
1

Giovanna Di Marzo Serugendo
Giovanna.Dimarzo@unige.ch, room B 235, 022 379 00 72

University of Geneva
http://cui.unige.ch/~dimarzo

Services Foundation

Msc in Management - Services Science

Lecture 2: Summary
Software vs Services
Specific Services

•  Web Services
•  Context-Aware Services

•  Location-Based Services

•  Wearable Computers
•  On-Line Games
•  Social Media
•  E-Government Services
•  Services for the elderly
•  Smart Systems

Lecture 3 / 4 / 5

Technologies for Services
•  Interaction Modes (Publish /Subscribe)
•  SOA / Mashups / Clouds
•  Services Composition and

Orchestration

Motivation

Large-scale dynamic distributed applications
•  Point-to-point / synchronous

communication is impossible
•  Static, rigid applications

 Loosely coupled form of interaction
•  Provided by appropriate middleware

Publish/Subscribe

Well adapted to the loosely coupled nature of distributed
interaction in large-scale applications (..) with systems

based on the publish/subscribe interaction scheme,
subscribers register their interest in an event, or a pattern
of events, and are subsequently asynchronously notified

of events that match their interest generated by
publishers.

[Eugster 03]

Basic Interaction Scheme

Service: event notification service providing storage and
management for subscriptions and efficient delivery of
events

•  Producers publish information to an event notification
service (an event manager) -- publishers

•  Consumers subscribe to the information they want to
receive from the event notification service -- subscribers

•  This information is typically denoted by the term event
•  The act of delivering it by the term notification

•  Twitter
[Eugster 03]

Basic Interaction Scheme

Registration of interests:
•  subscribe() / unsubscribe()!
•  Event notification service does not forward

the subscription to publishers
•  Subscribers do not know source of event

Publication of events:
•  publish ()!
•  Event notification service propagates event

to all subscribers
•  Every subscriber will be notified of every

event conforming to its interest

Basic Interaction Scheme

Event notification service

Publish/Subscribe

Decoupling:
•  Time
•  Space
•  Synchronization

between publishers and subscribers

Basic Interaction Scheme

•  Interacting parties do not know each other
•  Events obtained indirectly through the event service
•  Publishers do not hold references of subscribers and vice-versa
•  Subscribers do not know how many publishers are involved

[Eugster 03]

Basic Interaction Scheme

•  Interacting parties do not need to be actively participating in the
interaction at the same time
•  Publishers might publish events while subscribers are disconnected
•  Subscribers might get notifications while publishers are disconnected
•  Skype is *not* Time decoupled (cf chats)

[Eugster 03]

Basic Interaction Scheme

•  Publishers are not blocked while producing events
•  Subscribers can get asynchronously notified of the occurrence of an event
while performing some other concurrent activity.
•  Production and consumption of events do not happen in the main flow of
control of the publishers and subscribers, and do not therefore happen in a
synchronous manner.

[Eugster 03]

Basic Interaction Scheme

Advantages of decoupling
•  No explicit dependencies
•  Increased scalability

Basic Interaction Scheme

Data delivery mechanisms:
•  Push vs Pull
•  Aperiodic vs Periodic

•  Event based vs arranged schedule
•  Unicast (1 to 1) vs 1-to-N (1 to many)

Interactions
Push mechanism

•  Producers periodically push updated context information to
the event service.

•  The event service maintains the information in an event
store

•  E.g. instant messaging, alerts, sms from operators (to be
confirmed)

➪  Better performance, but cost of storing and updates
Pull mechanism

•  Subscriber service must explicitly request event information.
•  It makes this request on a periodic basis (polling) or when

an application demand arises.
•  e.g. emails, rss feeds, twitter
➪ Fewer resources used, but network delays

Interactions

Push

Publish/Subscribe Variants

Subscribers interested in some events, not
all events

Variants
•  Topic-based
•  Content-based
•  Type-based
•  Location-based

Topic-Based Publish/Subscribe

Topics or Subjects
•  Publish events or subscribe to static

topics using keywords
•  Maps individual topics to distinct

communication channels
•  Every topic is viewed as an event service

of its own, identified by a unique name
•  Every topic provides an interface offering
publish() and subscribe()
operations.

Topic-Based Publish/Subscribe

Topic-Based Publish/Subscribe

Content-Based Publish/Subscribe

Content or property
•  Subscription scheme based on the actual

content of the considered dynamic events
•  Events are not classified according to some

predefined external criterion (static topic name)
•  Events are classified according to the properties of

the events themselves
•  Consumers subscribe to selective events by

specifying filters using a subscription language. The
filters define constraints, usually in the form of key-
value pairs of properties and basic comparison
operators (and, or, >, <, =)

Content-Based Publish/Subscribe

Content-Based Publish/Subscribe

Type-Based Publish/Subscribe

Event kind or event type
•  Subscription scheme based on the

type of the considered events

Type-Based Publish/Subscribe

Location-Based Publish/Subscribe

Mobile applications
•  Anonymous communication based on location
•  Topic = location criteria

•  ”I subscribe to all events published by peers located
within a given range”

•  Topic and content-based publish /subscribe
•  Event is published in a particular geographical context
•  Matching process is performed dynamically on this

context, and on the content of events.
•  ”I subscribe to all traffic jam events published by peers

located within a given range”

[Eugster 05]

Events Notifications

Messages
•  Structure (header, body)
•  Encoded in XML (for instance)
•  Sent to subscribers through notify()!

Invocations
•  Triggers execution of specific operation

(e.g. method call) at subscriber side

Publish/Subscribe Alternatives

Alternatives
•  Message Passing
•  Remote Invocation
•  Notifications
•  Shared Spaces
•  Message Queuing

Alternatives

Message Passing
•  Participants communicate by sending and receiving

messages
•  Message passing is asynchronous for the producer
•  Message consumption is generally synchronous
•  Producer and consumer are coupled both in time and space
•  Producer and consumer must both be active at the same

time
•  Recipient of a message is known to the sender
•  Skype ?

Alternatives

Message Passing

•  Producer sends messages asynchronously through a communication
channel (previously set up for that purpose).
•  Consumer receives messages by listening synchronously on that channel

 [Eugster 03]

Alternatives

Remote Invocation (RPC)
•  Remote interactions appear the same way as local

interactions
•  Remote invocation is synchronous for producer
•  Remote invocation is asynchronous for consumer
•  Producers and consumers are coupled in time and

space
•  Consumer holds a reference to producer – to return

a value

Alternatives

Remote Invocation (RPC)

•  Producer performs a synchronous call (calls and waits for a reply)
•  Consumer processes the call asynchronously (provides a reply)

 [Eugster 03]

Alternatives

Notifications
•  Synchronous remote invocation is split into two

asynchronous invocations
•  the first one sent by the client to the server
•  the second one sent by the server to the client to

return the reply
•  Subscribers register their interest directly with

publishers
•  Publishers manage subscriptions and send events

Alternatives

Notifications

Producers and consumers communicate using asynchronous invocations
in both directions

 [Eugster 03]

Alternatives

Shared Spaces
•  Shared memory spaces

•  Tuple spaces, Linda [Gelernter 95]

•  Time and space decoupling
•  Publishers insert information into space (no

knowledge of further use)
•  out ()!

•  Consumer pulls information from space in a
synchronous manner (pattern matching)

•  in(), read()!

Alternatives
Shared Spaces

Producers insert data asynchronously into the shared space
Consumers read data synchronously

 [Eugster 03]

Alternatives

Message Queuing
•  Message-oriented middleware
•  Producers and consumers are decoupled in

both time and space.
•  Consumers synchronously pull messages
•  Transactional, timing, and ordering

guarantees

Alternatives

Message Queuing

•  Messages are stored in a FIFO queue.
•  Producers append messages asynchronously at the end of the queue
•  Consumers dequeue them synchronously at the front of the queue.

 [Eugster 03]

Publish/Subscribe

 Producers and consumers are decoupled in terms of space, time, and
synchronization.

 [Eugster 03]

Decoupling - Alternatives

 [Eugster 03]

41

Summary

Interaction Modes
•  Publish / Subscribe

•  Basic interaction scheme
•  Data delivery mechanism

•  Push / Pull

•  Topic- / Content- / Type- based
•  Location-based publish/subscribe

•  Alternatives
•  Message passing / RPC / Shared spaces /

Notifications / Message queuing

Recommended Reading
[Eugster 03] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrer. The many faces of

publish/subscribe. ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp.
114–131.
http://infoscience.epfl.ch/record/52371/files/IC_TECH_REPORT_200104.pdf

[Eugster 05] P. Eugster, B. Garbinato, Adrian Holzer: Location-based Publish/
Subscribe. NCA 2005: 279-282

[Gelernter 85] Gelernter, D. 1985. Generative communication in Linda. ACM
Trans. Program. Lang. Syst. 7, 80–112.

