Services Foundation

Msc in Management - Services Science

Giovanna Di Marzo Serugendo
, room B 235, 022 379 00 72

University of Geneva
http://cui.unige.ch/~dimarzo

Lecture 2. Summary

Software vs Services

Specific Services

Web Services

Context-Aware Services
* |Location-Based Services

Wearable Computers
On-Line Games

Social Media
E-Government Services
Services for the elderly
Smart Systems

Lecture 3/4 /5

Technologies for Services
 Interaction Modes (Publish /Subscribe)
e SOA / Mashups / Clouds

e Services Composition and
Orchestration

Motivation

Large-scale dynamic distributed applications

* Point-to-point / synchronous
communication is impossible
« Static, rigid applications

»Loosely coupled form of interaction
* Provided by appropriate middleware

Publish/Subscribe

Well adapted to the loosely coupled nature of distributed
interaction in large-scale applications (..) with systems
based on the publish/subscribe interaction scheme,
subscribers register their interest in an event, or a pattern
of events, and are subsequently asynchronously notified
of events that match their interest generated by

publishers.

[Eugster 03]

Basic Interaction Scheme

Service: event notification service providing storage and
management for subscriptions and efficient delivery of
events

* Producers publish information to an event notification
service (an event manager) -- publishers

« Consumers subscribe to the information they want to
receive from the event notification service -- subscribers

« This information is typically denoted by the term event
« The act of delivering it by the term notification

o Twitter
[Eugster 03]

Basic Interaction Scheme

Registration of interests:

e subscribe() / unsubscribe()

* Event notification service does not forward
the subscription to publishers

 Subscribers do not know source of event
Publication of events:
e publish ()

* Event notification service propagates event
to all subscribers

« Every subscriber will be notified of every
event conforming to its interest

Basic Interaction Scheme

—) |(Subscriber)

Subscribes
e De— Client

(Subscriber)

Delivers
Event notification service @

Publish/Subscribe

Decoupling:
* Time
* Space
* Synchronization
between publishers and subscribers

Basic Interaction Scheme

Event Sorvico

Publisher Publish oftify()

Space decoupling

* Interacting parties do not know each other

» Events obtained indirectly through the event service

* Publishers do not hold references of subscribers and vice-versa
» Subscribers do not know how many publishers are involved

[Eugster 03]

Basic Interaction Scheme

Event Service
| Publisher | Notify \g | f Subscriber |
/ / NG J Cotify0

=

s
/- ™~ /" EventService N /77
Publisher f &DNoh’fy() M~ \N;;f; | Subscriber |
N C P id oo) Y

Time decoupling

* Interacting parties do not need to be actively participating in the

interaction at the same time
* Publishers might publish events while subscribers are disconnected

» Subscribers might get notifications while publishers are disconnected
» Skype is *not* Time decoupled (cf chats)

[Eugster 03]

Basic Interaction Scheme

Ub“sn“)
NOIW
b\\sh

<ﬁ>‘/ om0
‘/

Synchronization decoupling

 Publishers are not blocked while producing events

» Subscribers can get asynchronously notified of the occurrence of an event
while performing some other concurrent activity.

* Production and consumption of events do not happen in the main flow of
control of the publishers and subscribers, and do not therefore happen in a

synchronous manner.
[Eugster 03]

Basic Interaction Scheme

Advantages of decoupling
* No explicit dependencies
* Increased scalability

Basic Interaction Scheme

Data delivery mechanisms:
* Push vs Pull

* Aperiodic vs Periodic
* Event based vs arranged schedule

* Unicast (1 to 1) vs 1-to-N (1 to many)

Interactions

Push mechanism

* Producers periodically push updated context information to
the event service.

« The event service maintains the information in an event
store

« E.g. instant messaging, alerts, sms from operators (to be
confirmed)

> Better performance, but cost of storing and updates

Pull mechanism

« Subscriber service must explicitly request event information.

|t makes this request on a periodic basis (polling) or when
an application demand arises.

« e.g. emalils, rss feeds, twitter
> Fewer resources used, but network delays

Interactions

Push

1 Message

Received

Read Exit

Salary nas
been credited
to your A/c

ynips

eBay

eBay Item ending soon

| 5 LCD Screen Protector Film Guard

FOR APPLE IPHONE 3G

Close “View

Publish/Subscribe Variants

Subscribers interested in some events, not
all events

Variants
» Topic-based
« Content-based
* Type-based
» Location-based

Topic-Based Publish/Subscribe

Topics or Subjects

» Publish events or subscribe to static
topics using keywords

* Maps individual topics to distinct
communication channels

» Every topic is viewed as an event service
of its own, identified by a unique name

 Every topic provides an interface offering
publish () and subscribe()
operations.

Topic-Based Publish/Subscribe

® @ + Publish
* Subscribe
4

m4 m2 my mp * Deliver

P Publisher
S Subscriber

LondonStockMarket

vy Stock /
< StockQuotes >

Topic-Based Publish/Subscribe

public class StockQuote implements Serializable {
public String id, company, trader;
public float price:;
public int amount;
}
public class StockQuoteSubscriber implements Subscriber {
public void notity(Object o) {
if (((StockQuote)o).company == ‘TELCO’ && ((StockQuote)o).price < 100)
buy();
}

}
// ...

Topic quotes = EventService.connect(“/LondonStockMarket /Stock /StockQuotes”);
Subscriber sub = new StockQuoteSubscriber();

quotes.subscribe(sub); I

Content-Based Publish/Subscribe

Content or property

» Subscription scheme based on the actual
content of the considered dynamic events

« Events are not classified according to some
predefined external criterion (static topic name)

« Events are classified according to the properties of
the events themselves

« Consumers subscribe to selective events by
specifying filters using a subscription language. The
filters define constraints, usually in the form of key-
value pairs of properties and basic comparison
operators (and, or, >, <, =)

Content-Based Publish/Subscribe

@ @ * Publish
' Subscribe

my | | mp my b Deliver
P Publisher
/ S Subscriber
\ LondonStockMarket
mq-{ ..., company: "Telco", price: 120, ..., ... }

mo: { ..., company: "Telco", price: 90 , ..., ...}

Content-Based Publish/Subscribe

public class StockQuote implements Serializable {
public String id, company, trader;
public float price;
public int amount;
}
public class StockQuoteSubscriber implements Subscriber {
public void notify(Object o) {
buy(); // company == ‘TELCO’ and price < 100

)

/).

String criteria = (“company == ‘TELCO" and price < 100");
Subscriber sub = new StockQuoteSubscriber();
EventService.subscribe(sub, criteria);

Type-Based Publish/Subscribe

Event kind or event type

» Subscription scheme based on the
type of the considered events

o @

StockQuote m4| | StockRequest my

my

. LondonStockMarket
< v StockQuote >
< StockRequest >

Type-Based Publish/Subscribe

public class LondonStockMarket implements Serializable {
public String getId() {...}

public class Stock extends LondonStockMarket {
public String getCompany() {...}
public String getTrader() {...}
public int getAmount() {...}
}
public class StockQuote extends Stock {
public float getPrice() {...}
}
public class StockRequest extends Stock {
public float getMinPrice() {...}
public float getMaxPrice() {...}
}
public class StockSubscriber implements Subscriber<StockQuote> {
public void notifv(StockQuote s) {
if (s.getCompany() == ‘TELCO’ && s.getPrice() < 100)

buy();
}
t
VI
Subscriber

EventService.subscr lb@<§t ockQuote>(sub);

Location-Based Publish/Subscribe

Mobile applications
« Anonymous communication based on location
e Topic = location criteria
"] subscribe to all events published by peers located
within a given range”
* Topic and content-based publish /subscribe

« Eventis published in a particular geographical context

« Matching process is performed dynamically on this
context, and on the content of events.

"] subscribe to all traffic jam events published by peers
located within a given range”

[Eugster 05]

Events Notifications

Messages
« Structure (header, body)
* Encoded in XML (for instance)
» Sent to subscribers through notify ()

Invocations

* Triggers execution of specific operation
(e.g. method call) at subscriber side

Publish/Subscribe Alternatives

Alternatives

Message Passing
Remote Invocation
Notifications
Shared Spaces
Message Queuing

Alternatives

Message Passing

Participants communicate by sending and receiving
messages

Message passing is asynchronous for the producer
Message consumption is generally synchronous

Producer and consumer are coupled both in time and space
Producer and consumer must both be active at the same
time

Recipient of a message is known to the sender

Skype ?

Alternatives

Message Passing

Network channel

Producer Consumer
_ J \ _J

Noada 1 Nada 2

* Producer sends messages asynchronously through a communication
channel (previously set up for that purpose).
» Consumer receives messages by listening synchronously on that channel

[Eugster 03]

Alternatives

Remote Invocation (RPC)

Remote interactions appear the same way as local
interactions

Remote invocation is synchronous for producer
Remote invocation is asynchronous for consumer

Producers and consumers are coupled in time and
space

Consumer holds a reference to producer — to return
a value

Alternatives

Remote Invocation (RPC)

Network channel

Consumer Producer

Node 1 Node 2

» Producer performs a synchronous call (calls and waits for a reply)
» Consumer processes the call asynchronously (provides a reply)

[Eugster 03]

Alternatives

Notifications

* Synchronous remote invocation is split into two
asynchronous invocations

* the first one sent by the client to the server

» the second one sent by the server to the client to
return the reply

« Subscribers register their interest directly with
publishers

» Publishers manage subscriptions and send events

Notifications

Alternatives

Network channel

Consumer
N J

Node 1

Producer
J

Naode 2

Producers and consumers communicate using asynchronous invocations

in both directions

[Eugster 03]

Alternatives

Shared Spaces

Shared memory spaces
* Tuple spaces, Linda [Gelernter 95]

Time and space decoupling

Publishers insert information into space (no
knowledge of further use)

e out ()

Consumer pulls information from space in a
synchronous manner (pattern matching)

* in(), read()

Alternatives

Shared Spaces

Logical container

Producer Consumer
_ J 1\ J

Node 1 > _/'» Node 2

Producers insert data asynchronously into the shared space
Consumers read data synchronously

[Eugster 03]

Alternatives

Message Queuing
 Message-oriented middleware

* Producers and consumers are decoupled in
both time and space.

« Consumers synchronously pull messages

« Transactional, timing, and ordering
guarantees

Alternatives

Message Queuing
bl

Logical queue

Producer Consumer

) Node 1 ;H |])_; Node 2 ’

» Messages are stored in a FIFO queue.

» Producers append messages asynchronously at the end of the queue

» Consumers dequeue them synchronously at the front of the queue.
[Eugster 03]

Publish/Subscribe

Logical
channel

~
Consumer
J

Producer

Node 1 Node 2

Producers and consumers are decoupled in terms of space, time, and

synchronization.
[Eugster 03]

o Decoupling - Alternatives

Space Time Synchronization

Abstraction decoupling | decoupling decoupling
Message passing No No Producer-side
RPC/RMI No No Producer-side
Asynchronous RPC/RMI No No Yes

Future RPC/RMI No No Yes
Notifications (observer pattern) No No Yes

Tuple spaces Yes Yes Producer-side
Message queuing (Pull) Yes Yes Producer-side
Publish/subscribe Yes Yes Yes

[Eugster 03]

Summary

Interaction Modes
 Publish / Subscribe

* Basic interaction scheme

« Data delivery mechanism
« Push / Pull

« Topic-/ Content-/ Type- based
» Location-based publish/subscribe

o Alternatives

* Message passing / RPC / Shared spaces /
Notifications / Message queuing

41

Recommended Reading

[Eugster 03] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrer. The many faces of
publish/subscribe. ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp.
114-131.

[Eugster 05] P. Eugster, B. Garbinato, Adrian Holzer: Location-based Publish/
Subscribe. NCA 2005: 279-282

[Gelernter 85] Gelernter, D. 1985. Generative communication in Linda. ACM
Trans. Program. Lang. Syst. 7, 80—112.

