
A SocialSemanticInfrastructur e for DecentralisedSystems
Basedon Specification-Carrying Codeand Trust

GiovannaDi MarzoSerugendo
�

�
CentreUniversitaired’Informatique

Universityof Geneva
24,rueGéńeral-Dufour

CH-1211Geneva 4
Giovanna.Dimarzo@cui.unige.ch

Michel Deriaz
�

�
CentreUniversitaired’Informatique

Universityof Geneva
24,rueGéńeral-Dufour

CH-1211Geneva 4
Michel.Deriaz@cui.unige.ch

Abstract

Decentralisedsystemsmadeof autonomousdevicesandsoftwarearegainingmoreandmoreinterest.
Theseautonomouselementsusuallydo not know eachotherin advanceandact without any central
control. They thusform a societyof devicesandsoftware,andassuchneed:basicinteractionmech-
anismsfor understandingeachother, anda social infrastructure supportinginteractionstakingplace
in anuncertainenvironment.In aneffort to go beyondpre-establishedcommunicationschemaandto
copewith uncertainty, this paperproposesan interactionmechanismbasedexclusively: on semantic
informationexpressedusingspecifications,andon a socialinfrastructurerelying on trustandreputa-
tion.

1 Intr oduction

Thegrowing diffusionof personaldevicesconnected
to Internet is promotingthe developmentof perva-
sive andwirelessapplications,aswell as thosethat
are to be deployed on a Grid or on a P2Pnetwork.
A key characteristicof theseapplicationsis their
self-organisedanddecentralisednature,i.e., they are
madeof autonomoussoftwareentitieswhich do not
know eachotherin advanceandactwithoutany cen-
tral control. Thesesoftwareentitiesneedadvanced
meansof communication: for understandingeach
other, to gatherand shareknowledge, information
andexperienceamongeachother, andto ensuretheir
own security(dataintegrity, confidentiality, authenti-
cation,accesscontrol).Therefore,sucha technology
needsa social infrastructuresupporting,in an inter-
twinedway: mutualunderstanding,knowledgeshar-
ing andsecuritysupport.

This paperproposesto combinea meta-ontology
framework with a dynamictrust-basedmanagement
system,in orderto produceasocialsemanticmiddle-
ware supportingthe diffusion of semanticinforma-
tion amonginteroperablesoftware.

Theproposedinfrastructurerelieson thenotionof
Specification-CarryingCode(SCC)asabasisfor mu-
tual understanding,actingasa meta-ontology. Each
autonomoussoftwareentity incorporatesmoreinfor-
mationthanits operationalbehaviour, andpublishes

moredatathanits signature.The ideais to provide
separately, for eachentity, a functional part imple-
mentingits behaviour - thetraditionalprogramcode;
andan abstractdescriptionof the entity’s functional
behaviour - a semanticalbehavioural descriptionun-
dertheform of formal specification.In orderto cope
with theuncertaintyabouttheenvironment,andpeer
entities,individualentitiesmaintainaswell localtrust
valuesaboutotherentitiesandsharetrustandreputa-
tion informationamongthemselves.

Suchan interactionmechanismis usefulfor large
scale systems(world-wide, or with high density),
wherea centralisedcontrol is not possible,and for
which a humanadmnistrationmustbecompletedby
a self-managementof the software. Domainsof ap-
plicationsof suchan interactionmechanisminclude
P2P, Grid computingsystems,as well as emerging
domainssuchasAutonomicComputing,or Ambient
Intelligence.

Section 2 presents the principles of the
Specification-Carrying Code paradigm and the
associatedServiceOrientedArchitecture. Section3
then explainshow trust-basedmanagementsystems
canbecombinedwith SCCin orderto producea so-
cial semanticinfrastructuresupportingautonomous
decentralisedsoftware. Finally, Section4 describes
somerelatedworks.

2 Specification-Carrying Code

At thebasisof any sociallife, wefind communication
capabilities. Communicationis groundedon com-
mon understandingof the information that is trans-
mitted along communicationmedia. In the caseof
social insects,pheromonedepositedby antsin their
habitatis correctlyunderstooddependingonwhether
it refersto food, or to the nest. In the caseof hu-
manbeings,wordsof the languagerefer to well un-
derstoodconcepts.Similarly, societiesof devicesand
software needinteractionsbasedon a commonun-
derstanding,i.e. relying on a commonsemantics.
Currentpracticeusuallyrely onpre-establishedcom-
monmeanings:communicationthroughsharedAPIs,
usuallyalreadysharedat designtime andwhich are
uniquelya syntacticexpressionof signatures;com-
municationthroughsharedontologiesallowing run-
timeadequacy but requiringsharingof keywords.We
foreseethat future programmingpracticewill con-
sistin programmingcomponentsand”pushing”them
into an execution environment which will support
their interactions.Therefore,futurecomponentswill
be developedso as to sharea minimal designtime
commonunderstanding.

Theideaadvocatedin thispaperis thatinteractions
shouldbebasedona minimalcommonbasis,merely
concepts. Pragmatically, for articifial entitiesto un-
derstandeachother, thoseconceptshave to be ex-
pressedin somelanguage.Therefore,the minimial
commonbasisconsistsin a commonspecification
languageusedfor expressingtheconcepts.Concepts
canthenbeexpressedwith differentwords,andwith
different properties,but equivalent conceptsshould
shareequivalentproperties.Thus,thereis noneedto
shareidenticalexpressionof concepts(eitherthrough
APIs, ontologies,or identicalspecifications).How-
ever, it is necessaryto have a run-timetool able to
processthosespecificationsandto determinewhich
of themreferto thesameconcept.

Pushingtheideaatits extreme,evendifferentspec-
ification languagescouldbe usedsimultaneouslyby
differententitiesto communicateprovidedthereex-
ists translatorsfrom onelanguageto the other. But
this is beyondthescopeof thispaper.

In practice,in additionto their code,entitiescarry
a specificationof the functional (as well as non-
functionalcapabilities)they offer to the community.
The specificationis expressedusinga (possiblyfor-
mal) specificationlanguage,for instancea higher-
order logical languagedefining a theory comprised
of: functions,axiomsandtheorems.The specifica-
tion actsas a meta-ontologyand describesseman-

tically the functional and non-functionalbehaviour
of the entity. We call this paradigmSpecification-
Carrying Code (SCC). In our current model, a
service-orientedarchitecturesupportsthe paradigm.
Beforeinteractingwith a serviceproviding entity, a
requestingentity maycheck(throughrun-timeproof
checking)someof its own theoremon the submit-
ted theory. Vice-versa,beforeacceptingto deliver a
service,aserviceproviding entitymaycheckthecor-
rectnessof therequestingentity. Thisallowsanentity
to interactwith anotherentityonly if it cancheckthat
theway theotherentity intendsto work corresponds
to whatis expected.Theimportantthing to notehere
is thatentitiesdo not shareany commonAPI related
to theoffered/requestedservice.Indeed,sinceentities
do not know in advance(at designtime) with which
entitiesthey will interact,the specificationlanguage
actsastheminimalcommonbasisamongtheentities.
Thelackof APIs impliesin turn thatinput/outputpa-
rameterscanonly beof verysimpletypes.

Checker
Theorem

Σ
Ax

Σ
Code

Ax

Run-Time

Register Execute Σ
Ax1

1

Σ
Ax

2

2

Σ
Ax

Σ i Σ i Σ { }

Figure1: SCCPrinciple

Figure 1 shows two basicprimitives of the SCC
paradigm: a service providing entity registers its
specificationto somerun-timemiddlewarethatstores
the specificationin somerepository. An entity re-
questinga servicespecifiesthis service through a
specification,andaskstherun-timemiddlewaretoex-
ecutea servicecorrespondingto thespecification.

Onceit receivesanexecuterequesttherun-timein-
frastructureactivatesamodelcheckerthatdetermines
whichof theregisteredservicesis actuallyableto sat-
isfy therequest(on thebasisof its registeredspecifi-
cation).Thetheoremcheckerestablishesthelist of all
serviceswhosesemanticscorrespondsto therequest.
Dependingon the implementations,the run-timein-
frastructuremayeitherchose(non-deterministically)
oneservice,activateit andgivebacktheresult(if any)
to therequestingentity;or passtheinformationto the
requestingentity which will directly contacttheser-
vice provider. In thefirst case,thecommunicationis

anonymous,while in the secondcaseit is not. De-
pendingon thesituations,bothcasesarevaluable.

Dependingon the chosenspecificationlanguage,
thespecificationmayvary from a seriesof keywords
togetherwith someinput/outputparametersdescrip-
tion, to a highly expressive formal specificationcon-
sistingof a signatureandadditionalaxiomsandthe-
oremscharacterisingthe behaviour of the operators
specifiedin thesignature.Servicesmatchingrequests
arenotnecessarilyspecifiedin thesametextualman-
ner. The theoremchecker ensuresthat they have the
samesemantics.Themoreexpressiveis thespecifica-
tion language,themoreit allows to getrid of shared
conventionsor keywords.

2.1 A SemanticService-OrientedAr chi-
tecture

The SpecificationCarrying Code paradigmis sup-
portedby a service-orientedarchitecture,whereau-
tonomousentitiesregisterspecificationsof available
services,andrequestservicesby the meansof spec-
ifications.We have realisedtwo differentimplemen-
tationsof thisservice-orientedarchitecture.

The first implementationhas been realised for
specificationsexpressing:signaturesof availableop-
eratorswhoseparametersare Java primitive types;
and quality of service required. Both operators
nameandquality of servicearedescribedusingkey-
words. The resulting environment, a middleware
called LuckyJ, allows server programsto deposita
specificationof theirown behaviour or of arequested
behaviour at run-time. In the LuckyJ environment
activation of servicesoccursanonymouly andasyn-
chronously. Theserviceproviding entity andtheser-
vice requestingentity never enter in contact,com-
municationis ensureby the LuckyJ middelwareex-
clusively. Therequestingentity is not blockedwait-
ing for a serviceto be activate. Experimentshave
beenconductedfor dynamicevolutionof code,where
theservicescanbeupgradedduringexecutionwith-
out halting or provoking an error in the client pro-
gram. This is an importantfeatureof decentralised
applicationssincethe applicationtransparentlyself-
adaptsto new (or updated)servicesintroducedinto
the environment. The LuckyJ environmentonly al-
lows thedescriptionof basicspecificationrelying on
ontology(keywords)sharedamongall theparticipat-
ing services(Oriol andDi MarzoSerugendo,2004).
Even thoughLuckyJ allows purely syntacticalspec-
ifications, it neverthelessproved the viability of the
approachunderthe form of a service-orientedarchi-
tecture,and its usefulnessfor dynamicevolution of

code.
In order to remove the needfor interactingenti-

tiesto rely onpre-definedkeywords,asecondimple-
mentationof theabovearchitecturehasbeenrealised.
This architectureallows entities to carry specifica-
tionsexpressedusingdifferentkindsof specification
language,and is modularenoughto allow easyin-
tegrationof new specificationlanguages(Deriazand
Di Marzo Serugendo,2004). This architecturesup-
ports simple primitives for an entity to register its
specifications,or to requesta service,and for the
environmentto executethe correspondingrequested
codeonceit hasbeenfound.

Thecurrentprototypesupportsspecificationswrit-
teneitherin Prolog,or asregularexpressions.How-
ever it cannotchecktogetherspecificationswritten in
two different languages.In the caseof Prolog, the
middleware calls SWI Prolog tool to decideabout
theconformanceof two specifications,in thecaseof
regularexpressionswe have implementeda tool that
checkstwo regularexpressions,andis ableto trans-
form theminto Java code.We foreseetheintegration
of additionalspecificationlanguages,suchasHigher-
Order Logic (HOL) and Isabelletheoremchecker,
JENA, andtheCommonSimpleLogic (CSL).

Theselanguageshavedifferentexpressivepowers:
regularexpressionsareapowerful tool for describing
syntacticexpressions,anddo not supportexpression
of semanticalproperties.PrologandHOL are logi-
cal languagesallowing rich expressivity for describ-
ing properties.However, it canrapidly becomeim-
practicableto describeusualthingssuchasprinting,
or complex lists. Therefore,weareinvestigatinglan-
guagesallowing both logical expressivity andsome
ontologicalconcepts,suchasJenaor CSP.

Execute(SpecS’)

Service Manager

SpecS
SpecS’

Code

CodeWR(SpecS)

Register(SpecS,IP,Port)

Execute (ArrayList)

Search(SpecS’)

Entity Service

Register

ArrayList’

IP,Port

RegEx Prolog HOL

CodeWR(SpecE)

Code

SpecS(IP,Port)

Figure2: SemanticService-OrientedArchitecture

Figure2 showstheimplementedsemanticservice-
orientedarchitecture.A Codewishing to provide a
serviceor requestinga serviceis first encapsulated
into awrapperCodeWR, which is responsibleto han-
dle the specificationcorrespondingto the behaviour

of Code, andtohandlethetwo basicprimitivesRegis-
ter andExecute. Theadvantageof usingsuchawrap-
per is that with very minor modificationsany exist-
ing server codecanbecomea specification-carrying
code.

A run-timeenvironment,calledServiceManager,
storesspecificationsof registeredservices,and ac-
tivatesthe correspondingTheoremCheckersoncea
requesthasbeensubmitted.In casea servicecorre-
spondingto therequesthasbeenfound,thewrapper
of the requestingentity then receives the necessary
information(IPaddressandPortnumber)for contact-
ing directly theservice.

The Code is not aware that therehasbeena di-
rect call to a service,the wrapperhastransparently
managedthewholerequest.If weconsiderthewrap-
per beingpart of the middleware,communicationis
anonymous,asin ourpreviousimplementation.

Additional information related to programming
servicesand requestscan be found in Deriaz and
Di MarzoSerugendo(2004).

2.2 Example

2.2.1 Regular Expressions

A specification,is a XML file divided into subsec-
tions. Eachsubsectioncorrespondsto a particular
language.Eachsubsectionhasto beself- contained:
it describescompletelyaserviceor arequest.A spec-
ificationfile is structuredasfollows:

<?xml version="1.0" encoding="UTF-8"?>
<specs>

<regex active="true">
...

</regex>
<prolog active="false">
...

</prolog>
</specs>

Once it has received an entity request,the ser-
vice managertries to matchtherequestspecification
with the servicespecificationfor all languagesthat
are active. In the above example,we seethat two
languagesare defined(regex and prolog) but only
oneis active (regex). It meansthat only regularex-
pressionswill be taken into consideration.XML al-
lows us to definea differentstructurefor eachlan-
guage.For examplein thecaseof regex, wehavefour
tags: <name> which denotesthe nameof the ser-
vice, <params> which describesthe expectedpa-
rameters,<result> which definesthestructureof
theresult,and<comment>, which containsoption-
ally additionalinformation.

The following is an exampleof a sorting service
publicationdefinedby theregularexpression:

<specs>
<description active="true">
<content> Sorting Service</content>

</description>
<regex active="true">

<name>(?i)\w*sort\w*</name>
<params>String*</params>
<result>String*</result>

</regex>
</specs>

The regular expression describing the name
((?i)\w*sort\w*) acceptsall the words that
containsthewordsort,likequicksort,sorting,or sort.
(?i) setsthematchingcaseinsensitive. Theparam-
etersareexpressedbetheString* regularexpres-
sion,whichmeansthatweexpectalist of 0,1 or more
Strings.If wewouldexpectexactly threeStrings(for
example),we would write StringString String. The
result tag indicatesthat this servicereturnsa list of
Stringsaswell. Notethatit is of courseonly a trivial
example;thepower of regularexpressionsallows us
to expressa servicenamemuchmoreprecisely.

A servicerequestthenis expressedin thefollowing
manner:

<specs>
<description active="true">
<content>Sorting Request</content>

</description>
<regex active="true">

<name>sort</name>
<params>String*</params>
<result>String*</result>

</regex>
</specs>

New tags can be addedin the future. Another
languagecan have a completelydifferentstructure.
Thesetwo lastpointsjustify theuseof suchanexten-
siblelanguageasXML.

2.2.2 Prolog

Hereis service,ableto reverselists,expressedin Pro-
log. This servicedefinesfirst theappend operator
whichis necessarytodefinethereverseoperatorrev.
Appendingany list L to the emptylist [] returnsL
(line 9). Appendingany list L2 to a non-emptylist
[H|T] (HeadandTail) returnsa list with the same
headH andwith L2 appendedto T (lines10,11).

The rev operatoris then defined: reversingthe
emptylist, returnstheemptylist (line 13);andrevers-
ing a non-emptylist [H|T] returnsa list R obtained

by recursively applyingrev onthetail of thelist and
appendingtheheadat theend(lines14,15).

1 <specs>
<description active="true">

3 <content> Sorting Service</content>
</description>

5 <regex active="false">
</regex>

7 <prolog active="true">
<content>

9 append([],L,L).
append([H|T],L2,[H|L3]) :-

11 append(T,L2,L3).

13 rev([],[]).
rev([H|T],R) :-

15 rev(T,RevT), append(RevT,[H],R).
</prolog>

17 </specs>

Thespecificationrequestsimply describestheax-
ioms expectedto be satisfiedby a reverseoperator
herecalledrevlist (lines 9, 10), as well as the
property that reversingtwo times a list returnsthe
original list (line 11).

1 <specs>
<description active="true">

3 <content> Sorting Service</content>
</description>

5 <regex active="false">
</regex>

7 <prolog active="true">
<content>

9 revlist([],[]), revlist([A|B],R),
revlist(B,RevB), append(RevB,[A],R),

11 revlist([A|B],R) , revlist(R,[A|B]).
</prolog>

13 </specs>

3 Combining SCC and Trust-
BasedSystems

Humanbeingsexchangedifferentkindsof semantical
informationfor differenttypesof purposes:to under-
standeachother, to shareknowledgeaboutsomeone
or somethingelse,to take decisions,to learnmore,
etc. Despitepeoplesharethesameunderstandingre-
gardinginformation, this information remain local,
incompleteanduncertain,leadingpeopleto rely on
trust to actuallytake decisions.A commonexample
is provided by the trust put into bankingestablish-
ments,actingaslargelytrustedthird partiesfor credit
cardbasedinteractions.

It is similar for artificial entitiesthat aresituated
into uncertainenvironmentsand that have to inter-
act with unknown entities. Specificationshelp un-
derstanding.However nothingpreventsa malicious
entity to not follow its specification.In orderto fully
verify this point, the specificationshouldbe accom-
paniedby aproofassertingthatthecodeactuallysat-
isfiesthe specification.Unfortunately, even if a for-
mal proof ensuresthat thecodeis not maliciousand
thatit followsits specification,thesamecodecanbe,
dueto badoperationalconditions,unableto perform
theintendedservice.Therefore,insteadof relyingon
formal (rigid) proofs,wehavepreferredto considera
trust-basedmechanismsthatallows run-timeadapta-
tion to peersbehaviour.

The model we intend to build thus considersthe
following two aboveaspectsof humanbehaviour: (a)
communicationthroughsemanticalinformation;and
(b) ability to takedecisionsdespiteuncertaintybased
on thenotionof trustandrisk evaluation.

The semanticalinformation is expressedusing a
specificationlanguageconveying thesemanticalpart
of thespecification.Run-timecheckedpropertiesas-
sesssemanticalmeaning.Local context information
is alsoprovided underthis form. This is useful for
mobiledevices,or mobilecode.

As said before, even if properties have been
checked,theunderlyingcodecanbemalicious,or for
somereasonit cannotfollow its specification.There-
fore, in addition to the notion of specification(for-
mally describingthe basisof interactions),a trust-
basedmodel is usedfor sharingknowledgeamong
entities. This allows run-timeadaptationto current
behaviour, basedon directobservations,andrecom-
mendations.Thesamesemanticalframework serves
for expressingrecommendations,or diffusingobser-
vations(theoriescanbe dynamicallybuilt andmod-
ified). In addition, the propagationof propertiesor
theoremsintegrateswell into the trust framework,
sincesendinga theoremis oneform of recommenda-
tion. Entitiesexchangeinformationconveying differ-
ent typesof meaning: functionality, non-functional
aspects,quality of service,currentstate;events(rec-
ommendations,securityattacks,observations),etc.

3.1 Trust-BasedSystems

Trust-basedsystemsor reputationsystemstake their
inspirationfrom humanbehaviour. Uncertaintyand
partialknowledgearea key characteristicof thenat-
ural world. Despitethis uncertaintyhumanbeings
make choices,take decisions,learn by experience,
andadapttheir behaviour. We presentheretwo re-

searchworks from which we will take inspirationto
extendourcurrentarchitecture:anoperationalmodel
for trust-basedcontrol, anda trust calculationalgo-
rithm thatallowsto calculateaglobal(emergent)rep-
utationfrom locally maintainedtrustvalues.

SECURE Trust System. The Europeanfunded
SECURE project has establishedan operational
model for trust-basedaccesscontrol. Systemscon-
sideredby theSECUREprojectarecomposedof aset
of entitiesthatinteractwith eachother. Theseentities
are autonomouscomponentsable to take decisions
and initiatives, and are meaningfulto trust or dis-
trust. Suchentitiesarecalledprincipals. Principals
arefor instanceportabledigital assistants(PDAs) act-
ing on behalfof a humanbeing,or personalcomput-
ers, printers,mobile phones,etc. They interactby
askingandsatisfyingservicesto eachother.

In a system based on the human notion of
trust (Cahill and al., 2003), principalsmaintain lo-
cal trust valuesaboutotherprincipals. A principal
thatreceivesa requestfor collaborationfrom another
principal,decidesor not to actuallyinteractwith that
principalon thebasisof thecurrenttrustvalueit has
on thatprincipalfor thatparticularaction,andon the
risk it may imply of performingit. If the trustvalue
is too low, or theassociatedrisk too high,a principal
mayrejecttherequest.A PDA requiringanaccessto
a pool of printers,may seeits accessdeniedif it is
not sufficiently trustedby theprinters. For instance,
it is known thatthis PDA sendscorruptedfiles to the
printers.

After eachinteraction,participantsupdatethetrust
valuethey have in thepartner, basedontheevaluated
outcome(goodor bad)of theinteraction.A success-
ful interactionwill raisethe trustvaluetheprincipal
had in its partner, while an unsuccessfulinteraction
will lower that trustvalue. Outcomesof interactions
arecalleddirectobservations. After interactingwith
a printer, a PDA observesthe resultof the printing.
If it is asexpected,for instancedouble-sided,andthe
documentis completelyprinted,thePDA will adjust
thetrustvalueon thatparticularprinteraccordingly.

A principalmayalsoaskor receive recommenda-
tions (in the form of trustvalues)aboutotherprinci-
pals.Theserecommendationsareevaluated(they de-
pendon the trust in the recommender),andserve as
indirect observationsfor updatingcurrenttrust val-
ues. As for direct observations, recommendations
mayeitherraiseor lower thecurrenttrustvalue. We
call evidenceboth direct and indirect observations.
SomePDAs mayexperiencefrequentpaperjams,on
a givenprinter. They will update(in this caselower)
their trustvaluein thatprinter, andadvertisetheoth-

ers,by sendingthemtheir new trustvalue.ThePDA
thatreceivesthisrecommendationwill takeit into ac-
count,anddecideif it usesthatprinteror not (Terzis
etal., 2004).

Thus, trust evolveswith time as a result of evi-
dence,andallowsto adaptthebehaviourof principals
consequently.

EigenTrust. EigenTrust (Kamvar et al., 2003) is
a reputationsystemfor P2Pnetworksin which every
peerratesthepeersfrom whosethey downloadfiles.
It is an interestingsolutionto the problemof main-
taining in a totally decentralisedmannerlocal trust
valuesthatglobally convergeto anemergentreputa-
tion value. Thesevaluesare storedin a local trust
vector. Starting from theseslocal trust values,the
distributed EigenTrust algorithmcomputesa global
trustvector, representingtheglobalreputationof each
peer. Eachpeercomputesthis vectorandtheauthors
provedthat thecomputationwill alwaysconvergeto
thesameglobaltrustvector. Simulationsof systems,
basedon this trustmechanism,show thatthenumber
of inauthenticfiles downloadedby honestpeersstill
significantlydecreasesevenif up to 70%of thepeers
colludein orderto subvert thesystem.

The ideais that the global reputationof onepeer
dependsonwhatotherpeersthink aboutit, according
to thesuccessfulnessof formertransactions,on what
friendsthink aboutit, on what the friendsof friends
think aboutit, andsoon; if thechainis longenough,
theresultof thecomputationconvergesto theglobal
trustvalue.

A setof peers,calledscoremanagers,is assigned
to eachpeer. A scoremanageris responsibleto store
the global trust value, i.e. the emergent reputation
value,of its daughterpeer. To determinethe score
managersof a specificpeer, a client peer will ap-
ply differentdistributedhashfunctionson thepeer’s
identity. All honestscoremanagersof a specificpeer
will thengivethesameglobaltrustvalue.

3.2 Towards a Social Semantic Service
Oriented Ar chitecture

In orderto incorporatea sociallayerinto our current
semanticarchitecture,weareplanning:to extendour
currentinteractionmodelin orderto incorporatetrust
information; and to adaptthe EigenTrust algorithm
from file sharingto servicesrequests.

Derived from the SECURE trust-basedaccess
model,wedescribeheretrust-basedinteractionsrules
groundedon semantic information exchangeand
globalemergentreputation:

� Requestfor collaborationandexchangeof spec-

ifications. A principal A receivesa requestfor
collaborationfrom anotherprincipalB. A andB
exchangetheir respective capabilitiesunderthe
form of aspecificationexpressedin thespecfica-
tion language.They learneachotherabouttheir
respectiveprovidedservices.

� Decision to interact. Basedon the received
specification,A and B respectively evaluateif
theservicesprovidedby theotherfulfill itsneeds
(checkingof propertiesexpectedto be satisfied
by thepartner).

Thedecisionthendependson the evaluationof
thespecification,pastdirectobservationsof in-
teractionswith B (if any), previously received
recommendationsaboutB from other entities,
currenttrust valueA hasaboutB, andthe risk
incurredby the interaction. A may alsodecide
to askscoremanagersaboutthereputationof B.

� Trust Update. If A decidesto interactwith B, it
will observetheoutcomeof theinteraction,eval-
uatesit (positive or negative), and updatesac-
cordinglythelocal trustvalueit maintainsabout
B.

� ReputationUpdate. Oncelocal trustvalueshave
beenupdated,the EigenTrust algorithmis then
startedandthe new valueof the global reputa-
tion is computed.

� Recommendations.Besidescollaborationre-
quests,A may receive a recommendationfrom
B underthe form of specificationprecisingthe
degreeof trust the recommenderhason a sub-
jectC. Recommendationsareevaluatedwith re-
spectto trust in therecommender, andmake the
trust A hasin the subjectC evolve (increaseor
decrease).

Themodeldefinesthenahomogeneousframework
whichservesfor expressingandcheckingsemantical
informationof differentkinds: functionalbehaviour,
non-functionalbehaviour, observations,and recom-
mendations.

3.3 Discussion

UsingEigenTrustin ourarchitecturewill allow users
to ask servicesonly to reputablepeersandexclude
maliciouspeers.Startingfrom thecurrentEigenTrust
algorithm,we intendto addressthefollowing issues:

Two-waysrating. In its currentform EigenTrustal-
lowsone-wayratingonly. In thesystemsweconsider,
we needa two-ways rating. Indeed,like in eBay,

wherebothbuyerandsellerrateeachother, we want
thatserviceprovidersandclientsrateeachotherafter
every transaction.On theclientsideit is obviousthat
we want to know which servicesare reputableand
which aremaliciousones. On the serviceside it is
alsointerestingto avoid maliciousclientsthat try to
make denialof servicesattacksor that try to corrupt
theserviceby sendingbadparameters.

Privilege goodprincipals. In order to encourage
principalsto providegoodservices,we suggestpriv-
ileging thosewith a high reputation. In caseof a
network overload,a reputableservicewill serveonly
reputableclients. In fact, the more a principal be-
comesreputable,the more it will deal with high-
trustedpeers.

Different trust values. The EigenTrust algorithm
definesonly onetrust valuefor eachpeer. The au-
thorsclaim that a peerthat providesgoodfiles will
alsobegoodin providing trustvaluesfor otherpeers.
In thecaseof our architecture,we preferto compute
differenttrust value: onefor eachavailableservice,
onefor thebehaviour of a principalwhenit actsasa
client,andoneindicatingits reliability for trustcom-
putationof otherpeers.

ReputationUpdate. TheEigenTrustalgorithmim-
pliesthatreputationvaluesareall calculatedtogether,
sincetrust valuesare all closely linked and depen-
dent of eachother. However, we could considera
moreflexible algorithm,still inspiredby EigenTrust,
thataswell convergesto theglobalemergentreputa-
tion, but not necessarilyin oneshot. The reputation
valuewouldconvergeslowly but thewholealgorithm
wouldnotaffect theefficiency of thesystem.

DistributedArchitecture. Our SOA architectureis
currentlycentralised.TheServiceManageractsasa
server that connectsclient entitieswith services. It
is similar to Napster;clientsasktheserver for a spe-
cific file, andthe server respondwith the addressof
thepeerthatcontainsit. Themaindifficulty thatwe
will haveto faceto obtaina completelydecentralised
architectureis theproblemof peerdiscovery. Where
shoulda peerconnectin orderto find a service?In
many well-known P2Pfile sharingsystems,like in
Kazaa,the peersthat have a high-speedconnection
areautomaticallydesignedassuper-nodes.A super-
nodeis a peerlike another, but which addsa direc-
tory service. All otherpeersconnectto the closest
super-nodein order to locatea specificfile. If the
super-nodedoesnot have it, it transmitsthe request
to anothersuper-node.

In our future distributed architecture, the cen-
tralisedservicemanagerwill disappear. The direc-
tory functionality provided by the servicemanager

will becomea servicelike another. Every peercan
thereforeactasaservicemanager.

3.4 Example

The following small exampleshows how a groupof
computerscanshareapoolof printersthroughouren-
visionedinfrastructure.Beforeinteractingwith each
othercomputersandprintersexchangetheir respec-
tive functionalaswell asnon-functionalcapabilities,
e.g. a printer claims that it is a postscriptdouble-
sidedprinter, andacomputerasksto print aPDFfile.
After having interactedwith a printer, the computer
storesthe observation relatedto its experiencewith
theprinter(worksasexpected,only oneside,no im-
pressionat all, etc.). Dependingon the outcomeof
the interaction,or if it hasbeenrequestedto do so,
the computermay want to shareits knowledgewith
someof theothercomputers.It will theninform the
othersthattheprinteris notactuallydouble-sided,but
only singlesided,or thattheprinterwentoutof toner,
andis no longeravailable,or thatoneof theprinters
is faultyandhasarandombehaviour.

This example shows that: printers and comput-
erscanexchangeinformationabouttheir respective
functionalandnon-functionalbehaviour; computers
can exchangeinformation amongthemselves about
the printersand othercomputersstateor actualca-
pabilities(independentlyof their claimedfunctional-
ity); the sharedknowledgeallows computersto ef-
ficiently use the remainingset of working printers
(adaptation,resourcemanagement),aswell asto cor-
rectlyinform theuseraboutthenearestwell function-
ing printer. This exampleshows aswell the validity
of information. The faulty printer hasa randombe-
haviour, this is a long termvalid information(infor-
mationis not very accurate,but not volatile). How-
ever, if the printer hasbeenable to print two min-
utesago,wecanalmostbesurethatit will beableto
print in thenext coupleof minutes,but not necessar-
ily later(informationis accuratebut highly volatile).
Thisexampleraisesalsothequestionof theaccuracy
of a sharedinformation. In thecaseof theprinter, it
claimsthat it canprint, but actuallyit cannot.In the
caseof a computer, it canclaim thattheprinteris out
of order, but it maylie. In bothcases,sharingknowl-
edgeaboutprintersor othercomputershelpscircum-
venttheproblem,andadapttheindividual aswell as
thecollectivebehaviour to theenvironment.

4 Stateof the Art

Specification-CarryingSoftware. The notion of
specification-carryingsoftware is being investigate
sinceseveral yearsat theKestrelinstitute(Pavlovic,
2000;Anlauff et al., 2002). This ideahasbeenpro-
posedinitially for softwareengineeringconcerns,es-
sentially for: ensuringcorrectcompositionof soft-
wareandrealisingcorrectevolution of software.Al-
gebraicspecificationsand categorical diagramsare
usedfor expressingthe functionality, while coalge-
braic transition systemsare usedto define the op-
erationalbehaviour of components.The visionsof
this teamincludeaswell run-timegenerationof code
from the specifications.Comparedto theseworks,
this paperproposesa “light” versionwherethe be-
haviour of acomponentis not fully specifiedin all its
operationaldetails,but sufficiently in orderto beused
for correctself-assemblyof softwareat run-time.

Meta-Ontologies. Meta-ontologiesarealgebraal-
lowing definitionof typetheories,operations,andax-
ioms. Fromthat perspective, category theory(John-
sonandDampney, 2001),higher-orderlogicsthatde-
fine terms,operators,axioms,andprovableor check-
abletheoremsaremeta-ontologies.

CurrentsemanticWeb servicessimply useinfor-
mation, expressedor communicatedthrough lan-
guagessuchasRDF or OWL, aslinking glue. How-
ever, the exchangedinformation is not yet usedto
allows full interoperation,or reactive behaviour to
thesemanticsof information.Middlewareaddressing
both semanticissuesand intelligent interoperability
arecurrentlyanopenissue.

Trust-BasedManagementSystems.Trustmanage-
ment systemsdeal with security policies, creden-
tials and trust relationships(e.g., issuersof creden-
tials). Most trust-basedmanagementsystemscom-
bineahigher-orderlogic with aproofbroughtby are-
questerthatis checkedatrun-time.Thosesystemsare
essentiallybasedon delegation,andserve to authen-
ticateandgive accesscontrol to a requester(Weeks,
2001). Usually the requesterbrings the proof that
a trustedthird entity assertsthat it is trustableor it
canbegrantedaccess.Thosesystemshave beende-
signedfor staticsystems,wherean untrustedclient
performssomeaccesscontrolrequestto sometrusted
server (Appel andFelten,1999;Baueret al., 2001).
Similar systemsfor open distributed environment
have alsobeenrealised,for instanceLi et al. (1999)
proposesa delegation logic including negative evi-
dence,and delegation depth,as well as a proof of
compliancefor bothpartiesinvolvedin aninteraction.
ThePolicyMakersystemis adecentralisedtrustman-

agementsystems(Balzeet al., 1996)basedon proof
checkingof credentialsallowing entities to locally
decidewhetheror not to acceptcredentials(without
relying to a centralisedcertifyingauthority).

Tag-BasedModels. Tags are markingsattached
to eachentity composingthe self-organisingappli-
cation(HalesandEdmonds,2003). Thesemarkings
comprisecertaininformationon theentity, for exam-
ple functionalityandbehaviour, andareobservedby
the otherentities. In this casethe interactionwould
occuron thebasisof theobservedtag.This is partic-
ularly useful if appliedto interactingelectronicmo-
bile devicesthatdo not know eachotherin advance.
Whenever they enterthe samespace,for examplea
spacewherethey candetecteachotherandobserve
thetags,they candecideon whetherthey canor can-
not interact.

Smartlabels/SmartTags. Smarttaggingsystems
are alreadybeing deployed for carrying or dissem-
inating data in the fields of healthcare,environ-
ment,anduser’s entertainment.For instance,in the
framework of datadisseminationamongfixednodes,
(Beaufouret al., 2002) proposea delivery mecha-
nisms,basedon the local exchangeof datathrough
smarttagscarriedby mobileusers.Mobile usersor
mobile devicesdo not directly exchangesmart-tags,
they only disseminatedatato fixednodeswhenthey
arephysicallycloseto eachother. Datainformation
vehicled,by smarttags,is expressedastriples indi-
catingthe nodebeingthe sourceof the information,
the information value, and a time indication corre-
spondingto the informationgeneration.Smarttags
maintain,store,andupdatetheseinformationfor all
visited nodes.A Bluetoothimplementationof these
SmartTagshasbeenrealisedin the framework of a
vendingmachine(Beaufour, 2002). In smarttagging
systems,dataremainstructurallysimple,andunder-
standableby humanbeings,and doesnot actually
serveasabasisfor autonomouslocaldecisions.

5 Conclusion

Themodelproposedherefollows theseparationinto
individual capabilitiesand social organisationmen-
tioned by Minsky (Minsky, 1988). The exchange
of functional and non-functionalcapabilitiesin our
model correspondsto the diffusion of knowledge
aboutthe capabilitiesof individual principals. The
useof trust and the exchangeof recommendations
addsa social layer on top of the interactionmecha-
nism. Typical applicationsthatcanbenefitfrom this
technologyincludewirelesscellularnetwork routing,
ambientintelligencesystems(Ducatelet al., 2001),

autonomiccomputingsystems(Kephartand Chess,
2003),or accesscontrolsystems.

In orderto experimentthis approachwith mobile
components,we foreseeaswell to combineour pro-
totypewith a positioningsystemcurrentlydeployed
in ourdepartment.

Acknowledgements

This work is partly supportedby theEU fundedSE-
CURE project (IST-2001-32486),and by the Swiss
NSFgrant200020-105476/1.

References

M. Anlauff, D. Pavlovic, andD. R. Smith. Composi-
tion andrefinementof evolving specifications.In
Proceedingsof Workshopon EvolutionaryFormal
SoftwareDevelopment, 2002.

A. W. AppelandE.W. Felten.Proof-carryingauthen-
tication. In 6thACM ConferenceonComputerand
CommunicationsSecurity, 1999.

M. Balze,J.Feigenbaum,andJ.Lacy. Decentralized
trustmanagement.In IEEEConferenceonSecurity
andPrivacy, 1996.URL

L. Bauer, M. A. Schneider, andE.W. Felten.A proof-
carrying authorizationsystem. TechnicalReport
TR-638-01,PrincetonUniversity ComputerSci-
ence,2001.

A. Beaufour. Using Bluetooth-basedSmart-Tags
for DataDissemination.In PervasiveComputing
2002, 2002.

A. Beaufour, M. Leopold,andP. Bonnet. Smart-tag
baseddatadissemination. In ACM International
WorkshoponWirelessSensorNetworksandAppli-
cations(WSNA’02), 2002.

V. Cahill andal. Usingtrustfor securecollaboration
in uncertainenvironments. IEEE PervasiveCom-
puting Magazine, specialissueDealing with Un-
certainty, 2(3):52–61,2003.

M. Deriaz and G. Di Marzo Serugendo. Seman-
tic serviceorientedarchitecture.Technicalreport,
CentreUniversitaired’Informatique,Universityof
Geneva,Switzerland,2004.

K. Ducatel,M. Bogdanowicz, F. Scapolo,J. Leijten,
andJ.-C.Burgelman. Scenariosfor Ambient In-
telligencein 2010. Technicalreport, Institutefor
ProspectiveTechnologicalStudies,2001.

D. HalesandB. Edmonds.Evolving SocialRational-
ity for MAS using”Tags”. In J. S. Rosenschein,
T. Sandholm,M. Wooldridge,andM. Yokoo, edi-
tors,SecondInternationalJoint ConferenceonAu-
tonomousAgentsand MultiAgent Systems, pages
495–503.ACM Press,2003.

M. Johnsonand C. N. G. Dampney. On Cate-
gory Theory as a (meta) Ontology for Informa-
tion SystemsResearch.In InternationalConfer-
enceOn Formal Ontology In InformationSystems
(FOIS’01), 2001.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina. The eigentrustalgorithm for reputation
managementin p2pnetworks. In WWW2003,May
20-24,2003,Budapest,Hungary, 2003.

J. O. KephartandD. M. Chess. The Vision of Au-
tonomicComputing.Computer, 36(1):41–50,Jan-
uary2003.

N. Li, J. Feigenbaum,and B. N. Grosof. A logic-
basedknowledgerepresentationfor authorization
with delegation. In 12th IEEE ComputerSecurity
FoundationsWorkshop, 1999.

M. Minsky. La Socíet́e de l’Esprit. InterEditions,
1988.

M. Oriol and G. Di Marzo Serugendo. A discon-
nectedservicearchitecturefor unanticipatedrun-
timeevolutionof code.IEE Proceedings-Software,
Special Issueon UnanticipatedSoftware Evolu-
tion, 2004.

D. Pavlovic. Towardssemanticsof self-adaptivesoft-
ware. In Self-AdaptiveSoftware: First Interna-
tional Workshop, volume1936of LNCS, pages50–
65.Springer-Verlag,2000.

S. Terzis, W. Wagealla,C. English, P. Nixon, and
A. McGettrick. Deliverable2.1: Preliminarytrust
formation model. Technical report, SECURE
ProjectDeliverable,2004.

S.Weeks.Understandingtrustmanagementsystems.
In 2001IEEESymposiumonSecurityandPrivacy,
2001.

