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Designing and controlling trustworthy self-organising

systems

Giovanna Di Marzo Serugendo and John Fitzgerald

A software architecture and a development method for engineering self-
organising systems that can be justifiably trusted and controlled.

A self-organising system can arrange itself and modify its be-
haviour without receiving specific instructions to do so. Such
systems are common in nature: flocks of birds responding to
wind changes or a colony of ants structuring itself in response to
a threat. But self-organisation is not only seen in nature – increas-
ingly, artificial systems such as robots, mobile networks and soft-
ware services are able to self-organise, enabled by modern com-
puting and network technologies. Such artificial self-organising
systems show some of the adaptability of their natural counter-
parts, but their behaviour is hard to control (to stop, reset or
guide) and even harder to predict in advance. So - can such sys-
tems be trusted? The challenge in our work is to provide means
of designing and controlling artificial self-organising systems so
that there is enough evidence to justify placing reliance on them
to perform safely, correctly and efficiently, even in the presence
of erratic behaviour by the environment or faulty components.

The achievement and demonstration of system dependability
is a well established field of study.1 The main techniques avoid
the introduction of defects during design, use over-engineering
to tolerate faults should they arise anyway, and detect remaining
faults through system verification. These techniques produce ev-
idence that can form the basis of a system’s “dependability argu-
ment”. Most of these techniques assume a static system structure
fixed during design, while real self-organising systems are dy-
namic, with components and agents joining and leaving, chang-
ing goals and reacting to events. Specific approaches targeting
self-* systems vary from multi-layer reference architectures for
self-adaptive systems2, to analysis guidelines and specific agent-
based solutions.3 They do not address trustworthiness and con-
trollability. To bridge this gap, we have been working on a soft-
ware architecture and development method that permits the def-
inition and analysis at design-time of mechanisms that both en-
sure and constrain the run-time behaviour of a self-organising
system, thereby providing some assurance of its self-* capabili-
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Figure 1. Architecture involving loosely coupled components, meta-
data and policies.

ties.
We view the self-organising system as a collection of loosely

coupled autonomous components. We gather and maintain
metadata that describes characteristics such as components’
functional specifications or non-functional characteristics such
as availability levels and environment-related metadata such as
artificial pheromone. The behaviour of the system, for example
reconfiguration to compensate for a component failure, is gov-
erned by policies that describe the response of system compo-
nents to detected conditions and changes in the metadata. When
the system is “live”, both the components and the run-time in-
frastructure exploit metadata to support decision-making and
adaptation in accordance with the policies.4

In order to realise this approach, we have proposed a system
architecture (Figure 1) that involves autonomous components,
repositories of metadata and executable policies, and reason-
ing services that dynamically enforce the policies on the basis
of metadata values.5 Metadata may be stored, published and
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updated at run-time both by the run-time infrastructure and
by the components themselves. Policies are available at run-
time to both the run-time infrastructure and the components
themselves. Guiding policies are high-level goals (e.g. starting
or stopping a swarm of robots); bounding policies define envi-
ronmental limitations; sensing/monitoring policies define reflex
behaviour for the components (e.g. if metadata value reaches a
threshold then an action must be taken).

Policies may be generic, e.g. replacing a current (slow) com-
ponent with an equivalent component having a higher perfor-
mance. By accessing metadata about current performance of the
components, the reasoning engine can actually determine which
of the available components has to replace the failing one. In
principle, policies can change dynamically, although allowing
unconstrained change can affect dependability!

We have defined a development method in which the require-
ment and analysis phase identifies the functionality of the sys-
tem along with self-* requirements – where and when self-
organisation is needed/desired. A design phase determines the
autonomous components (services, agents, etc) design and the
mechanisms governing the autonomous components’ interac-
tions and behaviour (e.g. stigmergy, trust or gossip), addressing
the self-* requirements. The implementation phase produces the
run-time infrastructure.5

We have applied our approach in two case studies. First,
we have developed dynamically resilient Web services where a
client, requesting a specific Web service, specifies its choice of
dependability at run-time, e.g. the Web Service with the best de-
pendability metadata is selected as the primary service and the
others used as alternatives if that one fails.6 Second, we have de-
signed self-organising robotic assembly systems. In response to
an incoming product order, robotic modules self-organise - se-
lect each other and re-program themselves - to form an ad hoc
assembly system able to produce the specified product. During
production, the modules self-adapt to ensure production also in
degraded modes - adapt each other speeds or take over from a
faulty module.7

Our approach is designed to promote predictability and con-
trol in artificial self-organisisng systems. Predictability is primar-
ily obtained by the dynamic enforcement of policies instantiat-
ing the self-organising and resilience mechanisms identified at
design-time. Policies turn out to be a useful tool for analysing
the emergent properties of the design. The construction of com-
positional proofs of emergent properties depends on the level
of rigour used in the policy and metadata definitions. Low-level
control results from the activity of the components. Components
sense and retrieve metadata and policies. Their behaviour causes
metadata changes which in turn cause components to adapt
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Figure 2. Control occurs through active modification of metadata, poli-
cies and components

to the new situation. The run-time infrastructure itself is ac-
tive and through reasoning services enforces active (possibly hu-
man) high-level control by direct reconfiguration of components;
modification of the metadata; and modification of the policies
used by the components for driving (changing) their behaviour
on-the-fly (Figure 2). Loose coupling is crucial: changing a pol-
icy or metadata occurs without modifying/stopping the compo-
nents, their new value immediately affecting the components’
behaviour.

Self-organising mechanisms are an attractive paradigm for en-
gineering robust artificial systems from simple individual com-
ponents, but their very flexibility challenges our ability to pre-
dict and control their behaviour, and hence their trustworthi-
ness. We have defined a software architecture and established a
development method that addresses predictability by exploiting
metadata to support decision-making and adaptation based on
the dynamic enforcement of explicitly defined policies. Control
is obtained by actively modifying metadata, policies or compo-
nents. Future work will concentrate on enhancing predictability
by formal analysis of policies and on the spontaneous produc-
tion of new policies at run-time through reasoning over an inter-
nalised model of the self-organising system.
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beck College for developing self-organising assembly systems.
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