforward calculation using well established mathematical formula. 

 

To calculate Euclidean distance between two points, (x1, y1) and (x2, y2) in two dimensional space 

(used in the 2D simulation) the following formula is used [WEI08, WIK08]: 

 

distance = 2
12

2
12 )()( yyxx −+−  

 

To calculate Euclidean distance between two points, (x1, y1, z1) and (x2, y2, z2), in three dimensional 

space ( for 3D implementations ), the formula is basically the same with the addition of the extra 

dimension co-ordinate (the z co-ordinate) [WEI08, WIK08]: 

 

distance = 2
12

2
12

2
12 )()()( zzyyxx −+−+−  

 

These formula’s are very straightforward to implement into code using the position co-ordinates of 

the birds and obstacles, as the following example in C# shows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C# Code: 
public float EuclideanDistance(Bird bird2) 
{ 
 // x = (x2 – x1)2 

float x = (float)Math.Pow((bird2.BirdPosition.X – 
bird1.BirdPosition.X), 2);  

 
// y = (y2 – y1)2 

float y = (float)Math.Pow((bird2.BirdPosition.Y – 
bird1.BirdPosition.Y), 2); 

 
// returns square root of (x + y) 
return (float)Math.Sqrt(x + y); 

} 



MSc Computer Science Project Report : Robyn Backhouse 19

4.2.7.2  Angle Bird Facing: 

 

In order for the bird to be drawn on the screen facing in the direction of travel the rotation angle of 

the birds destination needs to be calculated.  While there are several ways to calculate this 

mathematically (sine, cosine or tangent) the tangent value was selected as it takes the Adjacent and 

Opposite sides of a triangle as its arguments, which are effectively the x and y co-ordinates of the 

birds destination.   

 
 

Bird is at position (0, 0) on the above diagram.  To calculate the tangent of the destination, the 

destination x co-ordinate (Adjacent) is divided by the destination y co-ordinate (Opposite): 
 

 

 

 
 

Once the tangent value has been calculated this can be converted either into radians (by a math 

library function in this particular implementation) or into degrees by standard mathematical tables. 

 

 

 

 

 

 

 
 

 

In this particular implementation (using VS2008 and XNA 3.0) the result is converted to radians 

using functions from the XNA Math library, then 90o in radians is subtracted from it to correct 

rotational offset (otherwise the birds fly sideways).  It was also discovered after some 

experimentation that if the x value of the destination is positive,  180o in radians must be added to 

the resultant figure to produce the correct rotation.  This points the bird in the correct direction.  

 
 
 
                Hypotenuse 
                                                                       Opposite
 
 
 
 

                       Adjacent 

Tangent  =  Adjacent / Opposite 

Or  Tangent  =  x co-ordinate / y co-ordinate 

Example: 
 

A bird has (x, y) destination co-ordinates of (300, 500). 

Tangent  =  300 / 500    =   0.6 

Tangent of 0.6 = 0.54105207 Radians [WIK08c] 

Which equals 31 degrees [WIK08c] 

Therefore the bird is facing 31 degrees from (0, 0) 



MSc Computer Science Project Report : Robyn Backhouse 20

4.2.7.3  Angle Between Birds: 

 

This function calculates the angle between the heading of one bird 

and the position of another.  It is used to determine whether a bird is 

considered a “neighbour” and for predator avoidance.  It uses the 

same formula as above (Angle Bird Facing) to determine the bird’s 

heading, then uses the same algorithm again to determine the relative 

angle of the second bird’s position in relation to the first.  The angle 

of the second bird’s position is then subtracted from the angle in which the first bird is facing to 

calculate the angle between the birds.     

 

In the following algorithm the tangent is converted to radians by a Math library within the XNA 

framework.  This is called, passing in the tangent value and returning the radian value to the calling 

function.  Bird1_destination_X refers to the x co-ordinate of bird1’s destination; bird2_position_Y 

refers to the y co-ordinate of bird2’s position.  Others are similarly named. 
 

 

 

 

 

 

 

 

 

 

 

 

4.2.7.4  Bird Distance Controller: 

 

This is a vector normalisation function created to control the speed of the birds across the screen 

and keep their movement reasonably constant as you would expect from real birds.  Due to the 

nature of the vector calculations it is quite possible for the resultant destination of the bird to be co-

ordinates of several thousand (either positive or negative in value).  The window size is set at 1050 

wide, by 700 high (i.e. x = 1050, y = 700) so clearly a destination of say (5000, 6000) is 

unnecessary and will lead to huge problems with the speed of the bird’s movement due to the fact 

that distance travelled on each update is a set fraction of the total distance to be travelled.  If the 

total distance is huge then the fraction of this distance results in the birds moving too rapidly across 

Algorithm:  Angle Between Birds  
1. tangent_bird1 = bird1_destination_Y / bird1_destination_X 

2. radians_bird1 = (Math function: tangent_bird1 converted to radians) 

3. bird2 _X = bird2_position_X – bird1_position_X 

4. bird2 _Y = bird2_position_Y – bird1_position_Y 

5. tangent_bird2 = bird2_Y / bird2 _X 

6. radians_bird2 = (Math function: tangent_bird2 converted to radians) 

7. bird1_heading_in_degrees = radians_bird1 * 180 / Pi 

8. bird2_position_in_degrees = radians_bird2 * 180 / Pi 

9. difference_in_degrees =  bird1_heading_in_degrees  –  bird2_position_in_degrees 

10. return difference_in_degrees 



MSc Computer Science Project Report : Robyn Backhouse 21

the screen.  In order to control this and keep the movement of the birds reasonably even this method 

reduces the destination co-ordinates to a more reasonable value. 

 

The way it works is quite straightforward.  If the destination co-ordinates are greater than twice the 

width or height of the screen they are simply halved and a small amount added back on to ensure 

the actual direction is not affected and that the destination is still sufficiently off the screen to keep 

the birds moving at a reasonable speed.  This appears to produce realistic looking results where the 

birds speed does change very slightly as they move, turn and avoid predators, but in a way which 

looks quite natural.  This does not change the birds’ direction, as for example an x co-ordinate of 

1,500 or 10,000 are 2 points along the same line. 

 

4.2.7.5  Speed Inhibitors: 
 

As mentioned previously the bird’s new position is calculated by multiplying their newly calculated 

destination by the a hard coded “speed limiter” and then by a user-controlled “speed restrictor” 

variable.  This resultant vector is then added to the bird’s original position to give the new position.  

The speed limiter and speed restrictor were combined to reduce unnecessary code and variables, 

however this resulted in reduced control over the speed producing disappointing results.  They were 

therefore separated back into two independent variables as results are far better using this method.  
 

The two control mechanisms used to govern the speed of the bird’s movement are the speed limiter 

and the speed restrictor.  These are required to produce more realistic results otherwise the birds 

move so quickly that they appear to simply flash randomly over the screen with no order or pattern 

to their behaviour, and with such rapidity that the human eye cannot follow any directional 

movements present.   
 

• The “speed limiter” is a hard coded static variable implemented to control the overall speed of 

movement.  It is required so that the bird only moves a tiny fraction of the distance towards it’s 

destination on each update rather than all the way to it’s destination, otherwise the bird would 

not “fly” but rather simply “jump” straight to the new destination on each update.  Each time 

the bird is updated (around 60 times per second), the bird’s position changes towards it’s 

destination by the fraction of it’s destination set by the speed limiter – a setting of 0.015 has 

been found to give optimum results.  For example if the bird’s destination (x, y) co-ordinates 

were (200, 400), then this would be converted to (200 * 0.015,  400 * 0.015), giving final 

distance co-ordinates of (3, 6), which would be the actual distance the bird would then travel on 

this update, moving 3 units along the x co-ordinate from it’s current position towards it’s 

ultimate destination and 6 units along the y co-ordinate.  



MSc Computer Science Project Report : Robyn Backhouse 22

Algorithm : Final “Update Position of Bird” Algorithm with Speed and Distance Inhibitors 
 

1. procedure NEWPOSITION  

2. OldDest = current destination of bird 

3. NewDest = updated destination of bird (initially NULL) 

4. vectorSum = sum of all vectors returned by behaviour rules functions (cohesion, 

separation, alignment, obstacle avoidance, predator avoidance) 

5. speedLimiter = static variable which limits speed of movement 

6. speedRestrictor = user controlled variable to vary speed of movement 

7. NewDest = OldDest + vectorSum 

8. if NewDest >  2 * screen size 

9.      NewDest is normalised by a reduction function 

10. end if 
11. NewPos = new position of bird 

12. OldPos = old position of bird 

13. NewPos = OldPos + NewDest * speedLimiter * speedRestrictor 

14. end procedure 

• The “speed restrictor” is a user controlled variable which can be increased or decreased 

within preset boundaries via keyboard input.  The higher the number the faster the birds will 

appear to move, and conversely the lower the number, the slower they will appear to move.  A 

range between 0.05 and 2.0 seems adequate, as any higher than about 0.8 and they move 

unrealistically fast (up to 2 actually looks quite nice artistically so has been included as the 

flocking produces quite interesting patterns).  Any slower then 0.05 tends to make them look 

mechanical and jerky rather than flowing gracefully. 
 

 

 

4.2.7.6  Birds Basic Behaviour – Individual Destinations or Follow a Leader: 
 

4.2.7.6.1 Birds with Individual Destinations 
 

It may be observed when watching real birds flying that an individual bird heads in its own  

direction when it is alone, however if it subsequently joins other birds its destination changes to 

match that of the flock and it’s prior destination is often apparently abandoned.  It was felt therefore 

that for this simulation this was the most realistic approach to follow – each bird has its own 

individual destination at all times.  When it encounters another bird or birds its original destination 

is altered in accordance with the steering rules applied to it at that time, but always remains 

individual to that bird.  This approach appears to be the method used by other authors of flock 



MSc Computer Science Project Report : Robyn Backhouse 23

behaviour applications [REY01, GRU07, BUC05, LAL08, RIC07] and certainly gives the best results in 

this particular simulation.  It is therefore the default behaviour for this simulation.   
 

4.2.7.6.2 Birds Following a Leader 
 

The leader / follower algorithm was investigated as part of the project to observe different 

behavioural outcomes with the leader bird having it’s own destination and the follower birds having 

no destination of their own but rather simply following the leader and adhering to the steering rules.  

Although this is an unreal situation as far as real birds are concerned it was explored as an option 

within the simulation to compare the different behaviour generated.   

 

The leader bird has reduced steering behaviours.  The cohesion and alignment rules were removed 

as a leader “leads”, so does not want to align itself to the destination of the other birds, nor does it 

particularly wish to join a flock.  The separation and obstacle avoidance rules were originally still 

applied so that it did not bump into other birds or obstacles.  The followers obeyed all the steering 

rules which are selected but instead of considering their own individual destinations they consider 

only that of the leader bird.  This was found to be unsuccessful as the leader bird was immediately 

chased off the screen edge by the flock.  As it reappeared on the opposite side of the screen (having 

wrapped around to the other side), all the followers quickly flocked towards it and due to the 

separation rule it is simply chased off the screen repeatedly.   

 

The separation rule was therefore removed from the leader to try to keep it onscreen for longer, 

rather than being chased immediately off.  While this seemed to improve the overall effect 

dramatically the follower birds tend to collide a great deal which they do not do when they have 

individual destinations.  Overall it is not successful behaviour and has been left as an option only so 

the user may explore the resultant behaviour for themselves.   

 

The options of individual destinations or following a leader may be changed dynamically during 

runtime by the user via the graphical user interface.  There are therefore different “update” 

procedures for the bird objects depending upon which option is chosen at the time.    

 

A design decision was made not to make a separate class for the leader bird as the option is turned 

on and off during runtime.  Currently a pre-existing bird becomes the leader when this option is 

selected and rejoins the flock when the option is turned off.  While it would have been entirely 

possible to write a separate class it was felt that better performance would be achieved by using an 

existing bird.   

 

 



MSc Computer Science Project Report : Robyn Backhouse 24

4.2.7.7  Random Destination Change for All Birds: 

 

In nature it may be observed that a flock of birds may suddenly alter course for no apparent reason 

so this option was created to emulate that behaviour.  If the option is selected this function carries 

out the randomised timing calling the “new destination” function on all birds when appropriate.   

 

It is a very simple algorithm.  Two random numbers are chosen between zero and three hundred, 

and if they are the same then every bird is given a new randomly chosen destination.  A range 

between zero to 300 was chosen as a lesser value results in destination changes being too frequent, 

while much greater than this and they are not frequent enough. 

 

 

 

 

 

 

 

 

 

 

 

4.2.7.8  New Destination for Birds: 

 

When birds move off the screen edge they are wrapped to the opposite side and given a new 

randomly chosen destination.  To provide a new destination the Random_Number_Generator is 

called for both the x and y co-ordinates (one at a time), passing in as the limit the screen width and 

height respectively, resulting in return of a number between zero and the value passed in.  As the 

Random_Number_Generator always returns a positive number it is called a second time for each of 

the x and y co-ordinates to return a value of either zero or one (effectively flipping a coin).  If a 

zero is returned the value for that co-ordinate remains positive, if a one is returned the co-ordinate 

value becomes negative.  This provides the bird with a new destination which may be either 

positive or negative co-ordinates within a specified range. 

 

Algorithm Randomly Timed Destination Change All Birds: 
 
1.   numberOne = random number between 0 - 300 

2.   numberTwo = random number between 0 - 300 

3.   if (numOne == numTwo) 

4.         call NewDestination function on every bird. 

5.   end if …………      



MSc Computer Science Project Report : Robyn Backhouse 25

5: DESIGN AND DEVELOPMENT:   
 

5.1     Implementation Platform And Language 

 

Microsoft Visual Studio and the .Net framework was chosen as a development environment 

implementing C# as the chosen language due to some degree of existing familiarity with both and 

the ready availability of support documentation and tutorials.  Visual Studio 2008 also has fully 

integrated support for test suites and is reputedly the “best of breed” in this type of application 

being widely used in industry [MAN08a].  

 

Having chosen the environment, framework and language, a Software Development Kit was 

required providing a collection of pre-built programming components such as libraries for carrying 

out many of the “gaming” functions such as drawing sprites and backgrounds etc. on the screen and 

providing an interface for user controls [MIL08].  Several were considered although choice was 

limited somewhat as most are language specific with C# appearing reasonably unpopular in 

general.  The Microsoft XNA framework was finally chosen for several reasons: it integrates 

seamlessly with Visual Studio (having been designed specifically for this purpose), it is specific to 

the C# language, it has a plethora of online tutorials and support available both from Microsoft and 

independent sources, and it is currently seen as “cutting edge” software within the games 

development industry [MAN08].  It also provides a very efficient inbuilt Model-View-Controller 

design pattern for easy implementation which obviates the need for direct use of delegates and 

interfaces by the programmer.    

  

The project was initially started using Visual Studio 2005 with XNA Framework 2.0 and while this 

appeared to provide adequate performance in most respects Visual Studio 2005 does not provide 

support for test suites.  XNA 2.0 is not compatible with Visual Studio 2008 but is still the only 

official full release version of XNA available which is why it was chosen initially.  Due to the lack 

of testing abilities using this combination however it was decided to upgrade to Visual Studio 2008 

and use the XNA Framework 3.0 CTP (Community Technology Preview) version to allow the 

integration of testing within the project, although this beta version of XNA 3.0 lacks several 

features which would have been desirable including the ability to publish the project to a standalone 

application.   

 

5.2     Feasibility: 

 

Resources required were realistic and readily available.  The only requirements were a computer 

capable of a reasonable level of graphics and processor performance, with the chosen software / 

development platform installed, and the required software being readily available.  Tutorials, books 



MSc Computer Science Project Report : Robyn Backhouse 26

and information on game programming in general and Visual Studio, C# and the XNA framework 

in particular appeared plentiful.  As there was a time restraint on the project a timetable was drawn 

up to ensure that work progressed at such a rate so as to complete the project within the set time.   

 

5.3     Object Oriented Approach and Class Organisation: 

 

An object oriented approach was chosen as this was seen as suitable for this type of project with 

obvious “objects” such as birds and obstacles required.   

 

Calculations where there is a possibility of dividing by zero have preventative checks put in place 

with co-ordinates of 0 being changed to 0.1.  All such calculations use float values.  While this 

would not be acceptable in many critical systems where accuracy is essential, in the instance of this 

simulation it was felt this would not have any detrimental effect on the birds’ overall behaviour, 

being minute changes imperceptible to the human eye.  It prevents division-by-zero exceptions 

being thrown. 

 

Full code for the simulation is presented in Appendix D. 

 

5.3.1 Overview of XNA Provided Skeleton: 

 

When a new project is created using XNA Game Studio 3.0 a basic programme skeleton with 

classes and empty methods is created upon which to build consisting of a Program class containing 

only a Main method which creates a new simulation (game) and starts it running, and a Game1 

class which then takes over and controls the overall running of the simulation (see Appendix F for 

XNA provided skeleton code).   

 

5.3.2    Class Organisation: 

 

5.3.2.1 Game1 Class: 

 

The Game1 class contains methods for loading the initial content of the simulation, regularly 

updating the objects and member variables, and drawing the graphical representation on the screen.  

It contains functions such as a Constructor (which sets up control of the graphics device and the 

simulation window parameters, and allows recognition and retrieval of button clicks, keystrokes 

etc. for user input), Initialize (which performs initialization of content required prior to the 

simulation running such as member variables, creation and population of arrays, and setting up the 

window in which the simulation runs) and LoadContent (which sets up sprite batches and sprite 



MSc Computer Science Project Report : Robyn Backhouse 27

fonts and loads content such as textures and positions into objects such as birds, obstacles, and 

fonts).   

 

Once the simulation parameters are set up and the simulation starts running the whole simulation is 

basically controlled by the Update function in this Game1 class and represented graphically using 

the Draw function. 

 

The Update function is called 60 times per second and allows the game to gather input and update 

the world.  It calls methods in the Bird classes which update positions and destinations of all 

FlockBirds and the Predator.  Update also calls other functions within the Game1 class which 

“listen” for user input such as keyboard strokes or mouse clicks and when these are present the 

appropriate actions are carried out such as turning steering and behaviour rules on or off, altering 

the speed of the birds movement, placing obstacles on the screen where indicated by the user, or 

creating a user selected destination for all birds.  It also calls the function which updates strings 

displayed on the graphical representation such as “On” or “Off” for behaviour rules and one which 

controls random destination changes for the birds if this option is selected.  All functions which 

require updating are called by this Update function and thus it is responsible for the overall running 

of the entire simulation. 

 

The Draw function is also in the Game1 class and this is responsible for drawing a representation of 

the simulation on the screen at regular intervals including the actual window, the birds and 

obstacles, and the user instructions and current status of all steering and behaviour rules.  Also 

displayed in real time are the vectors for position and destination of up to 5 birds and the number of 

birds currently in the flock array.  The actual Bird, Obstacle and UserTarget objects are drawn by 

their own separate Draw functions within their respective classes which are themselves called by 

the Game1 Draw method. 

 

5.3.2.2 Bird Class: 

 

This is a base class with inherited classes of FlockBird and Predator.  It contains member variables 

which are used by both types of bird such as position and destination of the bird, size of world, 

obstacle avoidance distance, texture sizes and speed limiters.   

 

Many of the methods and functions in the Bird class were discussed in detail above (Chapter 4), 

and were placed in the Bird base class as they are used by both FlockBirds and Predators, both of 

which inherit from the base class.  These include:  

• Cohesion rule 

• Obstacle Avoidance 



MSc Computer Science Project Report : Robyn Backhouse 28

• Euclidean Distance which includes 3 versions: 

o To calculate the distance between 2 birds. 

o To calculate distance between a bird and an obstacle. 

o To calculate distance between a bird and a set of vector co-ordinates.   

• Angle Bird Facing 

• Angle Between Birds  

• Bird Distance Controller   

 

Like the Game1 class, the Bird class also has its own LoadContent function which loads the size of 

the bird “texture” as well as the minimum and maximum co-ordinates within which the birds may 

travel (i.e. size of the world). It also has its own Draw function which draws the bird sprites on 

screen, and this is called by the Draw function in the Game1 class. 

 

There are also functions which place new birds within a specified area on the screen, provide birds 

with new randomly selected destinations (using the RandomNumberGenerator class), and “wrap” 

the birds to the opposite edge of the screen when they move outside the boundaries of the world – 

as if the 2D world is a globe opened out.   

 

 

 

 

 

 

 

 

 

In order to draw the bird facing in the direction in which it is travelling the Draw function calls the 

Angle_Bird_Facing function (4.2.7.2) which calculates the rotational angle of the bird and returns 

the value in radians to the Draw function so the birds may be drawn correctly on screen. 

 

5.3.2.2.1 FlockBird Inherited Class: 

 

As an inherited class the FlockBird accesses all the functions of the Bird class as well as having it’s 

own functions and member variables.  Almost all of the FlockBirds functions are discussed in detail 

in Chapter 4 including: 

• Separation Rule 

• Alignment Rule 

• Predator Avoidance Rule 

 

New birds placed in one area on 
screen 

 

Birds “wrapped” to other side when they 
fly off the screen.  



MSc Computer Science Project Report : Robyn Backhouse 29

• Calculate Corrected Heading for all Birds (Birds Basic Behaviour – Individual Destinations or Follow 

a Leader) 

• Update Bird (Update Bird’s Position and Destination) 

o Individual 

o Leader 

o Follower 

 

The only other main function apart from the constructor within the class is the User Set Destination 

function which simply sets the bird’s destination to the point on screen where the user has clicked.   

 

5.3.2.2.2 Predator Inherited Class: 

 

Besides the Constructor which calls the base class Bird constructor the Predator class contains only 

two methods.  Calculate_New_Heading calculates the new destination for the predator using only 

the Obstacle Avoidance rule and the Cohesion rule.  The cohesion rule is the means by which the 

predator chases the flock birds, by trying to flock closely with them.  This is called by the 

Update_Predator function which checks that the predator is still within the world area (if not, it 

wraps it around the world and provides it with a new destination) and calculates the predator’s new 

position taking into account it’s current position, it’s new destination (calculated from the steering 

rules), vector normalisation (Distance Controller) and speed limiters in the same way as the 

FlockBirds are given new destinations and positions. 

 

The predator has the ability to move faster than flock birds so that it may “swoop” on its prey in a 

rapid motion.  If it comes within a set distance of a FlockBird it “eats” it by calling the EatBird 

function in the Game1 class which removes the bird from the Array List and redefines the flock 

array. 

 

5.3.2.3  Obstacle Class: 

 

Like the other classes the Obstacle class has a Load Content function (which loads the texture for 

the obstacle, the height and width of the texture, and the co-ordinates of the centre of the texture), 

and a Draw method (which draws the obstacle sprites on screen). 

 

Another function moves the two original hard coded obstacles to the desired co-ordinates.  When 

the Obstacle Array is created Obstacles are created with (0, 0) co-ordinates, before being moved 

into their positions by the Game1 Load Content method calling the PositionObstacle method within 

the Obstacle class.   

 



MSc Computer Science Project Report : Robyn Backhouse 30

It was decided to limit the number of obstacles to ten otherwise the screen becomes too crowded 

and the birds cannot “fly” but instead simply shuffle between obstacles.  Two obstacles are hard 

coded into place and the user has the option of placing a further eight where-ever they wish.   

 

5.3.2.4   User Target Class: 

 

The User Target class was actually created as an inherited class of the 

Microsoft.Xna.Framework.DrawableGameComponent class.  As such it contains the same basic 

empty functions as the Game1 class.  The constructor and the “Initialize” function simply call the 

base class.  The “Load Content” sets up a Sprite batch and loads the picture (texture) into the object 

so it can be drawn on screen. 

 

When the target sprite is drawn on the screen it remains visible for approximately two seconds 

before fading away.   This is done by decrementing a counter.  While the counter is above zero the 

target is visible but incrementally fading.  Once it reaches zero it has faded completely.  The 

“Draw” function draws the target texture on the screen in the appropriate position, and like the 

Draw functions for the Bird and Obstacle classes it is called from the Draw function in the Game1 

class. 

 

5.3.2.5  Random Number Generator: 

 

Another very small class, the Random Number Generator takes as an input parameter a positive 

integer number and returns a randomly generated number between zero and the integer passed in.  It 

uses an inbuilt library function to do this.  It was placed into a separate class so that all other classes 

could access it freely simply by passing in the maximum number of the range required. 

 



MSc Computer Science Project Report : Robyn Backhouse 31

5.3.3 Encapsulation  

 

Class member variables were encapsulated providing a public interface to them while maintaining a 

private implementation which provides an increased level of security and a means of validating 

values before assigning them to the member variables.  Although this simulation is a standalone 

application rather than a component in a larger project, it was felt that good practice should be 

maintained at all times and as encapsulation is generally viewed as good practice it was 

implemented into this simulation.   

 

As the example below shows, the private variable speedRestricter has been encapsulated allowing 

public access to “get” the value and also to “set” a new value for the variable.  Setting the new 

value has restrictions placed upon it to ensure that only values within a certain range are accepted.  

This protects the variable from invalid values while allowing users outside the class to alter it. 

 

All variables which require access from outside their own classes have been encapsulated for this 

security control. 

 

 Example of Encapsulation: 
 
private float speedRestricter = 0.2f;      
//Controls the speed of the birds       
 
 
Above variable is “private”. Minimum and maximum values may be set for public access to the  

private member variable.  This example ensures that the speedRestricter is limited between 

0.05 and 2.0. 

 
 
public float SpeedRestricter 
{ 

get { return speedRestricter; } 
set 
{ 

speedRestricter = value; 
if (speedRestricter <= 0) 

speedRestricter = 0.05f; 
if (speedRestricter > 2) 

speedRestricter = 2f; 
} 

} 



MSc Computer Science Project Report : Robyn Backhouse 32

5.4     Agile Approach  and Iterative Development: 
 

An Agile Development Approach was used which meant an iterative approach was implemented 

starting with the smallest possible viable program which was basically just a single bird flying 

around the screen with no rules to follow, then gradually building upon it adding more 

functionality, behavioural rules and features on each successive iteration.  This was seen as a 

superior approach to the waterfall method as it allowed for gradual development, improvement and 

refinement of the program and was compatible with test driven development. 
 
5.4.1 Iterations Implemented during Development (Brief overview): 
 

First iteration: 

Development of a basic framework of the program, producing the graphical environment in which a 

single sprite (bird) flew around the screen with a hard-coded destination.  This was a huge leap 

from any prior programming experience I had on the course as it involved game programming and 

graphics, neither of which I had any familiarity.   
 

Second iteration: 

Removal of the hard-coded destination making it randomised or arbitrary.  An array was also added 

to create a “flock” of birds.  At this stage all birds shared a common destination.  A user option was 

added whereby the user could click somewhere on the screen and the destination of all birds would 

be set to that point.  A test project was also added to support test-driven development and the 

environment was switched to VS2008 with XNA 3.0.  The Bird class was created moving all the 

code for the Bird objects out of the main Game1 class into a separate class of its own 
 

Third iteration: 

Introduction of the flocking behaviour rules by which the bird objects interact with each other, 

moving together as a flock rather than simply randomly on screen.  This was obviously the main 

focus of the project and therefore one of the biggest iterations, being itself broken down into three 

mini-iterations with one behavioural rule being added at a time.  These were tested separately as 

they were introduced, and together as further rules were added, checking that they worked correctly 

giving the expected results.  Fine tuning was frequent and extensive at this stage to ensure the 

behaviour rules worked in the intended manner. 
 

Fourth iteration: 

An option was added so that the birds could either fly with individual destinations as before, or 

could be made to follow a leader bird.  This required quite different behaviour from both the leader 

bird and the followers.   

 

 



MSc Computer Science Project Report : Robyn Backhouse 33

Fifth iteration: 

Hard coded obstacles were introduced with an additional behavioural rule of “obstacle avoidance”. 
 

Sixth iteration: 

A user interface was added providing the user with options of turning all steering and behaviour 

rules on and off, as well as controlling speed of the birds, whether they follow a leader or have 

individual destinations, and allowing randomly timed destination changes on all birds. 
 

Seventh iteration: 

User placement of obstacles was added.  Steering rules were updated to work correctly as they were 

not producing the required behaviour.  Weights were added to rules to allow their influence levels 

to be altered.  A Pause option was added to the interface. 
 

Eighth iteration: 

Bird class was refactored into base class and inherited classes of flock birds and predator bird.  

Neighbourhood of bird was refined so that it only considers other birds which are within it’s “field 

of vision” (i.e. ignoring birds behind it), although this was not successful at this stage.  Predator 

bird was added and predator avoidance rule added for flock birds to flee from the predator.   
 

Ninth iteration: 

Bird Distance Controller function was discovered to be producing erroneous results and was 

corrected, resulting in neighbourhood distance now working correctly, as well as many other 

problematic areas such as predator and obstacle avoidance.  The Flockbird array was changed from 

being a static size to being set up for dynamic alterations in array size so that bird numbers may be 

increased or reduced.  Number of birds now displayed in real time on screen. 

 



MSc Computer Science Project Report : Robyn Backhouse 34

5.5     Test Driven Development: 

 

A test driven development approach was chosen for this project as this approach provides several 

benefits including: 

• Provision of continual feedback on code to ensure it is working correctly 

• Allows the code to evolve in such a way that it does exactly as it should and no more 

• Provides a collection of tests which can be run frequently to ensure that changes to one part 

of code have not adversely impacted upon another part of the code. [GOR05]. 

 

Visual Studio 2008 provides inbuilt support for test suites, both writing the test class and running 

the tests within the environment, thereby keeping the test code with the source code in the same 

project at all times for easy testing and integration.  Some things were unable to be tested such as 

the actual visualisations on the Graphical User Interface (e.g. the Draw methods – a test method 

cannot “see” whether the birds are shown onscreen correctly) – these were assessed visually by 

running the programme and viewing them directly. 

 

Tests carried out were both progressive (testing new code to check for correct functioning or 

errors), and regressive (repeatedly retesting old code as new code was added to ensure that new 

code had not introduced errors into existing code). 

 

The importance of Test Driven Development was proven during this project.  Functions were tested 

as they were developed to ensure correct results however one, the Bird Distance Controller 

responsible for normalising vectors, was unknowingly omitted from testing.  When travelling 

towards negative value co-ordinates the birds sometimes showed anomalous behaviour acting in a 

very different manner to that displayed when moving towards positive co-ordinates and sometimes 

seeming to “spin” as they moved.  This continued for some time with the cause remaining 

unidentified.  Upon realisation that a  test method for this function was lacking and remedial action 

being taken it was immediately discovered that the method was producing flawed results, 

converting negative value co-ordinates to positive values.  This obviously had a huge effect on the 

bird’s behaviour and was the cause of this “spinning”.  The method was corrected with a noticeable 

improvement in performance of the simulation with the birds’ movement becoming much more 

fluid and graceful, and no longer displaying anomalous behaviour.  Without unit testing this error 

may possibly have remained undiscovered. 

 

Following is the original flawed function, the test which identified the flaw, and the code corrected 

as a result of the testing. 

 

 



MSc Computer Science Project Report : Robyn Backhouse 35

 

 

 

 

 

 

 

 

 

 

Above is the original flawed code for the BirdDistanceController function.  Below is the test 

method which was instrumental in identifying the error in the code, followed by the amended code 

which now produces correct results.  Accurate expected results were calculated manually for the 

test using birds with set co-ordinates.  These birds were then created in the test suite and used to test 

the function.  Results were returned from the function and compared to those calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BirdDistanceContoller function after Refactoring. Now producing correct results: 
 
public void BirdDistanceController(Game1 theGame) 
{ 
   float extraBit = 200; 
 
   if (this.BirdDestination.X > (2 * theGame.DisplayWidth)) 

this.birdDestination.X = ((BirdDestination.X / 2) + extraBit); 
   if (this.BirdDestination.X < (2 * theGame.DisplayWidth) * -1) 

this.birdDestination.X = ((BirdDestination.X / 2) - extraBit);  
   if (this.BirdDestination.Y > (2 * theGame.DisplayHeight)) 

this.birdDestination.Y = ((BirdDestination.Y / 2) + extraBit); 
   if (this.BirdDestination.Y < (2 * theGame.DisplayHeight * -1)) 

this.birdDestination.Y = ((BirdDestination.Y / 2) - extraBit);  
} 

BirdDistanceContoller function prior to correction of error (Producing flawed results): 
 
public void BirdDistanceController(Game1 theGame) 
{ 
   float extraBit = 200; 
   if (this.BirdDestination.X > (2 * theGame.DisplayWidth)) 

this.birdDestination.X = ((BirdDestination.X / 2) + extraBit); 
   if (this.BirdDestination.X < (2 * theGame.DisplayWidth) * -1) 

this.birdDestination.X = ((BirdDestination.X / 2) + extraBit) * -1; 
   if (this.BirdDestination.Y > (2 * theGame.DisplayHeight)) 

this.birdDestination.Y = ((BirdDestination.Y / 2) + extraBit); 
   if (this.BirdDestination.Y < (2 * theGame.DisplayHeight * -1)) 

this.birdDestination.Y = ((BirdDestination.Y / 2) + extraBit) * -1; 
} 

Test Method for the function: 
 
 
 

 Bird bird11 = new Bird(300, 400, 6000, 3000); 
       Bird bird12 = new Bird(200, 300, -4000, -4398);  
 
        [TestMethod] 
        public void BirdDistanceControllerTest() 
        { 
            bird11.BirdDistanceController(FlockingBirds); 
            Assert.AreEqual(3200, bird11.BirdDestination.X); 
            Assert.AreEqual(1700, bird11.BirdDestination.Y); 
 
            bird12.BirdDistanceController(FlockingBirds); 
            Assert.AreEqual(-2200, bird12.BirdDestination.X); 
            Assert.AreEqual(-2399, bird12.BirdDestination.Y); 
        } 



MSc Computer Science Project Report : Robyn Backhouse 36

Tests were designed for all functions which could be tested with final results showing correct 

functioning of all methods.  Some methods could not be tested such as the Draw methods, as a test 

cannot discern whether or not a sprite is visible on screen.  Such methods were tested manually by 

direct visualisation of the screen, placing a sprite at set co-ordinates and measuring it’s apparent 

position with a ruler then comparing this to the total window size.  While obviously not precise the 

results were adequate to show that sprites were being drawn in the correct position and facing the 

correct direction.    

 

The following diagram shows all tests have passed without errors 

 

 

 
Expected results for each test were calculated manually prior to tests being run, with methods being 

checked and corrected if tests failed thereby ensuring correct functioning.    

 

Code for the entire test suite is provided in Appendix E. 



MSc Computer Science Project Report : Robyn Backhouse 37

5.6     Refactoring: 
 

Refactoring is making improvements to the existing code without changing it’s actual functionality.   
 

Once the code was working effectively it was refactored to achieve lower coupling and higher 

cohesion and to make it easier to understand and maintain.  Between each change all unit tests were 

re-run to ensure code was still functioning correctly and the simulation was run to check visually 

whether it was still working as it should. 
 

Initially all methods and functions were in the basic Game1 class as this is how the online tutorials 

for XNA gaming in general are set out, so as I was learning to use the XNA framework with these 

tutorials I also used this method to get started.  Once a working program had been established 

however, the code was refactored creating separate classes for Birds and Obstacles so that “objects” 

of these types could be created and manipulated using an object oriented approach.  Separate 

classes for the User-selected-destination and for the Random Number Generator were also added to 

increase cohesion and reduce coupling, and so they could be used freely by all other classes. 
 

Functions and methods were also refactored in cases where they were fully functioning but with 

less than ideal code.  “Magic numbers” were removed for clarity and improved maintainability, and 

code was rewritten to maximise performance by reducing operations which might slow the system 

down by unnecessarily repeating actions.  Although the code is heavily documented for clarity and 

easy maintenance, self-documenting code further enhances maintainability and was therefore 

aspired towards, with code being refactored to be self-explanatory wherever possible. 
 

Following the separation and creation of the Bird and Obstacle classes from the Game1 class, there 

was only one Bird class, therefore when a predator was added to the simulation the Bird class was 

again refactored into a base class of Bird with inherited classes of FlockBird and PredatorBird.  

This was to maximise code re-use and minimise repeated code.  Functions and code common to 

both flock birds and predator birds were left in the base class for use with both types of bird, while 

only code specific to each subclass was moved out into the inherited classes.  The majority of 

member variables remain in the base Bird class as most are common to both Flock birds and the 

Predator such as position and destination co-ordinates, size of the bird texture, “edge of the world” 

co-ordinates and speed limiter.  The Collision Distance and Predator Avoidance Distance were put 

into the Flock Bird class as the predator does not use either of these, but rather actively seeks to 

“collide” with the flock birds in order to eat them.  To illustrate this the Class Diagrams for the Bird 

class(es) before and after refactoring are presented in Appendix G.   
 

Another smaller example of refactoring is presented on the following page.  This is the code for the 

Random Destination Change for all Birds – one of the user options which gives all flock birds a 

new destination at randomly chosen intervals.    



MSc Computer Science Project Report : Robyn Backhouse 38

Originally the code was simply an if statement within the Update function in the Game1 class rather 

than being a separate function itself. It used the time played (time the simulation had been running) 

and two hard coded integers (their actual value being irrelevant).  If the time played modulus the 

first integer was equal to the second integer then all birds received a new destination.  It was soon 

realised however that this was not actually random but produced regular cyclic timings. 
 

             

 

 

 

 
 

 

 

This was refactored out of the Update function into a separate function of its own which is called by 

the Update function if the user selects the option on the User Interface.  The integer numOne was 

changed to be randomly chosen each time the function was run to avoid the regular cyclic timing as 

was previously the case and introduce true randomisation.  
 

 

 

 

 

 

 
 
 

Finally it was decided to improve further upon this by simply chosing two random numbers 

between zero and 300 each time and if they were the same then birds were given a new destination.   

If they were different no action was taken.  This was seen to be truly random and is the final version 

of this function.  Three hundred was chosen after experimentation as it appeared to provide 

destination changes which are not too frequent nor too infrequent. 

 
         

Original in Update function as if statement: 
 
//numOne and numTwo are hard coded variables 
if (randomlyTimedDestChange)        //if the user option is selected 
{ 

if (timePlayed % numOne == numTwo) 
foreach (FlockBird bird in flockArray) 
  bird.NewDestination(this); 

} 

Code refactored into separate function and randomisation improved: 
 
private void RandomDestChange() 
{ 

int numOne = (int)RandomNumberGenerator.Next(200); 
if (timePlayed % numOne == numTwo) 

foreach (FlockBird bird in flockArray) 
  bird.NewDestination(this); 

} 

Code refactored again to obtain true randomisation: 
 
private void RandomDestChange() 
{ 

int numOne = (int)RandomNumberGenerator.Next(300); 
int numTwo = (int)RandomNumberGenerator.Next(300); 
 
if (numOne == numTwo) 

foreach (FlockBird bird in flockArray) 
bird.NewDestination(this); 

} 



MSc Computer Science Project Report : Robyn Backhouse 39

5.7  Class Diagram: 

 



MSc Computer Science Project Report : Robyn Backhouse 40

5.8 Sequence Diagrams: 

 

Sequence diagrams have been created for the major functions of the simulation where classes 

and/or objects interact.  Functions which simply carry out mathematical calculations or update 

variables have been omitted as these are not design issues so much as they are specific coding 

issues, although diagrams of the Cohesion and Obstacle Avoidance rules have been included as 

examples.   

 

 

5.8.1 Overall Simulation: 

 

Shows the overall structure of the simulation with the user effecting the creation of a new instance 

of the simulation, then the simulation running until the user ends the program.  The Update and 

Draw functions are shown as separate diagrams in more detail. 

 

 

 
 



MSc Computer Science Project Report : Robyn Backhouse 41

5.8.2 Update Function (in Game1 class): 

 

The Update function is called 60 times per second updating many aspects of the simulation.  Again, 

finer granularity diagrams showing specific functions are shown separately. 

 

 

 
 

 

 



MSc Computer Science Project Report : Robyn Backhouse 42

5.8.3 Update Bird Individuals:  

 
 

5.8.4  Calculate Corrected Heading All Birds: 

 

 

If birds each have their 

own individual 

destinations the Update 

function (previous page) 

calls Update Bird 

Individuals (right) which 

itself calls Calculate 

Corrected Heading All 

Birds (below).  Similar 

functions are called if birds 

are following a leader bird. 

These are not shown due 

to their similarity. 



MSc Computer Science Project Report : Robyn Backhouse 43

5.8.5  Update Predator Function: 

 

 

 
 

  

5.8.6 Calculate New Heading Predator: 

 

 

 
 

The Update function also 

calls the Update Predator 

Function which like the 

flock-bird update above, 

calls its own Calculate New 

Heading Predator function

(below). 



MSc Computer Science Project Report : Robyn Backhouse 44

5.8.7  Draw Function (in Game1 class): 

 
The Draw function draws the main window with the GUI elements and calls separate Draw 
functions in the Bird and Obstacle classes which each draw their own sprites. 
 

 
 
 
5.8.8   Euclidean Distance: 

 
Euclidean Distance is used by the Bird 

class and its inherited classes.  It is a 

fine granularity function which carries 

out mathematical functions, not 

interacting with other classes.  The 

details of its functionality have been 

left to the specific code. 



MSc Computer Science Project Report : Robyn Backhouse 45

The Cohesion and Obstacle Avoidance Rules are shown here as two examples of steering rules.  It 

was not deemed necessary to demonstrate all of them, as all are similar in design. 

   

5.8.9 Cohesion Rule: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8.10  Obstacle Avoidance Rule: 

 

 

 

 



MSc Computer Science Project Report : Robyn Backhouse 46

6: GRAPHICAL USER INTERFACE (GUI): 
 

Numerous user controls have been implemented in the GUI to provide the user with control over 

the bird’s behaviour.  The status of all user options is displayed on screen so the user may see easily 

which options are selected at any time.  All are dynamic and may be switched freely during 

runtime.  Brief prompts are displayed on screen to guide user in key selection, and a Quick Guide to 

User Control Keys is presented in Appendix A. 

 

User controlled options include: 

• Turning individual steering rules on and off so that birds behaviour with different 

combinations of rules may be observed.  Controllable rules are:  cohesion, separation, 

alignment, obstacle avoidance and predator avoidance. 

• User placement of obstacles on the screen 

• Control over speed of the birds movement 

• User can click onscreen setting that point as the destination for all birds 

• User can change whether all birds have their own individual destinations or whether they 

follow a leader bird.   

• Randomly timed destination change for all birds may be enabled / disabled. 

• Predator may be enabled / disabled. 

• Birds may be added to the flock up to a maximum of 60 birds (a greater number leads to 

decreased performance on some machines) 

 

6.1 Steering and Behaviour Rules: 

 

Steering rules may be turned on and off freely during runtime so that behaviour may be observed 

with various combinations of rules.  These are cohesion, separation, alignment and obstacle 

avoidance.  To select / deselect steering rules and other options press the corresponding keys as 

indicated on screen (keys in bold), and their status will be shown. 

 
 



MSc Computer Science Project Report : Robyn Backhouse 47

6.2 Pause Simulation: 

 

The simulation may be paused (or “held) using the H key.  This will pause the simulation and it 

may be resumed from the same point by again pressing the H key.  

 

6.3 Birds have Individual Destinations or Follow a Leader: 

 

This option may be switched by pressing the F key on the keyboard.  This will trigger a Boolean 

variable to change ensuring the correct bird “update” method is called each time.  Default is set to 

birds each having individual destinations as this is far more realistic than following a leader.   

 

6.4 Speed at which Birds Move: 

 

Speed of birds movement can be increased or decreased using the Up or Down arrow keys on the 

keyboard, however the default value of 0.2 provides the most realistic and visually pleasing result 

for the bird’s movement.   

 

6.5 User Placed Obstacles: 

 

The user may place up to total of 10 obstacles on the 

screen by left clicking the mouse button in the desired 

location.  There is a minimal time delay set between 

obstacle placement due to the rapidity at which the 

programme runs to ensure only one obstacle is placed 

per click.   

 

6.6 Random Direction Changes: 

 

The user has an option of allowing randomly timed destination changes to all birds.  This happens 

simultaneously to all birds (it is a single pass over the flock array, but as far as the user can tell – it 

appears simultaneous), and gives every bird in the flock a new randomly chosen destination.  Both 

the timing of the change and the actual destination are randomly chosen within set limits. 

 

As real birds appear to bank and turn as they fly, often for no reason apparent to the human 

observer, this option attempts to mimic such behaviour.  It is turned on and off by using the R key 

on the keyboard, and is Off by default. 

 

 



MSc Computer Science Project Report : Robyn Backhouse 48

                

 

   
    Click and hold right mouse
    key to force compliance 

6.7 Predator Bird Option: 
 

A predator bird may be enabled and disabled by pressing the P key.  This will introduce a predator 

which chases the flock birds causing them to flee from it by adding the Predator Avoidance Rule to 

their steering behaviours.  If it catches one it “eats” it and the bird is removed from the simulation.  

The predator is ON by default. 
 

6.8 Addition of More Birds to Flock: 
 

As the predator eats birds the flock grows smaller.  More birds may be added by pressing the B key 

up to a maximum flock size of 60 birds (a flock of greater size suffered from poor performance).  

Birds will be added in groups of ten at a time. 
 

6.9 User Selected Destination for All Birds: 
 

User may right-mouse-click anywhere on screen to make this the 

destination for all birds.  Due to adherence to steering rules birds may 

change direction away from this point very quickly, or they may move 

towards that point and actually reach it, but all birds will be given that 

destination initially.  Holding down the right mouse button will force 

them to hold it as their destination and they gather into a group around 

it. 
 

6.10 Data Visualisation: 
 

The current position and destination are shown for the first five birds in the flock to give a general 

picture of the vector values in real time, although they change to quickly to read accurately with the 

human eye.  General trends may be observed. 

As birds are “eaten” by the predator they are removed from the flock array, which is resized 

accordingly, so if one of the first five is removed it is replaced with another from the current array. 

Number of birds is also shown in real time, and this decreases as they are 

eaten by the predator bird and increases when more are added by the user.   

 

 



MSc Computer Science Project Report : Robyn Backhouse 49

6.11 Screen Explained: 

 

 

 

 

 

 

 
 

 

 

Destination co-ordinates of 
first 5 birds in flock array 

Position co-ordinates of first 
5 birds in flock array 

User-selected destination for 
all birds 

User controls:  
Rules can be turned On / Off by 
pressing corresponding keys as 
indicated.  Status is shown for each 
rule. 
 

Number of remaining 
birds 

Mouse and speed control 
options 

Predator Bird 

Obstacle 

Flock birds 



MSc Computer Science Project Report : Robyn Backhouse 50

7: RESULTS: 
 

7.1 Emergent Behaviour with Steering Rules: 
 

Below are a collection of screen-shots using different combinations of steering rules to illustrate 

their effect.  For some of the following screen shots the world size was decreased for greater clarity 

of the actual birds, while Bird Position plus instructions for user placement of obstacles and user 

selected target position were disabled temporarily.   
 

7.1.1 All Steering Rules ON (Cohesion, Separation, Alignment, Obstacle Avoidance):  
 

Birds flock together well when all behaviour rules are on moving with a fluid flowing motion.  

Cohesion pulls them together into a flock, while Separation keeps them from hitting each other, 

although occasional collisions do occur.  Alignment ensures that they move in the average direction 

of their neighbours, and obstacle avoidance appears to be very effective.  It is extremely rare that 

they collide with static obstacles, even when being “chased” by the predator.  The simulation 

appears very effective with individual rules working well and combining to provide the desired 

behaviour of birds in flight. 
 

Below are some screen shots of the simulation working with all steering rules on showing a nice 

flowing flocking behaviour, both with and without a predator.  Birds have individual destinations. 
 

Predator Present: 

 



MSc Computer Science Project Report : Robyn Backhouse 51

Predator Present: 

 

 
 

 
 

 



MSc Computer Science Project Report : Robyn Backhouse 52

Predator Not Present: 
 

 
 

 

 
 



MSc Computer Science Project Report : Robyn Backhouse 53

7.1.2 Cohesion and Separation Rules: 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three diagrams on this page show 

the effects of the Cohesion Rule, but 

with the Separation Rule Off.

Alignment rule is On with these shots. 
 

The Cohesion rule pulls the birds 

together very effectively to the extent 

that they appear as one bird very 

quickly, sharing the same position co-

ordinates and moving as a single entity 

as far as the observer is concerned.   
 

They not only collide but they move on 

top of each other, clumping together as 

closely as possible, and moving about 

in this position.  The Separation Rule 

prevents this, keeping them apart. 
 

This diagram (right) actually shows 50 

birds grouped so tightly that they 

appear as one with the Cohesion Rule 

on and the Separation Rule off.   



MSc Computer Science Project Report : Robyn Backhouse 54

The Separation Rule aims to maintain a minimum set distance between birds at all times preventing 

collisions.  The effect of the Separation rule is immediately apparent when it is turned off as the 

birds quickly clump together as shown in the preceding diagrams.  

 

With the Cohesion Rule off the birds no longer pull together as is shown in the following diagrams, 

however the Separation Rule prevents collisions by maintaining a minimum distance between the 

birds.   

 

The first shows Cohesion off, but Separation and Alignment still active.  The birds continue to 

move in the same overall direction in a flowing organised manner which is caused by the 

Alignment rule, however they make no attempt to remain together in a flock without the Cohesion 

Rule.  The Separation Rule maintains a distance between the birds.  

 

 
 

 

 

In this second diagram (following page) the Alignment rule is also deactivated, with only the 

Separation rule active.  As can be seen the birds do not move towards each other or towards a 

common destination, but simply move independently around the screen in a disorganised manner.  

Although it cannot be seen from a static diagram, the birds each travel in a straight line without 

Cohesion or Alignment Rules unless threatened with collision. 

 

 



MSc Computer Science Project Report : Robyn Backhouse 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final diagram below shows the Cohesion and Separation Rules both active, along with the 

Alignment Rule, Predator Avoidance and Obstacle Avoidance Rules.  As may be seen the birds 

move together forming a flock while maintaining a minimum distance between each other avoiding 

collisions. 

 

 



MSc Computer Science Project Report : Robyn Backhouse 56

7.1.3  Alignment Rule: 

 

The Alignment Rule makes the birds align their destinations with the destinations of their 

neighbours so that they move in the same overall direction.   

 

With the Alignment Rule On, but the Cohesion and Separation rules Off, the birds align their 

destinations to that of their neighbours and move very slowly in a straight line towards those co-

ordinates.  Without Cohesion or Separation they do not avoid collisions with each other, nor do 

they pull together to form a group.  Unless an obstacle is encountered the birds do not veer from 

their current path once they have aligned with others but simply continue to move towards the same 

common direction. 

 

 

 
 

When the Alignment rule is Off the birds remain in a flock staying together and avoiding collisions 

(with Cohesion and Separation ON), but they do not align their destinations with that of the their 

neighbours.  This results in them behaving much like moths around a candle with no obvious 

purpose.  The group as a whole still moves around the screen, but individuals continually “swirl” 

around each other within the group, not pointing towards a common heading, as shown in the 

following diagrams. 

 



MSc Computer Science Project Report : Robyn Backhouse 57

 
 

 
 

With all rules off the 

birds simply fly in 

random directions 

with no regard for 

each other at all. 



MSc Computer Science Project Report : Robyn Backhouse 58

7.1.4 Obstacle Avoidance Rule: 
 

 
When the Obstacle Avoidance Rule is turned On birds keep a distance from the obstacles, moving 

around them and rarely colliding with them.  Occasional collisions occur when large groups of 

birds are being chased by the predator and they are squeezed between them but otherwise the rule 

prevents collisions well.  When it is Off birds simply ignore the presence of obstacles.   

Above screenshot: Obstacle Avoidance ON.      Below: Obstacle Avoidance OFF. 
 



MSc Computer Science Project Report : Robyn Backhouse 59

7.1.5   Cohesion and Obstacle Avoidance Rules Only (No Separation or Alignment): 
 

With only the Cohesion and Obstacle Avoidance rules the birds mill around in a slow moving 

group.  When only the Separation Rule is off the birds cohere until only one bird is effectively 

visible (see 7.1.2), however with the Alignment Rule off as well this does not happen due to the fact 

they are not aligning their destinations to their neighbours and so are all trying to move in different 

directions while remaining in a group.  This results in the birds remaining in a tight group swirling 

around each other but not forming a smaller group than that shown in the diagram below.  Without 

the Separation Rule they obviously collide continuously.   

  
 

 



MSc Computer Science Project Report : Robyn Backhouse 60

7.1.6 User Placed Obstacles: 
 

 
 

User places up to ten obstacles anywhere within the world for the birds to avoid.  Birds avoid them 

as they do the hard coded obstacles. 
 

 



MSc Computer Science Project Report : Robyn Backhouse 61

7.1.7  User Selects Target Destination for All Birds: 
 

 
Simulation was paused so that birds maintained the same position for both screen shots to highlight 

the effect.  Above the birds were following all steering rules without intervention and moving 

normally.  Below the user targets a location on screen towards which all birds set as their 

destination, pointing towards this (indicated by the pointing finger).  Due to compliance with 

steering rules birds seldom actually reach this target destination but alter course completely, 

however as can be clearly seen it is set initially with all birds pointing towards it. 
 

 



MSc Computer Science Project Report : Robyn Backhouse 62

7.1.8 3D Implementation: 

 

 
 

This paper has discussed the 2 dimensional (2D) implementation of the simulation only.  The 3D 

implementation was very similar, using the same basic code entirely, with the addition of the extra 

z co-ordinate on the vectors.  Initial results were promising although the mathematical formula’s 

have not yet been fully updated as the additional co-ordinate requires significant alterations to 

ensure correct functioning.  This remains an area for future development.   

 

The creation of a 3D model is an entirely different area of study and as such was outside the remit 

of this project.  Pre-made freely available models downloaded from the internet [TUR08, DUC08] 

were therefore used, however choice was extremely limited resulting in a school of fish instead of 

flocking birds (as a suitable bird model could not be found), and the obstacle used was a balloon 

[DUC08].   

 

For a reason as yet unidentified the Obstacles are not being drawn in the 3D version.  The Draw 

function is identical to that of the Bird Draw function which works well, and is being called by the 

same calling code as the 2D version which appears robust.  The problem does not appear to lie with 

the model itself, as both fish and balloon models work when applied to the “Bird” objects, but 

neither work when applied to the Obstacle object.  Complete absence of the bird array makes no 

difference. 



MSc Computer Science Project Report : Robyn Backhouse 63

 

The perspective of the world could be improved by rotating the 

camera angle or moving the viewer “into” the simulation.  At 

present the perspective of the 3D world appears as a restricted 

sized box with the viewer external to the world, appearing large at 

the front but becoming narrower towards the back.  The Richmond 

simulation [RIC07] appears to present a world of unrestricted size 

with the birds free to “fly” freely as they do in nature.  This effect 

could be achieved by placing the viewer in the centre of the box instead of at an outer side of it, and 

thereby surrounded completely by the world. 

 

The user placed obstacle option and user selected target were removed from the 3D implementation 

due to the difficulty in “placing” the z co-ordinate using a mouse, which is inherently restricted to 

2D motion.  An option would be to put a randomly chosen z co-ordinate onto the selected 2D 

vector, however at present this is not realistic due to the perspective of the 3D world.   

 

 

 



MSc Computer Science Project Report : Robyn Backhouse 64

7.2: Problems Identified: 

 

During the development of this simulation many problems were encountered, most of which were 

overcome.  Below is a brief discussion of some of the more notable ones. 

 

7.2.1 Shared Destination and Parallel Motion: 

 

When birds shared a common destination they all originally moved at the same angle on the screen 

rather than travelling towards the same point.  This was due to the fact that the destination co-

ordinates are always relative to the actual bird – the bird always “thinks” of itself as having co-

ordinates (0, 0) as far as any calculations are concerned.  For example if the shared destination was 

(200, 300), then all birds would travel in the direction of (200, 300) relative to their own position 

and not to the actual co-ordinates of (200, 300) of their world.  This also meant that birds did not 

appear to continually evaluate their neighbours positions within the flock and correct their own 

headings accordingly, but rather simply joined the group and remained in exactly the same position 

relative to the others.  This resulted in a very static and artificial looking movement and did not 

prevent them from colliding with each other. 

 

 

 

 

 

 

 

 

 Destination 

 

         

                                      

                                                       

                                                 

                                              

Birds share common destination, which is 

a co-ordinate point in relation to each bird. 

 Birds have individual destinations 

relative to the exact destination.  

                   

It appears that LaLena’s model [LAL08] suffers from the same problem with all birds in a flock 

moving across the screen at the same angle rather than to the same destination point.  As the code is 

unavailable to view it is unknown whether the cause of this behaviour is the same, however when 

LaLena’s birds are “chased” by a predator they do scatter in different directions, suggestive of 

individual destinations.    

 

Sharing of a common destination is quite artificial as far as real birds are concerned.  In nature there 

is no set path birds must follow, but rather they each have their own individual destinations which 

are influenced heavily by other nearby birds.  This problem of parallel movement was overcome by 



MSc Computer Science Project Report : Robyn Backhouse 65

giving the birds their own individual headings, more like real birds, and calculating destination co-

ordinates relative to the birds own position rather than simply giving it a set of co-ordinates of the 

world.  It remains effective even if all birds have the same ultimate destination (as when the user 

clicks to target a position on screen), as that point will be calculated relative to each individual bird 

from its current position rather than being the same co-ordinates applied to each bird.  This 

overcame the problem of their parallel movement and birds began to move in a much more realistic, 

flowing manner and head towards their actual destination. 

 

7.2.2 Birds Not Facing Direction of Travel: 

 

One of the most enduring problems was that of facing 

the birds in the direction in which they were travelling 

(pointing forwards).  Angle of direction was originally 

calculated using sine values, however this produced 

disastrous results.  Birds within the same flock all 

pointed in the same direction as each other, and this 

direction changed continuously according to their path 

of movement, however it was rarely in the actual 

direction of travel.  The direction they faced appeared reasonably random, but was always pointing 

to a positive y co-ordinate (i.e. upwards) regardless of their direction of travel.  The x co-ordinate 

ranged between both positive and negative (see diagram).  They also frequently vanished from the 

middle of the window, reappearing after moments further along their path.  Their positions and 

movements appeared to remain correct  when they reappeared, however they were not being drawn 

on screen for periods of time.   

 

In order to calculate the sine value, the length of the Opposite side is divided by the length of the 

Hypotenuse on a right angle triangle.  The hypotenuse is essentially the Euclidean distance between 

the bird and it’s destination, so this was easily calculated.  The reason the birds always faced 

towards a positive y value is possibly due to the Euclidean distance function always returning a 

positive value, although this was not identified at the time and so was not explored for 

confirmation.  The Opposite side was given the value of the x co-ordinate of the birds’ destination, 

and so was quite possibly incorrect.  Possible explanations for the birds frequently not being drawn 

on screen may be that division by zero was not prevented at that stage, or the incorrect figures were 

simply out of range (i.e. below zero or greater than 360o).   

 

Following many unsuccessful attempts at correcting this problem it was decided to try the tangent 

of the angle instead of the sine, as this uses only the x and y values and was therefore a more 

appropriate choice (see section 4.2.7.2).  This produced very stable results although birds were still 



MSc Computer Science Project Report : Robyn Backhouse 66

facing the wrong way, however it appeared no longer random.  It was immediately obvious that 

there was a 90o error, which was correctly simply by subtracting 90o from the angle in every case.   

 

This resulted in the birds facing forwards when the x value was 

negative, but facing exactly backwards when the x value was 

positive.  Once this was identified it was eventually resolved 

by adding 180o to the value whenever the x value was positive.   

 

 

The final result was successful with birds now always facing correctly towards their direction of 

travel. 
 

7.2.3 User Click to Target Bird Destination: 
 

Originally when this was implemented the birds reacted by moving towards co-ordinates very 

different from the selected location.  This appeared somewhat random, with movement sometimes 

being in the correct direction, but more often being incorrect.  Birds always headed to positive co-

ordinates from their current position.  After much investigation this turned out reasonably 

straightforward to overcome.  The new target co-ordinates were simply being added to the current 

position however as the target co-ordinates were always positive, as the whole viewable area of the 

world is positive, then this resulted in incorrect results.   
 

For example, in the diagram if the birds’ current co-ordinates were 

(500, 500) and the user targets an area on screen at (200, 200), the bird 

would travel towards a co-ordinate position of (200, 200) from it’s 

CURRENT location and not to that location within the world, as it 

views itself as (0, 0).  So it would move 200 units along the x axis and 

200 along the y axis from it’s current location actually ending up at co-

ordinates (700, 700). 
 

The solution was to change the formula by which the bird calculates it’s new position from: 
 

                                                                                              Original formula 

 

To the following:  
 

                                                                                                                 New Formula 
 

This overcame the problem immediately and the birds now travel in the correct direction at all 

times. 

Bird Destination = User Target Destination 

Bird Destination = User Target Destination – Current Position. 



MSc Computer Science Project Report : Robyn Backhouse 67

 

Birds appeared “confused”.

7.2.4 Neighbourhood of Bird: 

 

The neighbourhood of a bird was improved from including all 

birds within a set distance from the original bird to checking 

their relative positions and excluding those which were behind 

the bird (refer to 4.1.1).  It was expected that this would improve 

the simulation and lead to more realistic movement within the 

flock, as real birds cannot see those behind them either.  This 

however was not the case initially.  When the “improvement” 

was implemented, the motion became much jerkier and less fluid 

with the birds appearing “confused” and darting in all directions within the flock when they were 

travelling towards the negative x co-ordinates, although remaining together as a flock.  The cause 

for this remained unknown for some time but was eventually discovered to be a flaw in the 

mathematical calculations of the function which measures the angle between the birds.  Once this 

error was corrected the birds movement became fluid and graceful when the restricted 

neighbourhood was implemented.  The resultant motion however is not noticeably different 

whether the birds behind are included or excluded from the neighbourhood – both options produce 

the same flowing movement within the flock and neither appear to give superior results over the 

other.   

 

7.2.5 Flying Continually towards Negative Co-ordinates: 

 

When the three flocking rules were originally introduced (cohesion, separation and alignment) the 

birds continually flew only in one direction – towards negative x and y co-ordinates (i.e. top left 

corner).  They also appeared to completely ignore neighbourhood distance rules.  This anomaly 

occurred only when the cohesion rule was applied which was suggestive of this being the likely 

cause. 

 

The original code was based on Parker’s pseudo code in which the positions of all birds were added 

together, then this figure (vector) was divided by the number of birds to give the average position.  

The position of the original bird was subtracted from this average position, and the result was then 

divided by 100 to move the bird approximately 1% towards this position.  After much 

experimentation the division by 100 was removed and the vector is now multiplied by the weight 

for this rule, currently set to 1.  This effectively overcame the problem and the birds now travel 

equally in all directions. 

 

It is likely that this occurred as a result of the way the steering rules interact, although the exact 

cause was not identified.  The vectors returned from steering rules are simply added together so 



MSc Computer Science Project Report : Robyn Backhouse 68

having a disproportionately small vector (just 1% of the true vector) from the cohesion rule should 

not theoretically cause such an anomalous result but might simply stop the birds forming a flock as 

effectively.  Neither was it known why the overall motion was always towards negative co-

ordinates.  It would be assumed that if the figure was so small it would simply be the same as 

turning the rule off, however this was not the case.  When the rule was turned off birds moved in 

every direction equally as would be expected.   

 

Altering the code overcame the problem with birds now moving well in all directions. 

 

7.2.6 User Placed Obstacles: 

 

In order to implement user placed obstacles the obstacle array had be dynamically altered which 

was implemented using the array list (see 7.2.8).  When user placed obstacles were first introduced 

it was noted that birds continually appeared to become stuck or trapped at the top left corner of the 

obstacle, often in large groups, and seemed unable to escape.  This only occurred with user placed 

obstacles, never with system placed obstacles.  After much investigation into the cause of this it 

was finally discovered that it was due to the high speed at which the simulation updates, combined 

with the relatively slow speed of a mouse click.  Each time the user placed an obstacle by clicking 

the mouse button, numerous obstacles were being stacked on top of each other (typically between 4 

and 20), however only the top one was visible camouflaging the problem.  It was observed that 

there were minor differences in the actual position co-ordinates of the obstacles, and that the birds 

must somehow have been moving between these points but then becoming unable to move away 

from that position due to the steering rules.   

 

This was overcome by adding a small delay between the placement of obstacles.  Once an obstacle 

has been placed there is a minimum time interval before another obstacle may be added.  This time 

interval is a fraction of a second which is almost imperceptible to the user but provides an adequate 

interval so that multiple obstacles cannot be placed on a single mouse-click.    

 

7.2.7 FlockBirds Surrounding a Predator: 

 

When the predator was introduced the flock birds avoided it in 

the same way in which they avoid a static obstacle by 

maintaining a set distance away from it.  They fled from it 

when it was chasing them but appeared to be flocking behind it 

and following it if there were birds beside it, as they were still 

flocking with these birds if they were within the 

neighbourhood distance (they were not flocking with the 



MSc Computer Science Project Report : Robyn Backhouse 69

predator, only their neighbouring FlockBirds).  The result was that the predator sometimes flew 

surrounded by flock birds.  To remedy this the position of the predator was calculated in relation to 

the direction in which the flock bird was facing and if the predator was ahead of the flock bird the 

flock bird was turned to face the opposite direction.   

 

Despite a great deal of investigation and implementation of 

this solution problems persisted for some time.  Large groups 

of birds which did not appear within range of the predator 

continued to follow it while spinning wildly, apparently 

undergoing continuous direction changes.  The cause for this 

remained unidentified until the discovery of the 

aforementioned malfunctioning Bird Distance Controller 

function (see 5.5 and 4.2.7.4).  When this was corrected the 

flock birds behaved in the expected manner by not following the predator and no longer spinning 

uncontrollably.   

 

Birds now flee from the predator and do not follow it. 

 

7.2.8 Dynamic Array Allocation during Runtime: 

 

In the C# language arrays are of fixed size and cannot be dynamically altered during runtime.  The 

only way to “change” their size is to replace the existing array with a new one, however this cannot 

be done directly due to restrictions within the language.  In order to overcome this restriction first 

an array list must be created.  The Array list was created initially at the beginning of the simulation 

and all alterations are then made directly to that list, not to the actual array.  Array lists may be 

dynamically altered in size and hold “objects” of many types simultaneously [LIB03].  They have 

some functionality associated with them but this is different to the full functionality of an array so it 

was not possible to work directly from an Array List for running the simulation.  Next, a new array 

of type “object” is created from the array list.  Lastly this new array of “objects” is used to create a 

second array of “Bird” objects.  The array of Birds cannot be created directly from the array list due 

to incompatible conversion types – there must be an intermediate array of type “object” between the 

Array List and the final array of Bird objects as the language does not support implicit conversion 

between the two.  This needs to be carried out every time the array size is altered.  With small 

arrays which do not change in size frequently performance would not be significantly affected, 

however larger arrays with frequent alterations may cause the programme to suffer from a dramatic 

reduction in performance, especially in older or slower machines.  This was not seen to be a 

problem for this particular simulation so this method was implemented very effectively for both the 

Flock Bird array and the Obstacle array. 



MSc Computer Science Project Report : Robyn Backhouse 70

7.2.9 Difficulties Encountered with XNA: 

 

 7.2.9.1  Inability to Publish to a Standalone Application: 

 

An unexpected difficulty encountered with the combination of Visual Studio 2008 and XNA 

Framework 3.0 beta is that the current versions do not fully support publication of the finished 

programme which means the project cannot currently be made into a standalone working 

executable programme, but rather can only be run within the Visual Studio/XNA environment.  

This functionality will reportedly be available with the final release version of XNA 3.0, but not the 

current beta version [XNA08].  This was not known at the time of upgrading however even the 

previous version does not appear to have this capability functioning correctly.  This means that the 

only way currently to run the simulation is within the Visual Studio 2008 / XNA 3.0 Framework 

development environment. 

 

7.2.9.2  User Interface: 

 

Sliding bars to control number of birds and weights of steering rules and turning rules on and off 

using tick boxes would be a nice addition to the user interface and can be done with relative ease 

when using Visual Studio alone as it has drag and drop capability for this on a windows form.  

Unfortunately this is not compatible with the way in which XNA sets up the game program files, as 

it is a different format entirely from a windows form.  Incompatibilities apparently occur if attempts 

are made to combine the two different approaches [MAN08], and the interface is therefore currently 

keyboard based which is fully supported within XNA.  XNA is primarily designed for writing 

games for the Xbox, and therefore has limited support for more traditional computer-based control 

such as sliders. 

 



MSc Computer Science Project Report : Robyn Backhouse 71

8: CONCLUSION: 
 

8.1 General Discussion: 

 

This project presented many challenges not the least of which was learning to implement a user 

interface and programming moving graphics in a “game” situation, which updates frequently and 

responds to other objects and user intervention in real time.  Many tutorials on “game 

programming” were completed prior to commencement of the project itself to learn about graphics 

programming, user interfaces and using XNA which enormously expanded my previously limited 

programming skills and knowledge. 

 

When researching the works of others in the area of autonomous agents and swarm intelligence it 

was with some trepidation that I viewed their simulations as they appeared extremely complex, far 

exceeding my own programming capabilities at that time.  During the progression of this simulation 

however this gap narrowed significantly and I now believe that while a fancier graphical user 

interface would enhance the aesthetic appeal of the programme enormously, the actual behaviour of 

the birds in my simulation exceeds most of those I previously held in awe (with the notable 

exception of Reynolds).   

 

One particular area in which I regard my simulation as superior is that of collision avoidance.  

While it is true that my birds do still collide on occasion, moving instantly apart again, it is with 

markedly less frequency than other simulations which in many cases do not appear to implement 

any form of separation with birds continually colliding and actually “flying” continuously on top of 

each other making no attempt to part, or in the cases where it is implemented, colliding far more 

frequently than mine [GRU07, BUC05, LAL08].  Many other simulations have also not implemented 

any form of obstacle or predator avoidance with birds simply moving freely without interference.  

The inclusion of obstacles and predators creates more complex behaviour from the birds and makes 

the simulation more interesting for the user.  It also explores behaviour which would be essential 

for implementation of autonomous agents into commercial applications such as military 

reconnaissance robots, scientific exploration robots or medical nanobots.  Autonomous robots 

require the ability to avoid obstacles of all types, both stationary and moving, as well as each other 

and interacting with their environment in a predictable manner while remaining fully functional.  

This simulation I believe has achieved this better than most of the ones viewed although for 

commercial applications it would be required to have 100% reliability on obstacle avoidance and 

anti-collision.  I believe this will be attainable with future versions and would be easier to 

implement with ground creatures rather than birds, as robots on the ground can simply stop moving 

if collision is imminent, while birds in flight cannot. 

 



MSc Computer Science Project Report : Robyn Backhouse 72

The choice of language seems to have been appropriate as does the platform of Visual Studio and 

XNA, however the inability to publish the simulation as a standalone application is a major 

drawback, as was the lack of XNA support for interface elements such as slider bars and tick-boxes 

for use on the PC.  XNA is aimed more at development of games for the Microsoft Xbox than for 

PC implementations and supports far more control for the Xbox controller pad than it does for the 

PC keyboard and mouse.  The 3D implementation has also presented difficulties as previously 

discussed (see 7.1.8) and remains an area for future development.   

 

The original aims for this project were all fulfilled.  Primary objectives were to provide a 2D or 3D 

simulation of a flock of birds moving around in a self-organising manner according to a set of 

attraction / repulsion rules.  Additional objectives were the inclusion of obstacles and / or predators.  

All of these aims have been successfully implemented providing the desired behaviour and results. 

 

Overall the project has produced successful results fulfilling all it’s aims and presenting a 

simulation of birds flocking with relatively realistic movement.  The resulting simulation has far 

exceeded my own expectations.  Behaviour and movement of the birds is pleasing as they move 

with a fluidity and grace not dissimilar to that of real birds moving in a flock, which was the basis 

of the original objective - to create an artificial simulation of the movement and behaviour of living 

creatures.  Steering rules may be selected and deselected by the user in order to explore the birds 

behaviour with each individual rule, or with different combinations, and the rules appear to work as 

expected. 

 

8.2 Future Enhancements: 

 

There are several enhancements which could improve the simulation and would be implemented 

into future versions.   

 

• Obstacle avoidance would be improved by maintaining the 

original direction of travel instead of changing direction 

when obstacles are encountered, with the bird steering 

around them and continuing to the original destination 

rather than changing course.  The simulation by Bourg and 

Seemann [BOU04] was the only one reviewed which 

implemented this method.   

 

• Collision avoidance would be increased to 100% with no collisions between birds or birds 

and obstacles occurring.  At present collisions are minimal, however for commercial 

applications this would need to be improved.   



MSc Computer Science Project Report : Robyn Backhouse 73

 

• An option of having more than one basic type of flock bird – so there were multiple “types” 

of birds, which only flock with their own kind and do not mix with each other.  This could 

be indicated by different coloured birds (e.g. flock of red birds and flock of blue birds). 

 

• An improved user interface would enhance usability and appearance. Features could be 

added such as slider bars for control over number of birds, speed of movement and 

weighting for steering rules.  Tick boxes could also be implemented to turn steering rules 

and options on and off instead of using the keyboard.  These improvements are purely 

aesthetic however, and would have no bearing on the actual behaviour of the birds. 

 

• The option of dragging the obstacles around once they are placed would be quite nice.  

Currently they are placed by the user and cannot be moved.  To move them to different 

locations at present, the simulation must be restarted and new obstacles placed. 

 

8.3 Final Note: 

 

While there remain a few improvements and enhancements which could be made to the simulation 

it has been very successful overall producing good flock behaviour with birds flying in a very 

pleasing and natural way, avoiding obstacles and fleeing from predators.  The user interface 

provides users with the ability to control the bird’s behaviour and to examine the effects of various 

combinations of the steering rules.  All of the major problems faced were overcome with the final 

code being robust and easy to understand and maintain.  The test suite ensured that functions 

worked correctly, while code was refactored to provide optimum functionality and maintainability.   

 

I personally have learned a great deal while carrying out the project and feel more prepared to 

embark on a career within the industry having completed a more substantial piece of work.  The 

potential applications for artificial intelligence are almost endless and it is my hope that I will be 

able to work within this area on some of the commercial applications for autonomous robots in the 

future.  While this project was not a new or unique addition to the field of swarm intelligence, it is 

hoped that it will add to the existing body of simulations available and may itself be referenced by 

future students who are interested in this area of study.   

 

 

 

  



MSc Computer Science Project Report : Robyn Backhouse 74

9: REFERENCES: 
 
 
[AFP08] AFP.  (2008). Automated killer robots 'threat to humanity': expert.  Feb 26th 2008.  

[Online]  Available at 
 http://afp.google.com/article/ALeqM5gfEAWc0aBlnuw1wuEnghZup9V7yg  
Accessed 13th August 2008. 
 

[BOY04] Boyd, J. E., Hushlak, G., and Jacob, C., J.  (2004).  SwarmArt: Interactive Art from 
Swarm Intelligence.  MM’04, October 10-16, 2004.  New York.  USA.  [Online] 
Available at  
http://pages.cpsc.ucalgary.ca/~jacob/ESD/Evolutionary%20and%20Swarm%20Desi
gn/Main.html  Accessed April 2008. 
 

[BOU04] Bourg, D., Seemann, G.  (2004).  AI for Game Developers.  O’Reilly.   
*Simulation to accompany this book downloaded from Professor Barnes, California 
State University Northridge.  flock2.exe  [Online]  Available at 
 http://www.csun.edu/~renzo/cs565/  Accessed 29th May 2008.    
 

[BRO00] Browning, V.  (2000).  Nanotechnology:  Nano-medicine.  [Online]  Available at 
http://www.wildirisdesign.com/nano/nanomedicine.html  Accessed 12th August 
2008.  
 

[BUC05] Buckland, M. (2005).  Programming Game AI by Example.  Wordware. 
*Simulation to accompany this book downloaded from Professor Barnes, California 
State University Northridge.  Flocking.exe  [Online]  Available at 
http://www.csun.edu/~renzo/cs565/  Accessed 29th May 2008. 
 

[DAV05] Davison, A.  (2005).  Killer Game Programming in Java.  O'Reilly Media, Inc. 
 

[DUC08] Duchamp Models.  (2008).  3D Models, Textures, Animations.  (Free Balloon 3D 
Model).   [Online]  Available at http://www.seemonkey.com/duchamp_models  
Accessed June 2008. 
 

[EVE08] Evans, D.  (2008).  Robosoldier.  Focus : Ethics.  ITNOW: the magazine for the IT 
professional.  The British Computer Society.  May 2008.  pp 6-7. 
 

[FRA07] Fraunhofer-Gesellschaft.  (2007).  Electronic Nurses.  [Online]  Available at 
http://www.medicalnewstoday.com/articles/62332.php  Accessed 12th August 2008.  
 

[GAR08] Garner, D.  (2008).  Evolving 'Swarm' Robots Investigated By UK's University Of 
York. 13th March 2008.  [Online]  Available at  
http://www.medicalnewstoday.com/articles/100479.php  Accessed 12th August 2008.  
 

[GIL08] Gilliand, B.  (2008).  Creepy, squishy and crawly… meet the future of military 
robots.  Science & Discovery.  Metro (newspaper).  Friday July 25, 2008.  p 17. 
 

[GOR05] Gorman, J. (2005).  Agile.NET Development – Test-driven Development using 
NUnit.  parlez|uml  [Online] Available at 
 http://www.parlezuml.com/tutorials/agiledotnet/tdd_nunit.pdf  Accessed March 
 2008. 
 

[GRU07] Grubb, T., G.  (2007).  Flocking Demo.  Object Pascal source code for implementing 
flocking and formation flocking using CodeGear’s Delphi.  RiversoftAVG.  [Online]  
Available at www.RiverSoftAVG.com   Accessed 4th June 2008. 
 



MSc Computer Science Project Report : Robyn Backhouse 75

[JAC07] Jacob, C., Hushlak, G.  (2007).  Home of Swarm Art.  A Collaborative Partnership 
between Science and Art.  University of Calgary.  [Online]  www.swarmart.com  
Accessed 11th August 2008. 
 

[JAC06] Jacob, C.  (2006).  Evolutionary and Swarm Design.  University of Calgary.  
[Online]  Available at 
http://pages.cpsc.ucalgary.ca/~jacob/ESD/Evolutionary%20and%20Swarm%20Desi
gn/Main.html  Accessed 12th August 2008. 
 

[LAL08] LaLena, M.  (2008).  Bird Flocking Behaviour Simulator.  [Online]  Available at 
http://www.lalena.com/AI/Flock/Flock.aspx  Accessed 14th June 2008. 
 

[LAR01] Larman, C.  (2001).  Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process.  Prentice Hall PTR. 
 

[LIB03] Liberty, J.  (2003).  Programming C#.  3rd Edition.  Building .NET Applications.  
O’Reilly.   
 

[MAN08] Mannock, K.  (2008).  Conversation between Dr Mannock and myself regarding 
programming in 3D and choice of platforms.  Discussed benefits of XNA over lesser 
known platforms.  3rd June 2008.  Location: DCS Birkbeck College, London. 
 

[MAN08a] Mannock, K.  (2008).  Lecture on C#, Microsoft Visual Studio and .NET 
environment.  Department of Computer Science.  Birkbeck College. University of 
London.  January 2008. 
 

[MAN07] Mannock, K. (2007).  Autonomous Agents.  Ideas for MSc Projects (MSC CS).  
[Online] Available at http://www.dcs.bbk.ac.uk/~sven/projects/mscprojideascs.html  
Accessed Nov 2007. 
 

[MIL08] Miles, R.  (2008).  Learn Programming Now!  Microsoft XNA Game Studio 2.0.  
Design and create games for your Xbox 360 and your PC.  Microsoft Press. 
 

[MIL07] Miller, P.  (2007).  Swarm theory.  National Geographic.Com.  [Online]  Available at 
http://ngm.nationalgeographic.com/ngm/0707/feature5/index.html  Accessed Feb 
2008. 
 

[PAL08] Palmer, J.  (2008).  Smart future for swarming robots.  BBC News.  [Online]  
Available at http://news.bbc.co.uk/1/hi/technology/7549059.stm  Accessed 8th 
August 2008. 
 

[PAR07] Parker, C.  (2007).  Boids Pseudocode.  [Online]  Available at 
http://www.vergenet.net/~conrad/boids/pseudocode.html  Accessed 25th April 2008. 
 

[PRE01] Pressman, R. S.  (2001).  Software Engineering A Practitioners Approach.  Fifth 
Edition.  McGraw Hill. 
 

[REE83] Reeves, W., T. (1983).  Particle Systems – A Technique for Modelling a Class of 
Fuzzy Objects.  acm Transactions on Graphics, 2(2). April 1983.  Reprinted 
Computer Graphics, 17(3), July 1983, (acm SIGGRAPH'83 Proceedings).  pp 359-
376. 
 

[REY01] Reynolds, C. W. (2001). Boids background and update.  [Online]  Available at 
http://www.red3d.com/cwr/boids/  Accessed 25th April 2008. 
 

  
 



MSc Computer Science Project Report : Robyn Backhouse 76

[REY99] Reynolds, C. W. (1999).  Steering Behaviors For Autonomous Characters.  In the 
proceedings of Game Developers Conference 1999 held in San Jose, California. 
Miller Freeman Game Group, San Francisco, California. Pages 763-782. 
 

[REY88] Reynolds, C. W. (1988).  Not Bumping Into Things.  Notes on “obstacle avoidance” 
for the course on Physically Based Modelling at SIGGRAPH 88, August 1 through 5 
in Atlanta, Georgia.  [Online] Available at 
  http://www.red3d.com/cwr/nobump/nobump.html  Accessed 25th April 2008. 
 

[REY87] Reynolds, C. W. (1987).  Flocks, Herds, and Schools: A Distributed Behavioural 
Model.  Computer Graphics, 21 (4), SIGGRAPH'87, pp 25-34. 
 

[RIC07] Richmond, P.  (2007).  Java Boids Simulator - Demonstrating Bird Flocking 
(updated for use with jogl JSR-231 1.1.0 Release Candidate 2 - 23Jan 07) [Online]  
Available at http://www.dcs.shef.ac.uk/~paul/publications/boids/index.html  
Accessed 14th August 2008.  
 

[TUR08] Turbo Squid.  (2008).  Commercial site for downloading 3D models.  [Online]  
Available at http://www.turbosquid.com/XNA  Accessed June 2008. 
 

[USA08] U.S. Army Research Laboratory.  (2008).  Micro Autonomous Systems and 
Technology.  U.S. Army Research, Development and Engineering Command.  
[Online]  Available at 
 http://www.arl.army.mil/www/default.cfm?Action=93&Page=332  Accessed 13th 
August 2008. 
 

[WEI08] Weisstein, E., W. (2008).  “Distance” From MathWorld – A Wolfram Web 
Resource.  [Online] Available at http://mathworld.wolfram.com/Distance.html  
Accessed 24th July 2008. 
 

[WIK08] Wikipedia.  (2008).  Euclidean Distance.  [Online] Available at 
 http://en.wikipedia.org/wiki/Euclidean_distance  Accessed 24th July 2008. 
 

[WIK08a] Wikipedia.  (2008).  Swarm Intelligence.  [Online]  Available at 
 http://en.wikipedia.org/wiki/Swarm_intelligence  Accessed 11th August 2008. 
 

[WIK08b] Wikipedia.  (2008).  Nanorobotics.  [Online]  Available at 
 http://en.wikipedia.org/wiki/Nanorobotics  Accessed 12th August 2008. 
 

[WIK08c] Wikibooks.  (2008).  Geometry/Right Triangles and Pythagorean Theorum.  [Online]  
Available at 
http://en.wikibooks.org/wiki/Geometry/Right_Triangles_and_Pythagorean_Theorem 
Accessed 24th August 2008. 
 

[WIL99] Wiley, K.  (1999).  Flock with Obstacles.   [Online]  Available at 
 http://www.cs.unm.edu/~kwiley/artificialLife/flockWithObstacles.html  Accessed 
20th June 2008.  
 

[WIL99a] Wiley, K.  (1999).  Gnat Cloud.  [Online]  Available at 
 http://www.cs.unm.edu/~kwiley/artificialLife/gnatCloud.html  Accessed 20th June 
2008. 
 

[WIL99b] Wiley, K.  (1999).  Mega Flies.  [Online]  Available at 
 http://www.cs.unm.edu/~kwiley/artificialLife.html  Accessed 20th June 2008. 
 

[XNA08] XNA Creators Club Online.  (2008).  [Online]  Available at http://creators.xna.com/  
Accessed from June 2008 onwards. 



MSc Computer Science Project Report : Robyn Backhouse 77

10: APPENDICES 
 
 
LIST OF APPENDICES: 
 
 
 
Appendix A:     Quick Guide to User Control Keys……………………………………………...78 
 

Appendix B:     Project Proposal Form…………………………………………………………...79 
 

Appendix C:     Specification for Project on Birkbeck Website…………………………............81 
 

Appendix D:     Code for 2D Flocking Birds……………………………………………………...82 

D.1     Program class………………………………………………………………….……..82 

D.2     Game1 class………………………………………………………………………….83 

D.3     Birds Base class………………………………………………………………..…….95 

             D.4     Flock Bird inherited class……………………………………………………..……103 

             D.5     Predator Bird inherited class…………………………………………………..……108 

D.6     Obstacle class………………………………………………………….…………...110 

D.7     User Target class…………………………………...………………………........…112 

D.8     Random Number Generator class……………………………………………....…..114 
     

Appendix E:     Unit Test Suite……………………………………………………………...........115 
 

Appendix F:     Code Generated by XNA GS when Creating a New Windows Game………..121
 

Appendix G:     Class Diagrams for Refactored Bird Class……………………………..….….123 
 

Appendix H:     CD and User Instructions………………………………………………………124 

             H.1    Running the Simulation…………………………………………..…………………124 

             H.2    What’s on the CD…………………………………………………………………...125 

             H.3    List of Movies……………………………………………………………………….126 
 

Appendix I:      Online tutorials accessed to learn XNA and C# Game Programming…….…128 
 

 

 



MSc Computer Science Project Report : Robyn Backhouse 78

APPENDIX A 
 
Quick Guide to User Control Keys: 
 
 
 

• Cohesion:      press key C 

• Separation:       press key  S 

• Alignment:       press key A 

• Obstacle avoidance:     press key O 

• Predator bird present:    press key P 

• Pause simulation  (hold):   press key H 

• Random Destination Change for all birds:  press key R 

• Follow Leader or Individual Destinations: press key F 

• Add Birds to Flock (groups of 10):  press key B 

 

• Increase Speed of bird’s movement:   press Up arrow key 

• Decrease Speed of bird’s movement:  press Down arrow key 

• Place Obstacle on screen:  left click mouse on desired location 

• Select Destination for all birds: right click mouse on desired location (may 

click and hold to force compliance) 

 

 

 

User option keys have not been found to be case sensitive on any machines upon which the 

simulation has thus far been tested. 

 



MSc Computer Science Project Report : Robyn Backhouse 79

APPENDIX B 
   
Project Proposal Form Submitted: 
 
School of Computer Science and 
Information Systems 
 

MSc Computer Science 
Project Form (2008) 
 

•  Proposal 
The student should complete parts 1 (a) and 1 (b) below.  They should put their 
supervisor's name, in part 2 (a) below.  They should send the completed electronic copy 
of this form to the projects tutor (mick@dcs.bbk.ac.uk) and to the course administrator 
(compadmin@dcs.bbk.ac.uk) no later than Friday,16 May 2008. 
 
(a) Student details 

Name:   Robyn Backhouse 

              ( Personal Details Removed ) 

Address: 

( Removed ) 
 
     (b) Project details 
Title:  Flocks of Birds 

Objectives: 
To provide a 2D or 3D simulation of a flock of birds. 

Primary objective:  
- Flock of birds moving around in a self-organising way according to a set of attraction/repulsion 
rules. 

 

Additional objectives (if time permits): 

- Flock of birds avoiding obstacles (separation and regrouping) and/or predators. 

Description: 
This work involves different elements: 

- Algorithm/Model for simulating the flock of birds’ behaviour.  

- A graphical user interface for selecting initial inputs (parameters such as number of birds, position 
of obstacles, etc); 

- A 2D or 3D visualisation of the simulation.   

 



MSc Computer Science Project Report : Robyn Backhouse 80

Title:  Flocks of Birds 

Method: 

The method involves: 
- Study of existing flock of birds behaviour models possibly including obstacle and predator 

avoidance. 
- Determination/Definition of the set of attraction/repulsion rules to apply to each bird (model) 
- Choice of an implementation platform. Likely choice: 3DState with Microsoft Visual Studio. 
- Implementation of the identified model.  
- Development of the GUI for selecting initialization parameters 
- 2D or 3D visualization of the simulation. 
 

Work plan:  
Preliminary lectures and choice of platform:       30th May 
Study and identification of models:                 15th June 
 
First version of implementation (model):            15th July 
Second Version (including GUI):                 31st July 
Third Version (including 2D/3D visualisation):  15th August 
 
Test / Evaluation / Analyses of models:  31st August  
 
Writing Report (v1): 30th June 
Writing Report (v2): 31st  July 
Writing Report (v3): 31st August 
 
Project Complete  24th  September 
 

College equipment required: 

none 



MSc Computer Science Project Report : Robyn Backhouse 81

APPENDIX C 
 
Specification for Project on Birkbeck Website: 
 
 
 
This is the specification for the project which was on the “Ideas for MSc Projects” page of 

the School of Computer Science Birkbeck Website where a number of suggestions are 

presented for students. 

 

 

 
“An autonomous agent is a simple entity that interacts with its environment and other 

autonomous agents, typically based on a simple set of rules. For example, the autonomous 

agents may be birds that randomly fly around a grid, but obey simple rules like avoiding 

bumping into each other and not flying directly behind another bird (otherwise it cannot 

see). It is interesting to then observe the “emergent behaviour” such as the patterns of 

movement. Researchers have developed very simple rules that seem to mimic the patterns 

seen in nature of how birds fly in formations. In this project, you will explore the various 

types of autonomous agents and their behaviours.” 

 

 

Keith Mannock [MAN07]. 

 



MSc Computer Science Project Report : Robyn Backhouse 82

APPENDIX D 
    
Code for 2D Flocking Birds: 
 
 
 
 
 
D.1 Class:  Program 
 
 
 
using System; 
 
namespace Burds2D 
{ 
    /// Creates a new Game1 (or simulation) and once created,  
    /// runs it until it is terminated by the user  
    static class Program 
    { 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        static void Main(string[] args) 
        { 
  // Creates the new simulation 
            using (Game1 FlockingBirds = new Game1()) 
            { 
      // Runs the newly created simulation 
                FlockingBirds.Run(); 
            } 
        } 
    } 
} 
 
 



MSc Computer Science Project Report : Robyn Backhouse 83

D.2 Class:  Game1 
 
using System; 
using System.Collections; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    /// <summary> 
    /// This is the main type for the project 
    /// </summary> 
    public class Game1 : Microsoft.Xna.Framework.Game 
    { 
        GraphicsDeviceManager graphics; 
        SpriteBatch birdBatch; 
        SpriteBatch obstacleBatch; 
        SpriteBatch fontBatch; 
        UserTarget birdTarget; 
        KeyboardState currentKeyboardState; 
        SpriteFont font; 
        SpriteFont fontB; 
 
        private FlockBird[] flockArray; 
        private ArrayList flockBirdArrayList = new ArrayList(); 
        private object[] flockBirdArrayObject; 
        private object[] obstacleArrayObject;  
        private Obstacle[] obstacleArray; 
        private ArrayList obstacleArrayList = new ArrayList(); 
        private PredatorBird predator; 
 
        private int numberOfBirds = 50; 
        private int numberOfObstacles = 2; 
        //Controls the speed of the birds  

  private float speedRestricter = 0.2f;      
        private string flockBirdAssetName = "flockBird"; 
        private string leaderAssetName = "leaderBird"; 
        private string obstacleAssetName = "bubbleObstacle"; 
        private string predatorAssetName = "predatorBird"; 
        //Time taken from clock - used for random timing calculations  
        //(clock cannot be used directly for the type of calculations) 
        private int timePlayed = 0;    
        private float displayWidth;     //Width of window 
        private float displayHeight;    //Height of window 
 
        //GUI controlled elements - changed during runtime by user 
        private bool randomlyTimedDestChange = false; 
        private string randomlyTimedDestChangeString; 
        private bool followSingleBird = false; 
        private string followSingleBirdString = "No"; 
        private bool pauseOn = false; 
        private bool cohesionOn = true; 
        private bool separationOn = true; 
        private bool alignmentOn = true; 
        private bool obstacleOn = true; 
        private bool predatorOn = true; 



MSc Computer Science Project Report : Robyn Backhouse 84

        private string cohesionString; 
        private string separationString; 
        private string alignmentString; 
        private string obstacleString; 
        private string predatorString; 
        private string pauseString; 
        private float cohesionWeight = 1f; 
        private float separationWeight = 12f; 
        private float alignmentWeight = 1f; 
        private float obstacleAvoidWeight = 13f; 
        private float predatorAvoidWeight = 10f; 
 
#region Accessors and Mutators 
        
        public FlockBird[] FlockArray 
        { 
            get { return flockArray; } 
            set { flockArray = value; } 
        } 
 
        public Obstacle[] ObstacleArray 
        { 
            get { return obstacleArray; } 
            set { obstacleArray = value; } 
        } 
 
        public ArrayList ObstacleArrayList 
        { 
            get { return obstacleArrayList; } 
            set 
            { 
                if (NumberOfObstacles < 10) 
                    obstacleArrayList = value; 
            } 
        } 
 
        public ArrayList FlockBirdArrayList 
        { 
            get { return flockBirdArrayList; } 
            set  
            {  
                if (NumberOfBirds > 1 && NumberOfBirds < 80) 
                flockBirdArrayList = value;  
            } 
        } 
 
        public PredatorBird Predator 
        { 
            get { return predator; } 
            set { predator = value; } 
        } 
 
        public int NumberOfBirds 
        { 
            get { return numberOfBirds; } 
            set { numberOfBirds = value; } 
        } 
 
        public int NumberOfObstacles 
        { 
            get { return numberOfObstacles; } 
            set { numberOfObstacles = value; } 
        } 
 



MSc Computer Science Project Report : Robyn Backhouse 85

        public bool CohesionOn 
        { 
            get { return cohesionOn; } 
            set { cohesionOn = value; } 
        } 
 
        public bool SeparationOn 
        { 
            get { return separationOn; } 
            set { separationOn = value; } 
        } 
 
        public bool AlignmentOn 
        { 
            get { return alignmentOn; } 
            set { alignmentOn = value; } 
        } 
 
        public bool ObstacleOn 
        { 
            get { return obstacleOn; } 
            set { obstacleOn = value; } 
        } 
 
        public bool PredatorOn 
        { 
            get { return predatorOn; } 
            set { predatorOn = value; } 
        } 
 
        public float DisplayWidth 
        { 
            get { return displayWidth; } 
            set { displayWidth = value; } 
        } 
 
        public float DisplayHeight 
        { 
            get { return displayHeight; } 
            set { displayHeight = value; } 
        } 
 
        public float CohesionWeight 
        { 
            get { return cohesionWeight; } 
            set { cohesionWeight = value; } 
        } 
 
        public float SeparationWeight 
        { 
            get { return separationWeight; } 
            set { separationWeight = value; } 
        } 
 
        public float AlignmentWeight 
        { 
            get { return alignmentWeight; } 
            set { alignmentWeight = value; } 
        } 
 
        public float ObstacleAvoidWeight 
        { 
            get { return obstacleAvoidWeight; } 
            set { obstacleAvoidWeight = value; } 



MSc Computer Science Project Report : Robyn Backhouse 86

        } 
 
        public float PredatorAvoidWeight 
        { 
            get { return predatorAvoidWeight; } 
            set { predatorAvoidWeight = value; } 
        } 
 
        public float SpeedRestricter 
        { 
            get { return speedRestricter; } 
            set 
            { 
                speedRestricter = value; 
                if (speedRestricter <= 0) 
                    speedRestricter = 0.05f; 
                if (speedRestricter > 2) 
                    speedRestricter = 2f; 
            } 
        } 
 
#endregion 
 
        /// <summary> 
        /// Constructor for Game1 object (the main simulation) 
        /// </summary> 
        public Game1() 
        { 
            //Allows control of the graphics device 
            graphics = new GraphicsDeviceManager(this); 
            Content.RootDirectory = "Content"; 
 
            //Default window size 800x600 - this enlarges it 
            graphics.PreferredBackBufferHeight = 700;  
            graphics.PreferredBackBufferWidth = 1050;   
 

//Creates a new instance of UserTarget which the user  
//then controls to place destination co-ordinates 

            birdTarget = new UserTarget(this); 
            Components.Add(birdTarget); 
 
            //Allows recognition of mouse position and button clicks 
            Mouse.WindowHandle = Window.Handle; 
 
            //Allows retrieval of keystrokes from keyboard 
            currentKeyboardState = Keyboard.GetState(); 
 
            //Makes mouse pointer visible on game window 
            this.IsMouseVisible = true; 
        } 
 
        /// <summary> 
        /// Allows the game to perform any initialization it needs before   
        /// starting to run. 
        /// This is where it can query for any required services and load  
        /// any non-graphic related content.   
        /// Calling base.Initialize will enumerate through any components 
        /// and initialize them as well. 
        /// </summary> 
        protected override void Initialize() 
        { 
            displayWidth = graphics.GraphicsDevice.Viewport.Width; 
            displayHeight = graphics.GraphicsDevice.Viewport.Height; 
            flockArray = new FlockBird[numberOfBirds]; 



MSc Computer Science Project Report : Robyn Backhouse 87

            obstacleArray = new Obstacle[numberOfObstacles]; 
            predator = new PredatorBird(this); 
 
            for (int i = 0; i < NumberOfBirds; i++) 
                FlockBirdArrayList.Add(new FlockBird(this)); 
 
            for (int i = 0; i < NumberOfObstacles; i++) 
                ObstacleArrayList.Add(new Obstacle()); 
 
            Window.Title = "'Burds' Simulation by Robyn Backhouse"; 
 
            base.Initialize(); 
        } 
 
        /// <summary> 
        /// LoadContent will be called once per game and is the place  

  /// to load all of the content.  
  /// Create a new SpriteBatch for each sprite type,  
  /// which can be used to draw textures. 

        /// </summary> 
        protected override void LoadContent() 
        { 
            fontBatch = new SpriteBatch(GraphicsDevice); 
            font = Content.Load<SpriteFont>("Arial"); 
            fontB = Content.Load<SpriteFont>("ArialB"); 
 
            birdBatch = new SpriteBatch(GraphicsDevice); 
 
            foreach (FlockBird bird in FlockBirdArrayList) 
            { 
                if (bird == FlockBirdArrayList[0]) 
                    bird.LoadContent(this.Content, leaderAssetName, 

this); 
                else 
                    bird.LoadContent(this.Content, flockBirdAssetName, 

this); 
            } 
            flockBirdArrayObject = FlockBirdArrayList.ToArray(); 
            FlockArray = new FlockBird[flockBirdArrayObject.Length]; 
            for (int i = 0; i < flockBirdArrayObject.Length; i++) 
                flockArray[i] = (FlockBird)flockBirdArrayObject[i]; 
 
            predator.LoadContent(this.Content, predatorAssetName, this); 
 
            obstacleBatch = new SpriteBatch(GraphicsDevice); 
            foreach (Obstacle obstacle in ObstacleArrayList) 
                obstacle.LoadContent(this.Content, obstacleAssetName); 
 
            obstacleArrayObject = ObstacleArrayList.ToArray(); 
            obstacleArray = new Obstacle[obstacleArrayObject.Length]; 
            for (int i = 0; i < obstacleArrayObject.Length; i++) 
                obstacleArray[i] = (Obstacle)obstacleArrayObject[i]; 
 
            for (int i = 0; i < obstacleArray.Length; i++) 
                obstacleArray[i].PositionObstacle((i + 1), this); 
        } 
 
        /// <summary> 
        /// Allows the game to run logic such as updating the world,  

  /// checking for collisions, gathering input.  
  /// Update is called 60 times per second 

        /// </summary> 
        /// <param name="gameTime">Provides a snapshot of timing  

  ///  values.</param> 



MSc Computer Science Project Report : Robyn Backhouse 88

        /// <if>If all birds have own destination</if> 
        /// <Else>Else birds all follow a leader still following  

  ///  rules</Else> 
        protected override void Update(GameTime gameTime) 
        { 
            if (!pauseOn) 
            { 
                if (!followSingleBird) 
                    foreach (FlockBird bird in flockArray) 
                        bird.UpdateBirdIndividuals(this); 
                else 
                { 
                    foreach (FlockBird bird in flockArray) 
                        if (bird == FlockArray[0]) 
                            bird.UpdateBirdLeader(gameTime, this); 
                        else 
                            bird.UpdateBirdFollower(gameTime, this); 
                } 
                 
                predator.UpdatePredator(this); 
 
                if (randomlyTimedDestChange) 
                    RandomDestChange(); 
            } 
 
            timePlayed++; 
 
            AddUserPlaceObstacle(); 
            PlaceUserTarget(); 
            UpdateUserInput(); 
            UpdateGuiStrings(); 
 
            base.Update(gameTime); 
        } 
 
        /// <summary> 
        /// Randomly changes destination of all birds if option selected. 
        /// Randomly selects 2 numbers between zero and 300 and if they  
   /// are the same the all birds are given a new destination. 
        /// </summary> 
        private void RandomDestChange() 
        { 
            int numOne = (int)RandomNumberGenerator.Next(300); 
            int numTwo = (int)RandomNumberGenerator.Next(300); 
            if (numOne == numTwo) 
                foreach (FlockBird bird in flockArray) 
                    bird.NewDestination(this); 
        } 
 
        /// <summary> 
        /// Checks to see if user has placed an obstacle and  

  /// adds it in appropriate place if they have.   
        /// Updates Obstacle array. 
        /// </summary> 
        private void AddUserPlaceObstacle() 
        { 
            MouseState obstaclePlacement = Mouse.GetState(); 
            if ((obstaclePlacement.LeftButton == ButtonState.Pressed) && 

(NumberOfObstacles < 10) && (timePlayed < 500 || 
timePlayed > 520)) 

            { 
                NumberOfObstacles++; 
                timePlayed = 500; 



MSc Computer Science Project Report : Robyn Backhouse 89

                ObstacleArrayList.Add(new Obstacle(obstaclePlacement.X - 
20, obstaclePlacement.Y - 20)); 

                obstacleArrayObject = ObstacleArrayList.ToArray(); 
                obstacleArray = new Obstacle[obstacleArrayObject.Length]; 
                for (int i = 0; i < obstacleArrayObject.Length; i++) 
                    obstacleArray[i] = (Obstacle)obstacleArrayObject[i]; 
 
                obstacleBatch = new SpriteBatch(GraphicsDevice); 
                foreach (Obstacle obstacle in ObstacleArrayList) 
                    obstacle.LoadContent(this.Content, 

obstacleAssetName); 
            } 
        } 
 
        /// <summary> 
        /// User can add more birds to flock in groups of 10. 
        /// </summary> 
        private void AddMoreBirds() 
        { 
            int numberOfBirdsAdded = 10; 
 
            for (int i = 0; i < numberOfBirdsAdded; i++) 
                FlockBirdArrayList.Add(new FlockBird(this)); 
 
            flockBirdArrayObject = FlockBirdArrayList.ToArray(); 
            flockArray = new FlockBird[flockBirdArrayObject.Length]; 
            for (int j = 0; j < flockBirdArrayObject.Length; j++) 
                flockArray[j] = (FlockBird)flockBirdArrayObject[j]; 
            foreach (FlockBird bird in FlockArray) 
                bird.LoadContent(this.Content, flockBirdAssetName, this); 
            NumberOfBirds = FlockArray.Length;   
        } 
 
        /// <summary> 
        /// Removes a bird from the flock when caught by predator 
        /// </summary> 
        /// <param name="j"></param> 
        public void EatBird(int j) 
        { 
            FlockBirdArrayList.RemoveAt(j); 
            flockBirdArrayObject = FlockBirdArrayList.ToArray(); 
            flockArray = new FlockBird[flockBirdArrayObject.Length]; 
            for (int i = 0; i < flockBirdArrayObject.Length; i++) 
                flockArray[i] = (FlockBird)flockBirdArrayObject[i]; 
            NumberOfBirds = FlockArray.Length; 
        } 
 
        /// <summary> 
        /// Checks whether user has placed a target destination for  

  ///  all birds and if so, updates destinations of all birds 
        ///  accordingly 
        /// </summary> 
        private void PlaceUserTarget() 
        { 
            MouseState userDirection = Mouse.GetState(); 
            if (userDirection.RightButton == ButtonState.Pressed) 
            { 
                Vector2 whereTo = new Vector2(userDirection.X, 

userDirection.Y); 
                foreach (FlockBird bird in flockArray) 
                { 
                    bird.UserSetDestination(this, whereTo); 
                    birdTarget.TargetPosition = whereTo; 
                } 



MSc Computer Science Project Report : Robyn Backhouse 90

            } 
        } 
 
        /// <summary> 
        /// Updates variables in response to user input on keyboard 
   /// Effectively turns the steering rules on and off 
        /// </summary> 
        private void UpdateUserInput() 
        { 
            KeyboardState newState = Keyboard.GetState(); 
 
            // Key C controls the Cohesion rule 
            if (newState.IsKeyDown(Keys.C)) 
                if (!currentKeyboardState.IsKeyDown(Keys.C)) 
                    CohesionOn = !CohesionOn; 
 
            // Key S controls the Separation rule 
            if (newState.IsKeyDown(Keys.S)) 
                if (!currentKeyboardState.IsKeyDown(Keys.S)) 
                    SeparationOn = !SeparationOn; 
 
            // Key A controls the Alignment rule 
            if (newState.IsKeyDown(Keys.A)) 
                if (!currentKeyboardState.IsKeyDown(Keys.A)) 
                    AlignmentOn = !AlignmentOn; 
 
            //Key O controls the Obstacle avoidance rule 
            if (newState.IsKeyDown(Keys.O)) 
                if (!currentKeyboardState.IsKeyDown(Keys.O)) 
                    ObstacleOn = !ObstacleOn; 
 
            // Key R controls randomly timed destination change 
            if (newState.IsKeyDown(Keys.R)) 
                if (!currentKeyboardState.IsKeyDown(Keys.R)) 
                    randomlyTimedDestChange = !randomlyTimedDestChange; 
 
            //Key F to swap between birds having individual  

      //destinations or following a leader bird 
            if (newState.IsKeyDown(Keys.F)) 
                if (!currentKeyboardState.IsKeyDown(Keys.F)) 
                    followSingleBird = !followSingleBird; 
 
            //Key + (plus, on number pad) to increase speed of flight 
            if (newState.IsKeyDown(Keys.Up)) 
                if (!currentKeyboardState.IsKeyDown(Keys.Up)) 
                    SpeedRestricter = SpeedRestricter + 0.1f; 
 
            //Key - (minus, on number pad) to decrease speed of flight 
            if (newState.IsKeyDown(Keys.Down)) 
                if (!currentKeyboardState.IsKeyDown(Keys.Down)) 
                    SpeedRestricter = SpeedRestricter - 0.1f; 
 
            //Key H to pause and resume game 
            if (newState.IsKeyDown(Keys.H)) 
                if (!currentKeyboardState.IsKeyDown(Keys.H)) 
                    pauseOn = !pauseOn; 
 
            //Key P to select / deselect Predator bird 
            if (newState.IsKeyDown(Keys.P)) 
                if (!currentKeyboardState.IsKeyDown(Keys.P)) 
                    PredatorOn = !PredatorOn; 
 
            //Key B to add 10 more birds to flock 
            if (newState.IsKeyDown(Keys.B)) 



MSc Computer Science Project Report : Robyn Backhouse 91

                if (!currentKeyboardState.IsKeyDown(Keys.B) && 
NumberOfBirds <= 50) 

                    AddMoreBirds(); 
 
            currentKeyboardState = newState; 
        } 
 
        /// <summary> 
        /// Reads the boolean values for rule status (whether rules are 
   /// on or off) and updates strings accordingly for on screen  

  /// display 
        /// </summary> 
        public void UpdateGuiStrings() 
        { 
            if (CohesionOn == true) 
                cohesionString = "On"; 
            else cohesionString = "Off"; 
 
            if (SeparationOn == true) 
                separationString = "On"; 
            else separationString = "Off"; 
 
            if (AlignmentOn == true) 
                alignmentString = "On"; 
            else alignmentString = "Off"; 
 
            if (ObstacleOn == true) 
                obstacleString = "On"; 
            else obstacleString = "Off"; 
 
            if (randomlyTimedDestChange == true) 
                randomlyTimedDestChangeString = "On"; 
            else randomlyTimedDestChangeString = "Off"; 
 
            if (followSingleBird == true) 
                followSingleBirdString = "Yes"; 
            else followSingleBirdString = "No"; 
 
            if (PredatorOn == true) 
                predatorString = "On"; 
            else predatorString = "Off"; 
 
            if (pauseOn == true) 
                pauseString = "On"; 
            else pauseString = "Off"; 
        } 
 
        /// <summary> 
        /// This is called when the simulation should draw itself. 
   /// Draws the simulation window, text and sprites on screen 
        /// </summary> 
        /// <param name="gameTime">Provides a snapshot of timing  

  /// values.</param> 
        protected override void Draw(GameTime gameTime) 
        {  
            graphics.GraphicsDevice.Clear(Color.MintCream);   
            int bottom = 20; 
            int spacer = 20; 
            int spacer2 = 15; 
            int top = 10; 
            int horizontalBirdPos = 800;  
            int horizontalTextOffset = 350; 
 



MSc Computer Science Project Report : Robyn Backhouse 92

            Vector2 headingLine = new Vector2(5, DisplayHeight - (bottom 
+ (9 * spacer))); 

            Vector2 addBirdsLine = new Vector2(5, DisplayHeight - (bottom 
+ (8 * spacer))); 

            Vector2 cohesionGuiLine = new Vector2(5, DisplayHeight - 
(bottom + (7 * spacer))); 

            Vector2 separationGuiLine = new Vector2(5, DisplayHeight - 
(bottom + (6 * spacer))); 

            Vector2 alignmentGuiLine = new Vector2(5, DisplayHeight - 
(bottom + (5 * spacer))); 

            Vector2 predatorGuiLine = new Vector2(5, DisplayHeight - 
(bottom + (4 * spacer))); 

            Vector2 obstacleGuiLine = new Vector2(5, DisplayHeight - 
(bottom + (3 * spacer))); 

            Vector2 followLeaderBirdLine = new Vector2(5, DisplayHeight - 
(bottom + (2 * spacer))); 

            Vector2 pauseGuiLine = new Vector2(5, DisplayHeight - (bottom 
+ 1 * spacer)); 

            Vector2 randomTimeDestLine = new Vector2(5, DisplayHeight - 
(bottom + (0 * spacer))); 

            Vector2 numBirdsLine = new Vector2(horizontalBirdPos + 100, 
DisplayHeight - bottom); 

 
            Vector2 ObstaclePlaceGUILine = new 

Vector2(horizontalTextOffset, DisplayHeight - (bottom + 2 
* spacer)); 

            Vector2 mouseClickDest = new Vector2(horizontalTextOffset, 
DisplayHeight - (bottom + 1 * spacer)); 

            Vector2 speedGuiLine = new Vector2(horizontalTextOffset, 
DisplayHeight - (bottom + (0 * spacer))); 

             
            Vector2 ruleOffsetLine = new Vector2(20, 0); 
 
            Vector2 bird1Pos = new Vector2(horizontalBirdPos, top + 

spacer2 * 0); 
            Vector2 bird2Pos = new Vector2(horizontalBirdPos, top + 

spacer2 * 1); 
            Vector2 bird3Pos = new Vector2(horizontalBirdPos, top + 

spacer2 * 2); 
            Vector2 bird4Pos = new Vector2(horizontalBirdPos, top + 

spacer2 * 3); 
            Vector2 bird5Pos = new Vector2(horizontalBirdPos, top + 

spacer2 * 4); 
            Vector2 bird1Dest = new Vector2(5, top + spacer2 * 0); 
            Vector2 bird2Dest = new Vector2(5, top + spacer2 * 1); 
            Vector2 bird3Dest = new Vector2(5, top + spacer2 * 2); 
            Vector2 bird4Dest = new Vector2(5, top + spacer2 * 3); 
            Vector2 bird5Dest = new Vector2(5, top + spacer2 * 4); 
 
            fontBatch.Begin(); 
 
            fontBatch.DrawString(fontB, "User Controls and Steering 

Rules:", headingLine, Color.DarkSlateGray); 
            fontBatch.DrawString(fontB, "B", addBirdsLine, 

Color.DarkSlateBlue); 
            fontBatch.DrawString(fontB, "P", predatorGuiLine, 

Color.DarkSlateBlue); 
            fontBatch.DrawString(fontB, "C", cohesionGuiLine, 

Color.DarkSlateBlue); 
            fontBatch.DrawString(fontB, "S", separationGuiLine, 

Color.DarkSlateBlue); 
            fontBatch.DrawString(fontB, "A", alignmentGuiLine, 

Color.DarkSlateBlue); 



MSc Computer Science Project Report : Robyn Backhouse 93

            fontBatch.DrawString(fontB, "O", obstacleGuiLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(fontB, "F", followLeaderBirdLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(fontB, "R", randomTimeDestLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(fontB, "H", pauseGuiLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Predator: " + predatorString, 
predatorGuiLine + ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Cohesion: " + cohesionString, 
cohesionGuiLine + ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Separation: " + separationString, 
separationGuiLine + ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Alignment: " + alignmentString, 
alignmentGuiLine + ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Obstacle avoidance: " + 
obstacleString, obstacleGuiLine + ruleOffsetLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Follow leader bird: " + 
followSingleBirdString, followLeaderBirdLine + 
ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Randomly timed direction change 
for all birds: " + randomlyTimedDestChangeString, 
randomTimeDestLine + ruleOffsetLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Hold (pause) simulation: " + 
pauseString, pauseGuiLine + ruleOffsetLine, 
Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Current speed: " + 
SpeedRestricter + " Press Up or Down arrows to alter 
speed", speedGuiLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Left Click to place Obstacle", 
ObstaclePlaceGUILine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Right Click to place Target 
Destination", mouseClickDest, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Number of Birds: " + 
NumberOfBirds, numBirdsLine, Color.DarkSlateBlue); 

            fontBatch.DrawString(font, "Add Birds to flock (max 60)", 
addBirdsLine + ruleOffsetLine, Color.DarkSlateBlue); 

 
            if (FlockArray.Length > 0) 
            { 
                fontBatch.DrawString(font, "Bird 1 Destination: " + 

FlockArray[0].BirdDestination, bird1Dest, 
Color.SlateBlue); 

                fontBatch.DrawString(font, "Bird 1 Position: " + 
FlockArray[0].BirdPosition, bird1Pos, 
Color.SlateBlue); 

            } 
            if (FlockArray.Length > 1)  
            { 
                fontBatch.DrawString(font, "Bird 2 Destination: " + 

FlockArray[1].BirdDestination, bird2Dest, 
Color.SlateBlue); 

                fontBatch.DrawString(font, "Bird 2 Position: " + 
FlockArray[1].BirdPosition, bird2Pos, 
Color.SlateBlue); 

            } 
            if (FlockArray.Length > 2)  
            { 
                fontBatch.DrawString(font, "Bird 3 Destination: " + 

FlockArray[2].BirdDestination, bird3Dest, 
Color.SlateBlue); 



MSc Computer Science Project Report : Robyn Backhouse 94

                fontBatch.DrawString(font, "Bird 3 Position: " + 
FlockArray[2].BirdPosition, bird3Pos, 
Color.SlateBlue); 

            } 
            if (FlockArray.Length > 3)   
            { 
                fontBatch.DrawString(font, "Bird 4 Destination: " + 

FlockArray[3].BirdDestination, bird4Dest, 
Color.SlateBlue); 

                fontBatch.DrawString(font, "Bird 4 Position: " + 
FlockArray[3].BirdPosition, bird4Pos, 
Color.SlateBlue); 

            } 
            if (FlockArray.Length > 4)  
            { 
                fontBatch.DrawString(font, "Bird 5 Destination: " + 

FlockArray[4].BirdDestination, bird5Dest, 
Color.SlateBlue); 

                fontBatch.DrawString(font, "Bird 5 Position: " + 
FlockArray[4].BirdPosition, bird5Pos, 
Color.SlateBlue); 

            } 
            fontBatch.End(); 
 
            birdBatch.Begin(SpriteBlendMode.AlphaBlend); 
            foreach (FlockBird bird in flockArray) 
                bird.Draw(this.birdBatch, this); 
            if (PredatorOn)  
                predator.Draw(this.birdBatch, this); 
            birdBatch.End(); 
 
            obstacleBatch.Begin(); 
            foreach (Obstacle obstacle in obstacleArray) 
                obstacle.Draw(this.obstacleBatch); 
            obstacleBatch.End(); 
 
            base.Draw(gameTime); 
        } 
    } 
} 
 
 



MSc Computer Science Project Report : Robyn Backhouse 95

D.3 Class:  Bird ( Base Class ) 
 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    public class Bird 
    { 

  //current position of bird 
        private Vector2 birdPosition = new Vector2();    
        protected Vector2 birdDestination = new Vector2(850f, 300f); 
        //How close birds get to centre of obstacle 
        private float obstacleAvoidanceDistance = 40;   
        //texture to use when drawing bird 
        private Texture2D birdTexture;          
        private float birdTextureHeight;    //Height of bird picture 
        private float birdTextureWidth;     //Width of bird picture 

  //Used to control bird speed 
        private static float speedLimiter = 0.015f;   

  //Size of neighbourhood radius 
        private float neighbourDistance = 200;   
 
        // Max and min x and y values for edges of screen for birds  
        private float minX;         // 0 minus width of bird 
        private float minY;         // 0 minus height of bird 
        private float maxX;         // Width of window 
        private float maxY;         // Height of window 
 

#region Constructors 
        
        /// <summary> 
        /// Bird object constructor used for simulation. 
        /// Gives the bird co-ordinates and a destination 
        /// </summary> 
        public Bird(Game1 theGame) 
        { 
            this.PlaceNewBird(); 
            this.NewDestination(theGame); 
        } 
 
        /// <summary> 
        /// Bird object constructor for making bird with specific  

  /// co-ordinates. 
        /// Used mainly during testing procedures rather than for  
    /// simulation. 
        /// </summary> 
        public Bird(float posx, float posy, float destx, float desty) 
        { 
            birdPosition.X = posx; 
            birdPosition.Y = posy; 
            birdDestination.X = destx; 
            birdDestination.Y = desty; 
        } 
 



MSc Computer Science Project Report : Robyn Backhouse 96

#endregion 
 

#region Accessors and Mutators 
         
        public Vector2 BirdPosition 
        { 
            get { return birdPosition; } 
            set { birdPosition = value; } 
        } 
 
        public Vector2 BirdDestination 
        { 
            get { return birdDestination; } 
            set { birdDestination = value; } 
        } 
 
        public float BirdTextureHeight 
        { 
            get { return birdTextureHeight; } 
            set { birdTextureHeight = value; } 
        } 
 
        public float BirdTextureWidth 
        { 
            get { return birdTextureWidth; } 
            set { birdTextureWidth = value; } 
        } 
 
        public float MinX 
        { 
            get { return minX; } 
            set { minX = value; } 
        } 
 
        public float MinY 
        { 
            get { return minY; } 
            set { minY = value; } 
        } 
 
        public float MaxX 
        { 
            get { return maxX; } 
            set { maxX = value; } 
        } 
 
        public float MaxY 
        { 
            get { return maxY; } 
            set { maxY = value; } 
        } 
 
        public static float SpeedLimiter 
        { 
            get { return Bird.speedLimiter; } 
        } 
 
        public float NeighbourDistance 
        { 
            get { return neighbourDistance; } 
            set { neighbourDistance = value; } 
        } 
 

#endregion 



MSc Computer Science Project Report : Robyn Backhouse 97

 
        /// <summary> 
        /// Called by XNA framework to load content 
        /// </summary> 
        public void LoadContent(ContentManager theContentManager, string 

theAssetName, Game1 theGame) 
        { 
            birdTexture = 

theContentManager.Load<Texture2D>(theAssetName); 
            BirdTextureHeight = birdTexture.Height; 
            BirdTextureWidth = birdTexture.Width; 
            MaxX = theGame.DisplayWidth; 
            MaxY = theGame.DisplayHeight; 
            MinX = birdTexture.Width * -1; 
            MinY = birdTexture.Height * -1; 
        } 
 
        /// <summary> 
        /// Cohesion rule: birds fly towards other birds,  

  /// or centre of flock 
        /// </summary> 
        protected Vector2 FlockCohesion(Game1 theGame, Bird mybird) 
        { 
            Vector2 flockCentre = new Vector2(0, 0); 
            int numberOfBirdsInNeighbourhood = 0; 
 
            foreach (Bird bird in theGame.FlockArray) 
            { 
                if ((mybird != bird) && (mybird.EuclideanDistance(bird) < 

neighbourDistance) && (mybird.AngleBetweenBirds(bird) < 
140 && mybird.AngleBetweenBirds(bird) > -140) ) 

                { 
                    flockCentre = (flockCentre + bird.BirdPosition); 
                    numberOfBirdsInNeighbourhood++; 
                } 
            } 
            if (numberOfBirdsInNeighbourhood > 0) 
                return ((flockCentre / numberOfBirdsInNeighbourhood) - 

mybird.BirdPosition) * theGame.CohesionWeight; 
            else return flockCentre; 
        } 
  
        /// <summary> 
        /// Obstacle avoidance rule - birds avoid hitting obstacles 
        /// </summary> 
        protected Vector2 ObstacleAvoidance(Game1 theGame, Bird mybird) 
        { 
            Vector2 avoidObstacle = new Vector2(0, 0); 
 
            foreach (Obstacle obstacle in theGame.ObstacleArray) 
            { 
                if (mybird.EuclideanDistanceObs(obstacle) < 

((obstacle.ObstacleTextureWidth / 2) + 
obstacleAvoidanceDistance))                 

    { 
                    avoidObstacle.X = avoidObstacle.X - 

((obstacle.ObstaclePosition.X + 
(obstacle.ObstacleTextureWidth / 2)) - 
mybird.BirdPosition.X); 

                    avoidObstacle.Y = avoidObstacle.Y - 
((obstacle.ObstaclePosition.Y + 
(obstacle.ObstacleTextureHeight / 2)) - 
mybird.BirdPosition.Y); 

                } 



MSc Computer Science Project Report : Robyn Backhouse 98

            } 
            return avoidObstacle * theGame.ObstacleAvoidWeight; 
        } 
 
        /// <summary> 
        /// Calculates the Euclidean distance between 2 birds 
        /// This is always a positive number and all calculated values  

  /// are therefore positive 
        /// </summary> 
        public float EuclideanDistance(Bird bird2) 
        { 
            float x = (float)Math.Pow((bird2.BirdPosition.X - 

this.BirdPosition.X), 2); 
            float y = (float)Math.Pow((bird2.BirdPosition.Y - 

this.BirdPosition.Y), 2); 
            return (float)Math.Sqrt(x + y); 
        } 
 
        /// <summary> 
        /// Calculates the Euclidean distance between an obstacle and  

  /// a bird 
        /// This is always a positive number, and all calculated values  

  /// are therefore positive 
        /// </summary> 
        public float EuclideanDistanceObs(Obstacle obstacle) 
        { 
            float x = (float)Math.Pow(((obstacle.ObstaclePosition.X + 

(obstacle.ObstacleTextureWidth / 2)) - 
this.BirdPosition.X), 2); 

            float y = (float)Math.Pow(((obstacle.ObstaclePosition.Y + 
(obstacle.ObstacleTextureHeight / 2)) - 
this.BirdPosition.Y), 2); 

            return (float)Math.Sqrt(x + y); 
        } 
 
        /// <summary> 
        /// Calculates Euclidean distance between bird position and  

  /// its destination 
        /// Used for direction/rotation facing of bird sprite 
        /// </summary> 
        public double EuclideanDistanceVectors(Vector2 

combinedDestination) 
        { 
            float x = (float)Math.Pow((combinedDestination.X - 

this.BirdPosition.X), 2); 
            float y = (float)Math.Pow((combinedDestination.Y - 

this.BirdPosition.Y), 2); 
            return (double)Math.Sqrt(x + y); 
        } 
 
        /// <summary> 
        /// Returns the angle between the heading of one bird and  

  /// the position of the second bird 
        /// </summary> 
        /// <param name="bird2Dest">comparing a bird "this" to a second  

  /// bird </param> 
        /// <returns>the angle in degrees</returns> 
        public int AngleBetweenBirds(Bird bird2) 
        { 
            //To ensure don't divide by zero 
            if (this.BirdDestination.X == 0) 
                this.birdDestination.X = 0.1f; 
 



MSc Computer Science Project Report : Robyn Backhouse 99

            double tanBird1 = this.BirdDestination.Y / 
this.BirdDestination.X; 

 
            double mybirdFacing = Math.Atan(tanBird1);    
 
            Vector2 positionDifference = new Vector2(bird2.BirdPosition.X 

- this.BirdPosition.X, bird2.BirdPosition.Y - 
this.BirdPosition.Y); 

             
            //To ensure don't divide by zero 
            if (positionDifference.X == 0) 
                positionDifference.X = 0.1f; 
 
            double tan = positionDifference.Y / positionDifference.X; 
            double radiansBird2 = Math.Atan(tan); 
 
            double bird1Angle = mybirdFacing * 180 / Math.PI; 
            double bird2Angle = radiansBird2 * 180 / Math.PI; 
            double answer = bird1Angle - bird2Angle; 
 
            return (int)answer; 
        } 
 
        /// <summary> 
        /// compares the angle between a bird and a stationary obstacle. 
        /// </summary> 
        /// <returns>angle in degrees</returns> 
        public int AngleBetweenBirdObstacle(Obstacle obstacle) 
        { 
            //To ensure don't divide by zero 
            if (this.BirdDestination.X == 0) 
                this.birdDestination.X = 0.1f; 
 
            double tanBird = this.BirdDestination.Y / 

this.BirdDestination.X; 
 
            double birdFacing = Math.Atan(tanBird); 
 
            Vector2 obstaclePos = new 

Vector2(obstacle.ObstaclePosition.X, 
obstacle.ObstaclePosition.Y); 

            Vector2 positionDifference = new 
Vector2(obstacle.ObstaclePosition.X - this.BirdPosition.X, 
obstacle.ObstaclePosition.Y - this.BirdPosition.Y); 

 
            //To ensure don't divide by zero 
            if (positionDifference.X == 0) 
                positionDifference.X = 0.1f; 
 
            double tan = positionDifference.Y / positionDifference.X; 
            double radiansObstacle = Math.Atan(tan); 
 
            double birdAngle = birdFacing * 180 / Math.PI; 
            double obstacleAngle = radiansObstacle * 180 / Math.PI; 
            double answer = birdAngle - obstacleAngle; 
 
            return (int)answer; 
        } 
 
        /// <summary> 
        /// Calculates rotation angle of bird / direction of travel as  

  /// an angle in radians 
        /// </summary> 
        public double AngleBirdFacing() 



MSc Computer Science Project Report : Robyn Backhouse 100

        { 
            //To ensure don't divide by zero 
            if (this.BirdDestination.X == 0) 
                this.birdDestination.X = 0.1f; 
 
            double tan = this.BirdDestination.Y / this.BirdDestination.X; 
             
            //rotate 90 degrees to correct rotation 
            double radians = Math.Atan(tan) - 1.57079633;    
 
            // If X is positive, add 180 degrees in radians 
            if (this.BirdDestination.X > 0) 
                radians = radians + (2 * 1.57079633); 
            return radians; 
        } 
 
        /// <summary> 
        /// Vector maths sometimes gives birds co-ordinates of up to  

  /// 5000, which is way off the screen. 
        /// This procedure normalises them back to a reasonable 
        /// figure, which keeps their movement and speed more constant  

  /// and controlled. Speed is relative to distance-to-destination 
        /// </summary> 
        public void BirdDistanceController(Game1 theGame) 
        { 
            float extraBit = 200; 
            if (this.BirdDestination.X > (2 * theGame.DisplayWidth)) 
                this.birdDestination.X = ((BirdDestination.X / 2) + 

extraBit); 
            if (this.BirdDestination.X < (2 * theGame.DisplayWidth) * -1) 
                this.birdDestination.X = ((BirdDestination.X / 2) - 

extraBit);  
            if (this.BirdDestination.Y > (2 * theGame.DisplayHeight)) 
                this.birdDestination.Y = ((BirdDestination.Y / 2) + 

extraBit); 
            if (this.BirdDestination.Y < (2 * theGame.DisplayHeight * -

1)) 
                this.birdDestination.Y = ((BirdDestination.Y / 2) - 

extraBit);  
        } 
 
        /// <summary> 
        /// Places a new bird within a set square on the screen. 
        /// Can change where this square appears, or the size of it. 
        /// </summary> 
        public void PlaceNewBird() 
        { 
            Vector2 returnVector = new Vector2(0, 0); 
            float xOffset = 20; 
            float yOffset = 150; 
            int squareSize = 100; 
 
            returnVector.X = (RandomNumberGenerator.Next(squareSize) + 

xOffset); 
            returnVector.Y = (RandomNumberGenerator.Next(squareSize) + 

yOffset); 
            BirdPosition = returnVector; 
        } 
 
        /// <summary> 
        /// Sets randomly chosen coordinates for birds destination.   
        /// </summary> 
        public void NewDestination(Game1 theGame) 
        { 



MSc Computer Science Project Report : Robyn Backhouse 101

            // Add 0.5f to force correct rounding when converting  
// to integer 

            float y = 
RandomNumberGenerator.Next(Convert.ToInt32(theGame.Display
Height + 0.5f)); 

            float x = 
RandomNumberGenerator.Next(Convert.ToInt32(theGame.Display
Width + 0.5f)); 

 
            // Chance for coordinates to be positive or negative on new 

// direction.  
            int vertDirection = (int)RandomNumberGenerator.Next(2); 
            int horizontDirection = (int)RandomNumberGenerator.Next(2); 
 
            if (vertDirection == 1) 
                y = y * -1; 
            if (horizontDirection == 1) 
                x = x * -1; 
 
            birdDestination.Y = y; 
            birdDestination.X = x; 
        } 
 
        /// <summary> 
        /// When bird goes off edge of screen, wraps to other side  

  /// (like globe/map of world) 
        /// </summary> 
        public void WrapBird(Game1 theGame) 
        { 
            if (BirdPosition.X > theGame.DisplayWidth) 
                birdPosition.X = 0 - this.BirdTextureWidth; 
            if (BirdPosition.X < (0 - this.BirdTextureWidth)) 
                birdPosition.X = theGame.DisplayWidth; 
 
            if (BirdPosition.Y > theGame.DisplayHeight) 
                birdPosition.Y = 0 - this.BirdTextureHeight; 
            if (BirdPosition.Y < (0 - this.BirdTextureHeight)) 
                birdPosition.Y = theGame.DisplayHeight; 
        } 
 
        /// <summary> 
        /// Draws the bird – both predator and flockbirds 
        /// </summary> 
        public void Draw(SpriteBatch birdBatch, Game1 theGame) 
        { 
            birdBatch.Draw 
            ( 
                birdTexture,    //the Bird texture 
                birdPosition,   //the Bird position 
                 
                //source rectangle of bird sprite - used for rotation 
                new Rectangle(0, 0, (int)this.BirdTextureWidth, 

(int)this.BirdTextureHeight),  
                Color.White,    //Overlay colour - white for no colour 

overlay 
                (float)this.AngleBirdFacing(),  //Rotation angle for Bird 

sprite in radians 
                 
                //Origin - middle of the Bird sprite texture - rotates 

around its centre. 
                new Vector2(this.BirdTextureWidth / 2, 

this.BirdTextureHeight / 2),   
                1.0f,   //float Scale - Not used. used for 2D 

representatin of 3D world 



MSc Computer Science Project Report : Robyn Backhouse 102

                SpriteEffects.None,  //Sprite effects - Not used, but 
must be in definition 

                1.0f    //float Layer depth - not used, but must be 
present. Default to 1.0 

            ); 
        } 
    } 
} 
 
 
 



MSc Computer Science Project Report : Robyn Backhouse 103

D.4 Class:  Flock Bird ( Inherited Class ) 
 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    public class FlockBird : Bird 
    { 
   //How close birds get to other birds 
        private float collisionDistance = 25;     
      //Minimum distance from Predator 
        private float predatorAvoidanceDistance = 100;   
 
        /// <summary> 
        /// Constructor for FlockBird class.  Used for Burds Simulation 
        /// </summary> 
        /// <param name="theGame"></param> 
        public FlockBird(Game1 theGame) 
            : base(theGame) 
        {    } 
 
        /// <summary> 
        /// Constructor for FlockBird class.   
        /// Used for test suite to set up a custom test flock 
        /// </summary> 
        public FlockBird( float posx, float posy, float destx, float 

desty)  
            : base (posx, posy, destx, desty) 
        {    } 
 
 
        /// <summary> 
        /// Calculates a headingVector from the steering rules which is  
        /// combined with bird's destination. 
        /// </summary> 
        public Vector2 CalculateCorrectedHeadingAllBirds(Game1 theGame) 
        { 
            Vector2 headingVector = new Vector2(0, 0); 
 
            if (theGame.PredatorOn) 
            { 
                if (this.EuclideanDistance(theGame.Predator) < 

predatorAvoidanceDistance) 
                { 
                    if (theGame.ObstacleOn) 
                    { 
                        Vector2 obstacleAvoid = 

this.ObstacleAvoidance(theGame, this); 
                        headingVector = headingVector + obstacleAvoid; 
                    } 
 
                    if (theGame.SeparationOn) 
                    { 



MSc Computer Science Project Report : Robyn Backhouse 104

                        Vector2 separation = 
this.FlockSeparation(theGame, this); 

                        headingVector = headingVector + separation; 
                    } 
 
                    Vector2 predatoravoid = 

this.FlockPredatorAvoid(theGame, this); 
                    headingVector = headingVector + predatoravoid; 
                    return headingVector; 
                } 
            } 
 
            if (theGame.CohesionOn) 
            { 
                Vector2 cohesion = this.FlockCohesion(theGame, this); 
                if (theGame.PredatorOn && 

this.EuclideanDistance(theGame.Predator) < 
predatorAvoidanceDistance + 100) 

                    ;   //headingVector = headingVector 
                else headingVector = headingVector + cohesion; 
            } 
            if (theGame.SeparationOn) 
            { 
                Vector2 separation = this.FlockSeparation(theGame, this); 
                headingVector = headingVector + separation; 
            } 
            if (theGame.AlignmentOn) 
            { 
                Vector2 alignment = this.FlockAlignment(theGame, this); 
                if (theGame.PredatorOn && 

this.EuclideanDistance(theGame.Predator) < 
predatorAvoidanceDistance + 100) 

                    ;   //headingVector = headingVector 
                headingVector = headingVector + alignment; 
            } 
 
            if (theGame.ObstacleOn) 
            { 
                Vector2 obstacleAvoid = this.ObstacleAvoidance(theGame, 

this); 
                headingVector = headingVector + obstacleAvoid; 
            } 
 
            return headingVector; 
        } 
 
        /// <summary> 
        /// Calculates a headingVector from the steering rules for the  
        /// Leader Bird which is combined with bird's destination. 
        /// Reduced rules - only obstacle avoidance. 
        /// The leader knows exactly where it is going, regardless of  
   /// other birds and does not attempt to separate from them 
        /// as it will be in the lead. 
        /// </summary>         
        public Vector2 CalculateCorrectedHeadingLeaderBird(Game1 theGame) 
        { 
            Vector2 headingVector = new Vector2(0, 0); 
 
            if (theGame.PredatorOn && 

(this.EuclideanDistance(theGame.Predator) < 
predatorAvoidanceDistance)) 

            { 
                if (theGame.ObstacleOn) 
                { 



MSc Computer Science Project Report : Robyn Backhouse 105

                    Vector2 obstacleAvoid = 
this.ObstacleAvoidance(theGame, this); 

                    headingVector = headingVector + obstacleAvoid; 
                } 
 
                if (theGame.SeparationOn) 
                { 
                    Vector2 separation = this.FlockSeparation(theGame, 

this); 
                    headingVector = headingVector + separation; 
                } 
 
                Vector2 predatoravoid = this.FlockPredatorAvoid(theGame, 

this); 
                headingVector = headingVector + predatoravoid; 
                return headingVector; 
            } 
 
            if (theGame.SeparationOn) 
            { 
                Vector2 separation = this.FlockSeparation(theGame, this); 
                headingVector = headingVector + separation; 
            } 
 
            if (theGame.ObstacleOn) 
            { 
                Vector2 obstacleAvoid = this.ObstacleAvoidance(theGame, 

this); 
                headingVector = headingVector + obstacleAvoid; 
            } 
 
            return headingVector; 
        } 
 
        /// <summary> 
        /// Separation rule: birds avoid collisions with other birds 
   /// and maintain a set distance from other birds 
        /// </summary> 
        private Vector2 FlockSeparation(Game1 theGame, Bird mybird) 
        { 
            Vector2 separationVector = new Vector2(0, 0); 
 
            foreach (Bird bird in theGame.FlockArray) 
            { 
                if ((mybird != bird) && (mybird.EuclideanDistance(bird) < 

collisionDistance) && ((mybird.AngleBetweenBirds(bird) 
< 140) && (mybird.AngleBetweenBirds(bird) > -140))) 

 
                    separationVector = separationVector - 

(bird.BirdPosition - mybird.BirdPosition); 
            } 
            return separationVector * theGame.SeparationWeight; 
        } 
 
        /// <summary> 
        /// Alignment rule: birds align their heading with flockmates 
        /// </summary> 
        private Vector2 FlockAlignment(Game1 theGame, Bird mybird) 
        { 
            Vector2 alignmentVector = new Vector2(); 
            alignmentVector = mybird.BirdDestination; 
            int numberOfBirdsInNeighbourhood = 1; 
 
            foreach (Bird bird in theGame.FlockArray) 



MSc Computer Science Project Report : Robyn Backhouse 106

            { 
                if ((mybird != bird) && (mybird.EuclideanDistance(bird) < 

NeighbourDistance) && (mybird.AngleBetweenBirds(bird) 
< 140 && mybird.AngleBetweenBirds(bird) > -140)) 

                { 
                    alignmentVector = alignmentVector + 

bird.BirdDestination; 
                    numberOfBirdsInNeighbourhood++; 
                } 
            } 
 
            alignmentVector = alignmentVector / 

numberOfBirdsInNeighbourhood; 
 
            //calculate percieved destination, then add about an eighth  
            //of this to the birds current destination. 
            return ((alignmentVector - mybird.BirdDestination) / 8) * 

theGame.AlignmentWeight; 
        } 
 
        /// <summary> 
        /// Steering rule for predator avoidance. 
        /// </summary> 
        private Vector2 FlockPredatorAvoid(Game1 theGame, Bird mybird) 
        { 
            Vector2 predatorAvoid = new Vector2(0, 0); 
 
                predatorAvoid.X = predatorAvoid.X - 

(theGame.Predator.BirdPosition.X - 
mybird.BirdPosition.X); 

                predatorAvoid.Y = predatorAvoid.Y - 
(theGame.Predator.BirdPosition.Y - 
mybird.BirdPosition.Y); 

 
            return predatorAvoid * theGame.PredatorAvoidWeight; 
        } 
 
        /// <summary> 
        /// Updates the bird current position to the new position - makes  

  /// bird move. 
        /// This is called when ALL birds have individual destinations.  

  /// More like real birds.. 
        /// Move the bird by destination and steering rules, scaled by  
    /// elapsed time and speedRestricter 
        /// Changes destination coordinates and wraps bird when goes off  

  /// edge of screen 
        /// </summary> 
        public void UpdateBirdIndividuals( Game1 theGame) 
        { 
            if (BirdPosition.X >= base.MaxX || BirdPosition.X <= 

base.MinX || BirdPosition.Y <= base.MinY || BirdPosition.Y 
>= base.MaxY) 

            { 
                WrapBird(theGame); 
                NewDestination(theGame); 
            } 
 
            Vector2 headingVector = 

CalculateCorrectedHeadingAllBirds(theGame); 
            BirdDestination = (BirdDestination + headingVector); 
            this.BirdDistanceController(theGame); 
            BirdPosition = BirdPosition + BirdDestination * SpeedLimiter 

* theGame.SpeedRestricter; 
        } 



MSc Computer Science Project Report : Robyn Backhouse 107

 
        /// <summary> 
        /// Updates the bird current position to the new position - makes  

  /// bird move. 
        /// This is called on all birds except the leader bird, when only  

  /// leader bird has destination.  
        /// Others only obey steering rules - do not have own  

  /// destinations 
        /// Move the bird by destination of leader bird, scaled by  

  /// elapsed time and speedRestricter 
        /// </summary> 
        public void UpdateBirdFollower(GameTime gameTime, Game1 theGame) 
        { 
            if (BirdPosition.X >= MaxX || BirdPosition.X <= MinX || 

BirdPosition.Y <= MinY || BirdPosition.Y >= MaxY) 
                WrapBird(theGame); 
 
            Vector2 headingVector = 

this.CalculateCorrectedHeadingAllBirds(theGame); 
            BirdDestination = (theGame.FlockArray[0].BirdPosition - 

this.BirdPosition) + headingVector; 
            this.BirdDistanceController(theGame); 
            BirdPosition = BirdPosition + BirdDestination * SpeedLimiter 

* (theGame.SpeedRestricter * 3); 
        } 
 
        /// <summary> 
        /// Updates the bird current position to the new position - makes  

  /// bird move. 
        /// This is for the leader bird only, so does not include  

  /// cohesion or alignment 
        /// Move the bird by destination and steering rules, scaled by  

  /// elapsed time and speedRestricter. 
        /// Changes destination coordinates and wraps bird when goes off  

  /// edge of screen 
        /// </summary> 
        public void UpdateBirdLeader(GameTime gameTime, Game1 theGame) 
        { 
            if (BirdPosition.X >= MaxX || BirdPosition.X <= MinX || 

BirdPosition.Y <= MinY || BirdPosition.Y >= MaxY) 
            { 
                WrapBird(theGame); 
                NewDestination(theGame); 
            } 
 
            Vector2 headingVector = 

this.CalculateCorrectedHeadingLeaderBird(theGame); 
            BirdDestination = BirdDestination + headingVector; 
            this.BirdDistanceController(theGame); 
            BirdPosition = BirdPosition + BirdDestination * (SpeedLimiter 

* 3) * (theGame.SpeedRestricter / 2); 
        } 
 
        /// <summary> 
        /// Sets bird destination to the point the user clicked 
        /// </summary> 
        public void UserSetDestination(Game1 theGame, Vector2 userDest) 
        { 
            BirdDestination = userDest - BirdPosition; 
        } 
    } 
} 
 



MSc Computer Science Project Report : Robyn Backhouse 108

D.5 Class:  Predator Bird ( Inherited Class ) 
 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    public class PredatorBird : Bird 
    { 
        /// <summary> 
        /// Constructor for Predator Bird.  Calls the base Bird class. 
        /// </summary> 
        /// <param name="theGame"></param> 
        public PredatorBird(Game1 theGame) 
            : base(theGame) 
        {    } 
 
        /// <summary> 
        /// Constructor for Predator Bird, specifying position and  
        /// destination co-ordinates 
        /// </summary> 
        public PredatorBird( float posx, float posy, float destx, float 

desty)  
            : base (posx, posy, destx, desty) 
        {    } 
 
 
        /// <summary> 
        /// Updates the position and destination of the predator. 
        /// </summary> 
        public void UpdatePredator(Game1 theGame) 
        { 
            if (BirdPosition.X >= MaxX || BirdPosition.X <= MinX || 

BirdPosition.Y <= MinY || BirdPosition.Y >= MaxY) 
            { 
                WrapBird(theGame); 
                NewDestination(theGame); 
            } 
 
            Vector2 headingVector = 

this.CalculateNewHeadingPredator(theGame); 
            BirdDestination = BirdDestination + headingVector; 
            this.BirdDistanceController(theGame); 
            BirdPosition = BirdPosition + BirdDestination * ( 

SpeedLimiter * 2.5f ) * (theGame.SpeedRestricter / 2); 
 
            if (theGame.PredatorOn) 
                for (int i = 0; i < theGame.FlockArray.Length; i++) 
                { 
                    if (this.EuclideanDistance(theGame.FlockArray[i])<10) 
                        theGame.EatBird(i); 
                } 
        } 
 
        /// <summary> 



MSc Computer Science Project Report : Robyn Backhouse 109

        /// Calculates a new destination for the predator, considering  
        /// obstacles and flock birds or prey. 
        /// </summary> 
        /// <returns>vector for new destination</returns> 
        public Vector2 CalculateNewHeadingPredator(Game1 theGame) 
        { 
            Vector2 headingVector = new Vector2(0, 0); 
 
            if (theGame.ObstacleOn) 
            { 
                Vector2 obstacleAvoid = this.ObstacleAvoidance(theGame, 

this); 
                headingVector = headingVector + obstacleAvoid; 
            } 
 
            Vector2 cohesion = this.FlockCohesion(theGame, this); 
            headingVector = headingVector + cohesion; 
 
            return headingVector; 
        } 
    } 
} 
 
 



MSc Computer Science Project Report : Robyn Backhouse 110

D.6 Class:  Obstacle  
 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    public class Obstacle 
    { 
        Texture2D obstacleTexture;  // Texture to render for obstacles 
        Vector2 obstaclePosition = new Vector2(); 
        private float obstacleTextureHeight; 
        private float obstacleTextureWidth; 
        Vector2 obstacleCentre = new Vector2(); 
 
        /// <summary> 
        /// Constructor for Obstacle class taking no arguments 
        /// </summary> 
        public Obstacle() 
        { 
            obstaclePosition.X = obstaclePosition.Y = 0; 
        } 
 
        /// <summary> 
        /// Constructor for Obstacle class taking co-ordinates 

  /// used mainly for testing 
        /// </summary> 
        public Obstacle(float x, float y) 
        { 
            obstaclePosition.X = x; 
            obstaclePosition.Y = y; 
        } 
 
        public Vector2 ObstaclePosition 
        { 
            get { return obstaclePosition; } 
            set { obstaclePosition = value; } 
        } 
 
        public Vector2 ObstacleCentre 
        { 
            get { return obstacleCentre; } 
            set { obstacleCentre = value; } 
        } 
 
        public void UpdateObstaclePosition(float x, float y) 
        { 
            obstaclePosition.X = x; 
            obstaclePosition.Y = y; 
        } 
 
        public float ObstacleTextureHeight 
        { get { return obstacleTextureHeight; } } 
 
        public float ObstacleTextureWidth 



MSc Computer Science Project Report : Robyn Backhouse 111

        { get { return obstacleTextureWidth; } } 
 
        /// <summary> 
        /// Called by XNA framework to load content for this class 
        /// </summary> 
        public void LoadContent(ContentManager theContentManager, string 

theAssetName) 
        { 
            obstacleTexture = 

theContentManager.Load<Texture2D>(theAssetName); 
            obstacleTextureHeight = obstacleTexture.Height; 
            obstacleTextureWidth = obstacleTexture.Width; 
            obstacleCentre.X = (ObstaclePosition.X + 

(obstacleTexture.Width / 2)); 
            obstacleCentre.Y = (ObstaclePosition.Y + 

(obstacleTexture.Height / 2)); 
        } 
 
        /// <summary> 
        /// Draws the obstacle sprites on the screen 
        /// </summary> 
        public void Draw(SpriteBatch obstacleBatch) 
        { 
            obstacleBatch.Draw(obstacleTexture, obstaclePosition, 

Color.White); 
        } 
 
        /// <summary> 
        /// Positions hard coded obstacles on screen 
        /// </summary> 
        public void PositionObstacle(int i, Game1 theGame) 
        { 
            // Set obstacles in place depending upon number chosen 
            if (i == 2) 
                UpdateObstaclePosition((theGame.DisplayWidth / 6), 

(theGame.DisplayHeight / 7) * 2); 
 
            if (i == 1) 
                UpdateObstaclePosition(((theGame.DisplayWidth / 4) * 

3.2f), ((theGame.DisplayHeight - 
ObstacleTextureHeight) / 2)); 

        } 
    } 
} 
 



MSc Computer Science Project Report : Robyn Backhouse 112

D.7 Class:  User Target 
 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace Burds2D 
{ 
    /// <summary> 
    /// This is a drawable game component 
    /// </summary> 
    internal class UserTarget : 

Microsoft.Xna.Framework.DrawableGameComponent 
    { 
 
        private Texture2D targetTexture; 
        private Vector2 targetPosition; 
        private Color targetOverlayColour; 
        private float targetFader; 
        private SpriteBatch targetBatch; 
 
        internal Vector2 TargetPosition 
        { 
            get { return targetPosition; } 
            set 
            {   //Sets new target values every time user clicks mouse 
 
                // Centres the target position 

    value.X = value.X - (targetTexture.Width / 2);  
                value.Y = value.Y - (targetTexture.Height / 2); 
                targetPosition = value; 

    // Sets the fading time for target sprite 
                targetFader = 3f;    

    // Makes the target visible - "Visible" is XNA component 
                Visible = true;      
            } 
        } 
 
        /// <summary> 
        /// Constructor for Target class 
        /// </summary> 
        internal UserTarget(Game game) 
            : base(game) 
        { 
            targetOverlayColour = Color.WhiteSmoke; 
        } 
 
        /// <summary> 
        /// Allows the game component to perform any initialization it  
        /// needs to before starting to run.   
        /// This is where it can query for any required services and  

  /// load content. 
        /// </summary> 
        public override void Initialize() 
        { 
            base.Initialize(); 



MSc Computer Science Project Report : Robyn Backhouse 113

        } 
 
        /// <summary> 
        /// Allows the game component to load graphics content 
        /// </summary> 
        protected override void LoadContent() 
        { 
            targetTexture = Game.Content.Load<Texture2D>("userTarget"); 
            targetBatch = new SpriteBatch(GraphicsDevice); 
            base.LoadContent(); 
        } 
 
        /// <summary> 
        /// Allows the game component to update itself. 
        /// </summary> 
        /// <param name="gameTime">Provides a snapshot of timing  

  /// values.</param> 
        public override void Update(GameTime gameTime) 
        { 
            if (Visible) 
            { 
                //Fades the picture of the user pointer incrementally  
      //over 2 seconds 
                targetFader = targetFader - 0.02f; 
 
                //After 2 seconds, timer is zero and pointer no longer  

    //visible 
                if (targetFader <= 0) 
                { 
                    Visible = false; 
                } 
                else 
                { 
                    Vector4 colour = new 

Vector4(targetOverlayColour.ToVector3(), 
targetFader); 

                    targetOverlayColour = new Color(colour); 
                } 
            } 
            base.Update(gameTime); 
        } 
 
        /// <summary> 
        /// Allows the game component to draw itself 
        /// </summary> 
        public override void Draw(GameTime gameTime) 
        { 
            targetBatch.Begin(); 
            targetBatch.Draw(targetTexture, targetPosition, 

targetOverlayColour); 
            targetBatch.End(); 
            base.Draw(gameTime); 
        } 
    } 
} 
 
 
 
 



MSc Computer Science Project Report : Robyn Backhouse 114

D.8 Class:  Random Number Generator 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
namespace Burds2D 
{ 
    /// <summary> 
    /// Returns a non-negative random number less than the specified 
    /// maximum(includes zero as a possible return value. 
    /// </summary>     
 
    public class RandomNumberGenerator 
    { 
        private static Random r; 
 
        static RandomNumberGenerator() 
        { 
            r = new Random(); 
        } 
 
        public static float Next(int range) 
        { 
            return r.Next(range); 
        } 
    } 
} 
 
 
 



MSc Computer Science Project Report : Robyn Backhouse 115

APPENDIX E   
 
Code for Test Suite: 
 
using System; 
using System.Text; 
using System.Collections.Generic; 
using System.Linq; 
using Microsoft.VisualStudio.TestTools.UnitTesting; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.GamerServices; 
using Burds2D; 
 
namespace Burds2D 
{ 
 
    /// <summary> 
    /// Summary description for UnitTest1 
    /// </summary> 
    [TestClass] 
    public class UnitTest1 
    { 
        Game1 FlockingBirds = new Game1(); 
        private FlockBird[] testFlock; 
        private PredatorBird testPredator; 
        Bird one = new Bird(73, 189, 207, 643); 
        Bird two = new Bird(48, 234, 243, -120); 
        Bird three = new Bird(87, 202, 24, -338); 
        Bird four = new Bird(57, 167, 529, 590); 
        Bird bird1 = new Bird(-250, -400, 0, 0); 
        Bird bird2 = new Bird(520, 100, 0, 0); 
        Bird bird3 = new Bird(200, 300, 0, 0); 
        Bird bird4 = new Bird(320, 200, 0, 0); 
        Bird bird5 = new Bird(10, 300, 0, 0); 
        Bird bird6 = new Bird(3567, 49345, 0, 0); 
        Bird bird7 = new Bird(160, 300, 0, 0); 
        Bird bird8 = new Bird(840, 398, 0, 0); 
        Bird bird9 = new Bird(2736, 85367, 0, 0); 
        Bird bird10 = new Bird(300, 400, 0, 0); 
        Bird bird11 = new Bird(300, 400, 6000, 3000); 
        Bird bird12 = new Bird(200, 300, -4000, -4398); 
        Bird bird13 = new Bird(300, 200, 500, 400); 
        Bird bird14 = new Bird(600, 400, -300, -200); 
        Bird birdwrap = new Bird(2000, 1500, 19, 100); 
 
        Obstacle obstacle = new Obstacle(642, 385); 
        Obstacle obstacle1 = new Obstacle(45, 7643); 
        Obstacle obstacle2 = new Obstacle(230f, 250f); 
  
        public UnitTest1() 
        { 
            testFlock = new FlockBird[5]; 
            testPredator = new PredatorBird(300, 300, 800, 400); 
 
            testFlock[0] = new FlockBird(400, 400, 600, 600); 
            testFlock[1] = new FlockBird(500, 500, 700, 700); 
            testFlock[2] = new FlockBird(100, 100, 300, 400); 
            testFlock[3] = new FlockBird(200, 200, -100, -50); 
            testFlock[4] = new FlockBird(600, 600, -300, -200); 
        } 
 
        private TestContext testContextInstance; 



MSc Computer Science Project Report : Robyn Backhouse 116

 
        /// <summary> 
        ///Gets or sets the test context which provides 
        ///information about and functionality for the current test run. 
        ///</summary> 
        public TestContext TestContext 
        { 
            get 
            { 
                return testContextInstance; 
            } 
            set 
            { 
                testContextInstance = value; 
            } 
        } 
 
        /// <summary> 
        /// Tests the setting up of the array of flock of birds. 
        /// </summary> 
        [TestMethod] 
        public void testFlockArraySetup() 
        { 
            Assert.AreEqual(600, testFlock[0].BirdDestination.X); 
            Assert.AreEqual(-200, testFlock[4].BirdDestination.Y); 
            Assert.AreEqual(200, testFlock[3].BirdPosition.X); 
            Assert.AreEqual(100, testFlock[2].BirdPosition.Y); 
        } 
 
        /// <summary> 
        /// Tests the WrapBird function 
        /// </summary> 
        [TestMethod] 
        public void WrapBirdTest() 
        { 
            birdwrap.WrapBird(FlockingBirds); 
            Assert.AreEqual(0, birdwrap.BirdPosition.X); 
            Assert.AreEqual(0, birdwrap.BirdPosition.Y); 
        } 
 
        /// <summary> 
        /// Tests that all Boolean values are correctly loaded at  
        /// their default settings upon start of simulation 
        /// </summary> 
        [TestMethod] 
        public void testBooleanRuleValues() 
        { 
            Assert.AreEqual(true, FlockingBirds.CohesionOn); 
            Assert.AreEqual(true, FlockingBirds.SeparationOn); 
            Assert.AreEqual(true, FlockingBirds.AlignmentOn); 
            Assert.AreEqual(true, FlockingBirds.ObstacleOn); 
            Assert.AreEqual(true, FlockingBirds.PredatorOn); 
        } 
 
 
        /// <summary> 
        /// Tests euclidean distance between two birds with positive  
        /// and negative co-ordinates 
        /// </summary> 
        [TestMethod] 
        public void EuclideanDistanceBirdClass() 
        { 
            int result = (int)bird3.EuclideanDistance(bird2); 
            Assert.AreEqual(377, result); 



MSc Computer Science Project Report : Robyn Backhouse 117

            int res1 = (int)bird4.EuclideanDistance(bird12); 
            Assert.AreEqual(156, res1); 
            int res2 = (int)bird11.EuclideanDistance(bird10); 
            Assert.AreEqual(0, res2); 
            int res3 = (int)bird7.EuclideanDistance(bird9); 
            Assert.AreEqual(85105, res3); 
            int res4 = (int)bird4.EuclideanDistance(bird5); 
            Assert.AreEqual(325, res4);         
        } 
 
        /// <summary> 
        /// Tests Euclidean distance between bird and static obstacle 
        /// </summary> 
        [TestMethod] 
        public void EuclideanDistanceObstacleClass() 
        { 
            int result = (int)bird7.EuclideanDistanceObs(obstacle2); 
            Assert.AreEqual(86, result); 
            int res = (int)bird6.EuclideanDistanceObs(obstacle1); 
            Assert.AreEqual(41850, res);        } 
 
 
        /// <summary> 
        /// Tests Euclidean distance between bird and set of vector  
        /// co-ordinates 
        /// </summary> 
        [TestMethod] 
        public void EuclideanDistanceVectorTest() 
        { 
            Vector2 myVec = new Vector2(548, 129); 
            int result = (int)bird8.EuclideanDistanceVectors(myVec); 
            Assert.AreEqual(397, result); 
        } 
 
        /// <summary> 
        /// Tests Euclidean distance between bird and set of vector  
        /// co-ordinates 
        /// </summary> 
        [TestMethod] 
        public void EuclideanDistanceVectorTest2() 
        { 
            Vector2 myVec = new Vector2(-654, -45745); 
            int result = (int)bird9.EuclideanDistanceVectors(myVec); 
            Assert.AreEqual(131155, result); 
        } 
 
        /// <summary> 
        /// Tests the Bird class constructor 
        /// </summary> 
        [TestMethod] 
        public void BirdConstructor() 
        { 
            Assert.AreEqual(bird10.BirdPosition.X, 300); 
            Assert.AreEqual(bird10.BirdPosition.Y, 400); 
        } 
 
        /// <summary> 
        /// Tests the Obstacle class constructor 
        /// </summary> 
        [TestMethod] 
        public void ObstacleConstructor() 
        { 
            Assert.AreEqual(obstacle.ObstaclePosition.X, 642); 
            Assert.AreEqual(obstacle.ObstaclePosition.Y, 385); 



MSc Computer Science Project Report : Robyn Backhouse 118

        } 
 
        /// <summary> 
        /// Tests the Bird class constructor using negative values for  
        /// bird position 
        /// </summary> 
        [TestMethod] 
        public void BirdConstructorNegValues() 
        { 
            Assert.AreEqual(bird1.BirdPosition.X, -250); 
            Assert.AreEqual(bird1.BirdPosition.Y, -400); 
        } 
 
        /// <summary> 
        /// Tests the BirdDistanceController function 
        /// </summary> 
        [TestMethod] 
        public void BirdDistanceControllerTest() 
        { 
            bird11.BirdDistanceController(FlockingBirds); 
            Assert.AreEqual(3200, bird11.BirdDestination.X); 
            Assert.AreEqual(1700, bird11.BirdDestination.Y); 
 
            bird12.BirdDistanceController(FlockingBirds); 
            Assert.AreEqual(-2200, bird12.BirdDestination.X); 
            Assert.AreEqual(-2399, bird12.BirdDestination.Y); 
        } 
 
        /// <summary> 
        /// Tests the RandomNumberGenerator class and function 
        /// </summary> 
        [TestMethod] 
        public void RandomNumberGeneratorCheck() 
        { 
            Assert.IsTrue(4 > RandomNumberGenerator.Next(4)); 
            Assert.IsTrue(-1 < RandomNumberGenerator.Next(50)); 
 
            bool result = false; 
            int num = (int)RandomNumberGenerator.Next(2); 
            if (num == 0 || num == 1) 
                result = true; 
            Assert.IsTrue(result); 
        } 
 
        /// <summary> 
        /// Tests vector maths to check correct mathematical assumptions  
        /// for the XNA framework 
        /// </summary> 
        [TestMethod] 
        public void VectorChecker() 
        { 
            Vector2 vec1 = new Vector2(200, 150); 
            Vector2 vec2 = new Vector2(30, 50); 
            Vector2 vec10 = new Vector2(0, 0); 
            Vector2 vecA = new Vector2(100, 200); 
            Vector2 vecB = new Vector2(120, 200); 
            Vector2 vec3, vec4, vec5, vec6, vec7, vec9; 
            Vector2 vec13, vec14, vec15, vec16, vecAFin, vecBFin; 
 
            vec3 = vec1 + vec2; 
            vec4 = vec1 - vec2; 
            vec5 = vec2 - vec1; 
            vec6 = vec1 * vec2; 
            vec7 = vec1 / vecA; 



MSc Computer Science Project Report : Robyn Backhouse 119

            vec9 = vec3 / 2; 
 
            Assert.AreEqual(230, vec3.X); 
            Assert.AreEqual(200, vec3.Y); 
            Assert.AreEqual(170, vec4.X); 
            Assert.AreEqual(100, vec4.Y); 
            Assert.AreEqual(-170, vec5.X); 
            Assert.AreEqual(-100, vec5.Y); 
            Assert.AreEqual(6000, vec6.X); 
            Assert.AreEqual(7500, vec6.Y); 
            Assert.AreEqual(2, vec7.X); 
            Assert.AreEqual(0.75, vec7.Y); 
            Assert.AreEqual(115, vec9.X); 
            Assert.AreEqual(100, vec9.Y); 
 
            //These check the vector maths on the Separation Rule, which  
            //is replicated here. 
            vec13 = (vec10 - (vecB - vecA)); 
            vec15 = vecA + vec13; 
            vecAFin = vec15; 
            Assert.AreEqual(80, vecAFin.X); 
            Assert.AreEqual(200, vecAFin.Y); 
 
            vec14 = (vec10 - (vecAFin - vecB)); 
            vec16 = vecB + vec14; 
            vecBFin = vec16; 
            Assert.AreEqual(160, vecBFin.X); 
            Assert.AreEqual(200, vecBFin.Y); 
        } 
 
        /// <summary> 
        /// Tests the AngleBirdFacing function 
        /// </summary> 
        [TestMethod] 
        public void AngleBirdFacingTest() 
        { 
            //Radians returned 
            double oneAngRad = one.AngleBirdFacing(); 
            double twoAngRad = two.AngleBirdFacing(); 
            double threeAngRad = three.AngleBirdFacing(); 
            double fourAngRad = four.AngleBirdFacing(); 
 
            Assert.AreEqual(2.8301413636869981, oneAngRad); 
            Assert.AreEqual(1.1120991756080376, twoAngRad); 
            Assert.AreEqual(0.070886946568588183, threeAngRad); 
            Assert.AreEqual(2.4106535494308297, fourAngRad); 
        } 
 
        /// <summary> 
        /// Tests AngleBetweenBirds function 
        /// </summary> 
        [TestMethod] 
        public void AngleBetweenBirdsTest() 
        { 
            int res1 = (int)one.AngleBetweenBirds(bird13); 
            Assert.AreEqual(69, res1); 
            int res2 = (int)bird13.AngleBetweenBirds(bird7); 
            Assert.AreEqual(74, res2); 
            int res3 = (int)bird7.AngleBetweenBirds(bird14); 
            Assert.AreEqual(-12, res3); 
            int res4 = (int)bird14.AngleBetweenBirds(one); 
            Assert.AreEqual(11, res4); 
        } 
 



MSc Computer Science Project Report : Robyn Backhouse 120

        /// <summary> 
        /// Tests AngleBetweenBirdAndObstacle function 
        /// </summary> 
        [TestMethod] 
        public void AngleBetweenBirdAndObstacleTest() 
        { 
            int res1 = (int)one.AngleBetweenBirdObstacle(obstacle); 
            int res2 = (int)three.AngleBetweenBirdObstacle(obstacle1); 
            int res3 = (int)bird12.AngleBetweenBirdObstacle(obstacle2); 
            Assert.AreEqual(53, res1); 
            Assert.AreEqual(3, res2); 
            Assert.AreEqual(106, res3); 
        } 
 
        /// <summary> 
        /// Tests conversion of radians into degrees for mathematical  
        /// calculations 
        /// </summary> 
        [TestMethod] 
        public void RadiansToDegreeTest() 
        { 
            //Radians returned 
            double oneAngRad = one.AngleBirdFacing(); 
            double twoAngRad = two.AngleBirdFacing(); 
            double threeAngRad = three.AngleBirdFacing(); 
            double fourAngRad = four.AngleBirdFacing(); 
 
            //Converts radians to degrees 
            int oneAngDeg = (int)(oneAngRad * 180 / Math.PI); 
            int twoAngDeg = (int)(twoAngRad * 180 / Math.PI); 
            int threeAngDeg = (int)(threeAngRad * 180 / Math.PI); 
            int fourAngDeg = (int)(fourAngRad * 180 / Math.PI); 
 
            Assert.AreEqual(162, oneAngDeg); 
            Assert.AreEqual(63, twoAngDeg); 
            Assert.AreEqual(4, threeAngDeg); 
            Assert.AreEqual(138, fourAngDeg); 
        } 
    } 
} 
 
 
 



MSc Computer Science Project Report : Robyn Backhouse 121

APPENDIX F 
 
Code Generated by XNA Game Studio when Creating a New Windows 
Game: 
 
The following code is generated automatically within Visual Studio 2008 using XNA Framework 

3.0 when a new “Windows Game” project is created.  This is a basic skeleton upon which the 

programmer builds, adding commands as required. 

 
using System; 
using System.Collections.Generic; 
using Microsoft.Xna.Framework; 
using Microsoft.Xna.Framework.Audio; 
using Microsoft.Xna.Framework.Content; 
using Microsoft.Xna.Framework.GamerServices; 
using Microsoft.Xna.Framework.Graphics; 
using Microsoft.Xna.Framework.Input; 
using Microsoft.Xna.Framework.Net; 
using Microsoft.Xna.Framework.Storage; 
 
namespace WindowsGame1 
{ 
    static class Program 
    { 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        static void Main(string[] args) 
        { 
            using (Game1 game = new Game1()) 
            { 
                game.Run(); 
            } 
        } 
    } 
 
    /// <summary> 
    /// This is the main type for your game 
    /// </summary> 
    public class Game1 : Microsoft.Xna.Framework.Game 
    { 
        GraphicsDeviceManager graphics; 
        SpriteBatch spriteBatch; 
 
        public Game1() 
        { 
            graphics = new GraphicsDeviceManager(this); 
            Content.RootDirectory = "Content"; 
        } 
 
        /// <summary> 
        /// Allows the game to perform any initialization it needs to  

  /// before starting to run. 
        /// This is where it can query for any required services and  

  /// load any non-graphic related content.   
        /// Calling base.Initialize will enumerate through any components 
        /// and initialize them as well. 
        /// </summary> 
        protected override void Initialize() 



MSc Computer Science Project Report : Robyn Backhouse 122

        { 
            // TODO: Add your initialization logic here 
 
            base.Initialize(); 
        } 
 
        /// <summary> 
        /// LoadContent will be called once per game and is the  
        /// place to load all of your content. 
        /// </summary> 
        protected override void LoadContent() 
        { 
            // Create a new SpriteBatch, which can be used to draw       

textures. 
            spriteBatch = new SpriteBatch(GraphicsDevice); 
 
            // TODO: use this.Content to load your game content here 
        } 
 
        /// <summary> 
        /// UnloadContent will be called once per game and is the  
        /// place to unload all content. 
        /// </summary> 
        protected override void UnloadContent() 
        { 
            // TODO: Unload any non ContentManager content here 
        } 
 
        /// <summary> 
        /// Allows the game to run logic such as updating the world, 
        /// checking for collisions, gathering input, and playing audio. 
        /// </summary> 
        /// <param name="gameTime">Provides a snapshot of timing values.  
        /// </param> 
        protected override void Update(GameTime gameTime) 
        { 
            // Allows the game to exit 
            if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==  

ButtonState.Pressed) 
                this.Exit(); 
 
            // TODO: Add your update logic here 
  
            base.Update(gameTime); 
        } 
 
        /// <summary> 
        /// This is called when the game should draw itself. 
        /// </summary> 
        /// <param name="gameTime">Provides a snapshot of timing values. 

  /// </param> 
        protected override void Draw(GameTime gameTime) 
        { 
            graphics.GraphicsDevice.Clear(Color.CornflowerBlue); 
 
            // TODO: Add your drawing code here 
 
            base.Draw(gameTime); 
        } 
    } 
} 



MSc Computer Science Project Report : Robyn Backhouse 123

APPENDIX G     
 
Class Diagrams for Refactored Bird Class: 
 
With the introduction of a Predator Bird, the Bird class was refactored from a single class into a 

Bird base class with inherited classes of FlockBird and PredatorBird.  Below are the class diagrams 

for this refactoring of the Bird class – first when it was a single class, and then once it had been 

split into base class with inherited classes.  The majority of variables and functions are common to 

both types of birds so they remain in the base class to be used by all inherited classes, with only 

elements specific to each sub-class being moved down into the inherited classes. 

 

 
Bird Base Class with Inherited Flock 
Bird and Predator Bird: 

 

   Single Bird Class: 
 

 



MSc Computer Science Project Report : Robyn Backhouse 124

APPENDIX H     
 
Notes For The CD: 
 
H.1 Running the Simulation: 
 

Unfortunately due to restrictions with the current full release version of the XNA framework it is 

not as yet possible to create a standalone executable application for this simulation.  In order to run 

it, it is necessary to have installed upon your machine both Microsoft Visual Studio 2008 as well as 

the XNA Game Studio 3.0 CTP (Community Technology Preview).  Visual Studio 2008 is 

available on some of the lab computers and as a free download within the college from the Elms 

site, and the XNA Framework is available as a free download from Microsoft and has been 

included on this CD for your convenience.  Visual Studio has not been included as this is not 

generally free software and its inclusion therefore may be considered as piracy. 
 

If it is not possible or desirable to install these onto your machine the Systems Group have offered 

to assist in any way they can, or alternatively contact Dr Keith Mannock who I believe has the 

required software installed or available and should be able to run the programme for you.   
 

Alternatively please feel free to contact me and I would be delighted to attend the college to 

demonstrate the simulation for you on a suitable machine. 
 

If running the simulation in Visual Studio 2008, please open the Burds_2D.sln file (in the 

Burds_2D directory).   

 

 

 

Go to the Build menu and select “Build Solution”.   

 

 

 

 

 

Once it is built go to Debug and select “Start 

Debugging”.  This will run the simulation.   

 

Once it is running, follow GUI instructions for use of 

the simulation.  To end, click on the familiar red cross 

in the top right corner. 

 



MSc Computer Science Project Report : Robyn Backhouse 125

H.2 What’s on the CD: 

 

• Code for the “Burds” Simulation:  The solution including test suite for the project may 

be opened as outlined above in Visual Studio 2008 with XNA 3.0 CTP.  This is in the 

folder named “Code for Simulation”. 

 

• XNA Game Studio 3.0 CTP (Community Technology Preview):  This is a free 

download from Microsoft so has been included onto the CD for easy installation.  Visual 

Studio 2008 is required to install the XNA framework. 

 

• Project Report in both PDF and Microsoft Word format 

 

• Screen Captures (Movies) in AVI format of simulation running:  In the event that it is 

not possible to view the actual simulation due to lack of appropriate software, several 

screen capture movies have been prepared for viewing of different aspects of the simulation 

running.   

 

PLEASE NOTE:  The movies show a somewhat jerky simulation which is a direct result 

of the screen capture software running concurrently with the simulation and the computer’s 

inability to run smoothly under these conditions.  When running normally the simulation is 

not jerky but delivers very smooth graceful and flowing movement of the birds.  The 

movies are therefore no substitution for the real simulation but are included to provide a 

general idea of the birds behaviour under various conditions and rule combinations. 

 

Full list of movies available is provided in appendix section H.3 (following page). 

 

• Software to play AVI movies:  Microsoft Media Player 11 is included which should 

enable playback of AVI movies.  If this does not allow playback, the codec belonging to 

the screen capture software has also been included (CamStudioCodec10.zip) as well as the 

actual screen capture software itself (CamStudio20.exe).  Both of these are open source and 

freely available for personal use and have been included on this CD with full 

documentation from their original source.    

 

• Project Proposal Form:  This is the original proposal form for the project. 

 

 



MSc Computer Science Project Report : Robyn Backhouse 126

H.3 List of Movies 

 

The movies all have the following options selected unless otherwise stated:  

Birds have individual destinations (not following a leader bird) 

Obstacle Avoidance ON   

Random Destination Change OFF  

Speed set at default value  

Predator is ON when it is visible on the screen.  Some movies have predator present for 

approximately half the time and off for the rest so that behaviour may be observed both with and 

without it.  This will be obvious to the viewer. 

Where Predator is ON, it “eats” birds and they are removed from the simulation.   

In many movies more birds are added to the simulation by user when numbers get low (for example 

when eaten by predator). 

Status of all rules can be viewed in bottom left corner of screen. 
 

1. FullSimulation1 / FullSimulation2 / FullSimulation3: 

These show the simulation with all steering rules ON (cohesion, separation and alignment) and the 

user adding more birds when numbers get low (having been eaten by the predator). 
 

2. CohesionOnly: 

Cohesion rule ON, Separation and Alignment OFF. 

Birds swirl around in groups but do not travel effectively. 
 

3. SeparationOnly: 

Separation ON, Cohesion and Alignment OFF. 

Birds move around screen in random destinations avoiding collisions but not moving together at all.   
 

4. AlignmentOnly: 

Alignment ON, Cohesion and Separation OFF. 

Birds make no attempt to separate from each other or to join together into groups or flocks.  The 

alignment rule makes them travel in the same general direction. 
 

5. Cohesion&SeparationOnly: 

Cohesion and Separation ON, Alignment OFF. 

Birds move around in groups, staying together and not colliding, but with no effective direction or 

heading. 
 

6. Cohesion&AlignmentOnly: 

Cohesion and Alignment ON, Separation OFF. 



MSc Computer Science Project Report : Robyn Backhouse 127

Birds try to get as close to each other as possible with no separation rule to keep them apart.  Move 

with a direction or heading. 
 

7. Separation&AlignmentOnly:   

Separation and Alignment ON, Cohesion OFF. 

Birds move in the same general direction as each other, aligning themselves with their neighbours, 

and avoid collisions but make no attempt to flock together. 
 

8. PredatorOff&RandomDestChange: 

All steering rules ON.  Predator bird OFF.  Random Destination Change for all birds ON. 

Birds will collectively change direction at randomly timed intervals.  This looks a little like the 

flock “sneezing” as they appear to pause briefly and all point in different directions before deciding 

on a collective heading and moving off again. 
 

9. UserPlacedTargets: 

All steering rules ON.  User places target destinations on screen. 

The pointing finger is the user placed target, which causes all birds to initially change their 

destinations towards those co-ordinates. 
 

10. ObstaclePlacement: 

All steering rules ON.  Starts with only one bird and predator.  More birds added by user. 

Obstacles placed on screen by user.   
 

11. ObstacleAvoidanceOff: 

All steering rules ON.  Obstacle Avoidance OFF. 

Birds move around screen completely ignoring obstacles. 
 

12. SpeedVariations: 

All steering rules ON. 

Speed of simulation altered by user.  First decreased to slowest speed, then incrementally increased 

to full speed before returning to “normal” default speed. 
 

13. FollowingLeaderBird: 

Birds follow a leader bird and do not have individual destinations. 

All other rules ON.  Behaviour is poor with this option, with birds becoming so crowded that they 

collide often. 
 

14. PauseSimulation: 

All steering rules ON. 

Simulation paused and recommenced several times to demonstrate the pause facility. 



MSc Computer Science Project Report : Robyn Backhouse 128

APPENDIX I 
 
Online tutorials accessed to learn XNA and C# Game Programming: 
 
Fegelein.com  (2006).   Microsoft XNA Framework; Loading a 3d model.  [Online]  Available at 
http://www.fegelein.com/?p=15  Accessed 9th July 2008. 
 
Fegelein.com  (2006).  Microsoft XNA Framework; Drawing a Complex Mesh.  [Online] Available 
at  http://www.fegelein.com  Accessed 9th July 2008. 
 
Nuclex. (2007).  Using XNA to draw a rotating triangle.  [Online]  Available at 
http://www.nuclex.org/articles/using-xna-to-draw-a-rotating-triangle   Accessed 9th July 
2008. 
 
MSDN XNA Developers Centre (2008).  [Online]  Available at http://msdn.microsoft.com/en-
us/library/bb200104.aspx  Accessed from 30th May 2008 onwards. 
 
MSDN XNA Developers Centre (2008).  Your First Game: Microsoft XNA Game Studio in 2D.  
[Online]  Available at http://msdn.microsoft.com/en-us/library/bb203893.aspx  Accessed from 30th 
May 2008 onwards. 
 
MSDN XNA Developers Centre  (2008).  Going Beyond: XNA Game Studio in 3D.  [Online]  
Available at http://msdn.microsoft.com/en-us/library/bb203897.aspx  Accessed from 30th May 
onwards. 
 
Riemers XNA Tutorials  (2008).  XNA and DirectX Tutorials.   [Online]  Available at 
http://www.riemers.net/eng/tutorials.php  Accessed from 1st June onwards. 
 
 
 
 


