
Annexe:

Using Features To Structure the F/OSS Distribution Process

Michel Pawlak, Ciarán Bryce, Michel Deriaz
University of Geneva

Draft: June 9, 2005

Background

The note Towards an Edos API: Modelling the F/oss Process identifies some content types for
F/oss and the Edos API, including ContentUnit, Bundle and InstallableUnit. Distinguishing types
helps us to identify the information flows in the process and the user roles.

The next step is to consider the attributes or features of these types. This allows us to define
and formalise dependency relations between type instances such as patch for or upgrade of. It also
allows instances to be precisely designated so that an end-user can locate the installable unit that
best matches his requirements, and a developer can locate the content units (e.g., libraries) that
best suits the requirements of his application.

Key point. Features describe units of content, which is required to be able to locate and dis-
tribute units. In current F/oss, the features are limited to version numbers and filenames. Licenses
can be considered a feature but no distribution system allows a search for units of content based
on their licenses. By extending the notion of content features to concepts like application-specific
ontologies, licenses, signatures, etc., a great deal of flexibility for the distribution architecture can
be obtained.

Recap Of Key Content Types

The following types were defined in Towards an Edos API: Modelling the F/oss Process.

• A Project produces and distributes F/oss software content to the community. The content
is generally created by a group of developers who submit their software directly to project
committers, or indirectly via public domain software sites like freshmeat. A Project may
depend on other projects, by including distributed software in its own distributed software.

• A ContentUnit is the smallest unit of production in the project. The nature of the content is
not important – it can be source code, binary code or documentation. It is not distributed
by a project but rather is incorporated into an application. Thus, it is distributed along with
the other ContentUnits of the same application.

1



• A Bundle is the project’s internal view of a F/oss content that is offered to the community.
As an application may consist of several ContentUnits, e.g., for libraries, binary or source code
and documentation, a Bundles is the larger unit of production that captures this composition.
Once composed, the Bundle is attributed a License that covers all units of the bundle. A
Bundle is a recursive structure since different components of the application may be covered
by different licenses, for instance, a project specific license and an LGPL license. In this case,
there is a bundle for each different license, where each bundle contains the distribution units
covered by that license, and the related bundles are packed into a envelope bundle with a
project specific bundle license compatible with both licences.

• An InstallableUnit is a representation of a Bundle that can be installed on an end-user machine.
Using an object-oriented analogy, an InstallableUnit is an instance of a Bundle. Thus an
InstallableUnit is what the end-user sees and corresponds to his environment, e.g., it contains
the applications that the end-user in question wants to install or the object code with all
needed information for the unit to be compiled for his target architecture. A project may
produce and make available a number of InstallableUnits F/oss for a given Bundle.

Features

It is time to consider the nature of these types in more detail, in particular, their attributes or
features. These are needed to understand and formalise the F/oss relations between types. Each of
the types above has features, though here we concentrate on ContentUnit, Bundle and InstallableUnit.

A feature is any meta information that can be meaningfully associated with a content type or its
instance. A feature can be statically associated with a content type, e.g., date of creation, author
of unit, function signatures; alternatively, the features may be associated with instances of types,
e.g., performance or popularity. Features may also represent an ontology specific to a project or
domain (e.g., testing); such ontologies may be defined during the lifetime of the project. Finally,
the scope of features can vary; some are internal to the project – such as coding conventions – while
others are specific to certain roles, e.g., stability.

Features allow units of content to be identified, which benefits both end-users and developers.

• It allows the end-user to locate software by category. For instance, a user should be able
to search for a text processor able to include some multimedia files like pictures. In existing
F/oss projects, the feature abstraction is artificially added through categories and keywords
on top of a distribution model mainly based on filenames and versions (such as packages).
Another example is the requirement for an SQL capable database which can be satisfied by
either MySQL or Posgres software.

• A development scenario is one where a library is needed for a F/oss application. If the
library is provided during the bundling phase by only one unique source, the dependency
approach based on files would force the bundler to specify the name of the source providing
the library. If a different source containing the library with its documentation is released
later, the constructed bundle would not be able to detect that the new source library is
usable. With a feature based approach, this problem is avoided, and the need for keeping
track of changes of other projects is reduced as long as each distributed content unit clearly
defines the features it provides and the features its needs.

2



An example of features that are pertinent to Project development phase are software Conventions.
The scope of these Features is the project itself, and so they do not appear outside of the Project.
Conventions can have many types, e.g., coding conventions, documentation conventions, design and
format conventions, etc.

One of the features of ContentUnits is the License that the content unit respects. A ContentUnit
must also specify a set of Features that it depends upon in order to be executable. Features can
thus be used to describe units in a manner that facilitates location and distribution rather than
relying on version numbers of specific InstallableUnits.

A Bundle groups ContentUnits for a given application purpose. It provides all the features pro-
vided by its ContentUnits plus specific Features provided by the Bundle itself. Examples of bundle
specific features are the License that have to be compatible with the Licenses of the ContentUnits
that compose the bundle or the Status that defines in which state the Bundle is (Beta, Release Can-
didate, Release, Stable...) A Bundle also defines the features that are needed by the ContentUnits it
contains. This information is then used at the distribution level in order to compute dependencies.

Each InstallableUnit provides the features of the Bundle plus specific features like installation or
compilation options. InstallableUnits know what features needed by the Bundle they encapsulate.
This information can be used to compute dependencies without having to define needed Installable-
Units in advance. A License has to be chosen that is compatible with the License of the Bundle.
Dynamic Features of InstallableUnits like performance (based on bug tracking for a given architec-
ture for instance) or popularity can be computed. These can help both end-users and projects. On
the one hand, end-users can detect potential issues and choose another InstallableUnit. On the other
hand, project members can detect that an InstallableUnit is only used for a given set of Features
being a small part of the whole set of provided Features. Thus the distribution process could be
refactored based on the extracted knowledge and other lighter bundles only containing expected
Features be built and distributed.

Current Steps

A useful exercise would now be to provide a simple formalism for the model, the goal of which is
to express core concepts and all forms of content dependency relations in an unambiguous manner.
This would be comprised firstly of the closed aggregate set Units that groups together ContentUnits,
Bundles and InstallableUnits. The second aggregate set is Features which is an open aggregation
whose predefined members include the sets Licenses and VersionNumbers.

All content dependency relations in F/oss can be modelled using functions over Units and
Features. A function entitled “features of” enumerates the features associated with a unit of content.
Its signature is Units → SetOf(Features).

The inverse function F−1 yields a set of units with specific features. This function is crucial
to locating units that satisfy given search criteria (specified as features). For instance, if the
feature crypto with signature sig is being looked for, then the units that satisfy the request are
F−1({crypto}) ∩ F−1({sig}).

As an example, an upgrade relation can be modelled as an instance of a function (Unit → Ver-
sionNumber) → (Unit → VersionNumber∗). An instance (u0 7→ 1.0) 7→ ({ u1 7→ 1.1}, {u2 7→ 2.0
7→ (u3 7→ 2.0.1)}) means that a basic version of the unit u0 was subject to a project split with two

3



upgrades u1 and u2. The unit u2 is subsequently upgraded with unit u3.

Patching also guards the relation between content units: Unit → Unit → Unit, where the entry
(u0 7→ u1 7→ u2) means that unit u0 was patched with the contents of unit u1, and the result is
u2; again, a unit can be a content unit, bundle or installable unit. The goal is that, from the basic
sets, each Project can define the content dependency relations important to it.

This is just preliminary. It suggests that one can abstract away from project distribution details
when defining unit dependencies. For instance, upgrade and patching are not the same thing: the
former is a type of logical update, the latter a physical update.

4


