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Abstract

The objectives of this research are twofold. On the first hand, it aims to show the interest
of Coordinated Atomic actions (CA actions) as a design concept and, on the other hand it
explains how the formal language CO-OPN/2 can be used to express a CA action design. A
real distributed application is developed according to a simple development life cycle: informal
requirements, specification, design, implementation. The design phase is built according to the
CA action concept. The CO-OPN/2 language is used to express the specification, and design
phase. The implementation is made in Java based on a library of generic classes adapted to
CA action concepts. The validation phase is briefly addressed, in order to demonstrate the
extent to which the development methodology followed in this paper can be useful for proving
properties.

Keywords: structuring complex concurrent systems, CO-OPN/2, formal development,
design for validation, Java.

1 Introduction

We provide a top-down engineering methodology for the development of a Java application based
on both CO-OPN/2 formal specifications and Coordinated Atomic actions (CA actions). The
advantage of a formal specification is that it describes a system in a mathematical and thus
precise way, which is necessary when complex dependable applications are developed. Thus, formal
specifications also provide a useful tool for verification and validation purposes. The advantage
of a CA action design is that it helps to guarantee the data consistency and to parallelize the
system properly. It is also a useful structuring mechanism that can simplify proofs of the system’s
correctness.

1.1 CO-OPN/2

CO-OPN/2 (Concurrent Object Oriented Petri Nets) is an object-oriented formal specification
language [4] that integrates Petri nets for the description of concurrent behaviors, and algebraic
specifications [6] for the specification of structured data evolving in the Petri nets.

Object and Class. An object is considered to be an independent entity composed of an
internal state, which provides some services to the exterior. The only way to interact with an
object is to invoke one of its services; the internal state is thus protected against uncontrolled
accesses. CO-OPN/2 defines an object as being an encapsulated algebraic net in which the places
compose the internal state and the transitions model the concurrent events of the object. A
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place consists of a multi-set of algebraic values. The transitions are divided into two groups:
the parameterized transitions, also called the methods, and the internal transitions. The former
correspond to the services provided to the outside, while the latter describe the internal behaviors
of an object. Unlike methods, the internal transitions are invisible to the exterior world and
are spontaneous events (they are fired as soon as their preconditions are satisfied). The internal
transitions are fired as long as their pre-condition is fulfilled. An object’s method can be fired
only if no further internal transition can be fired. A class describes all the components of a set of
objects and is considered as an object template. Thus, all the objects of one class have the same
structure. Objects can be dynamically created. The usual dot notation for method invocations
has been adopted.

Constructors. Class instances can be dynamically created. Particular creation methods
that create and initialize the objects can be defined; these methods may be used only once for
a given object. A pre-defined creation method create is provided. In all the specifications of
this paper, we use the following convention: a creation method is called new-classname. For
a creation method to be actually a constructor, it is necessary to declare it under the Creation
field. Usually classes are used to dynamically create new instances, but it is also possible to declare
static instances.

Object Identity. Each class instance has an identity, which is also called an object identifier,
that may be used as a reference. An order-sorted algebra of object identifiers is constructed. Since
object identifiers are algebraic values, they can be stored in places of the nets.

Object Interaction. In our approach, the interaction with an object is synchronous, although
asynchronous communications may be simulated. Thus, when an object requires a service it
asks to be synchronized with the method (parameterized transition) of the object provider. The
synchronization policy is expressed by means of a synchronization expression, which may involve
many partners joined by three synchronization operators (one for simultaneity, one for sequence,
and one for alternative or non-determinism). An object may simultaneously request two different
services of two different partners, followed by a service request to a third object.

Concurrency. Intuitively, each object possesses its own behavior and concurrently evolves
with the others. The Petri net model naturally introduces both inter-object and intra-object
concurrency into CO-OPN/2 because objects are not restricted to sequential processes. Moreover,
a set of method calls can be concurrently performed on the same object. The step semantics of
CO-OPN/2 allows the expression of true concurrency which is not possible using an interleaving
semantics.

1.2 Coordinated Atomic Actions

The Coordinated Atomic action [1, 2] concept was introduced as a unified approach for struc-
turing complex concurrent activities and supporting error recovery between multiple interacting
objects in an object-oriented system. This paradigm provides a conceptual framework for dealing
with both kinds of concurrency (cooperative and competitive) by extending and integrating two
complementary concepts - conversations and transactions. CA actions have properties of both
conversations and transactions. Conversations are used to control cooperative concurrency and to
implement coordinated and disciplined error recovery while transactions are used to maintain the
consistency of shared resources in the presence of failures and competitive concurrency.

Each CA action has a set of roles that are activated by action participants (external activities
such as threads, processes) and which cooperate within the CA action scope. Logically, the action
starts when all roles have been activated (though it is an implementation decision to use either
a synchronous or an asynchronous entry protocol) and finishes when all of them reach the action
end. The action can be completed either when no error has been detected, or after successful
recovery, or when the recovery fails and a failure exception is propagated to the containing action.

External (transactional) objects can be used concurrently by several CA actions in such a way
that information cannot be smuggled among these actions and that any sequence of operations
on these objects bracketed by the start and completion of a CA action has the ACID (atomicity,
consistency, isolation and durability) properties with respect to other sequences. The execution of



a CA action looks like an atomic transaction to the outside world. One of the ways to implement
this is to use a separate transactional support that provides these properties. This support can
offer the traditional transactional interface, i.e. operations start, abort and commit transactions
that are called (either by the CA action support or by CA action participants) at the appropriate
points during CA action execution.

The state of a CA action is represented by a set of local objects; each CA action (either the
action support or the application code) deals with these objects to guarantee their state restoration
if the action recovery is to be provided. Local objects are the main means for participants to
interact and to coordinate their executions (although external objects can be used as well).

1.3 Formal Development Methodology

The proposed formal development methodology is illustrated with an example that consists of: (1)
starting with a set of informal application requirements including validation objectives expressed
by a set of desired properties; (2) building an initial CO-OPN/2 specification, I, of the application,
based on the informal requirements that is abstract enough to be as independent as possible
of implementation constraints; the initial specification must validate the desired properties; (3)
performing two refinement steps R1 and R2. Refinement R1 provides CO-OPN/2 specifications
of the CA action design of the application. Refinement R2 provides CO-OPN/2 specifications
close to the implementation, from which the Java implementation is derived. Refinement R2 is as
close as possible to the real Java implementation and uses the CO-OPN/2 specifications of some
Java basic classes defined in [5].

The assessment of the methodology is currently being under work. We intend to use, in
addition to the CO-OPN/2 language, a temporal logic. Desired properties will be expressed as
temporal logic formulae, and proved over CO-OPN/2 specifications. A refinement is then defined
as the replacement of a specification by a new one which respects the properties required by the
replaced specification and which takes into account implementation constraints. This paper does
not explain the use of temporal logic for expressing and verifying properties.

This methodology is presented through a concrete example running on the Internet. The
application is called DSGamma (for Distributed Gamma). It is based on the Gamma paradigm [7]
(a programming paradigm based on chemical reaction concepts). A Gamma-style of computation
is used to compute the sum of integers distributed in several multisets. The objective is to perform
in a distributed way the addition of all the integers which are in a ’dynamic bag’ of integers. The
term dynamic means that new integers may be inserted by users into the bag during computation.

The plan of this paper is the following: firstly, we give an informal description of the re-
quirements of the application to be developed. Secondly, we give an initial CO-OPN/2 formal
specification I for the desired application. Thirdly, we explain the chosen CA action design, and
formally express it by the means of refinement R1. Fourthly, refinement R2 and the Java imple-
mentation are described. Finally, some properties are stated and an informal sketch of the proof
is given for each specification.

2 Informal Requirements of the DSGamma System

The Gamma paradigm [7] advocates a style of programming that is based on chemical reactions.
The Gamma paradigm consists of applying one or more chemical reactions on a multiset. A
chemical reaction usually removes some values from the multiset, computes some results and
inserts them into the multiset. We consider the following example: computing the sum of the
integers present in a multiset. Figure 1 depicts a multiset and a possible Gamma computation
achieving the result 8.



Global Multiset

Figure 1: Addition according to the Gamma paradigm

2.1 Informal Requirements

We intend to develop an application allowing several users to insert integers into a possibly dis-
tributed multiset. According to the Gamma paradigm, chemical reactions are applied on the
multiset, they have to perform the sum of all the integers entered by all the users. The system
made of the users, a multiset and chemical reactions is called the DSGamma (Distributed Gamma)
system. We present the informal requirements in two parts. The first part presents the system
operations that must be provided to the users, and the second part presents the details of the data
and of internal computations.

System Operations

(1) A new user can be added to the system at any moment; (2) A user may add new integers to
the system, at any moment, between his entering time and his exit time; (3) A user may exit the
system provided he has entered the system.

State and Internal Behavior

(4) The integers entered by the users are stored in a multiset; (5) The application computes the
sum of all the integers entered by all the users; (6) The sum is performed by chemical reactions
according to the Gamma paradigm; (7) A chemical reaction removes two integers from the mul-
tiset, adds them up, and inserts the sum into the multiset; (8) There is only one type of chemical
reaction, but several of them can occur simultaneously and concurrently on the multiset; (9) A
chemical reaction may occur as soon as there are at least two integers in the multiset.

2.2 Motivations for DSGamma

The DSGamma system assumes that as many reactions as possible can be executed in parallel
provided there are enough integers for them in the multiset and that the consistency of these
data is hold. Several motivations can be given for distributing the multiset: (a) if the chemical
reactions are much more costly than the message passing between computers, then their execution
should be distributed; (b) in order to allow as many parallelization as possible in the system, the
chemical reaction should be distributed; (c) if the multiset is huge, it makes sense to distribute
it and to keep it as a set of local multisets and to distribute the chemical reactions as much as
possible.

3 Initial CO-OPN/2 Specification I: Centralized View

The initial CO-OPN/2 specification I provides the most abstract specification of the DSGamma
system, that fulfills the informal requirements. There is a global multiset with several chemical
reactions occurring concurrently on it. We have a non distributed multiset, several processes
(the chemical reactions), and each process, considered separately, is not distributed. The initial
CO-OPN/2 specification I is given by the DSGammaSystem class depicted by Figure 2.
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Figure 2: The Initial CO-OPN/2 specification, I

System Operations

The three CO-OPN/2 methods, new_ user (usr), user_action(i,usr), and user_exit (usr) spec-
ify the three services, system operations (1) to (3), that the system provides to the outside
world. The new user(usr) method inserts the user’s identity, usr, into the users place. The
user_action(i,usr) method checks if usr has already entered the system (i.e. if usr is in the
place users), and inserts the i value, in the multiset MSInt. If the user usr has not yet entered
the system, the method cannot be fired, thus the i value is not inserted in the multiset. If usr is
in the users place, the user_exit (usr) method removes usr. usr and i are formal parameters
that stand for algebraic terms, the parameter is instantiated when the method is called. The
corresponding algebraic term is then inserted/removed into/from a place.

State

A multiset of integers stores the integers entered in the system by all the users. The CO-OPN/2
MSInt place, of type Integer, models this multiset (the type Integer is specified using algebraic
specifications as equivalent to natural numbers). Due to the CO-OPN/2 semantics of places, the
content of a place is always given by a multiset. The CO-OPN/2 place users of type Integer
stores the identity of the users as integers.

Internal Behavior

The CO-OPN/2 ChemicalReaction transition models the chemical reaction. It takes two integers
i, j from the MSInt place, and inserts their sum i+j in MSInt. Due to the CO-OPN/2 semantics:
(1) the ChemicalReaction transition can be fired several times simultaneously if they are sufficient
pairs of integers in the MSInt place; (2) the transition continues to be fired until only one integer
remains in the MSInt place.

4 Refinement R1: CA Action Design

The initial specification, I, provides a centralized view of the application. As we intend to obtain
an implemented application in accordance with the CA action concept, refinement R1 introduces
both distribution (of data and behavior) and CA actions into the specification.

This section first presents informally the CA action design of the application, and then formally
expresses it by means of CO-OPN/2 specifications.



4.1 Using CA actions to Design the DSGamma System
4.1.1 General Design

The system is composed of a set of participants (located on different hosts), a CA action scheduler
(located on a separate computer) and a set of CA actions (see Figure 3). A participant starts when
it is loaded into a client computer and establishes a connection with the CA action scheduler. A
participant works on behalf of a user. Each participant has a local multiset, i.e. a queue in which
some part of the global multiset is kept. The CA actions are activated dynamically to execute
the Gamma computation. Each action has three roles: two producers (each of them provides a
number) and a consumer that sums them up (the chemical reaction). The CA actions enclose
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Figure 3: Gamma System

the interactions between participants on the level of the Gamma computation. The CA action
scheduler receives information from all participants about any new number they have in their local
queues and starts a new action with three roles when there are two new numbers in local multisets.
There can be as many actions active concurrently as there are pairs in all local multisets at a given
time (but some implementation reasons can restrict this approach). For example, it is allowed to
have several active actions in which the same participant takes part (if there are several numbers
in its local multiset). This allows a better parallelization of the Gamma computation.

Our system has two levels of design. The first level represents the information exchange between
computers (participants and the CA action scheduler). This is the level on which the execution of
the CA actions is scheduled (or the actions are glued together); it may well be designed using the
CA actions but we have not done this. The second level of our design is the level of the Gamma
computation, where the interactions between participants and the access to external objects are
executed. On this level the numbers are passed between different local multisets and summed.

Depending on the hardware peculiarities or on some a priori knowledge about the application
(e.g. frequency of users joining/leaving the system) other algorithms, for example, less centralized
ones, can be used for designing the first level. For example, it would be possible to connect all hosts
in a virtual ring or use broadcast to find matching participants ready for the chemical reaction.
It was not our intention to investigate deeper this aspect of the problem because we decided not



to assume any additional knowledge about the system. The purpose of our research is to design
the DSGamma system using CA actions. The design of the second level is general enough to be
used with any approach considered for the first level of the system.

4.1.2 Participants

We assume that each participant has two threads. The first thread, TGetNumbers, receives num-
bers typed by the user, and inserts these numbers into ParticipantQueue. After the number has
been inserted into ParticipantQueue, the thread sends a message, HASNUMBER, to the CA ac-
tion scheduler informing it that a new number has been typed and stored in ParticipantQueue
(this means that the participant is ready to execute a role in an action). The second thread,
TFEzecuteActions, receives messages from the CA action scheduler that contains a reference to
an action that the participant must join, and the role that the participant must execute in that
action.

Participant

HASNUMBER,Participant CA action, role

HASNUMBER,Participant

TConsumer TProducer

ParticipantQueue

TExecuteActions

Figure 4: Participant

When TFEzecuteActions receives such message, it starts a new thread to execute the role in
an action. This new thread is called TConsumer, if the participant has to execute the Consumer
role in an action, or it is called T'Producer if it has to execute FirstProducer or SecondProducer in
an action. After T'Consumer has finished the execution of its role inside the action, it will send
a message, HASNUMBER, to the CA action scheduler signaling that another number has been
inserted into ParticipantQueue (see Figure 4). TConsumer and TProducer threads are destroyed
immediately after they have finished their role execution in an action (see Figure 5).

4.1.3 CA action Scheduler

There is a CA action scheduler (one for the entire system) that triggers the creation of all actions,
and matches three participants to execute an action. It matches two participants that have
numbers (and are ready to take part in an action) and a third participant that will act as the
consumer of these two numbers (it sums them and puts the result into its ParticipantQueue).
The CA action scheduler has the list of all participants, ParticipantsList. This list contains two
items of information: the address of the participant and the quantity of numbers stored in its
ParticipantQueue. When the CA action scheduler receives a message, NEW, it inserts a new
participant into the list. When the CA action scheduler receives a message, HASNUMBER, it
increases the quantity of numbers that this participant has in its ParticipantQueue (see Figure 6).

The CA action scheduler decreases by 1 the number of integers of a participant when this
participant has been chosen to be a producer, so that the participant does not have to inform the
CA action scheduler that it passes an integer to the consumer and that the producer’s multiset has
one number less when the action is over. The scheduler decreases this number in an optimistic way
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Figure 6: CA action Scheduler

when it chooses the producer and sends the action to it to participate. If a failure happens during
the action execution, then the participant is responsible for recovery. This can be achieved by the
participant inserting the number back into its multiset and sending a message to the scheduler
saying that the participant has a new number.

The execution of the CA action scheduler consists of receiving those messages and of randomly
choosing a consumer when it has two producers ready to take part in an action. It sends a message
to each participant and tells it that it should take part in a particular action (the name is passed)
either as a producer or as a consumer. The CA action scheduler uses the same list to choose

two participants that have numbers to be summed (that means that they have numbers in their
ParticipantQueue).

4.1.4 GammaAction

GammaAction is the CA action used to perform each step in the DSGamma chemical reaction. It
has three roles: FirstProducer, SecondProducer, and Consumer. Producers take the numbers from
their ParticipantQueues and send them to the Consumer. The Consumer sums the numbers and
stores the result into its ParticipantQueue (see Figure 7). Local multisets ParticipantQueue are
external objects in our design. They can be accessed only within CA actions. Their consistency
and integrity is guaranteed by the CA action support in such a way that several actions can take
numbers from the same multiset and add new numbers in it (after the Gamma reaction) without
interference. Qur particular implementation will use some simplified approach to provide this



guarantee (e.g. locking one number but not the entire queue, etc.).
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Figure 7: GammaAction

Many actions can be active at the same time in the system and each participant can be involved
in several actions at once playing the roles of producer and/or consumer. The CA action scheduler
creates an instance of a GammaAction whenever there are two new integers in the system and
does not wait for this instance to finish execution before creating another if required.

The CA action scheduler involves participants in CA actions and triggers the creation of the
instances of these actions. This design is very general, so we assume that there is a set of hosts
on which the instances of the CA actions can be instantiated and that the scheduler knows their
location. We will use a centralized CA action scheme, so each action has an action manager [3].

4.1.5 InsertNumberAction and FinishAction

Apart from GammaAction, we have introduced two other CA actions: InsertNumberAction and
FinishAction. These actions are executed by the TGetNumbers thread. When a new number is
entered, T'GetNumbers executes a role inside InsertNumberAction. When the user wants to finish
its participation in the Gamma computation TGetNumbers enters FinishAction.

InsertNumberAction has just one role and it is responsible for inserting the number into the
ParticipantQueue. This CA action has the properties of a simple transaction. Inside this action
the user enters a number that is passed to the local multiset. One action inserts one number.

FinishAction has two roles: the first one is executed by TGetNumbers thread and the second
one is executed remotely by another participant. This participant is chosen randomly by the
CA action scheduler from amongst all the participants that are present in the system (except
for participants that are wanting to leave the system). FinishAction will transfer all numbers
from the ParticipantQueue of the participant that wants to finish its execution, to the queue of
another participant. When a participant decides to finish, it informs the scheduler of this, and
the scheduler will choose another participant to execute a FinishAction together with the first
one. When FinishAction is completed, the participant that has received new numbers informs the
scheduler about new integers in its multiset. As we explained before, when a participant decides to
finish it informs the scheduler, so it will not be selected by the scheduler to execute GammaAction
again. Moreover the participant waits until all active GammaActions in which it is involved are
completed and only afterwards it will enter into FinishAction.
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Figure 8 shows the competition between two actions for external ParticipantQueue object.
Although in our implementation the access to these objects will overlap, at the logical level, access
is serialized and consistency is guaranteed.

4.2 CO-OPN/2 Specification

We present now the CO-OPN/2 specifications of the CA action design presented above. The refine-
ment process preserves the system operations. Thus, the overall specification of the DSGamma
system provides the same three methods as the initial specification I. The internal behavior is
specified by several classes, one for each item of the CA action design.

System Operation

Figure 9 gives a graphical representation of the CO-OPN/2 DSGammaSystem class, which specifies
the overall DSGamma system.

Class DSGammaSystem

user_exit(usr) with new-DSGammaSystem with
P.user_exit SC.create
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Figure 9: Refinement R1: External Behavior

The CO-OPN/2 constructor new-DSGammaSystem requires that as soon as a DSGamma sys-
tem exists, a CAAScheduler is created (calling SC.create), where SC is the identity of a CO-
OPN/2 object of class CAAScheduler, and create is the default constructor. The SC reference is
stored in the place store-SC. Only one CAAScheduler, SC, is created during the whole life of the
DSGammaSystem. All the participants will work with the same CAAScheduler.

The new_user(usr) method implies the dynamic creation of a new participant P (calling
P.new-Participant(SC)), where P is the identity of a CO-OPN/2 object of class Participant.
The DSGamma system stores pairs of users and participants. Each new user is associated with

10



its own participant, and it is the participant that actually creates the ParticipantQueue. The
place store-participants stores pairs of participants and users. CP(Participant,Integer)
stands for the Cartesian product of an object identity of class Participant and an Integer. The
user _action(i,usr) method checks if the pair <P,usr> already exists and if so forwards the ac-
tion to the participant P (calling P.user_action(i)). The user_exit(usr) method removes the
pair <P,usr> from the place store-participants and forwards this information to participant P
(calling P.user _exit).

State

The ParticipantQueue is given by the Queue(Integer) class (actually a FIFO of integers); it is
created by the Participant (one per participant). The global multiset is given by the union of
these participant queues.

Internal Behavior

The internal behavior is specified by: (1) the Participant class; (2) the CAAScheduler class;
(3) by 4 thread classes: TGetNumbers class, TExecuteActions class, TProducer and TConsumer
classes; (4) by 3 classes specifying the CA actions: GammaAction class, InsertNumberAction class,
and FinishAction class; (5) the Queue(Integer) class that is used to specify both the participant
queues (external object) and some local objects used by the CA actions; (6) the EndChannel class
specifies one of the local objects used by the CA actions.

4.2.1 Participant

There is one object of class Participant per user. It creates the ParticipantQueue for that user.
It handles messages incoming from the CAAScheduler. It creates an InsertNumberAction when
a user inserts a new integer. It forwards to the CAAScheduler the information that the user wants
to exit. It creates one TGetNumbers thread and one TExecuteActions thread. It informs all the
necessary actions of the roles that are to enter into the action. It maintains the number of CA
actions in which that participant is involved. Figure 10 gives the graphical representation of the
CO-OPN/2 Participant class.

The arrival of a new user in the DSGammaSystem causes the creation of a new Participant.
The CO-OPN/2 new-Participant(SC) constructor: (1) stores the CAAScheduler object’s iden-
tity SC; (2) informs SC that there is a new participant (calling SC.newParticipant(self)); (3)
creates the participant queue Q of class Queue(Integer) (calling Q.create); (4) creates and stores
a CO-OPN/2 object, TGN, of class TGetNumbers (calling TGN.new-TGetNumbers (SC,self,Q)); (5)
creates and stores a CO-OPN/2 object, TEA, of class TExecuteActions (calling
TEA.new-TExecutelctions(SC,self,Q)). The constructor performs all these operations simulta-
neously.

The DSGammaSystem calls the user_exit method of the Participant in order to inform the
Participant that the user wants to leave the system. The Participant just forwards this infor-
mation to the CAAScheduler (calling SC.endParticipant(self)).

The DSGammaSystem calls the user_action(i) method of the Participant once the user en-
ters integer i into the system. The user_action(i): (1) creates a CA action, INA, of class
InsertNumberAction; (2) increments by one the number of CA actions that the participant is
involved in, the place ToInc receives a 1 token; (3) inserts the pair <INA,Consumer> into the
place ListOfINA. This means that the participant has to provide a Consumer role for the INA ac-
tion. As soon as a pair <INA,Consumer> is in the ListOfINA place, the inINA transition informs
the INA action that the TGN thread will perform the role Consumer in that CA action (calling
INA.inAction(TGN,Consumer)).

The CAAScheduler sends messages to the participant by the means of the sendFinishAction(FA,R)
and the sendGammaAction(GA,R) methods. The participant has to provide a R role for the FA
action of class FinishAction and a R role for the GA action of class GammaAction. These two

11



Class Participant

new-Participant(SC) with
SC.newParticipant(self) // Q.create //

TGN.new-TGetNumbers(SC,self,Q) // user_exit with
TEA.new-TExecuteActions(SC,self,Q) SC.endParticipant(self)
Sc 69 Y
/ -
o
$G TEq

TGO :
TGetlumbers

store-5C:
CAScheduler
JumberOfActions:
Integer

0

TEA:
TExecuteAction

% < =
@ ]
B

/

T
d

‘ TEA.sendGammaAction(GA,R)

1

inFA with . .
: h \ inINA with
FA.inAction(TGN,R) INA.inAction(TGN,Consumer)
<FA,R> <INA,Consumer> <GA,R>
1
ListOfFA: ListOfTmA: ListOfGA:
CP(FinishAction,Strin i i ToInc: ToDec: i i
, 2) CP(TnsertIumberaction,String) CP(GammaAction,String)
C) C) Integer Integer C)
1
<FA,R> <INA,Consumer> <GA,R>
\_—/ 1 1 \_/
—/ ——
sendFinishAction(FA,R) user_action(i) with LastAction decNumberOfActions sendGammaAction(GA,R)

INA.new-InsertNumberAction (i)

Figure 10: Refinement R1: Participant Class

methods increase by one the number of CA actions that the participant is involved in, and insert
the pair <FA,R> respectively <GA,R> into the places ListOfFA respectively ListOfGA. As soon as
a pair <FA,R> is in the ListOfFA place, the inFA transition informs the FA action that the TGN
thread will perform the role R in that CA action. As soon as a pair <GA,R> is in the List0fGA
place, the inGA transition informs the TEA thread that it must provide a thread to perform role R
in action GA.

The NumberOfActions place stores the total number of actions that the participant is involved
in. As soon as the participant is informed that it has to participate for a role in a CA action it
inserts 1 into the ToInc place. As soon as that role leaves a CA action it informs the participant
by the means of the decNumberActions method. This method inserts 1 into the place ToDec. The
two transitions, dec and inc respectively decrements and increments by one the total number of
actions for each 1 token they found in the places ToDec and ToInc respectively. The LastAction
method is called by the Producer role that has to enter into a FinishAction. That role enters
into the FinishAction only if LastAction finds 1 as the number of actions remaining to be done
by the participant. This ensures that all the other actions involving that participant are finished.

4.2.2 CAAScheduler

The CAAScheduler, given by Figure 11, maintains the ParticipantList as a multiset of pairs <P ,k>,
where P is the object’s identity of the participant and k is the current number of integers present
in the ParticipantQueue of P. The place ParticipantList stores these pairs.

A participant P calls the newParticipant(P) method of the CAAScheduler to inform the
CAAScheduler that it exists. The newParticipant(P) method inserts a pair <P, 0> into the place
ParticipantList.

12



Class CAAScheduler
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Figure 11: Refinement R1: CAAScheduler Class

At the end of a CA action, the Consumer role informs the CAAScheduler that n new numbers
have been added to the P participant queue. It calls the newNumber (P,n) method, that updates
the participant list.

Once a user wants to exit, the corresponding participant informs the CAAScheduler calling the
endParticipant (P) method. This method checks if the participant P is already present in the
participant list, and simply adds the participant’s identity P to the place ParticipantToRemove.

For each participant P present in the ParticipantToRemove place, the RemoveParticipant
transition removes the pair <P,k> and searches for a pair <P’,1> in the ParticipantList. It
then creates a FinishAction, FA, and informs the participant P that it must enter into the FA
action with a Producer role, and the participant P’ that it must enter into the FA action with a
Consumer role. Participant P will be no longer chosen by the CAAScheduler to participate in a
CA action.

The ChemicalReaction transition is responsible to find, on the basis of the ParticipantList,
three participants (two producers and one consumer), to create a GammaAction and to inform that
participants.

The ChemicalReaction transition has four possible behaviors: (1) the same participant P1 is
chosen to be Producer twice and Consumer; (2) a participant P1 is chosen to be Producer twice,
and a participant P3 is chosen to be the Consumer; (3) a participant P1 is chosen to be one of the
Producers, a participant P2 is chosen to be both the other Producer and the Consumer; (4) three
different participants, P1, P2, P3, are chosen for each role. A Producer participant may be chosen
once if it has at least one integer in its participant queue, or twice if it has at least two integers
in its participant queue.

The ChemicalReaction transition immediately updates the ParticipantList for the Producer
participant, but not for the Consumer participants. The ChemicalReaction transition decrements
by one the number of integers present in the participant queue of P if it has been chosen to be
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Producer once, and by two if P has been chosen to be Producer twice.

4.2.3 TGetNumbers

The TGetNumbers class, given by Figure 12, is able to perform, once a time, a role in several CA
actions. It can enter into an InsertNumberAction with the Consumer role, or in a FinishAction
action with the Consumer or with the Producer role.

Class TGetNumbers

/ I0AQueue : uene (Integer) \
Q

Q
INAEnter(i) I\/ 10AChannel : Integer \ﬂ T0AEnd:Quene (Integer)

i i Q Q
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\ end\
\ FAEndProducer:EndChannel end with Q.isEmpty .. end.End /

Figure 12: Refinement R1: TGetNumbers Class

The CO-OPN/2 constructor new-TGetNumbers(SC,P,Q) stores the CAAScheduler, SC, identity,
the participant P identity and the participant queue Q identity.

An InsertNumberAction calls the INAEnter (i) method in order to let the thread enter its
role in the action. The INAEnter(i) method is firable if the TGetNumbers thread is not cur-
rently involved in another CA action. The firing of this method moves the object Q (from the
store-Q place to the INAQueue place, and stores the local object i. The put transition is then
firable, it inserts i into the participant queue Q (calling Q.put(i)). It enables the INALeave
method by inserting the true token into the INAEnd place. The INALeave method is called by the
InsertNumberAction in order to let the role leave the action. The role leaves the action provided
it has ended its work, i.e. the value Q is present in the INAEnd place. This method causes the
role to inform the CAAScheduler that one new number has been added to the participant queue
Q (calling SC.newNumber(P,1)), and to inform the participant that a role in an action has been
performed, and thus the number of actions involving that participant has to be decreased by one
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(calling P.decNumberActions). Finally, this method enables the thread to perform a new role in
another action, by inserting the Q value into the store-Q place.

A FinishAction calls the FAEnterConsumer (ch,end) method in order to let the thread enter
the Consumer role into the action. The firing of this method stores the two local objects (channels)
ch and end in two separate places. Channel ch stores the integers incoming from the Producer role
and that have to be inserted into the Q queue, and channel end is used to know when the Producer
role has finished to give all the integers of its participant queue. The put transition is then firable.
This transition removes each integer i from the channel ch and then inserts i into the participant
queue Q (calling ch.get(i) .. Q.put(i)), and for each i it increments a counter Nb. The end
transition can be fired only when the Producer role has finished to furnish integers, and when
the ch channel is empty, (calling end.isEnd? .. ch.isEmpty). The FALeaveConsumer method
is called by the FinishAction in order to let the role leave the action. This method causes the
role to inform the CAAScheduler that n new numbers have been added to the participant queue
Q (calling SC.newNumber (P,n)). The number of new integers is found in place Nb. This method
also informs the participant that a role in an action has been performed, and thus the number of
actions involving that participant has to be decreased by one.

A FinishAction calls the FAEnterProducer(ch,end) method in order to let the thread enter
its Producer role into the action. The FAEnterProducer(ch,end) method is firable if the thread is
not currently involved in another CA action, and if all the other actions in which the participant
was involved are finished (calling P.LastAction). As for the Consumer, channel ch stores the
integers i that the Producer removes from the participant queue, and channel end is used to
inform the Consumer role that the Producer has given all the integers of its participant queue.
The get transition removes each integer i from the participant queue Q and then inserts i into
the channel ch (calling Q.get(i) .. ch.put(i)). When the participant queue Q is empty, the
Producer role enables the end channel (calling Q.isEmpty .. end.End). The transition then
provides a true token in the FAEndProducer place. The FALeaveProducer method is called by
the FinishAction in order to let the role leave the action. This method causes TGetNumbers
to stop working anymore, as it does not insert the Q value into the store-Q place. Indeed, the
FinishAction where the participant has to provide a Producer role has to be the last action of
that participant.

4.2.4 TExecuteActions

The TExecuteActions class, given by Figure 13, receives from its participant the information
that the participant has to enter into a GammaAction class. Depending on the role, Producer or
Consumer, the TExecuteActions creates a TProducer or a TConsumer role respectively.

Class TExecuteActions

new-TExecuteActions(SC,P,Q)

sc
store-5C: /
inGA with CAScheduler
TC.new-TConsumer(SC,P,Q) .. sc <P.Q>
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. . String) b p
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<GA,R> %(><
store-PQ:
(_GA,pr s a7 CP(Participant,Queue (Integer))
Ody, a7
Cery 49
-
inGA with
TP.new-TProducer(P,Q) ..
k GA.inAction(TP,Producer) /

Figure 13: Refinement R1: TExecuteActions Class
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The sendGammaAction(GA,R) method is called by the participant in order to inform the
TExecuteActions that it has to enter into the GA action with role R.

For each pair <GA,R> in the place store-GA, the inGA transition is fired: (1) it creates a
TConsumer thread (calling TC.new-TConsumer(SC,P,Q)) and informs the GA action that this
thread is ready to enter into the action (calling GA.inAction(TC,Consumer)), or it creates a
TProducer thread (calling TP.new-TProducer(P,Q)) and informs the GA action that this thread
is ready to enter into the action (calling GA.inAction(TP,Producer)).

4.2.5 TConsumer and TProducer

The TConsumer class, given by Figure 14, specifies the Consumer role of a GammaAction. The
Consumer has to collect two integers from the two Producers of the action, has to make their sum
and to insert the sum into its participant queue. It receives the reference of the queue (at creation
time), and collects integers from a channel provided by the action (received as a local object).

Class TConsumer
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P.decNumberOfAction

ch.get(i) .

- J

Figure 14: Refinement R1: TConsumer Class

A GammaAction calls the Enter(ch) method in order to enable the role to begin its execution.
The ch object is the local object used to communicate with the Producer roles. The Enter(ch)
method is firable only once (the token true is removed from the begin place and is never inserted
into that place).

The put transition is then firable, it takes a first integer from the channel (calling ch.get (1)), it
takes a second integer from the channel (calling ch.get (j)), it stores their sum into its participant
queue (calling Q.put (i+j)), finally it enables the firing of the Leave method by inserting the true
token into the end place.

The Leave method is called by the GammaAction in order to let the role leave the action. The
Leave method informs the CAAScheduler that the participant has one new integer in its queue
(calling SC.newNumber (P, 1)), and informs the participant that the action is finished and the num-
ber of actions involving the participant has to be decremented by one (calling P.decNumberOfAction).

The TProducer class, given by Figure 15, specifies the Producer role of a GammaAction. The
Producer has to remove one integer from its participant queue and sends it to the channel provided
by the action (received as a local object).

A GammaAction calls the Enter(ch) method in order to enable the role to begin its execution.
The ch object is the local object used to communicate with the Consumer role.

The get transition is then firable, it takes an integer from the participant queue and stores
this integer in the channel (calling Q.get (i) ch.put(i)), finally it enables the firing of the
Leave method by inserting the true token into the end place.

The Leave method is called by the GammaAction in order to let the role leave the action.
The Leave method informs the participant that the action is finished and the number of actions
involving the participant has to be decremented by one.
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Class TProducer
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Figure 15: Refinement R1: TProducer Class

4.2.6 GammaAction, FinishAction, Insert NumberA ction

The CO-OPN/2 classes specifying the CA actions are similar: an inAction method is used by the
participant or the TExecuteActions to instruct the action about which thread will perform which
role in the action. The action is actually performed by the Action transition that firstly calls
all the roles in order to let them enter (calling Enter) into the action simultaneously and then
sequentially calls all the roles in order to let them leave (calling Leave) the action simultaneously.

The call to the Enter method of a role causes that role to perform some work; the end of
this work causes the enabling of the Leave methods. The roles work between the calls to Enter
methods and the calls to the Leave methods. If the Leave method of one role cannot be fired,
then the entire Action transition is not fired at all. The Action transition together with the
specification of the participant queue ensures the specifications of the CA actions to have the
ACID properties.

The CO-OPN/2 classes specifying the CA actions presented in this paper do not specify the
effect of the CA actions on global objects, they specify what roles are in the CA actions and how
the actions coordinate them. The effect of a CA action on global objects is derived from the
specification of the CA action and by the specification of its roles.

Class GammaAction
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Figure 16: Refinement R1: GammaAction Class

The GammaAction class, given by Figure 16, is the action in which the Gamma chemical
reactions are performed. The new-GammaAction constructor causes the creation of a channel ch,
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used as a local object. The channel is a queue of integers. The creation of the action is triggered
by the CAAScheduler. The TExecuteAction calls the inAction method, either for announcing
a Consumer role or a Producer role. The Action transition removes two producers from place
Producers, and one consumer from the Consumer place. It calls the roles to enter into the action
simultaneously (calling the Enter methods) and then calls them to leave the action simultaneously
(calling the Leave methods).

Class FinishAction

Producer:TGetlumbers \
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Figure 17: Refinement R1: FinishAction Class

The FinishAction class, given by Figure 17, is the action used to dispatch the participant
queue, of a participant that wants to leave to system, to a participant queue of a participant that
is still in the system. The new-FinishAction constructor causes the creation of two channels,
ch and end, used as two local objects. This action has two roles, the Producer role and the
Consumer role. The FinishAction is triggered by the CAAScheduler. The TExecuteAction calls
the inAction method, either for announcing a Consumer role or a Producer role. The Action
transition removes the producer and the consumer from their respective places. It then calls the
roles to enter into the action simultaneously (calling the FAEnterProducer and FAEnterConsumer
methods) and then calls them to leave the action simultaneously (calling the FALeaveProducer
and FALeaveConsumer methods).

Class InsertNumberAction
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Figure 18: Refinement R1: InsertNumberAction Class

The InsertNumberAction class, given by Figure 18, is the action used to insert an integer (in-
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coming from the user) into a participant queue. The new-InsertNumberAction(i) constructor
just stores the integer i. The InsertNumberActionis created by the Participant itself. This ac-
tion has one role, the Consumer role. The Participant calls the inAction method for announcing
the Consumer role. The Action transition removes the consumer from place Consumer. It then
calls the role to enter into the action (calling the TGN.INAEnter (i) method) and then calls it to
leave the action (calling the TGN.INALeave method).

4.2.7 Queue(Integer) and EndChannel

The left part of Figure 19 depicts the participant queue. It is accessed by three methods: (1) the
put (i) method is used to insert a new integer of value i at the end of the queue, (2) the get(i)
method is used to remove integer i from the head of the queue; (3) the isEmpty method is used
to know if the queue is empty or not. The place Queue contains one algebraic term, q, (of type
FIFO(Integer)). The get(i) and put(i) methods cannot be fired simultaneously because each
of them requires the algebraic term q. This property is the fundamental property that enables
refinement R1 to satisfy the ACID properties.

The right part of Figure 19 depicts the channel used by FinishAction to let the Consumer
role wait upon the Producer role. The End method is used by the Producer role to let the isEnd?
method become firable. The Consumer role waits on the isEnd? method to be firable. This
method becomes firable as soon as the Producer role calls the End method.

Class Queue Class EndChannel

isEmpty

End:Boolean

End isEnd?
true — true ——>

Figure 19: Refinement R1: Queue(Integer) and EndChannel Classes

5 Refinement R2: Java Implementation

We present now our Java implementation of the DSGamma system and give some hints on the
CO-OPN/2 specifications of this implementation.

5.1 Java Implementation

We have implemented the DSGamma system using the Java programming language [8] and the
Remote Method Invocation (RMI) APT [9].

On the CA action scheduler side, we have implemented the scheduler as a remote object that
can be accessed by the participants to inform the scheduler when they are joining the system,
when they are willing to leave the system, and every time they got a new number in their local
queue. The CA action scheduler object has the following interface:

public interface CAAScheduler extends java.rmi.Remote

{

public void newParticipant(Participant newPart) throws RemoteException;
public void newNumber (Participant newPart) throws RemoteException;
public void endParticipant(Participant newPart) throws RemoteException;

}
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newParticipant includes a new participant in the CAAScheduler list. The caller has to send
a reference to its remote object that can be accessed by the CAAScheduler. newNumber is used by
the participants to inform the CAAScheduler every time a new number is inserted into their local
queue. When a participant has got numbers in its local queue, then the scheduler can select that
participant to perform a role in a GammaAction as a producer; and, endParticipant is used by
a participant to inform the scheduler that it is willing to finish its execution. The scheduler will
choose another participant to get the numbers from the willing to finish participant.

The participants are implemented as remote applets that can be accessed by the CA action
scheduler or by other participants. FEach participant has a local queue (local object) that stores
the numbers of its local multiset. This local queue implements its operations (put, get) using a
monitor style approach (all methods are synchronized methods in Java). Each participant has
also a list of GammaAction objects in which it always performs the Consumer role, i.e. when
a CA action in that participant is activated, then the participant that contains that action will
participate in the action as the Consumer (the CA action scheduler will set that). The Participant
applet has the following interface:

public interface Participant extends java.rmi.Remote
{
boolean sendGammaAction(Participant where, String role, Integer cald)
throws RemoteException;
boolean remoteGammahAction(String role, Participant part, Integer cald)
throws RemoteException;
boolean sendFinishAction(Participant where, String role)
throws RemoteException;
boolean remoteFinishAction(String role, Participant part)
throws RemoteException;
void remoteQueuePut(int num) throws RemoteException;
int remoteQueueGet() throws RemoteException;
boolean remoteQueuelsEmpty() throws RemoteException;

}

sendGammaAction is used by the CA action scheduler to inform the participant that it has
to execute the role in where (cald is an identifier of the action the participant has to execute,
this cald guarantees that the right designated participants will execute the same CA action);
remoteGammaAction is used by the other participants that want to execute a role in the action
located in this participant (the willing to execute participant will send a reference to itself then
the action can access its local queue); sendFinishAction is used by the CA action scheduler to
inform the participant that it has to execute a finish action together with another participant;
remoteFinishActionis used by another participant to execute the finish action in this participant;
and remoteQueuePut/remoteQueueGet/remotelsEmpty are used by a participant when executing
the GammaAction remotely. It provides the access to the local queue of this participant.

Figure 20 represents the GammaAction object and the roles of this action. The CA action
object is composed of a set of internal objects, used only by the roles of the action in order
to exchange values, e.g. communicate; a set of external objects that the roles will access in an
atomic way; a manager that is responsible for recovering the action from possible failures, and
for pre-synchronizing and post-synchronizing the participants; and the roles that the participants
will execute. In order to execute a role in an action, the participants must be informed of which
action and role they have to execute, such information will be provided by the CA action scheduler
using the sendGammaAction method of the participants. Once the participants have received the
information about which action and role they have to execute, they activate the action by calling
the inAction method in the action object sending information about their local queues. These
local queues are external objects for the CA action manager, and they are bound to CA actions
dynamically. The inAction method handles the tasks of the CA action manager as mentioned
before.
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Figure 20: GammaAction Object

When implementing the CA actions, we have decided to attach the CA actions to the par-
ticipants objects rather than to the scheduler. This prevents the CA action scheduler host from
becoming overloaded with too many actions. All actions in our system are implemented as objects
and the roles of such actions are implemented as methods of these objects (action is an object;
role is a method of this object).

5.2 CO-OPN/2 Specification

Refinement R2 leads to CO-OPN/2 specifications that take into account both the semantics of
the Java programming language and the application’s behavior (the implementation).

A Java program is built upon existing classes, i.e. the basic classes provided by the Java
programming language. Similarly we build the CO-OPN/2 formal specifications of the Java ap-
plication upon CO-OPN/2 formal specifications of the Java basic classes. In this manner, we cope
with the problem of both expressing the Java semantics and the application’s behavior. Indeed, a
first layer of CO-OPN/2 specifications of Java basic classes is provided (as building blocks), and
then the CO-OPN/2 specifications of the application are built on top of this layer.

Building Blocks. We have specified a dedicated CO-OPN/2 class for each Java basic class.
The inheritance tree of these CO-OPN/2 classes reproduces exactly the inheritance tree of the Java
classes. The Object Java class is the superclass of all Java classes. The corresponding CO-OPN/2
class is called the JavaObject class and is the superclass of all the CO-OPN/2 classes related to
Java. The CO-OPN/2 JavaObject class specifies the wait, notify, notifyAll methods and the
way they affect a thread’s execution, as well as the locks associated with each object. We have
specified the Java Thread, Applet and Socket classes. The complete CO-OPN/2 specification of
these Java basic classes is given in [5].

Specifications of the Java program. Each Java class of the program is specified with
a dedicated CO-OPN/2 class. These CO-OPN/2 classes are constructed using the CO-OPN/2
specifications of the Java basic classes, either by sub-classing them or by using them. Every
data structure and algorithm used by the program is specified. In addition to the CO-OPN/2
specifications of the Java classes of the program, the overall system is fully specified with a CO-
OPN/2 DSGammaSystem class in a similar way to refinement R1.

21



6 Validation of the DSGamma System

We present some properties and we informally show how they are validated by the DSGamma
system at each step of the development process. In addition, we assume that there are no faults.

e P1: no number is lost in the computation process;
e P2: the sum of all numbers is correct;
e P3: the exit of a participant does not affect the sum of all numbers;

e P4: if participants stop inserting new numbers then the system execution eventually stops
and only one number is left in the global multiset.

6.1 Initial Specification I

Property P1 is true because the ChemicalReaction transition inserts the sum of the pair of
integers it removes from the place MSInt. It is not possible for an integer to be removed without
being added up to some other integer.

Property P2 is true, because the ChemicalReaction transition removes two integers from the
MSInt place and inserts their sum into that place. The ChemicalReaction transition stops being
fired when only one integer remains in the place. This integer s the result.

Property P3 is true because the sum is computed independently of the users.

Property P4 is true because no integer is lost and because the ChemicalReaction transition
is fired as long as there are at least two integers in the MSInt place.

6.2 Refinement R1

The informal proof that refinement R1 validates the properties is based on several properties
guaranteed by the CA actions.

Properties Guaranteed by CA actions

GammaAction has the following pre-condition: there are at least two numbers, nyand ns, in the
global multiset. The post-condition is: those two numbers disappear from the multiset but there
is a third new number equal to n; + ny that is inserted into the global multiset. The amount of
numbers in the global multiset after the execution of the GammaAction is N-1, where N is the
amount of numbers in the global multiset before the execution of the GammaAction.

FinishAction has the following pre- and post-conditions. Pre-condition: there is a local multiset
in the participant that is willing to finish; post-conditions: all numbers from this local multiset
are moved to another local multiset, the global multiset remains the same. FinishAction does not
change either the amount of numbers in the global multiset, or the numbers themselves.

InsertNumberAction has the following pre- and post-conditions. A new number is inserted
into the global multiset, all other numbers remain unchanged. The amount of numbers after the
execution of the InsertNumberAction is N+1.

As we said CA actions have ACID properties, that is why concurrently executed actions are
serializable in such a way that their effect on the multiset is equal to the effect of these actions
executed in some sequential order (in which case the post-conditions of each of them are hold if
the pre-conditions were hold when the action started). The CA actions support guarantees that
the execution of each action is atomic, so the actions cannot interfere on each other. One more
reason for this is that the action results are seen/assessable from the outside system only when
the action is over.

Note that only these three actions operate with the global multiset. There is no other activity
in the system which can access these data.
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Validation of the DSGamma Expected Properties

Let us consider what can happen with the numbers in the global multiset. A number can disappear
only when it has been summed by GammaAction. A new number can appear in the multiset when
either InsertNumberAction is executed or GammaAction is executed (the sum of two numbers
from the global multiset is a new number).

Let us consider what can happen with a number in a local multiset. A new number can
appear in a local multiset only in the following situations: i) when FinishAction moves it from
another local multiset; i7) when InsertNumberAction is executed in the participant that holds that
local multiset; or, i) when the new number is a sum inserted by a GammaAction. A number
can disappear from a local multiset only in the following two events: when it is taken by a
GammaAction to be summed, or when it is moved to another local multiset by FinishAction.

P1: if a number has been inserted into a local multiset, it can either be summed with another
number in a GammaAction, or be moved to another local multiset by FinishAction.

P2: we do not lose numbers, that is why the sum of all numbers is correct; if new numbers
are not inserted for some period of time then eventually all of them will be summed, because the
scheduler will eventually be notified about each of them, and about each new number which is
a sum inserted as a result of GammaAction. The number of the steps is finite (the amount of
number decreases after each GammaAction). Another reason for the sum to be correct is that our
considerations show that new numbers can be inserted into the multiset only by GammaAction
(if no new numbers are inserted).

P3: the consideration above show that if a participant leaves the system, its local multiset is
moved to another multiset. In our design this participant cannot be chosen for GammaActions
or other FinishActions after it decides to leave and FinishAction starts (FinishAction only starts
when the participant has no GammaAction to execute).

P4: the execution stops when there is no pair of numbers, to be more precise when there is only
one number left in the global multiset. There is one and only one number when the systems stops,
because of the conditions of the GammaAction: it always produces one new number from two
existing ones from the global multiset (so, it cannot happen that none numbers left). This number
is the sum of all numbers. Even though GammaActions can happen in parallel with FinishActions,
the execution of FinishAction do not affect the execution of GammaActions because FinishAction
does not change the amount of numbers in the global multiset, neither the numbers themselves.

6.3 Refinement R2

Refinement R2 keeps the same CA action design than refinement R1. If the Java implementation
of the CA actions provides the properties expected by the CA actions, then the same conclusions
than refinement R1 can be reached. Indeed, for any of the CA actions if the pre-conditions
hold then the post-conditions hold also, after the action has been completed. Moreover, our
implementation guarantees that if the pre-conditions are true then the action will be working
with the same numbers that were checked in the pre-conditions and that the sequence <checking
pre-conditions, execution CA action> cannot be pre-empted.

7 Conclusion

We have applied a top-down engineering methodology to develop a real application. Three devel-
opment phases have been described: an abstract specification of the desired system, a CA action
design, and the implementation. Each phase is formally specified by the means of the CO-OPN/2
language. Based on the CO-OPN/2 specifications and on the CA action design (after it has been
formally described using CO-OPN/2), we have implemented the whole system using the Java
language, an object-oriented language, that allowed us to build applications over the Internet,
making the system very dynamic because several participants can join and leave the system at
different times. The implementation of the DSGamma system was a clerical task due to the good
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mechanisms used to specify and design the system, i.e. CO-OPN/2 and CA actions, and due to
re-use of CA action support system.

We think that the combined use of a CA action design and of CO-OPN/2 specifications will
simplify the formal proofs that properties are validated by the system. Indeed, CO-OPN/2 specifi-
cations provide a mathematical framework, and each CA action provides its own set of properties.
These properties are used to construct the proof that global properties are validated by the system.

Moreover, this paper shows how to use both the CO-OPN/2 specification language and the
CA action concept and how they complement each other, particularly for validation and verifica-
tion purposes. Moreover, this paper gives a complete CO-OPN/2 specification of an application
developed according to the CA action design. It is a preliminary work towards the formalization

of CA actions with CO-OPN/2 [10].
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