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Abstract

In this document we give an overview of the CO-OPN; ;5 (Concurrent Object--
Oriented Petri Nets) specification language and describe the features of each tool pro-
vided in the SANDS; 5 (Structured Algebraic Net Development System) development
environment.

The CO-OPN; 5 language is a specification language devised to support the devel-
opment of large concurrent systems. The underlying formalisms of the language are
algebraic specifications and Petri nets in which tokens correspond to algebraic values.
Furthermore, in order to deal with large specifications, some structuring principles have
been introduced and in particular, object-orientation paradigm has been adopted for
the Petri nets. This means that a CO-OPN; 5 specification is a collection of objects
which interact concurrently. Interaction between the objects is achieved by means of
synchronization expressions which allow the designer to select the object interaction
policies.

The development system provides many different tools such as a syntax checker, a
simulator, a property verifier based on temporal logic, a graphic editor, a transforma-
tion tool supporting the derivation of specifications, an Ada translator which allows to
analyze Ada programs in the CO-OPNy 5 framework, and a MIMD compiler.

Keywords: Formal methods for software engineering, specification language, modular spec-
ifications, high level nets, algebraic Petri nets, algebraic abstract data types, net simulation,
reachability graph, model checking, symbolic representation of states, verification, temporal
properties, high performance, parallelism, probabilism, specification transformation, prototyp-
ing, executable specifications, distributed systems.
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1 SANDS, ; /CO-OPN; :

OLIVIER BIBERSTEIN & DIDIER BUCHS

1.1 Introduction

The CO-OPN [BGY1] (Concurrent Object-Oriented Petri Nets) project was begun in 1991 with
the aim of providing a specification language and a set of tools for the design of large concurrent
systems. Some tools were packaged two years later in the SANDS [BFR93a] (Structured Algebraic
Net Development System) development environment.

Recently, a new version of the language, called CO-OPNy 5, has been completed, offering several
improvements, and some new tools have also been developed. These new features of the language
and the additional tools have naturally led to develop a fresh development system called SANDS; 5.

The goal of this document is to give an overview of the CO-OPN; 5 specification language and to
briefly introduce each new tool which accompanies the development system SANDS; 5. Moreover,
several examples are provided in this document which illustrate the characteristics of the language.

1.1.1 The CO-OPN; ;5 Language

The CO-OPN; ; language is a specification language based on both algebraic specifications and
algebraic Petri nets formalisms [Rei91]. The former formalism stands for data structures aspects
while the latter stands for behavioral and concurrent aspects of the systems. These two formalisms
are quite useless when large problems are confronted and some structuring capabilities are needed
to overcome their limitations. Thus, for the underlying formalism we have adopted the object-
oriented paradigm, which means that a CO-OPN; 5 specification is a collection of objects which
interact concurrently. Not all the object-oriented notions are present in the CO-OPN; 5 language.
For instance the class notion is missing and in this sense the language is said to be object-based.
Yet another project, called CO-OPN/2 [BB95] is under way with the objective of integrating the
missing object-oriented notions.

1.1.2 The SANDS, ; Development Environment
The SANDS; 5 development system consists of several tools including
e a graphic editor, which can be used for graphically describing a specification,
e a checker, which verifies the consistency of a textual part of a CO-OPN; 5 specification,
e a simulator, which allows to simulate the Petri/Algebraic nets that compose a specification,
e a verifier, which is able to prove some temporal properties of a specification,

e a Ada translator, which translates Ada programs into CO-OPN; 5 and allows one to analyze
such programs in the CO-OPN, 5 framework,
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Simulator User
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Ada source

Parallel code

Figure 1.1: An overview of the SANDS; 5 development system.

e a transformation tool, which can be used, with its accompanying library, for transforming an
abstract specification into a more concrete one,

e and a MIMD compiler, which produces parallel code from concrete CO-OPN; 5 specifications.

Figure 1.1 gives an overview of the relationships between the different basic tools composing
the core of the SANDS, 5 environment. A specification can be written by means of any text editor
or by means of the graphic editor of the environment. The Checker is one of the main pieces in this
puzzle, it verifies the consistency of a specification written by means of the graphic editor or any
text editor and provides all information required by the other tools. The user may interact with
every tool or provide them with additional information in order to assist the tools.

1.1.3 Plan of the Document

This document is divided into ten main parts. Part 1, this part, corresponds to a short introduc-
tion of the CO-OPNy 5 language and the SANDS; 5 development environment. Part 2 and 3 are
related to CO-OPN 5 while the others are dedicated to a brief description of each tool implicated
in SANDS; 5. Part 2 introduces the CO-OPNjy 5 language by means of simple examples while, Part
3 provides several examples which illustrate the features previously introduced. Part 4 to 10 corre-
spond, respectively, to the checker tool, the simulator, the verifier, the transformation tool, the Ada
translator and the MIMD compiler. Moreover, two appendixes are provided. The former consists
of many standard abstract data types and the latter gives the lexical aspects of the CO-OPNy 5
language as well as its BNF-like grammar.



2 CO-OPN; ; Language

OLIVIER BIBERSTEIN

2.1 Introduction

The CO-OPNjy 5 concurrent specification language is based on both algebraic specifications and al-
gebraic Petri nets formalisms. The former formalism represent the data structures aspects, while the
latter stands for the behavioral and concurrent aspects of the systems. In order to deal with large
specifications some structuring capabilities have been introduced. The object-oriented paradigm
has been adopted, which means that a CO-OPNy 5 specification is a collection of objects which
interact concurrently. Cooperation between the objects is achieved by means of a synchronization
mechanism, i.e. each object event may request to be synchronized with some methods (parameter-
ized events) of one or a group of partners by means of a synchronization expression.

Not all the object-oriented notions are present in the CO-OPN; 5 language. For instance, the
class notion is missing, and it is in in this sense that the language could be said to be object-based.

A CO-OPN, 5 specification consists of a collection of two different modules: the abstract data
type modules and the object modules. The abstract data type modules concern the data structure
component of the specifications, and many-sorted algebraic specifications are used when describing
these modules. Furthermore, the object modules represent the concept of encapsulated entities
that possess an internal state and provide the exterior with various services. For this second sort of
modules, an algebraic net formalism has been adopted. Algebraic nets, a kind of high level nets, are
a great improvement over the Petri nets, i.e. Petri nets tokens are replaced with data structures
which are described by means of algebraic abstract data types. For managing visibility, both
abstract data type modules and object modules are composed of an interface (which allows some
operations to be visible from the outside) and a body (which mainly encapsulates the operations
properties and some operation which are used for building the model). In the case of the objects
modules, the state and the behavior of the objects remain concealed within the body section.

Now we are going to informally describe the syntactic aspects of the CO-OPN; ; language and
will use some well-known running examples in order to give an overview of the language. The
introduction is composed of two steps. First, the aspects related to the algebraic specifications by
means of some classical abstract data types such as the booleans, the natural numbers and a fifo
of messages are introduced. In the second phase of the introduction the majority of these abstract
data types are employed in the examples related to the object part.
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2.2 Abstract Data Types

As has previously been mentioned, a CO-OPNy 5 specification consists of a collection of two different
kinds of modules: the Adt ! modules, which are related to the data structure part of a specification,
and the Cbj ect modules, which are dedicated to the dynamic aspects of the system. Both of these
modules are composed of an | nt erface and a Body section as well as a third component the
module header. In the first basic examples, the header consists of a declaration of the module type
(Adt or Qbj ect ), followed by the module name. Nevertheless, when genericity is considered, head-
ers may grow bigger and contain information such as the module type (Generi c or Par anet er ),
the formal or actual parameter module names as well as the associated correspondences.

On one hand, the | nt er f ace section comprises all the components accessible from the outside.
Usually a list of sorts (type names) follows the Sort s (singular or pural) field, and some operations
are defined under both Gener at or s and Oper ati ons fields. These operations are coupled with
their profile. On the other hand, the operation properties expressed by means of equations or
axioms remain concealed in the Body section. These equations lie under the Axi ons field and are
established as follows:

[ Cond => | Fzpry = Expr, ;

Each axiom is an equation which relates two expressions, Fapry; Frpry, which are constructed
from the module interface, and states that both expressions denote the same value(s). An optional
condition, Cond, may be added, determining the context in which an axiom holds true. Some
auxiliary properties may be mentioned under the field Theor em From the user point of view, the
theorems are logical consequences of the axioms, they may be used for implementation purposes.
Of course, variables are available whenever defined under the Wher e field.

Figure 2.1 depicts the well-known booleans’ and natural numbers’ specification. Underneath
the two fields Oper ati ons and Gener at or s, lie the operation profiles in which the underscore
character “_” gives the position of respective arguments. This miz-fiz notation allows operations
to be defined in a more natural way; in particular, it allows for pre-fix, post-fix, in-fix as well as
out-fix (as in {_} in singleton set formation).

A useful feature for making specifications easier to understand is overloading. Overloading
allows one to assign the same identifier to different things. For example, both Bool and Nat
modules of Figure 2.1 define the predicate “_ = _” with each having a different profile. Both
these predicates refer to equality, but this is to an equality between operands of different sorts.

Since algebraic specifications are divided into modules, a module may need some components
from another module. We call these modules, respectively, a user module and a used module.
The user module expresses this kind of dependency by means of the Use field, followed by the
list of all the modules it needs. For example, module Nat must declare in its interface a Use
field in which appears the module Bool . This is because the operation “_ = _ : npat nat ->
bool 7 of module Nat deals with the sort bool defined in module Bool . Thus, a user module
is allowed to deal with all the components declared in the used modules’ interfaces, while, all the
components of the bodies remain inaccessible from the outside. However, the Use field has two
different meanings, depending on where the Use declaration appears. When the Use field appears
in the interface section, the user module’s interface is enriched with the used modules’ interfaces.
In other words, if a module M7 uses two modules M and Mz, where My uses M3, then M; does

!The Courier bold face words correspond to the reserved words of the language. These reserved words
are not case sensitive and can be singular or pural
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Adt Bool ;
Interface
Gener at or s Adt ha;
true, false : -> bool; Interface
q)er'ati ons ' Use Bool;
not : bool -> bool; Sort nat;
- ’ Cenerators
_or _ : bool bool -> bool; 0: -> nat:
and . bool bool -> bool; ’ j
= : bool bool -> booI: succ _ : nat ->mnat;
Bodv : ’ Qper ati ons
A>)(l' _+ _ : nat nat -> nat;
I ons _ = _ : nat nat -> bool;
not true = fal se; . :
fal se - true: ;. some other operations
not ; Body
true or x = true; AXi ons
false or x = x; O0+n = n;
true and x = x: (succ n)+m = succ(n+m;
fal se and x = fal se; 0=0 = true;
(true=true) = true: (O=succ n) = false;

(succ n=0) = false;

(true=false) = false; (succ n=succ m) = n=m
E;Z: 22;; ;Iu?e) ; I?IUZ,e' - V\hag;ietheir assoctated axioms
Theorem n. m: nat:
not(x and y) = (not x)or(not y); End' Nat.' '
Wher e '
X, y : bool;

End Bool ;

Figure 2.1: The Classical Booleans’ and Natural Numbers’ Abstract Data Types

not need to declare the use of M3. This property does not hold when the Use field declaration
appears in the body section.

Genericily is another way of making specifications more concise without sacrificing their legi-
bility. Generic abstract data types are data structures which depends on some formal parameter
modules. The header of a generic data type must begin with the Generi ¢ keyword, followed by
the module name and the list of its formal parameter modules. An example of a generic first-in-
first-out data type is illustrated in Figure 2.2. Module El emcorresponds to the formal parameter
module, which is replaced by an actual module during the instantiation process. The El emmodule
must be defined as a Par anmet er module as is shown in Figure 2.2. Various information can be
defined in a parameter module as we will see. However, information as to the sort definition is
essential because this specific sort is used later in the generic module. Note that the implicit use
declaration of El emin the Fi f 0 module and the mix-fix notation in the operations “add _ to
_” and “enpty? _”. Moreover, the absence of axioms related to the operations “next enpty”
and “renove enpty” implies an undefined value.

The instantiation mechanism has to be invoked in order to obtain an actual module from a
generic module, where the formal parameter module is replaced those which are actual. This is
accomplished by defining a new module which specify the generic module, all the actual parameter
modules names, the correspondences between the sorts of the formal parameter modules and those
of the actual parameter modules, as well as a renaming of some identifiers. This mechanism can
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CGeneric Adt Fifo(El em;

Interface

Use Bool

Sort fifo;

Cenerators

enpty . -> fifo;

add to _: elemfifo -> fifo;

Oper ati ons

empty? _ : fifo -> bool

next _ : fifo -> elem

remove _ : fifo -> fifo; Paraneter Adt Elem
Body Interface

AXi ons Sort elem

enpty? enpty = true; Body

enmpty? add e to f = fal se; End El em

renove add e to enpty = enpty;
remove add e to add e’ to f =
add e to renpbve add e’ to f;

next add e to enpty = e;
next add e to add e’ to f =
next add e to f;
Wher e
f . fifo, e, e
End Fif o;

el em

Figure 2.2: The Generic First-In-First-Out Adt and its Parameter Module.

be performed when the actual parameter modules satisfy the properties of the formal parameter
modules. Figure 2.3 illustrates the instantiation of a the generic module Fi f 0 by the module
Nat , in order to obtain a first-in-first-out data type based on natural numbers. The new keyword
As means that the new module Fi f oNat comprises all the components of the generic module
Fi f 0, where formal parameters are substituted by the module Nat. The Mor phi smfield provides
a correspondence between the sorts el emand nat while the Renanme field takes charge of the
renaming of the sort fi f 0 into the new sort fi f onat. Here, both these two fields are essential.

Adt FifoNat As Fifo(Nat);
Mor phi sm el em -> nat;
Renane fifo -> fifonat;
Interface

Body

End Fif oNat;

Figure 2.3: A First-In-First-Out Adt of Natural Numbers.

Another example regarding the instantiation of the Fi f 0 module is shown in Figure 2.4. Let
Message be a module for describing some messages. The operations and the messages themselves
are irrelevant. Therefore we only define the sort message and leave all the other fields empty.
The definition of a first-in-first-out data type of messages is realized in the same manner as was
previously the case.
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_ Adt FifoMessage As Fifo(Message);
fﬂ: el;/lizscage, Mor phi sm el em - > nessage;
_ Rename fifo -> fifonmessage;
Sort nessage; Interface
Body Body
End Message; End Fi f oMessage;

Figure 2.4: A First-In-First-Out Adt of Messages.

Our last example about genericity is the specification of the generic cartesian product. (See
Figure 2.6.) This example illustrates a generic module composed of two different formal parameter
modules in which the operation “_ = _” must be defined. Indeed, since the equality operation is
defined on both sorts el eml and el en? in module CP, both of the parameter modules must define
this operation without mentioning the properties related to the equality of the parameter’s data
structures. However, since the data structures of the formal parameters are presently unknown,
no axiom can be provided. These properties will be provided by the actual parameter. Then,
the properties of the equivalence relation of the equality predicate, i.e. reflexivity, transitivity and
symmetry, must be expressed by means of the Theor ens field. (See Figure 2.5.) The El en?
module, which is quite similar and defines the el en® sort, is not given here. Figure 2.7 gives the
instantiation of the CP module, in order to obtain the cartesian product based on the boolean and

natural sorts.

Paramet er Adt El ent;

Interface
Use Bool
Sort el emt;
Operati on
= _: elem eleml -> bool

Body
Theor ens ;; equival ence relation properties
X=X = true; v, reflexivity
(x=y = true) => (y=x = true); ;o symetry
(x=y = true) and (y=z = true) => (x=z = true); ;; transitivity
Wer e
X,y,z : elent,;

End El ent;

Figure 2.5: The Parameter Modules of the Generic Cartesian Product.

2.3 Objects

The previous section introduces the data structure or static aspects (abstract data type module) of
the CO-OPNj 5 specifications. At this time we may describe the (concurrent) behavioral or dynamic
aspects of the specifications. It is however necessary to recall that behavioral aspects are described
by means of a second kind of module, known as the object modules. The underlying formalism
adopted for these modules is the Algebraic Petri Nets, i.e. Petri nets in which the tokens are abstract
data types expressed by means of algebraic specifications. In a similar manner as with the algebraic
specifications, some structuring capabilities have been introduced into the algebraic nets formalism
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CGeneric Adt CP(Elenl, Elen?);
Interface
Use Bool
Sort cp;
Gener at ors
pair : eleml elen2 -> cp
Operati ons
fst : cp -> elent,;
snd : cp -> el en;
_ = _ . cp cp -> bool
Body
Axi ons
fst (pair xy) = x;
snd (pair x vy)

[
=

(pair x y=pair uv) = (x=u and y=v);

Theor ens ;; equival ence relation properties
a=a = true; 7, reflexivity
(a=b = true) => (b=a = true); 7, symetry
(a=b = true) and (b=c = true) => (a=c = true); ;; transitivity
\Wer e
X,u : elent; y,v : eleng; a, b, c: cp

End CP

Figure 2.6: The Generic Cartesian Product.

Adt CPBool Nat As CP(Bool, Nat);
Mor phi sns el enl -> bool

el em? -> nat;
Renane cp -> cpbool nat;
Interface
Body
End CPBool Nat ;

Figure 2.7: An Instantiation of the Cartesian Product.

in order to cope with large specifications. Thus, the Obj ect modules play the important role of
encapsulated entities, entities that possess an internal state and provide the exterior with various
services. Furthermore, a synchronization mechanism is provided in the furtherance of (concurrent)
object interactions. This mechanism is based upon parameterized events, known also as methods,
and synchronization expressions. In other words, any object may ask to be synchronized with some
of the methods of one or a group of partners and, moreover, it may selects the interaction procedure
by means of a synchronization expression.

The object modules possess an | nt er f ace, a Body and a header section, which play the same
role as the abstract data types modules but which contain different information. The interface
section comprises mainly of the methods (parameterized events) provided by the module, while the
state and the operational aspects of the object remain concealed within the body section. Note that
no co-domain is provided in the methods’ profile. Since these parameterized events take part in a
synchronization no value is returned by these events. Nevertheless, information may be exchange
during a synchronization. The object state is represented, as usual, in Petri nets by means of a
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collection of places (i.e. multi-sets of algebraic values). The object state can be modified by means
of two kinds of events: the methods (which correspond to the external object stimuli) and the
internal transitions (which are hidden in the body and represent the spontaneous object reactions).
Sometimes we call these two types of events the observable events (methods) and the invisible
events (internal transitions).

The events’ effects, data flow and synchronization requests, are described by means of behavioral
axioms which are established as follows:

[ Cond =>] Event [Wi th Sync] : Pre -> Post

in which Cond is a condition of the algebraic values of the axiom, Fvent is an internal transition
name or a method with parameters and Sync is an optional synchronization expression involving
some partner’s methods and the three operators: “. .7, “//” and “+” for sequence, simultaneity
and non-determinism, respectively. The W t h keyword plays the role of a behavioral abstraction
while Pre and Post correspond, respectively, to what is consumed and to what is produced at the
different places within the nets.

In order to explain this second kind of module more precisely, we first present the well-known
example of the producer-consumer and then illustrate different synchronization schemes.

Figure 2.8, 2.9 and Figure 2.10 illustrate the specification of a producer and a consumer which
exchange some messages through a buffer based on a fifo of messages, as specified on page 6. An
outline accompanies each textual representation of the objects, in which the insides of the ellipses
include the encapsulated elements (body section), the circles indicate the places, and the arrows
represent the data flow. In the case of the rectangles, those which are dark indicate the methods
and those which are white correspond to the internal transitions.

hj ect Buffer;

Interface
Use Message;
Met hods
get _ , put _ : nessage; put m get (next hb)
Body
Use FifoMessage; \\N %
Pl ace buffer _ : fifonmessage; add mto b renove b
Initial buffer enpty; O
AXi omrs buf f er
put m: buffer b -> buffer (add mto b);
is b enpty? = fal se => Buf f er
get (next b) : buffer b -> buffer (renove b);
VWher e
m: message; b : fifonessage;
End Buffer;

Figure 2.8: The Buf f er Object, its Textual Representation and its Outline

As shown in Figure 2.8, the Buf f er object possesses two methods called put and get which
are equipped with a parameter of sort message which respectively allows the buffer to import
and export a message (field Met hods). The messages will be added and removed from a fifo of
messages stored in the place buf f er mentioned under the field Pl ace. The I ni ti al field gives
the initial multi-set value for each place with the default value as the empty multi-set. In this
case, the initial value of the place buf f er is an empty fifo of messages. The behavioral axioms are



10 CO-0OPN; 5 Language

listed under the field AXi ons, and here they only express the data flow of the methods since no
synchronization is requested. The behavioral axiom associated with the method put means that
a fifo b is taken from the buf f er place, and then the received message mis added to b which is
then put into in the buf f er place. In other words, the fifo of the buffer obtain one more message.
The axiom of the get method operates in the same manner except that one message is removed
and exported. Note the condition which expresses that the get event can only occur when the fifo
is not empty. Moreover, because the Fi f oMessage module is not used in the object interface it
can be declared in the body section.

hj ect Producer;
I nterface

Met hod send; Pr oducer
Body

Use Message, Buffer;

Pl ace container _ : nessage;

Initial

contai ner ml, container n2, container nSB;

AXi ons

> ) cont ai nerk
send Wth put nmes : container nes -> ; .
Wher e send with put nes

cont ai ner

mes, ml, n2, nB : nessage;
End Producer;

Figure 2.9: The Producer Object

For the sake of simplicity, we did not model the creation of messages in the Producer object
specification (see Figure 2.9). Instead, we simply gave an initial value for the cont ai ner place,
which is a multi-set of three messages represented by the three free variables mil, n2 and nB.
Free variables may appear in the I ni ti al field and represent any value of the mentionned sort.
Thus, the send method asks to be synchronized with the put method of the Buf f er object. The
synchronization mechanism unifies both the “put n¥ and “put mneS” expressions, and if the put
event can occur the synchronization is then performed and a message is transmitted by the producer
to the buffer. Figure 2.11 summarizes the synchronization requests which connect the three objects
involved in a producer-consumer system. The arrows represent the dependency relationship, known
also as client-ship relation, but not the data flow.

hj ect Consuner;

Interface Consuner
Met hod recei ve;

BOdy cont ai ner
Use Message, Buffer;
Pl ace container _ : nessage; container m O
Axi ors ////7
receive Wth get m: -> container m
VWher e

receive with get m
m : nessage, 9

End Consuner:

Figure 2.10: The Consumner Object
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Producer Consumer

send with put _ \ / receive with get _

put _ get _

Buf fer

Figure 2.11: An Outline of the Producer-Consumer System

As with algebraic specifications, genericity over objects is allowed but, nevertheless, the formal
parameters can be either abstract data type modules or object modules. Here we only give a
minor example of a generic object which depends upon an ADT module. In Figure 2.8 we gave the
specification of the buffer object, based upon the specification of a fifo of messages. We now propose
the specification of a similar, but simpler, object using genericity. The considered generic object
is a variant of the buffer, in which the fifo data structure is simply removed. We call this generic
object Bag, as is shown in Figure 2.12, because it is based exclusively upon the implicit multi-set
structures of the places. The multi-set data structure induces some different concurrent behaviors,
as will be seen in the following examples. Object BagMessage represents the instantiation of the
Bag generic object by means of the module Message.

The following examples illustrate some transition/method firings and several synchronization
schemes which are more complex than those previously presented in the producer-consumer exam-
ple. Figure 2.13 depicts three objects which have some slight differences. The left object Cbj 1
shows two independent methods in which synchronizations may occur independently, nay, simulta-
neously. Q0j 2 refers to the spontaneous reaction of an object. Indeed, internal transitions behave
differently from methods, in the sense that internal transitions, if they can be fired, are fired at any
time. For example, if a synchronization is requested for method ml of the object Qbj 2, then a value
will be put into the place p1l and immediately transfered into the place p2. This phenomena will
not appear in the object Qbj 3, because the internal transition t has been replaced by a method m
The same remark holds for Figure 2.14 in which the internal transition t of the object Qbj 4 asks
to be synchronized with a method m while within the object Qbj 5 the synchronization is requested
by a method m . In other words the synchronization request of Qbj 4 is perform as soon as the

CGeneric bj ect Bag(El em;
Interface
Met hods get _ , put _ : elem
Body hj ect BagMessage As Bag(Message);
Place bag _ : elem Mor phi sm el em - > nmessage;
Axi ons Interface
put e : -> bag e; Body
get e : bag e -> ; End BagMessage;
Wher e
e : elem
End Bag;

Figure 2.12: The Generic Version of the Object Bag and its Instantiation
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transition t can be fired, while that of Qbj 5 is dependent upon an external event.

hj 2

Figure 2.13: Method Firing Versus Transition Firing

bj 4 hj 5
——
m
m m

Figure 2.14: External and Internal Synchronizations

Figure 2.15 illustrates two simple synchronization requests. On the left, method mil of object
Ol asks to be simultaneously synchronized with methods m2 and n8 of both of the distinct objects,
2 and OB, by means of the expression “ml with n2 // nB”. This expression must be read
as follows: method ml behaves the same as the behavior of the simultaneous execution of N2 and
M8 plus some local condition on OL. On the right, the synchronization involves the same object
twice by means of the expression “mlL WthnmR2 .. nB”, which corresponds to the execution of
nR followed by the execution of nB.

Figure 2.16 depicts a synchronization request involving the three synchronizations operators
which are provided by the formalism. Once again, the synchronization expression

m. Wthn2 // ((m8 .. md) + nb)

must be read as follows: method Ml behaves just as simultaneous methods M2 and the alternative

choice between nB followed by nd or nb.

ol ol
m owith e // n8 M owith n2 .. n8
VAN i,
O O [
@ s @

Figure 2.15: two Synchronization Schemes
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m with n2 // ((nB .. mi) + nb)

Figure 2.16: One More Involved Synchronization Scheme
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3 Specification Examples

GI10VANNA D1 MARZO & OLIVIER BIBERSTEIN

3.1 Introduction

This part presents some examples which illustrate the use of CO-OPN; 5 specifications, and in
particular the synchronization mechanism, the use of the | nt er f ace, Body parts, as well as the
instantiations possibilities and the use of infix notation for the names.

The examples presented here consist of: (1) the Alternating Bit Protocol which enables two
entities to exchange messages across unreliable channels; (2) the fair Lift, which processes calls
from inside and/or outside a cabin without causing users to wait an infinite amount of time for the
lift; (3) the Hierarchical Routing which is based here upon a two-level routing hierarchy.

Relevant CO-OPN; 5 specifications for these examples are collected in Section 3.5.

3.2 Alternating Bit Protocol

The Alternating Bit Protocol (ABP) allows two communicating entities to exchange messages al-
ternatively across an unreliable transmission medium. In this protocol, messages can be lost or
altered. The existence of an altered message detection mechanism is assumed and a classic time-out
retransmission mechanism is used for coping with the problem of lost messages. When an entity
receives a corrupted message, it is rejected, thus reducing the problem of corrupted messages to
that of lost messages.

Although the original ABP was designed to achieve reliable full-duplex data transfers, we as-
sume the existence of only one sender, who sends messages to only one receiver, who in turn
acknowledges the messages it receives correctly. We also assume that the transmission lines consist
of two unreliable FIFO queues.

Fach time the sender initiates the transmission of a message, it activates a timer, which is
not modeled in CO-OPNy 5 but assumed external. If no acknowledgment is received within the
given time limit by the sender, the message is retransmitted. It is to be noted that the time-
out mechanism can generate duplicated messages at each side of the transmission medium if the
time-out delay is set too short.

In order to circumvent the problem of duplication, messages are numbered sequentially with
modulo-2 sequences. Consequently, each message, apart from containing error detection informa-
tion, also contains a flag bit that serves as an identification number. If the receiver gets a message
with a flag bit equal to the flag bit of the last acknowledgment it has sent, the receiver then detects
that it is receiving a duplicated message. In order to allow the sender and the receiver to synchro-
nize, the receiver also returns acknowledgment for duplicated messages. This acknowledgment is
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received by the sender if its flag bit is different from the flag bit of the acknowledgment that the
receiver is ready to accept.

Figure 3.1 depicts two entities, a Sender of messages and a Receiver of messages, which are
connected across two unreliable channels.

Sender Receiver

q<;_l< forlgood packet

timeout L
s bad or corrupted paquet

Unreliable channel for ack

Unreliable channel for messages

Figure 3.1: Alternating Bit Protocol

CO-OPN; ; Modeling

Messages contain no data and it is only the sort message which composes messages as is shown
in Figure 3.4. In the same figure we observe the modules Al t bi t and Fr ame, which correspond,
respectively, to the message number (modulo-2) and the transmitted frame (a message coupled
with its number).

The final abstract data type in the ABP example is a first-in-first-out buffer of frame used for
modeling communication links as is shown in Figure 3.5.

The first entities in our example which have an internal state are both the links Et her I n and
Et her Qut objects. Figures 3.6 and 3.7 show the specifications of these objects. They represent
the channel for messages and the channel for acknowledgments respectively.

The Sender entity is represented by the Transm tter object shown in Figure 3.9, while the
Receiver entity is given by the Recei ver object shown in Figure 3.8. They synchronize their
emission, or reception, of messages across the two channels.

3.3 Lift

We present here an example of a lift moving between floors of a building. It is propelled first by
calls, made either from the inside or the outside of the cabin from each floors, and then, secondly,
by its direction. Indeed, the lift follows an up or down direction, so that during its motion it can
provide for users who wish to take the lift in the same direction than those of the lift.

Figure 3.2 shows a lift in a building of 5 floors. Calls made outside the cabin indicate that a
user wishes to go up or down, while calls made inside the cabin only indicate the floor to which the
user wishes to go, because the lift can rest at any floor when the user performs its call from inside
the cabin.

CO-OPN; ; Modeling

The Di recti on abstract data types, of figure 3.10, used by the Lift specification is made of 3
constants which represent three possible movement directions: up, down and an undefined direction.
The Fl oors abstract data type of figure 3.12 states the floors by name: each floor is given a
reference with a constant Ni , which indicates the i-th floor. The two fundamental abstract data
types are Goal and Li st Goal s given by figure 3.11 and 3.13 respectively. The Goal type specifies
cartesian products of directions and floors. Goals represent the wishes of users the lift has to satisfy.
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down F4

up F1

i floor F3 -
. -
e . FO

Cabin  Building Floors

Figure 3.2: Lift

The Li st Goal s type specifies the lists of these goals. The Li st Goal s type encodes the way
in which the lift (1) stores the goals before processing them, (2) processes its goals, (3) modifies
its direction and position. The lift acts in a fair way, i.e. it follows its direction (up or down) until
all goals containing this direction have been processed, then either there are no more goals and the
lift stops and its direction becomes undefined, or it goes in the opposite direction to process the
remaining goals.

Three objects model the lift. First of all the Cabi n in Figure 3.14, which is made of buttons
Cabi nBut tons (one for each floor) and which stores the calls occurring inside the cabin in its
memory, called MentCabi n. These calls are stored as goals, composed of both the undefined di-
rection and the floor chosen by the user. Once calls have been stored, the cabin forwards them
to the Control object of Figure 3.16, which stores them in the list of goals of the lift and will
process them later. The second object is the Bui | di ngFl oor s of Figure 3.15 which acts as the
cabin, with the difference that it is dedicated for processing the calls external to the cabin. The
difference resides in the fact, that outside the cabin, a user must mention if it wants to go up
or down. Finally, the third object Control processes calls that have been forwarded by either
the Cabi n or Bui | di ngFl oors. According to the list of goals the cabin must perform and to
the current position and direction of the lift, the Cont r ol object is able to update the position,
direction and goals of the lift.

3.4 Hierarchical Routing

Hierarchical routing is necessary in large networks, in which the gateways cannot maintain huge
routing tables. Hosts are divided into regions, and the packets are routed first of all between regions
till they reach their destination region, and then routed onwards to the destination host inside the
destination region. Based upon the size of the whole network a two- (or more) level hierarchy of
routes is necessary [Tan89].

Our model involves three regions, Regiong, Region, Regiony working with a two-level hierarchy
of routes. Region; and Regions contain subregions: Regiony;, Regiony; for ¢« = 1,2. The regions
are organized as a binary tree, where each node act as a default gateway for its two children (sub-
Jregions. The default gateway is responsible for (1) routing each packet, destination address of
which concerns its children region, for (2) routing all unknown packets to its default gateway (its
parent region), and for (3) consuming each packet addressed to its region.

Figure 3.3 shows the above configuration. Packets going from Regioni, and having to reach
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Regiongy will first of all be routed towards the default gateway of Region;y, which is Region;.
Similarly they will be routed to the next default gateway, Regiong, which identifies them as being
addressed to the sub-tree of Regiony. From Regiony they will finally be routed to their destination
in Regiongs,.

Regi Regi
egion | egion,,

T . o \\‘reegm\ngz
/ \ P i N

’ L\
' N
i \ - .- \R\eglc‘mm

1

N% : Reglgpﬁ

Figure 3.3: Hierarchical Routing

We have chosen to model only the default gateways and their work to route packets among the
regions. Of course, each region is made of several users and the default gateway, instead of only
consuming messages addressed to its region should also distribute them among all the users.

CO-OPN; ; Modeling

The abstract data type allowing the above modeling of hierarchical routing is a hierarchical type of
addresses, represented by the Addr ess abstract data type of Figure 3.17. In a n-level of routing,
addresses are made of n parts a; — ay — ... — a,, where a; means the super region in which the
recipient resides, a5 indicates which subregion inside region ¢4 is referenced, and so on until a,, which
indicates what user is involved in the Region a,_;. Our example shows a two-level of routing, so
that addresses used in the specifications have only one or two parts.

The generic object User in Figure 3.18 models the behavior of a gateway, which is able to route
packets to its children or to its default gateway. A User object communicates with its default
gateway (another User object) through methods SendToGWand CGet Fr onGW It communicates
with its 2 children using transitions Get Fromseri, SendToUseri, : = 1,2, and consumes
messages for itself with Consune.

Three instantiations Useri, : = 0,1, 2, stand for the three interconnected regions, with User O
being the default gateway between the other two regions. Figures 3.19, 3.20 represent User O and
User 1.

Axioms of these objects specify the routing: given their address, messages will take the known
route or will be forwarded to the default gateway.

Four objects Userij, ¢« = 1,2, j = 1,2, lie at the bottom of the hierarchy. They are the
leaves of the binary tree and for this reason they don’t have any children to whom messages have
to be forwarded. They are only consumers of messages and forwarders of unknown messages to
their parent. Figures 3.21 and 3.22 represent objects User 11 and User 12, which are the children
subregions of User 1.
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3.5 CO-OPN,; Specifications

3.5.1 Specification of the Alternate Bit Protocol Example

Adt Message; Adt Altbit;
Interface Interface

Sort nessage,; Use Bool eans;
Body Sort altbhit;
End Message; Generators

0: ->althit;
1: ->althit;

Operation
Adt  Frame; inc _: altbit -> altbit;
Interface Body
Use Message, Altbit; Axi ons
Sort frane,; inc 0 = 1;
Gener at or inc 1 =0;
conp _ _ : nessage altbit -> frane; End Altbit;
Body
End Frane;
Figure 3.4: Three Basic Abstract Data Types of the ABP Example
Adt Fifo;
Interface
Use Frane, Bool eans, Altbhit;
Sort fifo;
Generators
enpty : -> fifo;
put _ _ : fifo frame -> fifo;
Operati ons
enpty? _ : fifo -> bool ean;
rm _  fifo ->fifo;
get _ : fifo -> franeg;
nunframe _ : fifo -> althit;
Body
Axi ons

enpty? enpty = true,
enpty? (put ff fr) = false;

rmenpty = enpty;

rm (put enpty fr) = enpty;

enpty? ff = false => rm (put ff fr) = put (rmff) fr;
get (put enpty fr) = fr;

enpty? ff = false => get (put ff fr) = get ff;

enpty? ff = false => nunframe (put ff fr) = nunframe ff;

nunframe(put enpty (comp msg num)) = num

Wer e
ff : fifo;
fr : franeg;

nsg : nessage;
num: altbhit;
End Fifo;

Figure 3.5: Fi f 0 of Frames Abstract Data Type
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Obj ect Etherln;
Interface
Use Message, Altbit;
Met hods
Put Frane _ _
Get Frame _ _ : nessage althit;
Lost Fr ane,
Body
Use Frane, Fifo;
Pl ace
OnChannel Frame _ : fifo;
Initial
OnChannel Frane enpty;
Axi ons
Put Frane nsg frnum:
OnChannel Frane ffch -> OnChannel Frane (put ffch (conp nmsg frnun));
Get Frame nsg frnum:

OnChannel Frane (put ffch (conp nsg frnum)
-> OnChannel Frame (rm (put ffch (conp nsg frnum));

Lost Frane :
OnChannel Frane ffch -> OnChannel Frane (rmffch);
Wher e
ffch : fifo;
frnum: altbit;
nmsg : message,;
End Et herln;

Figure 3.6: The Et her I n Object

Obj ect EtherQut;
Interface
Use Message, Altbit;
Met hods
Get Ack _ _
Put Ack _ _ : nessage altbit;
Lost Ack;
Body
Use Frane, Fifo;
Pl ace
OnChannel Ack _ : fifo;
Initial
OnChannel Ack enpty;
Axi ons
Get Ack nsg frnum:
OnChannel Ack (put (ffch (conp nsg frnum))
-> OnChannel Ack (rm (put (ffch (conp nmsg frnum)));

Lost Ack:
OnChannel Ack ffch -> OnChannel Ack (rmffch);
Put Ack nmsg frnum:

OnChannel Ack ffch -> OnChannel Ack (put ffch (conp nsg frnun));
Wher e

fr . frane;
ffch : fifo;
frnum: altbit;
nsg . nessage;

End Et her Qut;

Figure 3.7: The Et her Qut Object
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Obj ect Recei ver;
Interface
Use Altbit;
Met hods
TxAck o,
OkFraneRcv _ : althit;
Body
Use Message, Frane, Fifo, Etherln, EtherQut;
Pl ace
FrameRcv _ : fifo;
Initial
FrameRcv enpty;
Axi ons
TxAck b Wth PutAck nsg b :
FrameRcv (put ffrcv (conp nsg b)) -> FrameRcv ffrcv;

OkFraneRcv b Wth GetFrane nsg b :
FrameRcv ffrcv -> FrameRcv (put ffrcv (conp nmsg b));

Wer e
nsg . nessage;
ffrcv : fifo;
b caltbit;

End Recei ver;

Figure 3.8: The Recei ver Object
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Obj ect Transnmitter;
Interface

Use Altbhit;

Met hods
DupAckRev _
TxFrame .,
Ret xFrame _
Pr ocAck;
OkAckRev;

Body

Use Message,

Pl aces
Idle o,
Ti meQut _
AckRcv
Last

Initial
Idle O,

Axi ons
acknum = inc frnum => DupAckRcv frnum Wth Get Ack nsg frnum:

Last acknum -> Last frnum

ProcAck :
AckRcv acknum TineQut frnum-> Idle acknum

OkAckRcv Wth Get Ack nsg frnum:
Last frnum -> AckRcv frnum Last (inc frnum;

altbit;

Frane, Fifo, Etherln, EtherQut;

altbit;

Last 1;

TxFrame frnum Wth Put Frane nsg (inc frnum
Idle frnum-> TimeQut (inc frnum;

Ret xFranme frnum Wth Put Frame nsg frnum:
TimeQut frnum-> TineQut frnum

Wer e
nsg nessage;
acknum: altbhit;
frnum altbit;

End Transnmitter;

Figure 3.9: The Transm tter Object
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3.5.2 Specification of the Lift Example

Adt Direction;
Interface
Use Bool eans;
Sort direction;
Cenerators

UpDi rection ,
DownDi r ecti on ,
UndefinedDirection : -> direction;

Operation
_ = _ : direction direction -> bool ean;

Body

Axi ons
UpDirection = UpDirection = true;
UpDi rection = DownDi rection = fal se;
UpDi recti on = Undefi nedDirection = true;
DownDi rection = UpDirection = fal se;
DownDi recti on = DownDirecti on = true;
DownDi recti on = UndefinedDirection = true;
Undef i nedDirecti on = DownDi rection = true;
UndefinedDirecti on = UpDirection = true;

Undefi nedDi recti on = Undefi nedDi rection = true;
End Direction;

Figure 3.10: The Directi on ADT of the Lift Object

Adt CGoal As Pc2(Direction, Floors);
Mor phi sm
_ = _in Conparablelten?2 -> _ = _ in Floors;
Renane
pc2 -> goal ;
fst _ -> whichDirection _ ;
snd _  -> whichFloor _ ;
<__>->par _ _,;
Interface
Body
End Coal ;

Figure 3.11: The Goal ADT of the Lift Object
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Adt Fl oo
Interfac

rs;
e

Use Bool eans;

Sort floors;

Cenerators
FO, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10,

not defi ned :

Operati ons

| ast
next

first

-> floors;

-> floors;

_, previous _ : floors -> floors;
_ notdefined?

floors -> bool ean;

_ < _: floors floors -> bool ean;

Body

Axi ons

first = FO; last = F10;
7, next, if x >=last then next x = notdefined
i, previous, if x <= first then previous x = notdefined
next FO = F1; previous F1 = FO;
next F1 = F2; previous F2 = F1;
next F2 = F3; previous F3 = F2;
next F3 = F4; previous F4 = F3;
next F4 = F5; previous F5 = F4;
next F5 = F6; previous F6 = F5;
next F6 = F7; previous F7 = F6;
next F7 = F8§; previous F8 = F7;
next F8 = F9; previous F9 = F8;
next F9 = F10; previous F10 = F9;
next F10 = notdefined; previous FO = notdefined;
next notdefined = notdefined,

previous notdefined = notdefined;

FO notdefined? = fal se; F1 notdefined? = fal se;

F2 notdefined? = fal se; F3 notdefined? = fal se;

F4 notdefined? = fal se; F5 notdefined? = fal se;

F6 notdefined? = fal se; F7 notdefined? = fal se;

F8 notdefined? = fal se; F9 notdefined? = fal se;

F10 not defined? = fal se; not def i ned not defi ned? = true;

x notdefined? and y notdefined? =true => x =y = true;
(not x notdefined?) and y notdefined? = true => x =y = fal se;
x notdefined? and not y notdefined? = true => x =y = fal se;

(not x notdefined?) and not y notdefined? = true =>

(x =y) = (previous x = previous y);
x notdefined? and y notdefined? = true => x < = fal se;
(not x notdefined?) and y notdefined? = true => x <y = fal se;
x notdefined? and not y notdefined? =true => x <y =true;

(not x notdefined?) and not y notdefined? = true =>
X <y = previous x < previous y;

Wher e

X, Yy :

End Fl oo

rs,;

floors;

Figure 3.12: The Fl oors ADT of the Lift Object
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Adt ListGoals As List(CGoal);

Renane
[1 -> enptylist;
_ ' _=->cons _ _;
| _->_cat _ ;
# _  ->length _ ;
list ->1istCoals;
Interface

Use Bool eans, Floors, Direction;
Operati ons

insertGoal _ _ : listGoal s goal -> |istCoals;
reachGoal _ _ _ : listGoals floors direction -> |istCoals;
nmove _ _ _ : listGoals floors direction -> floors;
nmodi fyDirection _ _ _ : listGoals floors direction -> direction;
existLT _ _ ,
existGr _ _
exi st Equal _ _ : listGoals floors -> bool ean;
exi stCGoal _ _ : |istGoal s goal -> bool ean;

Body

Axi ons

insertGoal enptylist gl = cons gl enptylist;

whi chFl oor gl < whichFloor val = true =>
insertGoal (cons val Ist) gl = cons gl (cons val Ist);
whi chFl oor gl < whichFloor val = false =>
insertGoal (cons val Ist) gl = cons val (insertCoal Ist gl);

;; no goals for reachGCoal
reachGoal enptylist fl d = enptylist;

;; the floor and the direction are a correct goal
(whi chFloor gl = fl and whichDirection gl = d) = true =>
reachGoal (cons gl Ist) fl d = Ist;

;; the floor is reached but the direction is wong,

;; the list of goals is explored

(whi chFloor gl = fl and not whichDirection gl =d) = true =>
reachGoal (cons gl Ist) fl d = cons gl (reachCGoal Ist fl d);

;; the floor is not reached , the list of goals is explored

whi chFl oor gl = fl = false =>
reachGoal (cons gl Ist) fl d = cons gl (reachCGoal Ist fl d);

move enptylist fl d = fl;
d = UndefinedDirection => nove (Ist, fl d) = fl;

;; the current floor is a goal, there is not any other one
(existEqual |Ist fl and length Ist = succ 0) = true =>
move (Ist, fl d) = fl;

;; the current floor is a goal, verification of the direction
(existEqual |st fl and existGoal Ist (pair d fl)) = true =>
move (Ist, fl d) = fl;
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;; the current floor is a goal, incorrect direction (up direction)
(existEqual |Ist fl and not existGoal Ist (pair d fl)) and
existGrl Ist fl =true =>
move (Ist, fl UpDirection) = next fl;

(existEqual |st fl and not existCGoal Ist (pair d fl)) and
not existGr Ist fl = true =>
move (Ist, fl UpDirection) = fl;

;; the current floor is a goal, incorrect direction (down direction)
(existEqual |st fl and not existGoal Ist (pair d fl)) and
existLT Ist fl = true =>
move (Ist, fl DownDirection) = previous fl;

(existEqual |st fl and not existGoal Ist (pair d fl)) and
not existLT Ist fl = true =>
move (Ist, fl DownDirection) = fl;

;; the current floor is not a goal
exi stEqual Ist fl = false => nove (Ist, fl UpDirection) = next fl;

exi stEqual Ist fl = false => nove (Ist, fl DownDirection) = previous fl;

;; the current floor is not a goal
;; nmodifyDirection depends on the direction
existGrl Ist fl = true =>
nmodi fyDirection (Ist, fl UpDirection) = UpDirection;

(existLT Ist fl) and not existGI Ist fl = true =>
nmodi fyDirection (Ist, fl UpDirection) = DownDirection;

(not existLT Ist fl) and not existGrI Ist fl = true =>
nmodi fyDirection (Ist, fl UpDirection) = UndefinedDirection;

existLT Ist fl = true =>
nmodi fyDirection (Ist, fl DownDirection) = DownDirection;

(not existLT Ist fl) and existGI Ist fl = true =>
nmodi fyDirection (Ist, fl DownDirection) = UpDirection;

(not (existLT Ist fl)) and not (existGrl Ist fl) = true =>
nmodi fyDirection (Ist, fl DownDirection) = UndefinedDirection;

existGrl Ist fl =true =>
nmodi fyDirection (Ist, fl UndefinedDirection) = UpDirection;

existLT Ist fl and not existGrI Ist fl = true =>
nmodi fyDirection (Ist, fl UndefinedDirection) = DownDirection;

(not existLT Ist fl) and not existGrI Ist fl = true =>
nmodi fyDirection (Ist, fl UndefinedDirection) = UndefinedDirection;

;; Does it exist a lower floor
exi stLT enptylist fl = false;

whi chFl oor gl < fl = true => existLT (cons gl Ist) fl = true;

whi chFl oor gl < fl = false => existLT (cons gl Ist) fl = existLT Ist fl;
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Does it exist a floor

ex

st Equal enptylist fl = fal se;
whi chFl oor gl = fl = false => existEqual (cons gl Ist) fl = existEqual Ist fl;
whi chFl oor gl = fl = true => existEqual (cons gl Ist) fl = true;

Does it exist a greater floor

o -
x -

istGl enptylist fl = fal se;
whi chFl oor gl < next fl = false => existGTl (cons gl Ist) fl = true;
whi chFl oor gl < next fl = true => existGl (cons gl Ist) fl = existGl Ist fl;

;; Does it exist a goal
exi st Goal enptylist gl = fal se;

(head Ist = gl) =true => existCGoal Ist gl = true;

(head Ist = gl) = false => existCGoal Ist gl = existCGoal (tail Ist) gl;
Wher e

gl, val : goal;

| st . listGoals;
fl . floors;

d : direction;

End Li st Goal s;

Figure 3.13: The Li st Goal s ADT of the Lift Object

Obj ect Cabi n;
Interface
Use Control; ;7 Synchro from (perforntall )
Met hods
floor _ : floors ;
Body
Use
Di rection, Floors, Bool eans;
Goal ; i, list of users
Transition
perfornfl oor; i, !l synchro
Pl aces
Cabi nButtons _ : floors;
MenCabin _ : goal ;
Initial
Buttons inside the cabin
Cabi nButt ons FO, Cabi nButtons F1, Cabi nButtons F2, CabinButtons F3, Cabi nButtons F4;
Axi ons
Store a call occured inside the cabin into the menmory of the
cabin. The direction is undefined as the cabin can currently
lie at any floor.
floor bfl:
Cabi nBut t ons bfl
-> Cabi nButtons bfl, MenCabin (pair UndefinedDirection bfl);

Forward a call occured inside to the cabin to the Control object
perfornfloor Wth call d bfl:
MenCabin (pair d bfl)

-> ’
Wer e
bfl : floors;
d : direction;
End Cabi n;

Figure 3.14: The Cabi n Object of Lift
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Obj ect Bui | di ngFl oors;

Interface
Use Control; ;7 Synchro from (perforncall)
Met hods
down _ : floors ;
up _ : floors ;
Body
Use
Di rection, Floors, Bool eans;
Goal ; i, list of users
Transition
perforncal | ; 7, !l synchro
Pl aces
Fl oorButtons _ : floors;
MenFl oor s _ : goal;
Initial

., Buttons to call cabin fromthe floors

Fl oor Buttons FO, FloorButtons F1, FloorButtons F2, FloorButtons F3,
AXi ons

;; Store in the nenory of the Floors at which floor a

;; user has called the cabin b and for which direction up down
down b :

Fl oorButtons b
-> Fl oorButtons b, MenFloors (pair DownDirection b);

up b :
Fl oorButtons b
-> FloorButtons b, MenFloors (pair UpDirection b);

;; Forward the call to the Control object
perforncall Wth call d b :
MenFl oors (pair d b)
_>;
Wer e
b : floors;
d : direction;
End Bui | di ngFl oors;

Fl oor Butt ons F4;

Figure 3.15: The Bui | di ngFl oors Object of Lift
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Obj ect Control;
Interface
Use Direction, Floors;
Met hods
call _ _ : direction, floors ;
Body
Use
Bool eans;
Goal , ListGoals;
Transitions

i list of users

novi ng;
Pl aces

Goal sToSol ve _ : listGoals;

Moving _ : direction;

Position _ . floors;
Initial

Goal sToSol ve enptylist, Myving UndefinedDirection, Position FO;
Axi ons

;; Move the position of the cabin if the cabin is wanted to
;' g0 sonewhere
(empty? | = false) = true => noving:
Position fl, Mving dir, Goal sToSol ve |
-> Moving (nodifyDirection | fl dir),
Goal sToSol ve (reachGoal | fl dir),
Position (rmove | fl dir)

;; Store forwarded call from Cabin or Buil di ngFl oors
call dir fl

CGoal sToSol ve |

-> Goal sToSol ve (insertGoal (I (pair dir fl)))

Wher e
fl . floors;
dir : direction;
| o listCGoals;
End Control;

Figure 3.16: The Cont r ol Object of Lift
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3.5.3 Specification of the Hierarchical Routing

Adt Addr ess;
Interface
Use Bool eans;
Sort address;
Cenerators
0, 1, 2, notdefined : -> address;
- . address address -> address;

Operation
_ = _ : address address -> bool ean;
head _ ,
tail _ : address -> address;
Body
Axi ons
0 =0 = true, 1=1-=true; 2 =2 = true,

not defi ned = notdefined = true;

0 =1 = fal se; 0 =2 = fal se; 0 = notdefined = fal se;
1 =0 = fal se; 1 =2 = fal se; 1 = notdefined = fal se;
2 = 0 = fal se; 2 =1 = fal se; 2 = notdefined = fal se;
notdefined = 0 = fal se;

notdefined = 1 = fal se;

notdefined = 2 = fal se;

x-y = 0=fal se; x-y = 1=fal se; x-y = 2=fal se

0 = x-y=fal se; 1 = x-y=fal se; 2 = x-y=fal se
((x-y)=(x1-y1)) = (x=x1) and (y=yl);

head 0=0;

head 1=1;

head 2=2;

head not defi ned=not defi ned;

head (0-x)=0;

head (1-x)=1;

head (2-x)=2;

tail O=notdefi ned;
tail 1=notdefi ned;
tail 2=notdefined;
tail notdefined = notdefined;
tail (0-x)=x;
tail (1-x)=x;
tail (2-x)=x;
Wer e

X, Yy, x1, yl : address;

End Address;

Figure 3.17: The Addr ess ADT for Hierarchical Routing
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Generic hject User;
Interface
Use Address;
Met hods
SendToGW _ : address;
Get FromGW _ : address;
Body
Transitions
SendToUser1 ;
Cet Fromser 1;
SendToUser 2 ;
Cet FromJser 2;
Consune ;
Pl aces
User : address;
End User;

Figure 3.18: Generic User of Hierarchical Routing

Obj ect User0 As User;

Interface
Body
Use Userl, User2;
Initial
User 0O; User 1-2; User 1-1; User 2-1;
AXi ons

;; Forward nmessages to its Userl or User2

head adr = 1 = true => SendToUser1l Wth GetFronGWIn Userl adr : User adr -> ;
head adr = 2 = true => SendToUser2 Wth GetFronGWIn User2 adr : User adr -> ;

;; Message is for current User
adr=0 = true => Consune: User adr -> ;

;; Collect nmessages for current User or nessages to forward
(not head adr = 1) = true =>
CGet Fromser1l Wth SendToGWIn Userl adr : -> User adr;

(not head adr = 2) = true =>
Get FromJser2 Wth SendToGW I n User2 adr : -> User adr;
Wer e
X, adr : address;
End UserO;

Figure 3.19: An Instantiation of User: User O the Root User
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Obj ect Userl As User;

Interface
Body
Use User1ll, User12;
Initial
User 0; User 2-1; User 2-2; User 2; User 1-1;
AXxi ons

;; Forward nmessages to its Userl or User2

head x = 1 = true => SendToUser1l Wth GetFronGWIn User1l 1-x : User 1-x -> ;
head x = 2 = true => SendToUser2 Wth GetFronGWIn User12 1-x: User 1-x -> ;

;; Message is for current User
adr =1 = true => Consune : User adr -> ;

;; Collect messages for current User or nessages to forward
(not head adr = 1) or (not head tail adr = 1) = true =>
CGet FromJserl Wth SendToGWIn User1l adr : -> User adr;

(not head adr = 1) or (not head tail adr = 2) = true =>
Get FromJser2 Wth SendToGWIn User12 adr : -> User adr;

;; Forward (Receive) messages to (from gateway
SendToGW adr : User adr -> ;

Get FronGWadr : -> User adr;
Wher e
X, adr : address;
End User1;

Figure 3.20: The Instantiation of User: User 1 an Intermediary Node

Obj ect User1ll As User;
Interface
Body
Initial
User 0, User 2-2, User 2, User 1, User 1-1, User 1-(1-2);
Axi ons
;7 No Forward of nmessages to its Userl or User2
;; Message is for current User;
adr=1-1 = true => Consune: User adr -> ;

;7 No collect of nmessages fromits Userl or User2
;; Forward (Receive) nmessages to (from gateway
SendToGW adr : User adr -> ;

Get FromGWadr : -> User adr;
Wer e
X, adr : address;
End User 11,

Figure 3.21: A Leaf User
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Obj ect User12 As User;
Interface
Body
Initial
User 2, User 1, User 1-1, User 2-2,
Axi ons
;7 No Forward of nmessages to its Userl or User2
;; Message is for current User;
adr=1-2 = true => Consune : User adr -> ;

;7 No collect of messages fromits Userl or User2
;; Forward (Receive) messages to (from gateway
SendToGW adr : User adr -> ;

Get FronGWadr : -> User adr;
Wer e
X, adr : address;
End User12;

Figure 3.22: A Second Leaf User
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4 The Editor

JACQUES FLUMET

4.1 Introduction

The graphic editor offers an environment for supporting the development of the CO-OPNy 5 for-
malism. This tool can read text files and generates their internal representation, or the other way
around: transform the graphic objects/modules into a textual form. Every components of the
SANDS; 5 development system may be invoked from the graphic editor.

The editor we present here evolved out of the graphic tool described in [BFR93b] and is still
being developed. The complete definition of the initial graphic formalism (CO-OPN version 1) can
be found in [Flu95]. Both this graphic editor and its ancestor have been developed by means of a

the meta-CASE GraphTalk 2.5 1.

4.2 Functional Description

4.2.1 Generalities

e Graphic Formalism
The graphic formalism of CO-OPNjy 5 is evolved out of CO-OPN (version 1). It includes
definitions of graphic signatures for object modules and ADT modules. It can also describe
synchronizations between objects and dependencies which exist between objects and modules.
Several views represent a CO-OPN, 5 application and, these views are described below.

e Graphic Signature of Object
For an object, this representation shows its methods, transitions and profile (Figure 4.1). If
its methods/transitions are defined in the body (respectively the interface), they are drawn
on the bottom (respectively the top) of the object.

o Graphic Signature of ADT Module
For an ADT module, this representation shows its methods/generators and profile (Figure
4.2). If its methods/generators are defined in the body (respectively the interface), they are
drawn on the bottom (respectively the top) of the object.

e Algebraic Petri Nets
Each CO-OPNj 5 object is defined by an Algebraic Petri net (Figure 4.3). Places (displayed as

circles) are typed by a sort. This sort is displayed under the place. Transitions and methods
are displayed with rectangles, with white representing transitions and black representing

!GraphTalk is a commercial product of Rank Xerox.
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Figure 4.1: A Graphic Signature of an Object
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Figure 4.2: A Graphic Signature of an ADT Module

methods. Fdges are labeled with algebraic terms which represent tokens which are consumed
or produced in the places.

e Dependencies Graphs
This representation shows dependencies between objects and/or modules. Objects are dis-

played as ellipses, whereas modules are displayed as cylinders. An example is given in Figure
4.4,

4.2.2 Tool & Module Management

e Data Consistency
The graphic editor maintains the consistency between names of modules, object and sort
definitions. The dependency graphs are actually documentation graphs, which are snapshots
of a CO-OPNy 5 application described in the graphic editor.

o Translation between Textual and Graphic Form (vice-versa)
The graphic editor can generate a program text corresponding to an object. It can also build
a graphic representation from a textual form of an object or ADT module.

e Interaction with other tools
The compiler and the simulator can be invoked directly from the graphic editor. If error
messages appear, they are displayed in relation to the graphic component concerned.
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4.3 Introduction Manual

4.3.1 Organization and Main Window

The main window displays all the kinds of views (left side of Figure 4.5) and the user can create
instances of these views that generate new windows which are listed on the right side of the Figure
4.5.

o “syst” Windows
This kind of windows allows the user to create ADT modules and objects. The “Cbj ect s”
window is dedicated to the object creation and their associated methods as well as the method
profiles. In a “Modul eAl g” window, the user creates ADT modules and their associated
generators/operations, and can define their profiles.

e “doc” Windows
A “Dependences” window is used for obtaining documentation on some modules or objects
from the application. With a set of graphic operations, the user may mask or show particular
details. A “Mar quage” window can be used after a simulation session. The graphic editor
is able to read a file generated by the simulator and to show the result in a graphic form.
As mentioned for the “Dependences” window, the user may mask or show some particular
details by using a set of graphic operations.

4.3.2 Working Session

Menus are attached to objects, ADT modules or windows in accordance with behavior charac-
teristics. The graphic editor is designed for beginners who have no particular knowledge of the
syntax of the CO-OPNy 5 formalism. For advanced users, a syntactic textual editor can be used in
collaboration with the graphic editor.

4.3.3 Actual Implementation

Up to date, a complete graphic editor as been developed for the SANDS (version 1) environment.
A updated version exists for the SANDS; 5, however some functionalities are missing. The devel-
opment of a complete version is still in progress.

oy . gl
SANDSA1.5 = Philu2s < ... ... CO-OPN/L5 agplication name

Fichier Editer Actons oOptons - - - - . _____._._._ |t _.__. Operdation menits

Db jets {syst}
HoduleAly {uysl?
Harquages (doc)

_ List of application’s windows

Lependences (doc?

""""""" -~ Kinds of windows

) Ed

Figure 4.5: The Main Window of the Graphical Editor
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DipiEr BuUCHS

5.1 Introduction

The Checker is destined to check that a textual file contains a coherent part of a global specification,
written in the CO-OPNj 5 language. The principle used is mainly based on separated checking,
which means that a module is checked in isolation, assuming that the dependency modules have
been successfully checked. The smallest CO-OPNy 5 tile specification that can be checked is the
file which must contain at least one CO-OPN; 5 module.

5.2 Functional Description

The Checker exists for checking that a textual file contains a coherent part of a global specification
written in the CO-OPNy 5 language. The syntax and the static semantics supported by the Checker
are described in the annexes (syntax and static semantics).

The principle used is mainly based on separated checking and means that a module is checked
in isolation, with the assumption that the dependency modules have been successfully checked.
The smallest piece of CO-OPN; 5 specification that can be checked is the file which must contain at
least one CO-OPN; 5 modules. CO-OPN; 5 specifications are composed of four kinds of modules:

e ground or normal modules,
e parameter modules,
e instantiated modules,

e generic modules.

Each of these kinds of modules can be either algebraic or state based, that is to say described
by structured algebraic nets.

The Checker tool performs two kinds of activities: the instantiation of the modules (partial
or complete instantiation) and the checking of the entity definitions, as well as the checking of
expressions of the specifications ( functional axioms, behavioral axioms and theorems).

The instantiation process performs a translation of the instantiated module into a normal or
instantiated module (for the partial instantiation), in which each reference to a parameter module
identifier will be replaced by an identifier belonging to the concrete parameter module through the
use of morphism. The use of renaming allows the changing of the resulting identifier of the module
which is produced.

The checking process is divided into two steps. The first is destined to check that the definition
of the involved entities such as the sorts, operations, generators, methods are well-formed and
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do not include any ambiguities. The second produces an abstract description of the expressions
appearing into the different kind of axioms from the concrete syntax. The abstract description
must be deterministic, so as to resolve possible conflicts as well as overloading.

The abstract description is used by the tools working downstream from the Checker, such as
the Compiler, the Monitor and the Simulator.

5.3 Introduction Manual

The purpose of this part of the document is to explain how the checker can be used and the way
in which it works. Example of checking are given, as well as examples of different kinds of errors.
First of all, it is ensured that all environment variables are set correctly, according to the reference
manual (variable SANDS).

The checker is easy to operate, since its use is reduced to a command line, where the possible
options are described in the reference part below. The checker shows successively the modules
that have been loaded, and the stages that have elapsed. Indication of possible errors is given by
referring to the source file (line number) and axiom name.

5.3.1 Normal Use of the Ground Module

When files are correctly checked by the tools, a file is produced for each checked modules with the
extension “chck” including a translation of the definitions and axioms into an abstract syntax in
which possible ambiguities are removed. The abstract syntax is represented with a simple textual
syntax in which each keyword represents the portion of the syntax which is being considered and
the kind of identifier which is being declared. The abstract identifier is obtained by concatenation
of the sub-identifier with the underline place holder. The prefix notation is used for the terms,
instead of the mix-fix notation available in the CO-OPN; 5 concrete syntax, thus reducing the cost
of further term analysis.

Example:

Adt a; Adt b;

I nterface I nterface
Sorts t, u; Sorts v, w,
Oper ati ons Oper ati ons

f: t ->u; f: v ->w

Body Body
AXi ons AXi ons
Wher e Wher e

X ot y v,

End a; End b;

This example (Figure 5.1 and 5.2) produces the following abstract description shown in Fig-

ure 5.3.

Other modules, such as the parameter and generic modules are treated the same way, with the

Figure 5.1: Two Specifications

exception that the semantics rules are a little bit different.
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Adt specuse;
Interface
Use a, b;
Oper ati ons
g: v ->w

_inside? _: uv ->t;
Body
Axi ons

..o = f oz
VWher e

zZ . v,

End specuse;

Figure 5.2: The Use of the Previous Specifications

nodul e_al g(dat a,’ specuse’).

i nterface_uses(’specuse’,['a’,’b']).

i nterface_operation(’specuse’,’ specuse.g:b.v ->b.w,["b.v'],"b.W).

i nterface_operation(’ specuse’,’ specuse. _ isin _ :ra.u,b.v -> a.t’,
["a.u ,’b.v'],’a.t’).

body_axi om(’ specuse’,’ specuse.ax0’ ,[],..., " b.f:b.v -> b.w (' specuse.z’)).

body_vari abl e(’ specuse’,’ specuse.z: -> b.v',’b.v').

Figure 5.3: The internal form of the previous specifications

5.83.2 Normal Use of Instantiated Modules

When an instantiated module is given, the checking process requires two steps. First, instantiation
is made using morphism and renaming, producing a set of new definitions and abstract terms.
Then the checking process is applied again in order to find eventual errors coming from the faulty
definitions of the morphism and renaming.

5.3.3 Possible Errors

Some errors can be found statically, according to the rules given in the annexes. The kind of possible
errors concerns the incorrect syntactic definitions, the use of undefined identifier, the ambiguous or
incoherent term typing (arity and sorting) and the re-definition of the identifier. Error messages
are displayed, indicating which error has been encountered and where it has been found.

The error format has the following shape:

#errors#LINE[#AXIOM_NAME]#DESCRIPTION

The #LINE indicates the position of the error while [#AXIOM_NAME] indicates the axiom
name considered, if appropriate. The #DESCRIPTION is a text describing the error with the
description of the sub-portion of the line which produced the error.
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6 The Simulator

PascAL RacLoz & DIDIER BucHS

6.1 Introduction

The simulator is an important part of the SANDS; 5 environment. Indeed, it allows the simulation
of a CO-OPN 5 specification and the overall process is the following. From a global state of the
system, composed of the union of the state of each object, it computes, under a specified set of
constraints, its possible successor states. So, the simulation builds the reachability graph of the
system made of those global states.

On the other hand, the algebraic data type part of the system’s specification can also be
simulated. Coarsely, an abstract data type can be evaluated.

This part describes the simulator tool for CO-OPN; 5 specifications. It is structured essentially
into three parts: the control environment settings, a section concentrated on visualization and
simulation and the abstract data type behavior checker.

6.2 Functional Description

6.2.1 Generalities

e Nets that can be Simulated
The nets that can be simulated are the usual Petri nets, algebraic nets (which include col-
ored Petri nets) and hierarchical algebraic nets, i.e. CO-OPNy 5 nets. It is also possible to
produce, from a high level net, its underlying Petri net structure by taking the projection of
its structured tokens on usual black tokens, and then to simulate them.

e State and Transition
The state of a system is given by the set of the markings of the objects upon which the system
is built. A transition from one state to another is labeled by the name of an object’s method
or by a synchronization expression.

o Generic Markings
Due to the use of universally quantified variables within the terms of place contents, a marking
can be viewed as a generic marking. Each instantiation of a free variable generates a particular
marking. Figure 6.1 illustrate this notion. From the set of states represented by the generic
marking My, only those represented by the generic marking S My allow the firing of the given
transition (arrow shown on the picture). This firing leads to the set of states represented by
Ms.
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Figure 6.1: Generic Markings

o Visibility
The simulation tool includes the notion of visibility. The user can specify the objects and for
each object, the places and transitions that he would like to concentrate on and can hide the
other items which are of no interest to him. When an item is hidden, all information about it
is masked. This feature allows the user to focus attention on a particular part of the model.

e Graphic Features
The simulator allows users to perform model specifications by using the classic features of a
window manager (windows, buttons, scrolling list, etc...). However, no animation is available.
For instance, the companion piece for moving tokens along the arcs does not exist. Instead,
symbolic representations of tokens which use algebraic terms are used.

o Safeguard of a Session
The user can, at any moment, save its current environment or load another one. The safeguard
includes, among other things, the reachability graph as it has been developed so far. It keeps
the labels between the states. The user can also begin his simulation again with the initial
environment, and then all information about states and transitions is removed, with the
exception of the initial state.

6.2.2 State Graph Explorer

The reachability graph of the system is built during the simulation of the system. When there is no
simulation in progress, the states graph can be explored. Various facilities are offered to improve
this exploration such as, for instance, a display of all transitions from or to a specific state.

e Computation of the Successors
The environment provides two main means for interaction: a step-by-step evolution and an
evolution controlled by expressions of synchronization between the objects in the system.
The user can pass indifferently from one type of interaction to the other during a simulation.
In a step-by-step evolution the enabling capacities of the object methods are tested in the
current state of the system. In a synchronized evolution, a constraint expression involving
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events (methods or transitions) of objects in association with notions of sequential order, par-
allelism and alternatives is specified by the user. The tool tests whether this synchronization
expression can emanate from the current state. The test is successful if successors can be
computed.

e Direction of the Development of the Reachability Graph

The development of the graph depends on the choice of a particular state from which its
successors may be computed. The choice is left to the user or it can be selected randomly by
the simulator, the setting of which can be changed during a simulation. From a given state,
for instance the current one, the tools proposed its possible output labeled transitions. When
once of these transition is pointed, the source and target states are displayed such that the
user can study their effect. When the choice of the transition is fixed, the successors will be
computed from their target state. The choice of the state from which the reachability graph
is developed is totally free, i.e. it can be chosen from the set states which have been already
computed. Thus, one development in a branch of the graph can be abandoned for the benefit
of another.

6.2.3 Abstract Data Type Checker

During simulation, the user can also test the behavior of the abstract data type part of the system.
His task is facilitated by the possibility of defining variables.

e Variables
Various types of variables can be defined. Ground variables, which can be considered as
short-cuts of term expressions, free variables and variables defined by an expression which
also uses free or ground variables.

o FEvaluation of an Algebraic Term
The user can evaluate a term expression in which variables may occur. Equality between two
expressions can also be proved by using resolution techniques. When free variables appear in
terms if necessary they are instantiated, so as to be as loose as possible. Roughly speaking,
the evaluation is performed by means of the orientation of the axioms which describe the
behavior of the operations, i.e. the evaluation of an expression can be seen as being a result
of its rewriting by means of the axioms.

6.3 Introduction Manual

6.3.1 Organization and Main Windows

e The Main Windows
The simulator and the user manage different windows. The root window allows for the setting
of the parameters of the simulation, the specification of the visibility items and is also used
to activate the parts of the tool.

e Displayed Windows
Each object is associated with a specific window in which the current marking is displayed.
During a step-by-step simulation a window is also associated with each object in which the
enabled methods from the current state are displayed and proposed to the user.
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Figure 6.2: Bounds Associated with a Synchronization Evaluation

e The Graph Explorer Window

The labeled transitions are displayed in this window and are under the control of settings
relative to sources and target states wanted. The use of this window is twofold. On one
hand, it is used to show the reachability graph thus far established by the simulation. On
the other hand, it allows the user to select successors when a simulation is performed with
synchronizations expressions.

6.3.2 Tuning of the Settings and Possible Errors

o Development of the Reachability Graph

In some cases, a synchronization expression may produce a very large or infinite number of
successors. If needed, some constraints may be specified in order to overcome this difficulty.
Parameters such as depth, parallels and width set a limit to, respectively, the number of steps
to take from the current state, the number of transition to fire simultaneously in a single step,
and the number of successors of in marking (cf. Figure 6.2).

The following explanations are relative to a specified marking ( My in Figure 6.2) from which its
successors are computed during the simulation of one step in the simulator. This computation
is constrained as follows :

1. Two generic markings M; and M, linked by an arrow labeled with an expression
“t1 & ... &1,” mean that M; has been reached from M; by the simultaneous firing
of the transitions ¢y ...t¢,. The parallelism bound P imposes a limit to the number of
those transitions which can be fired simultaneously.

2. The width’s bound imposes a limitation to the number of direct successors a marking
can have.

3. At least, the depth’s bound set a limit to the longest path from the initial specific
marking to its possibly indirect successors computed during the step simulation.

e Evaluation of the Expression

Due to overloading and the use of variables, an expression can yield different evaluations.
For a similar reason, a boundary may be established for limiting the number of evaluations.
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Moreover, since the definition of a variable expression can, itself, utilize other variable defini-
tions, the user should take care to avoid using cyclic definitions, so that an infinite recursion
will not occur.

e Loading an Environment
Some simple tests may be made when a new environment is loaded in order to ensure that it
corresponds to the system currently under simulation.

6.4 Miscellaneous

¢ Implemented in Prolog (ProLog by BIM, license).

e Some of the windows of SANDS, 5 : cf. Figure 6.3
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7 The Verifier

PascAL RACLOZ

7.1 Introduction

This tool is affiliated with a method we developed for addressing the model-checking problem for
Petri nets. It is based on a definition of a symbolic representation of sets of markings, and the
intended properties of the net are expressed using a specific temporal logic. On one hand, the
symbolic representation may structure the state space of the net, to thus allow the consideration
of larger systems, with the temporal properties expressed in the intuitive temporal language.

On one hand, the purpose of the model-checking method is to check whether a given temporal
property is satisfied by the Petri net modeling and, on the other hand, the definition and the use
of a symbolic representation is to cope with the states explosion problem.

7.2 Functional Description

7.2.1 Generalities

e Petri nets considered
Usual nets with some extensions to algebraic nets.

o Temporal logic
The temporal logics allows for expressing qualitative properties related to the arrangement of
the system’s events during time. Through the temporal constraints on events, these properties
characterize how the system evolves. The typical expressible properties are potentiality,
invariance and precedence.

e Predicates structures
Our symbolic representation, called the predicate structure, has two components which impose
some constraints on the set of markings represented. Both the components are symbolic
representations of the set of markings which must either belong to or be excluded from the
set of markings represented by the predicate structure. A temporal property is represented
by a set of predicate structures. In other words, the states verifying the property belong to
the states represented by the set of predicates structures.

o Safeguard
At any moment the user can save or load an environment made of predicate structures.
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7.2.2 Management of the Predicate Structures

e Definition of a predicate structures
There are two ways of defining a predicate structure. The first one uses a marking of the
reachability graph while the second uses the input marking of transition. Both methods
generate a predicate structure where the used marking will be the only member of the first
component, with the second component left empty. During a session, these markings are kept
in order and reused, if needed.

e Inspection of predicates structures
The basic item which can be displayed at once is a marking. The user examines a set of
predicate structures by selecting one among them. He chooses a particular predicate structure
and can then display the markings belonging the components of the predicate structure.

e Manipulation of a set of predicate structures
A set of predicate structures is identified by a name. Manipulation includes the usual pro-
cedures such as copy and delete, which can bear on an entire set or on particular predicate
structure of a given set. Similar operations are also available on the markings of the com-
ponents a of selected predicate structure. An other class includes operations on sets such as
union, intersection and negation of (a) set(s) of predicate structures. Finally an operation of
simplification is available, known as purge.

7.2.3 Temporal Operators

The temporal operators are those of the CTL temporal logic, namely EX, AX, EF, AF, EG,
AG, E.U. and A.U.. These operators bear on a set of predicate structures and produce a new set.
Depending on the temporal operator, the computation of the set sometime involves an iteration
process. The user can choose to examine the result of each iteration process or let the computation
go on until its completion.

7.3 Introduction Manual

7.3.1 Organization and Main Windows

The temporal tool is activated through the main window of the simulator tool. It is made of
two windows, where the first one includes the definitions and the manipulation of the predicate
structures and where the other applies the temporal operator.

7.3.2 Settings and Errors

Since a set of predicate structures is identified by a name, there is a risk that many errors may
occur, such as renaming or copying a set of predicate structures to an already existing name. These
errors may be detected and the user may be notified.

Some computations are based on iteration until a fixed-point is reached. Such computations
can be very large and even endless. This is the reason why the user is allowed to define a step i.e.
the number of successive iterations. At the end of a step, if the fixed-point is not reached, a new
step can be activated, the result of the step can be saved or the length of the step can be changed.



7.4 Miscellaneous 51

7.4 Miscellaneous

¢ Implemented in Prolog (ProLog by BIM). At this moment, a ‘C’ version is under development.

e Some of the temporal tool’s windows: cf. Figure 7.1
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Figure 7.1: Some of the Temporal Tool’s Windows



8 The Transformer

MATHIEU BUFFO

8.1 Introduction

The Transformer -TTool- is a tool which applies the TSPP technique (Transformations de Spé-
cifications de problemes orientées vers le Parallélisme et le Probabilisme [BURB94]) in order to
obtain parallel or distributed solutions from a formally specified problem. This tool lets the user
manage the gradual transition between the specification and its implementation by the control of
each transformation step.

The typical use of TTool consists in the loading of an abstract specification, the iteration of
transformation steps preserving the equivalence with the original specification, and the saving of
the newly created solution.

8.2 Functional Description

8.2.1 TSPP Framework

Our aim is to derive a parallel solution when starting with a formal description of a problem and
using so-called transformations. The framework involves a certain background in several domains,
such as specifications, algorithmic, formal methods and parallel architectures.

Specifications

The specification language chosen for the input of the TTool is CO-OPN; 5. However, it must be
noticed that the TSPP technique is more general and can by applied to alarge family of specification
languages.

Algorithmic

As the initial abstract specification does not contain algorithmic aspects,these must be introduced
into the specification during the derivation of the concrete specification. In other words, the trans-
formation phase is responsible for the search and the choice of the resulting algorithms. This phase
is performed in accordance with the methodology for solving the initial problem and with the hard-
ware architecture of the execution platform. At each step, a set of transformations is proposed
which use different kinds of algorithms to solve the current problem with the chosen hardware
model. The choice and the application of a transformation step then has the effect of introducing
its corresponding algorithm into the current specification. Therefore the same problem derived for
different machines can lead to different algorithms.
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We have developed transformations covering the following algorithmic principles :
e branch and bound,

e divide to conquer,

dynamic programming,

e searches in graphs (dfs, bfs, simple backtracking, randomized searches, best fit, ...),

simplification (binary search, tree pruning, ...),

e approximations.

Formal Methods

In order to assure that of our method is safe, we pay great attention to its formal aspects. This
notion implies the complete and formal study of all theoretical aspects which deal with transforma-
tions of specifications in addition to the choice of a formal specification language and the definition
of a suitable equivalence criteria. Before including new concepts into our technique, the relationship
to the previous work must be given a sound, formal study. Currently, the theory of temporal logic is
used for proving properties of specifications. The theories of computability and complexity are used
to derive proper algorithms. Finally, the theory of rewriting systems is used in the transformation
management.

Parallel Architectures

In order to derive suitable algorithms from the initial specification, parallel architecture plays a
key role. The efficiency of an algorithm is strongly related to the chosen execution platform. To
be as general as possible, we introduce into our technique parallel hardware models covering both
the theoretical paradigms and real descriptions of machines.

8.2.2 TSPP Technique

The derivation of the solution will be achieved using iterations of transformation steps, as shown
in figure 8.1. Each step consists of a simple rewriting of a part of the specification. These steps are
performed under certain conditions on the resulting specification, including the equivalence with
respect to the initial specification, the adequacy to the concrete execution platform, and the chosen
algorithmic design.

Specification Implementation

i = Transformation j =

Figure 8.1: Transformation scheme.

An equivalence criteria between two specifications is the main condition for applying a transfor-
mation step. If this condition is satisfied, then the result is said to be correct. The choice of such
equivalence criteria is crucial if good results are to be obtained. Overly restrictive equivalences will
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induce badly implemented solutions, and overly permissive ones can introduce significant differ-
ences in the obtained behavior. In reality, we use an equivalence notion that belongs to the family
of the observational equivalence. The adequacy to the chosen execution platform is realized semi-
automatically by the choice of a hardware model which can represent real machine structures as
well as theoretical models. The condition is then evaluated using suitable predicates, which return
the adequacy of the transformation now based upon the hardware model. The initial specification,
produced by the problem analysis, does not contain any algorithmic descriptions. Such algorithms
are to be introduced during the transformation steps. According to the initial specification and
to the hardware model, we must deduce a suitable algorithmic construction, which will introduce
a family of solutions which correspond to the original problem. The refinement of the solution,
that is the iteration of the transformation steps, then restricts the set of possible final solutions.
Of course, the chosen algorithmic design must be as efficient as possible in order to respect our
wishes. Using such a development scheme, if the nature of the problem supports parallelism, we
are assured of obtaining a parallel solution.
The transformations are based upon the assumption of the existence of :

e 5 the set of specifications

e =~ an equivalence relation on S X 5

Let T and T, be two sets, T'= S5 x § and 7. C T such that (a,b) € T. & a ~ b, where a,b € S.
T is called the set of transformations, and an element ¢ € T is a transformation. A transformation
t € T, is said to be correct. The application of the transformation (a,b) € T' is the transformation
step passing from the specification a to the specification b.

The transformation rules define generic ways of transforming specifications. Their semantics
are based on rewrite systems. Two semantics are associated with each transformation rule :

o the “test” semantics, which allows the testing of the application of the rule, with respect to
the current specification and the initial data (this data controls the desired effects),

e the “apply” semantics, which derive a valid transformation step from the previous tested rule
and initial data, and apply it.

A rule R induces a family of transformations Tr C T', defined by (for t = (a,b) € T') :

teTr <« 3I (initial data) such that Testr(a,l)is true and b is the result of applyr(a,l)
A rule is said to be correct if T C T,, that is if all derived transformations are correct. The rules
are the simplest way of describing transformations with our technique.

The transformation methods allow for a generic description of a sequence of transformation
steps. Their semantics are based on Petri nets. As for the transformation rules, two semantics are
associated with each transformation method: the “test” and the “apply” semantics. Similarly, a
transformation method M induces a family of transformations Ty C T, (t = (a,b) € T') :

teTy <« 31 (initial data) such that Testpr(a, ) is true and b is the result of applya(a, )
These semantics are based on Petri nets, as has been said above. The application of a method
can be considered as the firing of certain transitions of such a net, with each of these transitions
invoking a simple transformation step. The transformation methods are useful for grouping simple
transformations into those which are more complex, with a synthetic approach.

8.2.3 TTool

The TTool - Transformation Tool package - was developed for performing transformations on speci-
fications with the TSPP technique. The basic idea of the transformation tool is an adequate rewrite
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system which allows for derivations of new specifications written in CO-OPNy 5 from those previ-
ous, under the condition of an observational equivalence of these specifications, which guarantees
the correctness of the resulting parallel specification at the implementation level.

8.3 Introduction Manual

The transformation tool package consists of the tool itself, which performs the transformation, and
the transformation library, which is used by the tool and which can be modified dynamically.

8.3.1 The Tool

The tool is a user-friendly xview-based application. The refinement is performed step-by-step,
according to the basic procedures of the transformation technique. At each step, the user can :

e decide to stop the transformation process,

e backtrack, if the specification developed is not satisfactory,

e evaluate the adaptation of the current specification to the execution platform,
e decide to perform a new transformation on the current specification.

The transformation itself is very simple to manage. The user selects the correct transformation
rule or a transformation method to apply and TTool then displays the possible transformation
steps derived from the selected rule or method (using the “test” semantics). The user can then
choose one of these steps, and TTool will subsequently apply it, using the “apply” semantics.

8.3.2 The Library

The library is composed of several textual modules, written in a CO-OPNy 5-like syntax. These
modules are split into two classes, according to the TSPP technique :

e The rule modules, which contain transformation rules and are similar to the algebraic modules
in CO-OPN, due to of the similarity of the rewriting rules and the algebraic operations.

e The method modules, which each contain a transformation method and are similar to the
object modules in CO-OPN, because all are, in fact, Petri net descriptions. By imposition,
all transformation methods must be correct.
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CHRISTOPHE BUFFARD

9.1 Introduction

Ada offers several mechanisms for expressing concurrency, namely tasks and protected types. But,
concurrency can introduce significant problems which are inherent in the program’s interactions.
Amongst these problems or necessary properties, we can mention deadlocks, fairness and partic-
ular temporal properties. The modeling of concurrent behavior with tools can help prevent these
problems. For this purpose, we show in this part that programs written in Ada can be modeled
using the formalism CO-OPN; 5, based on Petri nets and algebraic specifications, which offers the
possibility of selecting the level of abstraction of the modeling, that to say, which part must be
modeled using Petri nets or algebraic abstract data types. These modelings can be used in the
detection of the program anomalies. We present here an internal working description of the Ada
translator

9.2 Functional Description

9.2.1 Construction of CO-OPN; ; Model

We can represent the Ada code in the CO-OPN; 5 model with varying levels of abstraction, de-
pending upon the point of view adopted. For example, we can stay very close to the code or take a
much more abstract view. A program is a sequence of statements and only the necessary statements
will be considered in the model. The level of abstraction taken will depend on our needs, with the
principal objective being to detect errors such as deadlocks ... . Our initial approach is to model
intertask communication while conserving the structures of the exchanged data. Data are modeled
with the necessary abstract level depending on the point of view of the analysis [BB94]. The novelty
of our approach, in comparison to others in this domain, is modeling both the communication and
the data structures involved. The correspondences between Ada data structure and the CO-OPN 5
component are shown in Figure 9.1. For intertask communication we have retained two categories
of streams. The first stream, which can alter the control flow, is defined by Ada reserved words (if,
loop, requeue and select), while the second constitutes the rendez-vous, defined by Ada reserved
word (accept) and the entry calls.

As we have stated above, the main goal is to anticipate errors due to concurrency in programs.
We choose to retain only the functions and procedures that are directly linked with statements
expressing concurrency in Ada. We have two ways to model the function or procedure:
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CO-OPNy 5
Ada .
Petri Nets ADT

ADT o
Inclusion of Types
Procedures o
Tasks o
Protected Types
Functions (pure) °
Exceptions ? ?

Figure 9.1: Correspondence between Ada Components and CO-OPN; 5

e a function or procedure, calling a task or accepting an entry call, is modeled with a Petri net,
or

e it is modeled with the CO-OPNy 5 object method.

In this way, we keep only the necessary representation of concurrence and data. Tasks are
modeled with a CO-OPN; 5 object, as we have seen above, and the task’s functions are modeled
in the same way as other functions. Protected types (passive tasks) are modeled like tasks. The
requeue statement can be use to complete an accept statement or entry body, while redirecting the
corresponding entry call to a new entry queue. The requeue statement is modeled in CO-OPNj 5
by an ADT given in the description of the Fifo. It is also used to model the waiting line of a task
entry. An exception is a reaction to an exceptional or unusual situation, or what we sometimes call
an error. The exception have not yet been tackled.

9.3 Scheme of the Construction

In this section we give an example of how an Ada rendez-vous and protected types are handled
within our framework. The package module can be included in both parts of the CO-OPN; 5 model.
When a package contains a type description, it is owned by the ADT part of the model. Otherwise,
when a package contains a procedure, function or task body, it is represented with Petri nets. This
correspondence is depicted in Figure 9.2.

9.3.1 Ada Tasks

Ada offers several mechanisms for expressing concurrency: tasks, which are active entities, and
protected types, which can be considered as a passive tasks. Tasks express concurrency and their
execution can take place on one or more processors. Tasks allow simultaneous execution and the
order of execution is undefined except when two tasks participate in a rendez-vous, which is the
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Task

Package Petri Nets Modeling

Package ADT

Package

ADT Modeling

Package

Figure 9.2: Ada Entities Representation

only form of direct communication between tasks. A rendez-vous is asymmetric: the caller must
know the called task while the called task is unaware of the identity of the caller. Calling an entry
of a task is very similar to calling a procedure with the exception that the called task can decide
when and how to accept the call. If the called task is not ready to accept the entry, then the
execution of the calling task is suspended until the called task is ready to accept the entry call.
Once the called task accepts the entry, the rendez-vous begins. The duration of the rendez-vous is
controlled by the called task, and is equal to the time necessary to execute the code contained in
the accept statement. Ada specifies a model of concurrency based on the asynchronous execution of
each task as if each task had its own processor. In contrast to the asynchronous model of execution,
communication between two tasks takes place through a rendez-vous, which is in synchrony. The
general mechanism for the cooperation between tasks is:

o cither based on message passing, where a task communicates with another by sending a message
through the tasking kernel,

e or based on the explicit use of synchronization.

9.3.2 Protected Types

Ada language specified protected types and they formalize and expand on the use of passive tasks
of Ada 83. Protected types offer the possibility of defining a passive object, such as a monitor. A
protected type consists of functions, procedures and entries which are mutually exclusive. We can
also define entry, which is different from the functions or procedures, due to the fact that entry
defines a barrier condition.

Protected types are modeled by a CO-OPN; 5 object. The objects” methods represent the way
of calling a function. There is also a mechanism for insuring the mutual exclusion of the different
functions that compose the protected type.
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9.4 Model Analysis

The analysis of the system can be roughly divided into two cases: the verification of whether the
system is bounded or not (in terms of the amount of data needed for its evolution) and whether
parts of the system or the entire system have the possibility to evolve. The checking of these
properties, well-developed for the usual Petri nets, is difficult in our framework because of the
use of the structured tokens and the modularity. Presently, the means we investigate cover the
following techniques. In some cases, from the underlying structure of the Petri nets (projection of
the data to unstructured tokens) some properties can be deduced. The simulation [BFR93a] is very
useful for giving a first impression about the intended behavior of the system. Finally, we study
the use of temporal logic as a tool for the specification and verification of the system in terms of
the occurrence of its events over the course of the time [BG91, RB93].

9.5 Perspectives

We have just presented an overview of the Ada code model. The advantage of this model is that
it allows us both to model the data structures and to preserve the oriented object paradigm across
CO-OPN;y 5. Much work is yet to be done in order to model all of the Ada code, in particular, the
exceptions statement that we have not yet tackled. The way Ada 95 components are represented,
either by Petri nets or algebraic specifications, shown in Figure 9.1, is still subject to modifications.
Up to now, this correspondence is intuitive, dynamic items are handled by Petri nets and data
structures by ADT, but this correspondence can be reconsidered by future examples. Our efforts
bear also upon extensions of the verification techniques to the entire CO-OPNy 5 framework.
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JARLE HuraAs & MATHIEU BUFFO

10.1 Introduction

CO-OPN, 5 specifications can be either simulated using a monitor or executed on a MIMD machine.
In both instances, the CO-OPN; 5 code must to be processed by a common front-end which performs
lexical, syntactical and static semantic analysis.

Then, in the case where a simulation is desired, the specifications are translated into Prolog. The
resulting code can be loaded into the monitor and the simulator for a highly interactive evaluation
of the application.

If the user needs a more efficient execution of his specifications, he can take advantage of the
MIMD compiler, which generates either parallel C or standard C with the PVM environment, ac-
cording to the target platform: the Transputer hypercube Volvox Archipel, or a MIMD machine
with PVM (Parallel Virtual Machine) [GBD 193] message passing, ranging from a network of work-
stations to the Cray T3D supercomputer. The compiler accepts only a subset of the CO-OPNy 5
language. Some simple rules concerning the level of abstractness of the specifications have been es-
tablished in order to gain maximal performance during their execution. The Transformation Tool,
described in chapter 8, may help the abstract specifications evolve into lower-level expressions.

10.2 How the Compiler Works

CO-OPN, 5 specifications are split into two kinds of modules. The first are the algebraic specifica-
tion modules, which describe the abstract data types used. These are translated into the functional
language OPAL , and then the OPAL system compiles them into C code. The second kind of
modules are the Petri net objects, which are directly compiled into the C dialect appropriate for
the target architecture.

These steps are executed transparently to the user, who then simply has to launch the MIMD
compiler by submitting the main module of the system. The result is an executable file, completed
on the Volvox by a mapping of the tasks onto the processor network, as well as a shell script that
activates the application. On a PVM system the configuration is easier to set up, and it is thus
not fixed at compile time.

For convenience, the most frequently used data types (boolean and integer) are predefined in
the compiler.
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10.3 Description of the Accepted Source Language

The MIMD compiler can process a subset of the original CO-OPN; 5 language. This restriction is
essential for reasons of efliciency. The expressiveness of CO-OPNy 5 is such that a logic interpreter
is required to exploit it completely. The subsequent conditions are stated:

e Only simple modules are compiled, excluding genericity.

e In algebraic modules, axioms are limited to the form of conditional rewrite rules, where the
left-hand term of an equation is made of ground expressions. Only simple variables or constant
generators are allowed as operation parameters. In other words, operations must be defined
such that the pattern-matching of their arguments is reduced to comparisons with constants.

e In object modules, the unification mechanism that acts on abstract data values is replaced
by testing or assignment, according to the particular conditions:

1. If we are calculating a postcondition, assignment is chosen.
2. In a condition part, testing is preferred.

3. In a general case, if the algebraic term reduces to a variable, then assignment is adopted.
Otherwise testing is implemented.

e As a consequence, an order must be introduced into the evaluation of a transition, and it is
the following;:

1. The preconditions.
2. The synchronization.
3. The conditions.

4. The postconditions.
e Methods are fired only when an object synchronizes with them.

We are currently working on extending the subset of the specification language that can be com-
piled efficiently. For instance, filtering could easily also process parameterized generators instead
of only constants.

10.4 Termination of a Program

The notion of termination is not defined in CO-OPN; 5. Therefore, the following convention has
been taken: A system is considered as terminated when the main object(s) is (are) in a stable state.

10.5 Input and Output

The CO-OPNy 5 language has a construction for the definition of the initial marking of a Petri net.
A more flexible approach is given by the compiler, through a command-line option which indicates
the name of the places for which the user must provide the contents at the moment of program
startup. For this purpose, a routine (written in C) must exist for each type concerned. These
routines are first searched for by the compiler in the current directory, and then in the directories
specified by CO-OPN 5 environment variables.

Output is governed by the same kind of mechanism. A compiler option lists the places in which
the contents must be printed at program termination.
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10.6 Perspectives

Current work on the MIMD compiler is directed towards developing a prototyping tool and method
adapted to parallel applications. In particular, we wish to provide the user with an opportunity of
mixing, at any level of the software life-cycle, tool-generated compilation units with a hand-written
code. This process is known as mixed prototyping [CK90]. The expected benefits are multiple:
higher efficiency, more flexible user interface, instant realization of integration tests, and an ideal
support for systematic refinement schemes. Such research will lead to converting the compiler to a

C++ or Ada95 code-generator.

10.7 Auxiliary Tools

The CO-OPNy 5 MIMD compiler is not bound to any OS or windowing system. The following tools
are all it needs to function:

e For compiling and linking

— Lex & Yacc

— ANSI C compiler

— PVM 3.0 library (http://www.epm.ornl.gov/pvm/)

OPAL 2.1 compiler and library (http://www.cs.tu-berlin.de/ opal/)

e For execution

— PVM V3.0 (the console program as well as the daemon)
— OPAL 2.1 library

e Monitoring tools (optional)

— On Volvox: the ‘ParaGraph’ visualization tool works on tracefiles generated by executing
specifications compiled with the ‘-m’ option.

— With PVM: ‘XPVM’is a graphical interface for PVM and requires no particular compiler
options. The monitoring is done directly during program execution.
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A Basic ADTs

O. BIBERSTEIN & D. BucHs & G. DI MARZO

Specifications of standard basic ADT ' basictypes’.

Several abstract data types are given in this standard package,
t hey define the nost usefull types that we generally use.

Part of these types are basic values while others are type
constructors.

Semantics: The semantics used is based on the inplicit definition of
the validity domain of the functions by the axions. The possible

val ues are determned by the generators (finitely generated with
respect to the generators). A function is not defined if it has no
axi om for particul ar val ue.

Pr ovi ded nodul es;

Basi c types:
Unary, Bool eans, Naturals, Characters.

Authors : D. Buchs previous versions from QO Biberstein and G di Marzo

Dat e 5 July 1995,
Revised : O Biberstein
Dat e ;19 Cct 1995
M e e e R 2)

(B e i

Specification of a unique val ue.
The uni que type

Aut hor : D. Buchs

|
I
I
|
| Date 3 July 1995
*

- ——— %

Adt Uni que;
Interface
Sort uni que;
Gener at or
@: -> unique;
Body
End Uni que;
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- Specification of the bool eans.

The bool ean type with true, false generators, usual |ogical
operations (not, and, or, xor) and equal operation is defined.

Author : O Biberstein

Dat e ;29 March 93

Revised : G D Marzo

Dat e : 15 June 1995

Revised : O Biberstein

Dat e : 95/10/19
R e e D)
Adt Bool eans;
Interface

Sort bool ean;
Gener at ors

true : -> bool ean;
fal se : -> bool ean;
Oper ati ons
not _ . bool ean -> bool ean;
_and _ : bool ean bool ean -> bool ean;
_or _ : bool ean bool ean -> bool ean;
_ xor _ : bool ean bool ean -> bool ean;
= _ : bool ean bool ean -> bool ean;
Body
Axi ons
not true = fal se;
not fal se = true;
true and b = b;
false and b = fal se;
true or b = true;
false or b = b;
false xor b = b;
true xor b = not b;
(true=true) = true;
(true=false) = false;
(fal se=true) = false;
(fal se=false) = true;

Wher e
b : bool ean;
End Bool eans;
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- Nat ural nunbers.

Natural s type is defined over generators 0 and succ.
Arithmetic, relationa and constant (Nx) are provided. In case of
division by 0 or if y >x in (x-y) the n operations give O.

Author : O Biberstein

Dat e ;29 March 93

Revised : G D Marzo
O. Biberstein

Dat e : 15 June 1995
95/ 10/ 19

Adt Nat ural s;
Interface
Use Bool eans;
Sort natural;
Gener at ors
O .

: -> natural;

succ _ : natural -> natural;

Qper ati ons
p— + p— 1
— ; — ’
L
% _ : natural natural -> natural;
<=
p— < p— 1
p— > p— 1
_ >= _ : natural natural -> bool ean;
max _ _ : natural natural -> natural;
even _ : natural -> bool ean;
2% * ,
_ **72 : npatural -> natural;
;; constants
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17,18, 19,20 : -> natural;

Body

Axi ons

0+x = X;

(succ x)+y = succ (x+y);

;; Ssubstraction, if y > x then x-y =0
0-x = 0;

(succ y)-0 = succ v;

(succ y)-succ x = y-X;

0*x = 0;

(succ Xx)*y = (x*y)+y;

;; division, if y =0 thendivxy =0
x/0 = 0;

X<y = true => x/y 0;

x>=y = true => x/y = succ ((x-y)/y);
;; modulo, if y =0thenmd xy =0
X% = x-(y*(x/y));

0=0 = true;
O=succ X = fal se;
succ x=0 = fal se;
(succ x)=succ y = x=y;
X<z=y = not y<x;

0<0 = fal se;
O<succ X = true;
succ X <0 = fal se;
succ X < succ y = X<y;

X>y = not Xx<=y;
X>zy = not Xx<y;
even 0 = true;




68 Basic ADTs

even succ x = not even X;

2**0 = succ O;
2**succ x = (succ succ 0)*(2**x)

(x>=y)=true => maX X y = X ;

(x>=y)=false => max x y =y ;

X*¥*¥2 = X*X;

1 = succ O; 2 = succ 1; 3 = succ 2; 4 = succ 3;
5 = succ 4; 6 = succ 5; 7 = succ 6; 8 = succ 7;
9 = succ 8; 10 = succ 9; 11 = succ 10; 12 = succ 11;
13 = succ 12; 14 = succ 13; 15 = succ 14; 16 = succ 15;
17 = succ 16; 18 = succ 17; 19 = succ 18; 20 = succ 19;

Wher e

X, Yy : natural;
End Nat ural s;
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I nt eger nunbers.

Integers type is defined over generators 0O, pred, succ.
Arithmetic, relationa and constant (Nx) are provided. In case of
division by 0 or if y >x in (x-y) the n operations give O.

Author : O Biberstein
Dat e ;29 March 93
Revised : G D Marzo
Dat e : 15 June 1995
Revised : D. Buchs

Dat e 1 20 July 1995
Revised : O Biberstein
Dat e 19 Cct 1995

Adt | ntegers;
Interface
Use Bool eans;
Sort integer;
Gener at ors

0 : -> integer;
succ _
pred : integer -> integer;

Qper ati ons

nteger -> integer;

—_ : —_ 1

— ; — ’

L _ _

% _ : integer integer -> integer;
_<=_

—_ < —_ 1

—_ > —_ 1

_>= _ : integer integer -> bool ean;
even _ nt eger -> bool ean;

!
i
2 ** . integer -> integer;
i
i

max _ _ nteger integer -> integer;
_** 2 nteger -> integer;
;; constants
1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20 : -> integer
Body
AXi o
pred succ x = Xx;
-0 = 0;
-succ x = pred -Xx;
-pred x = succ -X;
Xx+0 = X;
x+succ y = (succ X)+y;
x+pred y = (pred x)+y;
;. substraction
Xx-0 = Xx;
x-succ y = (pred x)-vy;
x-pred y = (succ Xx)-vy;
0*x = 0;
(succ x)*y = (x*y)+y;
(pred x)*y = (x*y)-y;

;; division, if y =0 then div(x,y) =0 ;;
y*d <= x) and (x < y*succ d) = true => x/
(y*d <= x) and (x < y*succ d) = false => x/
x/0 = 0;

7, modulo, if y =0 then nod(x,y) =0

X% = x-(y*(x/y));

0<0 fal se;

O<succ 0 true;

O<succ y true => 0 < succ succ y = true;

<<
11
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O<pred y = false => 0 < pred y = fal se;
succ X <y = x < pred vy;
pred x <y = X < succ y;
X<=y = not y<x,
X=y = not (Xx<y or y<x);
X>y = not x<=y,
X>=y = not x<y,
even 0 = true;
even succ X = not even X,
even pred x = not even X;
2**0 = 1 ;
2**succ x = 2*(2**x);
2**pred x = (2**x)/2;
(x>=y)=true =>max XYy =X ;
(x>=y)=false => max x y =y,
X**2 = X*X;
1 = succ 0 2 = succ 1; 3 = succ 2; 4 = succ 3;
5 = succ 4, 6 = succ 5; 7 = succ 6; 8 = succ 7;
9 = succ 8; 10 = succ 9; 11 = succ 10; 12 = succ 11;
13 = succ 12; 14 = succ 13; 15 = succ 14; 16 = succ 15;
17 = succ 16; 18 = succ 17; 19 = succ 18; 20 = succ 19;
Wher e
X, Yy, d: integer;

End | nt eger s
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Char act ers

code indicates the ASCI| value of the character while char
is the opposite.

Author : D. Buchs
Revised : O Biberstein
Dat e : 5 July 1995
Dat e : 95/10/ 20

Adt Characters;
Interface
Use Bool eans, Naturals;
Sorts character;
Generat ors
nul , soh, stx, etx, eot, enq, ack, bel,
bs, ht , If , vt , ff , cr , so, si ,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us ,

sp, !, quote, # $ % & ',
| par, rpar, *, +, comm, -, dot, /,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, colon, semcolon, <, = > 2,
@ A B C D E F G
H I, J, K L, M N G
P, Q R S T, U V, W
XY, Z [, \, 1, 7, underline,
‘,a b, c, d e f, g
h, i, j, k, I, m n, o,
p, 9, r, s, t, u, v, w
X, yv Z, {v |v }v ~v del,
t opof characters : -> character;
Qper ati ons
code . character -> natural;
character : natural -> character;
succ _ ,
pred _ . character -> character;
< 1
= _ . character character -> bool ean;
Body
AXi ons
succ nul = soh; succ soh = stx; succ stx = etx;
succ etx = eot; succ eot = enq; succ enq = ack;
succ ack = bel; succ bel = bs; succ bs = ht;
succ ht =1f; succ | f = vt; succ vt = ff;
succ ff = cr; succ cr = so; succ so = si;
succ si = dle; succ dle = dcli; succ dcl = dc2?;
succ dc2 = dc3; succ dc3 = dc4; succ dc4 = nak;
succ nak = syn; succ syn = etb; succ etb = can;
succ can = em succ em = sub; succ sub = esc;
succ esc = fs; succ fs = gs; succ gs = rs;
succ rs = us; succ us = sp; succ sp =1!;
succ ! = quote; succ quote = # succ # = $;
succ $ = % succ % = & succ & =
succ '’ = | par; succ | par = rpar; succ rpar = *;
succ * = +; succ + = conmm; Ssucc coma = -;
succ - = dot ; succ dot = /; succ / = 0;
succ O = 1 in Characters; succ 1 = 2 in Characters;
succ 2 = 3 in Characters; succ 3 = 4 in Characters;
succ 4 = 5 in Characters; succ 5 = 6 in Characters;
succ 6 = 7 in Characters; succ 7 = 8 in Characters;
succ 8 = 9 in Characters; succ 9 = col on;
succ col on = semni col on; succ sem col on = <;
succ < = =
succ = = >; succ > = 7?; succ ? = @
succ @ = A succ A = B; succ B = C
succ C = D succ D = E; succ E = F;
succ F =G succ G = H succ H =1;

Characters type is defined over generators all the ASCI| character<128




72 Basic ADTs
succ | = J; succ J = K; succ K = L;
succ L =M succ M = N, succ N = Q0
succ O = P; succ P = Q succ Q = R
succ R = S; succ S =T succ T = U
succ U =V, succ V = W succ W = X
succ X =Y, succ Y = Z succ Z =[;
succ [ =\; succ \ =1]; succ | =7,
succ = underl i ne; succ underline = ‘;
succ = a; succ a = b; succ b = c;
succ ¢ = d; succ d = e; succ e =f;
succ f = g; succ g = h; succ h =i;
succ | =j; succ j = k; succ k =1;
succ | =m succ m = n; succ n = o;
succ o = p; succ p = q; succ q =r;
succ r = s; succ s =t; succ t = u;
succ u = v, succ v =W, succ w = X;
succ X =y, succ y = z; succ z = {;
succ { =1|; succ | =}, succ } =7,
succ ~ = del;
succ del = topofcharacters;
succ topofcharacters = topofcharacters;

I (cc=topofcharacters) => code cc = (code succ cc)-1;
code topofcharacters = 2**7; v 128

character (code cc) = cc;

I (succ cc=nul) => pred succ cc = cc;

succ cc=nul => pred succ cc = topofcharacters;

(! (cx=topofcharacters)) & !(cy=topofcharacters) =>
CX<Cy = succC cX < succ cy;

I(cx=
H(cy=

t opofcharacters) => cx<topofcharacters
t opofcharacters) => topofcharacters<cy
t opof char act er s<t opof characters = fal se;

true;
fal se;

(! (cx=topofcharacters)) & !(cy=topofcharacters) =>

CX=
I(cx=
F(cy=

Wher e
cc,

cy = (succ cx = succ cy);

t opofcharacters) => cx=topofcharacters
t opofcharacters) => topofcharacters=cy
t opof char act er s=t opof characters = true;

cx, cy : character;

End Char acters;

1
1
1

; Standard Library of ADT

; basictypes. sys

Specification basi ct ypes;

Ver si on
Dat e

Aut hors D.Buchs : Unary, Bool eans, Naturals,

Modul es Unary, Bool eans, Naturals, |ntegers,

12 éept enber 1995;

End basi ct ypes;

fal se;
fal se;

I nt egers, Characters;

Char act ers:

basi ct ypes;
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(:

I
I
I
I
I
I
I
I
*

Specifications of standard ADT. 'constructortypes’

Several abstract data types are given in this standard package,
t hey define the nost usefull parameters and type constructors.

Semantics: The semantics used is based on the inplicit definition of
the validity domain of the functions by the axi ons. The possible

val ues are determned by the generators (finitely generated with
respect to the generators). A function is not defined if it has no
axiom for particula val ues.

Provi ded nodul es:

Par anet er types:
El em Conpar abl eEl em Conpar abl eEl eml, Conpar abl eEl en2, O der edEl em

Constructor types:
Li st, OrderedList, Pc2, Fifo, Lifo, Set, Bag, Table.

Authors : D. Buchs previous versions from QO Biberstein and G di Marzo

Dat e : 5 July 1995
Revised : O Biberstein
Dat e ;19 Cct ober 1995

Par anet er specification.

The elemtype is defined wi thout operation

Author : O Biberstein
Dat e ;29 March 93
Revised : G D Marzo
Dat e ;15 June 1995

Par anet er Adt El em

nterface
Sort elem

Body
End El em

Par anet er specification.

The elemtype is defined with an equal operation and of course uses
t he Bool eans nodul e.

Author : O Biberstein
Dat e : 29 March 93
Revised : G D Marzo
Dat e : 15 June 1995

Par amet er Adt Conpar abl eEl em

Body

nterface
Use Bool eans;
Sort elem
Qper ati on
= _: elemelem-> bool ean;
Theor ens
;; usual equival ence rel ation properties
7, reflexivity
(x = x) = true;
i, symmetry
(x =y) =true => (y = x) = true;

 ——— e %
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7, transitivity
(x =y) =true & (y = 2z) =true => (x = z) = true;
Wher e
X, Y, z: elem
End Conpar abl eEl em

Par amet er speci fication.

The elemtype is defined with an equal and an order relation
operation and of course uses
t he Bool eans nodul e.

Author : O Biberstein
Dat e ;29 March 93
Revised : G D Marzo
Dat e ;15 June 1995

Par anet er Adt OrderedElem
Interface
Use Bool eans;
Sort elem
Oper ati ons
< 1
= : elemelem-> bool ean;

Body
Theor ens
;; usual order relation properties
anti-symetry
<y) =true & (y < Xx) =true => (y = xX) =true;
7, transitivity
(x <y) =true & (y <z) =true => (x < z) = true;
;; usual equival ence relation properties
;o reflexivity
(x = x) =true;
7 synmmetry
(x =y) =true => (y = X) = true;
7, transitivity
(x =y) =true & (y = 2z) =true => (X = z) = true;
Wher e
X, Y, z: elem
End Or der edEl em

—~ -
==

Par amet er speci fication.

The eleml type is defined with an equal operation and of course uses
t he Bool eans nodul e.

Revised : G D Marzo
Dat e : 15 June 1995

- ——— e %

I
I
I
I
I
I
I
*

Par amet er Adt Conpar abl eEl emt;
Interface

Use Bool eans;

Sorts el eml;

Qper ati ons

_ = _: elenl elem -> bool ean;

Body
Theor ens

;; usual equival ence relation properties

;o reflexivity

(x = x) = true;

i, symmetry

(x =y) =true => (y = x) = true;
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7, transitivity
(x =y) =true & (y =2z) =true => (X = z) = true;
Wher e
X, Y, z : elentl;
End Conpar abl ekl emt;

Par amet er speci fication.

The elen? type is defined with an equal operation and of course uses
t he Bool eans nodul e.

Revised : G D Marzo
Dat e .15 June 1995

Par amet er Adt Conpar abl eEl en?;
Interface
Use Bool eans;
Sort el enk;
Qper ati on
_ = _: elen2 elen? -> bool ean;
Body
Theor ens
;; usual equival ence relation properties
7, reflexivity
(x = x) = true;
i, symmetry
(x =y) =true => (y = Xx) = true;
;. transitivity
(x =y) =true & (y =2z) =true => (X = 2z) = true;
Wer e
X, Y, z : elen;
End Conpar abl ekl en®;

———— e %
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(G e e LR *
| Generic list specification. |
I I
| List type is defined over enptylist and cons generators. M scal enaous |
| operations are provided. Functions are total, if they are not then |
| enptylist is given. head is partial. |
I I
| Author : O Biberstein G Dinarzo |
| Date : 15 June 95 |
R e e e R D)
Generic Adt Li st (Conparabl eEl en);
Interface

Use Naturals, Bool eans;

Sort list;

Gener at ors

[] o-> list;

_ _ elem list ->1list;
Qper ati ons

| s list list -> list; ; ;. concat enati on
# : list -> natural; i nunmber of conponent
take _ from_ : natural list -> list; ;; first n conponent
drop _ from_ : natural list -> |ist; i Lo~ take(n, 1)
head _ clist -> elem ;; first conponent
tail _ o list -> list; ;o | - first conponent
enmpty? _ : list -> bool ean;
reverse _ s list -> |ist;
= _ : list list -> bool ean;
Body
AXi ons
(1| 1y =11
((e” 1) | 12) =(e’ (11] 12));
#([1) = 0;
#(e ' 11) = succ(#(11));
take n from[] =11;
take O frome ' |1 =11;
take succ(n) frome ' |1 =¢e ' take n froml1;
drop n fromJ] =1[1;
drop O from(e'l1) = (e'11);
drop succ(n) frome ' |1 = (drop n froml1);
head(e’'l 1) = e;
tail ([1) =11; 7, i f is-enmpty(l1) then tail (11) =[]
tail(e'11) =11;
enpty?([]) = true;
enpty?(e’11) = fal se;
reverse([]) =11;
reverse(e’'l1) = (reverse I1) | (e []);
([1 =11) = true;
(ell1=71]) = false;
[T =e11) = false;
(el’'ll1 =e2'12) = (el =e2) and (11 =12);
Theor em
(

(take n froml ) | (drop n froml) =1;
reverse(reverse(l)) =1;

;; usual equival ence relation properties

(I =1) =true; 7, reflexivity
(12 =12) =true => (12 =11) = true; v, symmetry
7, transitivity

(11 =12) =true & (12 =13) =true => (11 =13) = true;

I, 11, 12, 13 : list;
e, el, e2  elem
n : natural;

End Li st;
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Cartesian product specification.

Generic cartesian product pc2 type is defined over pair generator.
Projection et equality operations are provided.

Revised : G D Marzo
Dat e : 15 June 1995

Generic Adt Pc2(Conparabl eEl enll, Conpar abl eEl en?) ;

Interface
Use Bool eans;
Sort pc2;
Gener at or
< __ > : eleml elen? -> pc2;
Oper ati ons
fst _ : pc2 -> elem; ;; first projection
snd _ : pc2 -> elenk; ;; second projection
_ = _ : pc2 pc2 -> bool ean;
Body
AXi o
fst(<x y>)

snd(<x y>)

( <x y>=<u
Wher e

X, u: eleml;

y, v : eleng;
End Pc2;

X,
¥’>) = (x =u) and (y = vVv);

 ———— e %
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Lifo gueue (stack)
Several operations are provided, for instance, pop, top etc..

Revi sed : D. Buchs
Dat e : 5 July 1995

Generic Adt Lifo(El en;

Interface
Use Naturals, Bool eans;
Sort lifo;
Gener at ors
[] :->1lifo;

0 lifo elem->1ifo;
Oper ati ons

push _ _: lifo elem->lifo;
empty? _ : lifo -> bool ean;
pop _ s lifo ->1lifo;
top _ clifo -> elem
# lifo -> natural;
Body
AXi ors

push If e = 1f"e;

empty? [] = true;
empty? [ f’'e = fal se;
pop [] =1[1;
pop (If'e) =1f;
top If'e = e;
#[] =0;
# 1f'e = succ #lf;
Wher e
If : lifo;
e : elem
End Lif o;

- ———— %
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Fi f o queue
Several operations are provided for instance insert, renove, next

Revi sed : D. Buchs
Dat e : 5 July 1995

Generic Adt Fifo(Conparabl eEl en;

Interface
Use Naturals, Bool eans;
Sort fifo;
Gener at ors
[] : -> fifo;

fifo elem -> fifo;

Qper ati ons

insert _ _: fifoelem -> fifo;

1l _ fifo fifo ->fifo;
enmpty? _ fifo -> bool ean;
renove _ o fifo -> fifo;
next _ o fifo -> elem;

= _ : fifo fifo -> bool ean;

# fifo -> natural;

_inside? _ elemfifo -> bool ean;

Body

AXi orns
insert ff e =ff ' e;
empty? [] = true;
empty? ( ff ' e) = fal se;
remove [] = [];
remove ([]° &) =[];
empty? ff = false => renove (ff ' e) = (renove ff) ' e;
next ([] ' e) = e;
empty? ff = false => next (ff ' e) = next ff;
e inside? [] = fal se;
e inside? ff ' ee = (e = ee) or (e inside? ff);
#[] =0
# ff ' e = succ(#ff);

Wher e
ff  fifo;

e, ee : elem
End Fif o;

————— e %
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I
| Revised : D. Buchs
I
*

Dat e : 5 July 1995
_______________________________________________________________________ )
Generic Adt Set (Conparabl eEl en);
Interface

Use Naturals, Bool eans;

Sorts set;

Gener at ors

[] 1 -> set;

_ ' _: set elem-> set;
Oper at i ons
— + —
- . set set -> set;
_inside? _ : elem set -> bool ean;
- : set elem-> set;

D<= 1
—_ < —_— 1
> 1
~o>= . set set -> bool ean;
# : set -> natural;
Body

7, commutativity of the insertion
((s ' el) ' e2) = ((s ' e2) ' el);
7 ho duplication in set

((s’ el)’ el) = (s ' el) ;

[l +s =s;

(sl el) + s2 = (sl + s2) ' el;

s - [] =s;

s - (sl el) = (s - el) - si;

(el =e2) =true => ((s ' el) - e2) =s;

(el = e2) =false => ((s ' el) - e2) = (s - e2) ' el;
#[] =0

# (s ' el) = succ(# s);

(sl = s2) = (sl <= s2) and (s2 <= sl);

el inside? [] = fal se;

(el inside? (s ' e2)) = (el = e2) or (el inside? s) ;
[] <=[] = false;

(s ' el) <=]] = false;
[l <= (s’ el) = true;
(el = e2) = true => (sl'el) <= (s2'e2) = sl <= s2;
(el = e2) =false => ((sl'el) <= (s2’e2)) = (el inside? s2) and sl <= (s2 ' e2);
sl <s2 =s1 <=s2 and not(s2 <= sl);
sl >= s2 = s2 <= sl,
sl > s2 = 5s2 < sl;
Wer e
el, e2 elem

s, s1, s2 : set;
End Set;
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I
| Revised : D. Buchs
I
*

Dat e : 5 July 1995
_______________________________________________________________________ )
Generi c Adt Bag( Conpar abl eEl en);
Interface

Use Naturals, Bool eans;

Sort bag ;

Generat ors

[ : -> bag ;

_ ' _ : bag elem-> bag ;
Qper ati ons
+ 1
- . bag bag -> bag;
_inside? _ : elembag -> bool ean;
- : bag el em -> bag;

<= s
_<_ :
—_ > — 1
_>= : bag bag -> bool ean;
# . bag -> natural;
Body
AXi orns

7, commutativity of the insertion
((s'el)’e2) = ((s'e2)’el);

[1 +s =5
(sl el) + s2 = (sl + s2)’el;

s - [] =s;

s - (sl'el) = (s - el) - si1;

(el = e2) =true => ((s’el) - e2) = s;

(el = e2) =false => ((s'el) - e2) = (s - e2)’el;
#[] = 0;

# (s’'el) = succ(# s);

(sl = s2) = (sl <= s2) and (s2 <= sl);

el inside? [] = fal se;
(el inside? (s'e2)) = (el = e2) or (el inside? s) ;

[] <=[] = false;

(s'el) <=[] = false;

[1] <= (s’el) = true;

(el = e2) =true => (sl'el) <= (s2'e2) = sl <= s2;

(el = e2) =false => ((s1'el) <= (s2'e2)) = (el inside? s2) and sl <= (s2’'e2);

sl < s2 = s1 <= s2 and not(s2 <= sl);
sl >= s2 = s2 <= sl;
sl > s2 = s2 < s1;
Wher e
el, e2 elem
s,s1l, s2 : bag;
End Bag;
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-Tabl e data structures

! the conmutation and duplication properties (axions #1 and #2) are
operationnaly critical (to be change I n an observationnal spec)

Revised : D. Buchs
Dat e : 5 July 1995

- —— e %

Generic Adt Tabl e( Conpar abl eEl em ;
Interface
Use Naturals, Bool eans;
Sorts table;
Gener at ors
[] : -> table;
] =_ : table natural elem-> table;

[
rations

o]l

o

table table -> table;

|
[ _1] : table natural -> elem
shift _ : table -> table;
# table -> natural;
_ <= _ = table table -> bool ean;
_at _inside? _ : elemnatural table -> bool ean;
Body
AXi oms

7, commutativity of the insertion
(posl = pos2) = fal se =>

((t [ posl ] = el)[ pos2 ] = e2)
i, nho duplication in table
(posl = pos2) = true =>

((t [ posl] =el)[ pos2 ] =e2) = ((t [ pos2]) = e2);
[1 1t =t;
(t1 [ posi

(((t [ pos2 ] =e2) [ posl]) =el);

] =el) | t2 =(t1 | t2) [ posl ] = el;
shift(t [ posl] =el) = (shift t) [ posl ] = el;
shift([]) = [1;
(posl = pos2) = false => ((t [ posl ] = el)[ pos2]) = (t [ pos2]);
(posl = pos2) =true => ((t [ posl ] = el)[ pos2]) =el;
#[] =0

# (t [ posl ] = el) = succ(# t);
(tl =t2) = (tl <=1t2) and (t2 <=11);
el at posl inside? [] = false;
(posl = pos2) =true => (el at posl inside? (t [ pos2 ] = e2)) = (el = e2);
(posl = pos2) = false =>
(el at posl inside? (t [ pos2 ] = e2)) = (el at posl inside? t);
[1 <=[] = falseg;
(t [ posl] =el) <=[]
[] <= (t [ posl] = el)
(posl = pos2) = true =>
((t1 [ posl] =e€l) <= (t2 [ pos2 ] =e€2)) = (el =e2) and (t1l <=12);
(posl = pos2) = false =>
((t1 ] posl ] =el) <= (t2 [ pos2 ] =e2)) =
(el at posl inside? t2) and (t1 <= (t2 [ pos2 ] = e2));
Wher e
posl, pos2 : natural;
t, t1, t2 : table;
el, e2 elem
End Tabl e;

fal se;
true;
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Generic list specification (with |exical order).

List type is defined over enptylist and cons generators. M scal enaous
operations are provided. Functions are total, if they are not then
enmptylist is given. head is partial.

Lexical order is provided in addition to the usual List nodule.

Revised : D. Buchs
Dat e : 5 july 1995

Generic Adt O deredList(OrderedEl em;
Interface
Use Bool eans, Naturals;
Sort orderedlist;
Cenerators
[] : -> orderedlist;
0 el em orderedlist -> orderedlist;
Qper ati ons
# : orderedlist -> natural;
take _ from _ : natural orderedlist -> orderedlist;

head _ : orderedlist -> elem
tail : orderedlist -> orderedlist;
enpty? _ : orderedlist -> bool ean;
reverse _ : orderedlist -> orderedlist;
~<C :
_<:_ 1
_>_ 1
_>= : orderedlist orderedlist -> bool ean;
Body
AXi orns
(111 =11
(te'ln) [ 12) ="(er(11] 12));
#([]) =0;
#(e'll) = succ(#(ll))'
take n from[] [1;
take O frome’'l1l =[],
take succ(n) frome'll = e'take n froml 1;
drop n from[] =[],
drop O from(e'l1) (e'11);
drop succ(n) from e’Il = (drop n froml 1);
head(e’'l 1) =
ve it is- en‘pty(ll) then tail (11) =[]
tail ([]) =1[1;
tail (e 11) =I1
enpty?([]) = true;
empty?(e’l1l) = fal se;
reverse([]) = []

reverse(e’l 1) (reverse 1) | (e'[1);

(ell1=71]) = false;

([]1 = e 11) = false;

(el’'l1 =e2'12) = (el =e2) and (11 =12);

(I1 <11 = fal se

([] < (e'x)) = true;

((e"x ) <[]) = false;

(el < e2) =true => ((el'’x ) < (e2'y )) = true;
(el = e2) =true => ((el’x ) < (e2'y )) =x <y,
(e2 <el) =true => ((el'x ) < (e2'y )) = fal se;
(x <=y) =((x =y) or (x<y));

(x >y) =(y <= x);
(x >=y) = (y <x);

orderedlist orderedlist -> orderedlist; ;; concatenation
i number of conponents
;; first n conponent
drop _ from _ : natural orderedlist -> orderedlist; 7y 1- take(n, 1)
;; first conponent
;o | - first conponent
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Theorem
(take n froml ) | (drop n froml) =1;

reverse(reverse(l)) =1;

;; usual equivalence relation properties
;o reflexivity

(I =1) =true;

i, symmetry

(12 =12) =true => (12 =11) = true;
transitivity

(112 =12) =true & (12 =13) =true => (11 =13) = true;
Wher e

I, 11, 12, 13 : orderedlist;

e, el, e2  elem

X, Y : orderedlist;

n : natural;

End OrderedLi st;

;; Standard Library of ADTs and Objects

1

;; constructortypes. sys

Specification constructortypes;
Ver si on 1.0;
Dat e 12 Sept enber 1995;

Aut hors D. Buchs :
Item Conparableltem Conparablelteml, Conparabl elten2, O deredlitem
List, ListwithQder, Pc2, Fifo, Lifo, Set,
Bag, Tabl e;

Usebasi ct ypes. sys;

Modul es Item Conparableltem Conparablelteml, Conparablelten2, O deredltem
Li st, OrderedList, Pc2, Fifo, Lifo, Set,
Bag, Table : constructortypes;

End constructortypes;
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(B e i
Speci fications of conposed nmodul es ’structuredtypes’.
Semantics: The semantics used is based on the inplicit definition of
the validity domain of the functions by the axi ons. The possible
val ues are determined by the generators (finitely generated with
respect to the generators). A function is not defined if it has no
axi om for particul ar val ue.
Modul es provi ded:
Structured types:
Coord, String.
Aut hor : D. Buchs previous versions from O Bi berstein and G di Mrzo
Dat e : 5 July 1995
Revised : O Biberstein
Dat e : 95/10/ 20
K o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e m e m e e m m e e e e e .-
(e

" Coor di nate (instantiation of Pc2)
Several operations are: Projection on x and vy.

Revi sed: D. Buchs
Dat e 5 July 1995

Adt Coord As Pc2(Integers, Integers);
Mor phi sm

el enl -> integer;

el en2 -> integer;

_ = _In ConparableElenl -> _ = _ In Integers;
_ = _ In Conparabl eEl en?2 -> = In I ntegers;
Rename
pc2 -> coord;
fst _ -> x-coord _ ;
snd _ -> y-coord _ ;
Interface
Body
End Coord;

(: A CHANGER, divier:)

Coordi nate (instantiation of Pc2)
Several operations are Projection on x and vy.

Revi sed: D. Buchs
Dat e 5 July 1995

Adt String As O deredList(Characters);

Mor phi sm
character -> elem
= -> = N
_<_ -> _<
Renanme list -> s
Interface
Body

End String;

1

tri hg;

7, Standard Library of ADT

1

;; structuredtypes. sys

Speci fication struct ur edt ypes;

- ——— %

————— %
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Ver si on

1.0;
Dat e 51

uly 1995;

Aut hor D.Buchs : Coord, String;

Use basi ctypes. sys, constructortypes.sys;
Modul es Coord, String : structuredtypes.coopn;

End structuredtypes;
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OLIVIER BIBERSTEIN & MATHIEU BUFFO

A CO-OPN, 5 specification is composed of many modules which may be distributed over several
files. Thus, a description of the various files composing a sepecification as well as their content is
required. Such a description is expressed by means of a system file which describes which files and
which modules compose the specification.

Section B.1 describes the lexical elements of the CO-OPNy 5 language and the system files.
Section B.2 and B.3 show, respectively, the BNF-like grammar of the CO-OPN; 5 language as well
as of the system files.

B.1 Lexical Elements of the CO-OPN;; Language

B.1.1 Character Set

A text written in CO-OPNy 5 is composed of characters of the ISO Latin 1 character set (ISO 88591).
In our context, this set is divided in four sub-sets :

Alphanum : All letters of [ISO Latin 1 and the characters 0, 1, 2,3,4,5,6,7, 8,9,
Blank : the characters Space, Tab and New Line,
[ AT A T A | C( 77 () 7’ 4Ll 7’

Separator : the characters .7, ¢, 7, 17, ¢4 7, ¢ 7,

Special : all others printable characters of the ISO Latin 1 character set.

All others characters (in particular the non-printable ones) generate a lexical error when non
encountered in comments.

B.1.2 Reserved Symbols
All the reserved symbols are listed below :
C: : 77 ‘_ >77 £:>77 C. . 77 (//77 ((: 77 C: 77 C; ; 7‘
The Reserved sub-set denotes the reserved symbols which are involved in the tokens delimi-
tation. This sub-set is composed of the following symbols : 1 : 7 ->7 =>7 ¢ 7 ¢ ]

B.1.3 Tokens

The lexical tokens are either delimited by the elements of the Reserved sub-set or by the characters
which are not in the Alphanum sub-set. The characters of the Blank sub-set are skipped.
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B.1.4 Reserved Words

The reserved words are English words. They are neither case-sensitive nor singular/plural-sensitive.
These words are :

As, Axi om Body, Adt, End, Generator, Generic, In, Initial, Interface,
Met hod, Modul e, Mor phi sm Ohj ect, Oper ati on, Paranet er, Pl ace, Renane,
Sort, Theorem Transiti on, Use, Where, Wt h,

B.1.5 Word

A word is either a unique character of the Special sub-set or a sequence of characters of the
Alphanum sub-set.

Examples :

1. are valid words :
transm t, Send, 2BeOr Not 2Be, 9,28, $,n’ , n"’
2. are not valid words :

nore or less,n",obj.get,is_enpty, spring->sunmer, Body.

B.1.6 Comments
Two types of comments are allowed.

e The multi-line comments start with the symbol ‘(:’ and end with the symbol *:)’. These
comments can be nested.

e The single-line comments start with the symbol ‘; ; > and end with the end of the line.
Examples :

1. (: This object is an unbounded buffer
whi ch contai ns natural nunbers

)

bj ect Buffer;
Interface
Use Nat ;
Met hods
put _ : nat, ;; add a natural nunber
get; ;; remove a natural nunber
Body ;; the inplenmentation is not yet provided
End Buffer;
2. (: This is a nested (: nmulti-line

conment :) :)
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B.2 BNF-like Grammar of the CO-OPN, ; Language

The BNF-like grammars given below have adopted the following conventions :

e bold face names denote terminal keywords,
e plain names denote non terminal keywords,
e quoted symbols denote terminals,

e (a)® means zero or many a,

(o)™ means one or more a,

e [a] means optional «a,

where «a is any sequence of terminal or non terminal.

The “Word” non terminal which is not present in the grammar corresponds to the element

described in section B.1.5.

Main — ( Module )*

Module —

[ ( Generic | Paraneter )] Adt [ Modul e | Moduleld

Header

Alglnterface

AlgBody

End ([ Moduleld ]| [47]) |

[ ( Generic | Paraneter )] Cbject [ Modul e | Moduleld

Header

ObjInterface

ObjBody

End ( [ Moduleld ]| [%7])

Header —

ModuleParam | ¢;’
Mor phi smMorphismBloc ]
Renane RenameBloc |

ModuleParam | As Moduleld [ ModuleParam | ¢;’

Mor phi smMorphismBloc ]
Renane RenameBloc |

[
[
[
|
[
[
[

ModuleParam — ‘(’ Moduleld ( ¢, * Moduleld )* ©)’

MorphismBloc — ( MorphismList ¢; 7 )*

MorphismList — MorphismTerm | MorphismTerm ( ¢, > MorphismTerm )*

MorphismTerm — MixIdentifier [ | n Moduleld ] ‘- >’ MixIdentifier [ | n Moduleld ]

RenameBloc — ( RenamelList ;7 )%t
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RenameList — RenameTerm | RenameTerm ( ‘, ” RenameTerm )*
RenameTerm — MixIdentifier [ | n Moduleld | ‘- >” MixIdentifier

AlgInterface —
Interface
[ Use UseBloc |
[ Sort SortBloc |
[ Gener at or GenOperBloc |
[ Oper ati on GenOperBloc |

AlgBody —
Body
[ Use UseBloc |
[ Sort SortBloc |
[ Gener at or GenOperBloc |
[ Oper at i on GenOperBloc |
[ AXi omAlgFormulaBloc |
[ Theor emAlgFormulaBloc |
[ Wher e VariableBloc |

ObjInterface —
Interface
[ Use UseBloc |
[ Met hodMethodBloc |

ObjBody —
Body [ Use UseBloc |
[ Met hod MethodBloc ]
[ Transi tion TransitionBloc |
[ Pl ace PlaceBloc |
[I'nitial InitialBloc |
[ AXi omObjFomulaBloc ]
[ Theor emObjFormulaBloc |
[ Wher e VariableBloc |

UseBloc — ( UseList ¢ 7 )T

UseList — Moduleld ( ¢, ’ Moduleld )*

SortBloc — ( SortList ¢; 7 )*

SortList — Sortld ( ¢, ’ Sortld )*

GenOperBloc — ( GenOperList “: [ [ Type | ‘->"] Type ;7 )t

GenOperList — GenOperld ( ¢, ’ GenOperld )*
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AlgFormulaBloc — ( AlgFormulaTerm *; )t
AlgFormulaTerm — [ Axiomld ‘: : 7] [ Condition ‘=>’ | Term
MethodBloc — ( MethodList [ - Type ] ¢ 7 )*
MethodList — MethodId ( ¢, * MethodId )*
TransitionBloc — ( TransitionList ¢; 7 )*
TransitionList — Transitionld ( ¢, * Transitionld )*
PlaceBloc — ( PlaceList “: > Type [ ‘(’ Identifier ¢) 7] 4 7 )%t
PlaceList — Placeld ( ¢, ’ Placeld )*
InitialBloc — ( Marking ;)T
ObjFormulaBloc — ( ObjFormulaTerm *; ’ )%t
ObjFormulaTerm —
[ AxiomId ¢ : 7 ] [ Condition ‘=>’ | Event [ Wt h Synchronization | *:”’
Marking ‘- >” Marking
Condition — Term
Event — Term
Synchronization — Term
Marking — Term
Synchronization — Term
Marking — Term
Type — TermNoPar
VariableBloc — ( VariableList ‘: > Type ¢; )%t
VariableList — Variableld ( ¢, ” Variableld )*
Moduleld — Word

Axiomld — Word

Transitionld — Identifier
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Sortld — Identifier

Variableld — Identifier

Transitionld — Identifier

Methodld — MixIdentifier

Placeld — MixIdentifier

GenOperld — MixIdentifier

Term — TermPar ( ¢, > TermPar )*

TermPar — TermNoPar | ( ‘(’ Term )’ [ TermNoPar | )*
TermNoPar — TermNoParFactor ( ¢, > TermNoParFactor )*
TermNoParFactor — ( Word [ | n Moduleld | )*

MixIdentifier — ¢’ | Identifier | ¢’ Identifier | MixIdentifier ‘_’ | MixIdentifier ¢_’
Identifier

Identifier — ( Word )*
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B.3 Syntax of the System Files

A system file describes which modules compose a specification and where are located (in which
file) these modules. The lexical aspects of the systems files are the same as the ones of section B.1

except that the reserved words are the followings :
Aut hor , Dat e, End, Modul e, Use, Ver si on, Speci fi cati on.

The BNF-like grammar of the system files is as follows :

Main —

Speci fi cati on Identifier ¢; ’

[ Ver si on Extldentifier *; 7 ]

[ Dat e Extldentifier *; 7 ]

[ Aut hor AuthorBloc ]

[ Use UseBloc |

[ Modul e ModuleBloc ]

End ( [ Identifier ;7 ]| [ 7] )
AuthorBloc — ( AuthorList [ ¢ 7 ExtIdentifier | ¢; 7 )T
AuthorList — Authorld ( ¢, Authorld )*
UseBloc — ( UseList 4 7 )T
UseList — Fileld ( ¢, ’ Fileld )*
ModuleBloc — ( ModuleList ‘: * FileName ¢; " )T
ModuleList — Moduleld ( ¢, ’ Moduleld )
Moduleld — Word
Authorld — Identifier
Fileld — Identifier
ExtIdentifier — ( Word | ©. 7 | ¢, )T

Identifier — ( Word | . 7 )*
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Examples :

The system file given in Figure B.1 and B.2 show, respectively, the system files of the Alternate

Bit Protocol example and the lift example introduced in sections 3.2 and 3.3 (see pages 15 and 16).

abp. sys
Specification abp;
Ver si on 1. 0;
Dat e 23 oct 1995;

Aut hors O Biberstein, G D Marzo :

Mbdul es Message, Altbit, Fifo, Frame : abpadt.coopn;

Alternate Bit Protocol

Message, AltBit, Fifo, Frane,
Receiver, Transmtter, Etherln, EtherQut;

basi ctypes. sys;

Recei ver, Transmitter, Etherln, EtherCQut : abpobj.coopn;

Specification lift;
Ver si on 1.0;
Dat e 23 oct 1995;

Aut hors O Biberstein, G D Marzo :

Modul es Direction, Goal, Floors, ListGoals,

End lift;

End abp;
Figure B.1: The System File of the Alternate Bit Protocol Example
The Lift
lift.sys

Direction, Goal, Floors, ListGoals,
Cabi n, Buil di ngFl oors, Control;

basi ct ypes. sys, constructortypes. sys;

Cabi n, BuildingFloors, Control : lift.coopn;

Figure B.2: The System File of the Lift Example
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