
Self-composition of services with chemical reactions

Francesco De Angelis
University of Geneva, ISS
Route de Drize 7 Carouge

SWITZERLAND
francesco.deangelis@

unige.ch

Jose Luis
Fernandez-Marquez

University of Geneva, ISS
Route de Drize 7 Carouge

SWITZERLAND
joseluis.fernandez@

unige.ch

Giovanna Di Marzo
Serugendo

University of Geneva, ISS
Route de Drize 7 Carouge

SWITZERLAND
giovanna.dimarzo@

unige.ch

Keywords
Self-composition, chemical reactions, services,
context-awareness, dynamic environment

1. INTRODUCTION
Next generation of socio-technical infrastructures will be

characterized by the presence of complex networks of per-
vasive systems, composed of thousands of heterogeneous de-
vices consuming and producing high-volumes of interdepen-
dent data. Smart-cities represent an example of these future
digital scenarios: by using wide area mobile ad-hoc networks
(MANETs), data will be shared among applications placed
on cars or running on several devices such as smartphones,
tablets, public displays and sensors placed at the edges of
the roads; moreover, all these devices will access traditional
remote web-services. Smart-cities depict the emergence of
new open-infrastructure pervasive systems, where scalabil-
ity and dependability will be achieved by developing and
adapting (at run-time) applications through compositions
of customized services.

The static character of traditional approaches for compo-
sition of services, such as orchestration and choreography,
has been recently challenged by so-called dynamic service
composition approaches, involving semantic relations [1], or
AI planning techniques to generate process automatically
based on the specification of a problem [4]. All these ap-
proaches turn to be unfeasible for being adopted in future
pervasive systems because of their restricted scalability due
to the centralization of the composition process, limited sup-
port for context-awareness and slow reactivity to sudden ap-
pearance or disappearance of services.

To tackle these limitations this paper introduces a new
approach for service composition named self-composition.
Compositions are realized in a pervasive ecosystem [5] with-
out the presence of coordination units, through incremental
distributed light-weighted interactions among services, in-
spired by chemical reactions bindings. As well as improving
scalability by adopting a distributed bio-inspired model for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Tuple
SpaceTuple 1

Tuple 2

Tuple 3

Tuple 4

Client
Tuple

Service
1

Agent

Service
2

Agent
2

Service
3

Agent

Service
4

Agent

Application

Agent

Chemical reactions

Bond Decay Aggregate

Figure 1: Reference model. Dotted lines represent
interaction between agents and their tuple in the
tuple space; solid lines represent interactions among
tuples.

interactions, compositions can be also empowered by the use
of contextual information gathered by sensors and inserted
in the ecosystem.

2. REFERENCE MODEL
The model considered is an abstraction of the SAPERE

active tuple space model [2, 5] inspired by chemical reac-
tions; the system is composed of four entities: tuples, chem-
ical reactions, agents and services/applications (Figure 1).
Tuples: passive entities located in a shared container named
tuple space. Tuples are vectors of properties (name=value)
used to describe and represent services, applications and
contextual information.
Chemical reactions: functions defined on the set of tu-
ples defining rules used to manipulate, update and delete
them. They are provide the system with an automatic way
for tuples interactions and they deliver notifications to the
agents associated with tuples being modified.
Agents: external active entities represented in the tuple
space by a tuple implementing the interfaces between ser-
vices/applications and the tuple space. An agent interacts
with the tuple space updating-deleting tuples and receiving
a notification each time an interaction is performed on its
tuple by a chemical reaction.
Services: entities producing some data as result of a com-
putation performed on data passed as input. Services that
want to request or provide information create an agent used
as an interface to exchange data within the tuple space. Ser-
vices can be represented by using a precondition-postcondition
notation. For example a tuple T1 = (city =?, weather =!)
represents a service W producing a result of type weather
(i.e., weather forecast) given an input value of type city.

We define two basic chemical reactions: Bond and Decay.
Bond: A bond is a relationship between two distinct tuples
containing the same property names and it is realized by in-
serting a question mark “?” as property value. For example,
a bond will be created between service W injecting T1 =
(city =?, weather =!) and T2 = (city = “NewY ork”) be-
cause of property city. When a bond is established, an event
of activation is delivered to the agent exhibiting the value“?”
in one of the properties of its tuple. In this case, the service
W introduced before will be invoked, generating the weather
forecast for New York. This will result in the generation of a
tuple, e.g. T3 = (city = “NewY ork”, weather = “sunny”).

Decay. It provides a mechanism to free resources by re-
moving tuples from the space.

3. SELF-COMPOSITION ALGORITHMS
Compositions are based on expected input and output

types. A composition spontaneously arises when the output
type of a service matches the input type of another service.

3.1 Executing all services
A service request is activated by injecting a tuple con-

taining the initial input values in the system, specifying the
expected output type. This input causes all services able to
process that value to execute and to possibly each produce
an output value. This will prompt other services to react
and execute, and so on until one of those outputs matches
the expected output type. This algorithm does not require
any plan of service execution and it produces all possible
compositions that can be generated starting from a set of
initial values of types P1, . . . , Pn.

Service request: a client application encodes a ser-
vice request by creating a tuple T = (P1 = “p1”, . . . , Pn =
“pn”, R =?) containing the list of initial input values pi and
the question mark “?” for the expected output of type R.

Composition execution: every service agent satisfying
a precondition property of tuple T is activated by means of a
bond: it reads all values contained in T , invokes the service
and inserts the result values of type R1, . . . , Rn in a new
tuple. This in turn activates other services. At the end of
this process, if the composition can be computed by using
a set of existing services, a tuple containing a value of the
desired type R appears in the tuple space. This tuple will
then bond with the ? in the original request tuple T .

3.2 Designing all compositions
This approach permanently (re-)builds all possible com-

positions designs among agents, depending on arriving or
departing services, independently of queries. All services
contribute in maintaining a graph of interdependencies [3];
through progressive bonds every service identifies the set P
of all the input types that, if satisfied, will eventually trigger
its own execution. This set is then used by the client agent
in order to select a sequence of services to invoke to produce
a specific composition.

Design process: A client agent Sn injects a request
indicating an expected output of type R, which will then
bond with all services able to provide output R. It also
obtains a set of preconditions that trigger those services.
Progressively, a sequence of service names L = (S1, . . . , Sn)
is built, such that: service S1 provides input values of type
P1, . . . , Pn; the postcondition (output values) of Si is the

precondition (input values) of Si+1; and service Sn provides
output value of type R. In other terms, L is a sequence of
services that generates type R starting from input values of
type P1, . . . , Pn.

Composition execution: The client agent inserts the
tuple T = (P1 = “p1”, . . . , Pn = “pn”,L, R =?), which ac-
tually starts the execution process. Only services that are
part of L will be progressively triggered through successive
bonds. When this process stops, the final value of type R
appears in the tuple space.

Services updates: The graph of interdependencies is
rebuilt at prefixed interval times by using the decay chemical
reaction.

Additional details concerning the proposed algorithms can
be found in [3].

4. CONCLUSION
We defined a model and two algorithms for self-composition

of services by defining a pervasive ecosystem built on top of
a chemical tuple space. The proposed approaches present
several benefits for scalability and context-awareness: the
composition is automatically produced with no effort by the
application’s developer in terms of synchronization and ex-
ecution planning; the computation is implicitly distributed
and it involves the parallel execution of services as soon as
tuples with intermediary results are generated; no coordina-
tion entities is needed. The shared space provides a natural
way for caching intermediary and temporary values, pre-
venting identical service requests from being executed sev-
eral times. Our approaches are then particularly suitable
for context-aware applications, where components (services
and applications) interact by dealing with contextual infor-
mation injected in the tuple space by sensors.

Acknowledgment
This work has been supported by the EU-FP7-FET Proac-
tive project SAPERE Self-aware Pervasive Service Ecosys-
tems, under contract no.256873.

5. REFERENCES
[1] M. Beek, A. Bucchiarone, and S. Gnesi. A survey on

service composition approaches: From industrial
standards to formal methods. In Technical Report
2006TR-15, Istituto, pages 15–20. IEEE CS Press, 2006.

[2] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli.
Pervasive middleware goes social: The sapere approach.
In Proceedings of the 2011 Fifth IEEE Conference on
Self-Adaptive and Self-Organizing Systems Workshops,
SASOW ’11, pages 9–14, Washington, DC, USA, 2011.
IEEE Computer Society.

[3] F. De Angelis, J. L. Fernandez-Marquez, and
G. Di Marzo Serugendo. Self-composition of services.
Technical Report TR.WP2.2013.2, SAPERE Project,
2013.

[4] Z. Wu, A. Ranabahu, K. Gomadam, A. Sheth, and
J. Miller. Automatic composition of semantic web
services using process and data mediation. In Proc. of
the 9th Intl. Conf. on Enterprise Information Systems,
pages 453–461, 2007.

[5] F. Zambonelli et al. Self-aware pervasive service
ecosystems. Procedia Computer Science, 7:197 – 199,
2011.

