Advanced API for FoxyTag

Bachelor work carried out in order to obtain the Bachelor of Science in

Information Systems

by :
Loic POISOT

Bachelor work advisers :
Peter DAEHNE, HES professor

Michel DERIAZ, supervisor

Carouge, 8 June 2012
Geneva School of business Administration (HEG-GE)

Business Computer Sciences

Declaration

This Bachelor work is done in the context of the final exam of the Geneva school of
business administration, in order to obtain an HES bachelor degree in Business
computer sciences. The student accepts, if applicable, the privacy statement. The use
of the conclusions and recommendations written down in this report, without foreseeing
their value, do not commit either the responsibility of the author, or that of the Bachelor
work adviser, the member of the jury and the Geneva school of business

administration.

« | certify having worked alone for the present work, without having used other sources

than those quoted into the bibliography. »

Done in Carouge the 8 June 2012

Loic POISOT

Advanced API for FoyTag
POISOT, Loic i

My thanks

First of all | would like to thank Michel Deriaz for the provided bachelor subject, and
more importantly, for the opening spirit he had about my propositions, and the good

appreciation of my remarks.

| would also like to thank Peter Daehne for the trust he had in me, for the freedom he
let me. It was very important for me to have this freedom and this confidence, because
I cannot work without. | also want to thank him for the continuous support he provided

me in difficult moments, and for his encouraging words.

| want to thank my friends and family that helped me when | was out of time and give
me a little part of their precious time.

My last thanks go to Yves and Marc for their happiness and for this team spirit. | would
also say a special thanks to Anja Bekkelien who provided me a special support, and for

the English correction of the document.

To all of you, Sincerely, Thank you.

Advanced API for FoyTag
POISOT, Loic ii

Summary

This bachelor work will guide you through the secrets of reverse engineering, and the
creation of an API.

Firstly the main project was to add functionality to an existing “API”. | quickly
discovered that this was not an API, we had to dissociate the API and the application. |
tried for some time to do that, but | also discovered that it would not be interesting; time
consuming and very difficult to create a good API using this starting point, because

there were some strong architectural problems.

Here came the most interesting part of the work: Create form scratch a whole new API
that was designed to be very easy to use, easily maintainable, easily extendable,
strong, robust, and autonomous.

| used all my knowledge and tried to do my best to give to the public the best API |
could give.

I hope | successfully achieved this objective.

Advanced API for FoyTag
POISOT, Loic iii

Table of Contents

D1 Tod =T = 14 o] o PSP [
MY TNANKS ... ii
SUMMIBTY ¢ttt e e e ettt ettt e e e e e et e e e e e e e e e e e e e e e nnnn s i
Table Of CONENES ...ovvii e iv
LISt Of TADIES coeeeee e e Vi
LISt Of FIQUIES ooiiiiiiiii i e e e e e e e s e e e e e e eeeennes Vi
TN Ao Yo LU T o3 10} o PRSPPI 1
1. The project methodology: SCrum........ccooiiiiiiiiiii e 2
00 R [| 4 o Yo 1¥ [} § (o o PP PP PPPRP 2
1.2 DEfiNITION ... e 2
1.3 The SCrUM TEAIM ...eeeiiiiieiiciiieeeie et e e e e e e e e e e e e e ans 3
1.4 USING SCIUM oo, 4
2. Improving the CUrrent APl ... 6
0 R O = -3 o | = To | = 1 1 o 1 6
2.2 Problems fOUNd ... 7
2.3 Rethinking the AP ... e 9
P N Y=Y o T o Yo [= U RPN 10
3. Foxy Challenge Trip ...t 11
N I 1= 1= A = R 12
4.1 HOW 0 STAIT? e 12
4.2 The arChitECIUIE .o 14
4.2.1 The processtodefineit.......cccccooeri 14
4.2.1.1 Identify the responSIbDIlItIESccooviiiiiiiiiee e 14

4.2.1.2 Regroup functionalities and create the Class responsibilities
(o0] | F=ToTo] =11 0] g I o= 1 o KPP 16
4.3 BUilding the AP ..o 19
4.3.1 The implemented patternsccccccoeeiiiiii 19
4.3.2 The @VENTE SYSIEIMuiiiiiiiiiiiiiiiiei et e e 22
4.3.3 The SEIVEIPIOXY ..coieiiiieiieeee e 23
4.3.3.1 The ASYNCREQUESccoiiiiiiiiei ettt 24
4.3.3.2 The EVENE SYSEIM ..ociiiiiiiiiiiii ettt 25
4.3.4 The SpeedCamVIEW ... 25
4.3.4.1 Rotation of the NOrh SigNcovveeiiiie e 26
4.3.5 The DataBUuffer.....cccoii i 29
4.3.5. 1 DESCHIPLON .ttt e e e eaa e e 29
4.3.5.2 GEUNEW TAQYS .eeteeeeieiiieiirniiieniiesasesernrsrarersrerarareraresnnnesenseeanaessasannanananas 29
4.3.5.3 Optimize CONNECHONSuuiiiiiiiieeiieiitieie e 30
4.3.5.4 Compute / anticipate the future user positioncocccvvvveeeeeennnnnns 31
4.3.5.5 Verifying that the DataBuffer works correctly............cccoocciivienieennnnns 32
4.4 DOCUMENT thE AP ..o 35
4411 ThE USEIGUILReeiiiiee ittt aa e 35

Advanced API for FoyTag
POISOT, Loic iv

4.4.1.2 The DeveloperGuide
4.4.1.3 The javadoc

Conclusion and future work
Webographyccccccvviiinnnns

Advanced API for FoyTag
POISOT, Loic

Table 1

Table 2

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16

List of Tables

Problems, incoherence, and improvements of the current API 7

Lines of code comparison between Henri’'s work and mine 10

List of Figures

SCIUIM PIOCESS . . it iieeti e ettt e ettt e s e ettt e et e tb e e ettt e e e eab e e e eabaeeseabaeeeeanneeeeees 2
LI =11 T PP 3
Class diagram of HENr’'s “API” ... e e 6
Road to take for Foxy challenge tripcooeeeeiiii i, 11
Speed CamMS ON thE WAYeuriiiiiiiiiiiiiiiie et 12
MUlti @CCESS ProDIEM 19
The facade Patlernco i e e e e 20
MUItIPlE rEMOLE SEIVEN ACCESS .. .ciiii i i e e 21
WILH PIOXY PALIEIN ... e 21
Sequence diagram for server CommuniCationooeevvveiiieeeereeeevinnnnn 24
Example of SpeedCamsVIEWcoooovei i, 26
The north sign ProbIem...........oeii 27
HOW TEXL IS PIINTEA ... 27
Optimizing CONNECLIONScccoeiiieiiceee e 30
The DataBuffer validation ... 34
Javadoc With StYIESNEET.......... e 36

Advanced API for FoyTag

POISOT, Loic

Vi

Introduction

During the summer of 2011, a student, Henri La, carried out a bachelor work studying
location based advertisement in speed camera mobile applications. To accomplish his

work, he developed some Android applications based on the FoxyTag system.

The idea of an Android FoxyTag client API that allows building FoxyTag applications
more easily and quickly began to grow in the mind of Michel Deriaz (Director of

FoxyTag).

This is the birth of my bachelor work. My main objectives were to modify Henri’'s work
in order to build a professional quality API that could be used in the industry. It is a
huge task to think about how an API should be, and to make the good choices between
simplicity, capabilities and modifiability. In addition to Henri’'s work, | had the objectives
to add sections (average speed camera) support, and offline mode. If | had had time, |

would also have studied how to provide / build a turn to turn navigation system.

| began by studying Henri's work, and | tried to find out how it could be modified in
order to become a good and independent API. The output was a list of problems and

recommendations to apply in order to make Henri's work easier to understand.

| tried to apply these recommendations, but it quickly appeared to me that it would be

incredibly difficult to carry out reverse engineering on Henri’'s Work.

| tried several approaches in order to reuse huge pieces of functional code, but |
discovered that responsibilities were not clearly established, there was no
documentation, and the components had low coherence and strong coupling, which

made chances of reusability quite low.

With this observation, | decided it would be best to start from “scratch”.

Advanced API for FoyTag
POISOT, Loic 1

1. The project methodology: Scrum

1.1 Introduction

During this project | was involved with a Scrum methodology and in a Scrum team.
What is Scrum?

Scrum is one of the agile management methodologies. Its goal is (like all other agile
methods) to reduce the time that development teams need to react to client's
orientation changes or new requirements. Scrum also ensures a clear overview of the
project, and if it does not help to prevent delays, it helps to detect them as soon as they

appear, and to react accordingly.

One of the main points of scrum is that you can expect deliverables/working increment

of software at the end of each sprint.
The timeline of the scrum methodology is composed of releases that contain sprints.

Releases represent huge amounts of time (they usually contains from 2 to 4 sprints),
and at each release end, you can expect to see a big progression. Sprints usually last

from 1 to 4 weeks.

1.2 Definition

Here | am going to explain some of the key terms and concepts of scrum.

Figure 1

Scrum process

credits : Lakeworks from wikipedia

Advanced API for FoyTag
POISOT, Loic 2

Sprint: A small amount of time, usually between 1 and 4 weeks.

Story: A job to do. Can be one of these: user story, technical story, and study story.

e User story came from use cases for example

e A technical story can be for example building the virtual development
machine

e A study story can be the fact of learning a technology, reading reports ...

Product Backlog: A list that contains all the project/product stories. This list is always

updated and is not definitive.

Sprint Backlog: Like the Product backlog, it is a list of stories. But all these stories

should be achieved during the corresponding sprint.

1.3 The Scrum Team

During this project | was involved in a Scrum team composed of: Michel Deriaz, Anja

Bekkelien, Marc Falcy, and Yves Grasset.
The scrum team is composed of different roles:

- The product owner is like the customer of the team. He is not the customer,
but can be identified as the link between the team and the customer. He is
responsible for writing down user Stories, priorities them and add them to the
product backlog. The product owner can be part of the development team, but it

is not recommended.

- The scrum master is like the angel of the team. He tries to ward off distractions
and sort out the problems of the work/team circle. He is responsible for the

team respecting the Scrum methodology and respecting it's philosophy
- The development team is the rest of the team working on projects.

Ideally, we should have one team, one product owner, and one scrum master for each
project. It is not recommended that the scrum master and the product owner be the

same person.

Advanced API for FoyTag
POISOT, Loic 3

Here, because we are a small team, and we all work on different projects, Anja, Marc,
Yves and | are part of the team as the development team. Michel plays the part of

scrum master and product owner.

1.4 Using scrum

For us the sprints were 2 weeks long. You can see here how my time was allocated. As
| am writing these words, we are the 8" of May, so my current sprint is sprint number 3

of the 2" release.

Figure 2

Timeline

At the start of the project, we defined the length of the releases according to the

amount of time allocated to the bachelor work.

The Product Owner defines the stories on his own, and places them in the Sandbox.
The Sandbox is a temporary place where stories waiting validation are kept. The
developer looks at the stories and validates them or discusses with the Product Owner
in order to modify, re-evaluate, or divide them in different parts. When the Product
Owner and the developer agree on the content of the Sandbox, all the stories in the

Sandbox are moved to the product backlog.

At the end of each sprint, each developer comes to Michel, in order to fill the sprint

backlog for the next sprint.

At the beginning of every sprint, we do the Monday morning the sprint review for the
previous sprint, and the sprint planning for this sprint. In this meeting, we present the
work that was done during the last sprint. The work is presented by Michel Deriaz, and
not by us. This is to ensure that Michel has understood well what we have done. We

present the finished stories and the ones that need to be reported in the next sprint.

Advanced API for FoyTag
POISOT, Loic 4

After this presentation, Michel introduces the stories of each project for the next sprint.
We discuss them, and for each one, we play planning poker: we all have cards with
numbers (a Fibonacci sequence), and we vote one time for each story. By doing that,
we can compare the time estimated by different people, ensure that the story is

understood by everyone and discuss to reach an agreement on good time estimation.

Every morning at 9am there is a daily 15 minutes scrum. During this daily scrum, the

whole team is present, and we basically answer one by one these questions:
- What did | do yesterday?
- What will | do today?

- What are the problems | encountered?

This way we can know who have problems, detect delays rapidly, and react in
consequence.

Advanced API for FoyTag
POISOT, Loic 5

2. Improving the Current API

| started my work trying to improve Henry’'s “API”. The first challenge was to
understand how this “API” was built, and learn to think like Henry in order to be able to

understand his code.

2.1 Class diagram

In order to better understand Henri’'s work, | decided that a class diagram would be a

good start to identify the different classes, responsibilities and collaborations.

Figure 3
Class diagram of Henri’s “API”

Advanced API for FoyTag
POISOT, Loic 6

2.2 Problems found

After

a superficial

improvements to carry out.

Hereunder,

improvements:

you will

code mining, |

find both

found some

Table 1

Problems, incoherence, and improvements of the current API

incoherence,

problems, and

the problems encountered and the potential

Class utility Accessibil Remarks Requires
ity
APIANndroTag Main entry Public Is actually the main STagActivity
point that entry point for the TagBuffer
the client API. This should ConnectToFoxy
app will use become the unique Tag
entry point EtatUl
GlobalParams
ListenerGPS
Radar
RTools
STagActivity
TagBuffer
ConnectToFoxy | Manage the Public 3 functions uses the Radar
Tag communicat same code -> DRY
ion with the (don’t repeat
server yourself) -> factorize
the code.
Create a method
that allows you to
launch a request
specified in
parameter, and to
get the result String
EtatUl Store the Ul Public Name in French ConnectToFoxy
state Tag
Error messages TagBuffer
hardcoded
GlobalParams Contains all Public The parameters are Nothing
configuratio Final. That means
n the client cannot
parameters modify these
parameters.
He should be able to
do that
IActivity interface Public Empty - Verify that it Nothing

is truly necessary

Advanced API for FoyTag

POISOT, Loic

IScan interface Public Empty - Verify that it Nothing
is truly necessary
ListenerGPS Listener that Public Seems to be almost Nothing
writes GPS perfect.
informations
into
AndroTag
Radar Business Public Override the Nothing
class that constructor so that it
represent a takes a parameter
speed cam android.location.Loc
ation in complement
/ replacement of
latitude and
longitude
RTools Some tools Public Some incoherence: Nothing
a function named
m/sTOkm/h can
return miles per
hour depending on a
Boolean!
Factorize some
code of resizelmage
functions
Should be fully static
ScanRadar A view of Public Colours cannot be Radar
the speed modified. RTools
cams
around
STagActivity Abstract Public Completely modify Nothing
Activity this activity.
We should be able
to extend this
activity, and in a few
lines of code be able
to build a application
TagBuffer Class that Public TagBuffer contains APIANndroTag
maintain the some methods that | ConnectToFoxy
speed cams predicts the future Tag
around the heading. This Radar
user and should be located in Rtools
that updates RTools
them
smartly

Advanced API for FoyTag

POISOT, Loic

2.3 Rethinking the API

After having submitted these improvement suggestions, | studied the interactions
between the API and the client application. What | saw was a big mess which resulted
in the client application accessing the API in many different ways. The API and the
client application were very strongly linked. This is because the applications and the

APl were developed in the same time by the same person.

| decided that we should rethink the way the client application accesses the API:

restrict the communication path, reduce dependence, and simplify the communication.

As developers are all different, and their needs are different too, | thought that it would

be a good idea to provide different granularity access for the API.

By granularity we mean level of detail.

Here is a scheme that explains my way of seeing things.

Classes
Low granularity Ul

API AndroTag
(kind of proxy, services
aggregator/provider)

Classes «Business» low level,

High granularity services

Advanced API for FoyTag
POISOT, Loic 9

2.4 The wrong start

| started to work very hard to improve this “API”, and to try to dissociate it from the
application. As everybody knows, in reverse engineering for maintenance,
understanding the code takes up to 80% of one’s time whereas correcting it takes only
20%.

But in this case, it was not only maintenance, there were architecture modifications too.
It quickly came to my mind that in this configuration, and with this particular code
complexity, | would always be under the threat of side effects; | would spend
approximately 90% of my time understanding the code, and studying how | could
correct / improve it without breaking the entire “API”. This “API” was a single
component, and not several smaller components. That means that when you make a

single change, it can be reflected in the whole “API”.

Table 2

Lines of code comparison between Henri’s work and mine

Henri's “API” Actual “API” Action
TOTAL 1407 1465
GlobalParams 16 162 Centralization
parameters
ConnectToFoxyTag 158 127 Factoring code
ListenerGPS 25 41 Add functions for
network state
ScanRadar 212 206 cleaning and
centralisation of
parameters
RTools 133 106 Factoring code

As you can see in the table above, | started correcting APl problems, before

discovering how every single piece of code was strongly linked to each other.

It was obvious that if we wanted to produce a high quality APl from this code it would
be very difficult and time consuming. And more importantly, spending a lot of time

doing reverse engineering does not lead to an interesting bachelor work.

| discussed that with Michel. He had no idea what Henri’s code looked like, and when |

explained this to him he agreed with me that we needed a fresh start.

Advanced API for FoyTag
POISOT, Loic 10

3. Foxy Challenge Trip

Before we started working on the new API, Michel and | defined, that it would be a
good idea to create a “Framework” that would verify that my API respects the rules
defined by the server API document (appendix 1). This document explains how to
communicate with the server, and what rules we must respect to have access to the

production database.

A test database is provided for application developers. We are able to post all kind of

tags (speed cameras) that we needed in order to test our application.

In order to verify that my API is Foxytag compliant, | have written down a document
that describes how to test the application. It is a kind of stress test that ensures that

your application complies with all the rules.

| called this document the “Foxy challenge trip”. It describes the path you have to
follow, the points of interest (different kinds of speed cams) you will meet on your way,

and the expected results.

This complete document can be found in appendix 2, but | will show you here the path

to take, and the speed cams | have inserted into the database.

Figure 4

Road to take for Foxy challenge trip

Advanced API for FoyTag
POISOT, Loic 11

Figure 5

Speed cams on the way

4. The new API

4.1 How to start?

First of all, we need to define what an API (Application programming interface) is.
If we want to explain what and API is, we must understand the concept of interface.

An interface is a way to define what the actions you can do are, and what the expected
results are. It can be compared to a native language: when you say hello to someone,

you expect this person to do the same to you.

With this starting point, we can say that every single piece of software has its own

interface, from a single method to a whole system.

So is API a good word to describe what | am building? Not completely, but it is not
wrong either. In fact | am not building only an API, but a library. In fact | am simplifying

Android developer’s work. My APl has no reason to exist if nobody uses it.

I will build a complete and complex system, and the API of this system, will be the door

to access the services provided by this system/library, as you wish to call it.

Advanced API for FoyTag
POISOT, Loic 12

This library is useless if there is no API to use it. Since only me will know the whole
library, the developers will only see and use the API. So | think we can call it an API.

This term is commonly accepted and used by developers.

Now we know what we are talking about. But how to create an API? Are there rules? Is

there a step to step path to follow? Are there common errors to avoid?

| have read a lot of documents, and browsed websites on this subject, but much of
what | found was only advice. There are no established rules or methods to create a
good API.

My main inspiration point was the presentation by Joshua Bloch (Principal Software

Engineer at Google) on the theme “How to design a good API, and why it matters”
Full references in webography.

He says that «Public APIs are forever — one chance to get it right» (page 2), which
means that if you release a lousy API on the market, developers, and users will try to
use it, and if it does not suit to their requirements, or it is bugged and does not provide
the expected results, people will drop your API and change for another one, or build

their own.

In his opinion the characteristics of a good API should be:

e Easytolearn

e Easy to use, even without documentation

e Hard to misuse

e Easy to read and maintain code that uses it
¢ Sufficiently powerful to satisfy requirements
e Easy to extend

e Appropriate to the audience

The reason your API exist is to be used. It can be used only if it suits your user's
requirements.

So firstly you need to be sure that you have defined the good requirements for your
API. One good way to do that is to take them from the use cases.

Advanced API for FoyTag
POISOT, Loic 13

4.2 The architecture

4.2.1 The process to define it

4.2.1.1 Identify the responsibilities

High level ones:

e Give GPS accuracy information.

e Give Data pertinence information.

¢ Give Data connectivity (2G/3G) information.

e Communicate with server (init, tag/section post, tag/section request).
¢ Display tags and section

e Give tags/section around

e Create aTag

e Create a section

e Alert client app when GPS, data, network Status changed
e Alert client app when the position has changed

¢ Forward messages from server API to client app

e Alert client app when there is no data and then it can provide its own
data

e Provide the possibility to store tags/section and to delay the sending to
the server

Secondly, we need to detail these responsibilities in order to discover low level ones.

Explaining scheme:

¢ High level responsibilities
o Low/Middle level responsibilities
= Requirements for this responsibility

¢ Give GPS accuracy information:
o Computes the GPS accuracy into different accuracy levels
= GPS information

Advanced API for FoyTag
POISOT, Loic 14

¢ Give Data pertinence information:

(0]

Know if the data are up to date
= Know Position
= Know the area covered by actual data.
= Know the freshness of the data.

e Give Data connectivity (2G/3G/Wifi) information.

= Connectivity information

e Communicate with server (init, tag post, tag request).

(0]

O O O O

Know the user login and pass; the client, version, language,
platform

Know the server address, and lab Address
Know the Tag/Section to post
Recover server's answer, analyse them, and parse the result
Launch requests
= State of the data connectivity

e Display tags/sections

0]

Know the tags/sections around

o Alert user when atag is approaching

¢ Give tags around

e Create a Tag

(o}

= Know position

= Know position
= Know speed
= Know heading
Enable tag creation only on minimum speed and accuracy

e Create a section

(o}

= Know position
= Know speed
= Know heading
Enable section creation only on minimum speed and accuracy

¢ Alert client app when GPS, data, network Status changed
o0 Alert client when GPS status changed

= Be aware of GPS accuracy changes

o0 Alert client when data status changed

Advanced API for FoyTag
POISOT, Loic

15

= Be aware of position changes
= Be aware of data pertinence
o Alert client when newtork status changed
= Be aware of server APl communication attempts

¢ Alert client app when the position has changed
= Be aware of position changes

e Forward messages from server API to client app

o Decode server APl answers, and dissociate business answer vs

inf/pub messages
= Communication with server

e Alert client app when there is no data and then it can provide its own data

0 Update the data status according to the client’'s answer

¢ Provide the possibility to store tags/section and to delay the sending to the

server

0 Tells the client that these tags are not already sent or being sent

o Tells the client when the tags are sent.
0 Send the tags when the network is free and available
= Know network state

4.2.1.2 Regroup functionalities and create the Class responsibilities
collaboration cards

ServerProxy
Manage server communication
Responsibilities Requirements Collaboration
Know the login and pass, Must be provided in any way
the client, version by external source (client
app)
Know the prod and lab
server address
Post a Tag Data status AndroTag,
(Unavailable/sending/free) ASyncRequest
Post a section Data status AndroTag,
(Unavailable/sending/free) ASyncRequest
Init the server Data status AndroTag,
(Unavailable/sending/free) ASyncRequest
Forward Server messages AndroTag
to client app
Recover the request result Must know witch request ASyncRequest
and parse it correctly was launched
depending on the type of the
original request

Advanced API for FoyTag
POISOT, Loic

16

Keep the last server’s
answer in memory

Keep the last request
position in memory

AndroTag

Main entry point for client app, and main communication bus for API

Responsibilities

Requirements

Collaboration

Manage the event
publish/subscription system

AndroTagListener

Create a Tag

Tag

Create a section

Section

Know and provide data
connectivity status

ServerProxy

Know and provide GPS
accuracy

Must be subscriber of GPS
events

Know and provide Data
freshness/pertinence status

DataBuffer

Compute GPS accuracy into
3 different accuracy levels

Must Authorize server
communication depending on
some parameters

Speed, network data
status

Manage and forward all
requests for server
communication

ServerProxy

Allow creation of tags only
when it's authorized

Speed, GPS accuracy

AndroTagListener

Interface used by API to send messages to client app

Responsibilities

Requirements

Collaboration

Defines the messages that
the API can send

Tag

Representation of a speed cam

Responsibilities

Requirements

Collaboration

Know when it is complete
and can be sent

Section

Representation of an average speed cam

Responsibilities

Requirements

Collaboration

Know when it is complete
and can be sent

Advanced API for FoyTag
POISOT, Loic

DataBuffer

Must contain speed cams around the user

Responsibilities

Requirements

Collaboration

Provide good data Communication with server | AndroTag
corresponding to the user’s

position

Update data freshness status AndroTag

SpeedCamsView

Must display speed cams to the user

Responsibilities

Requirements

Collaboration

Display the tags The position of main area | DataBuffer
tags
Make a sound on speed cam | User’s Position, Tag and Parameters

approaching user’s position

section position, the sound
to make

Tools

Static class that contains useful static methods

Responsibilities

Requirements

Collaboration

ASyncRequest (extends AsyncTask)

Launch request, and provide answer

Responsibilities

Requirements

Collaboration

Launch an asynchronous
request and recover the
result

The request as String

ServerProxy

Parameters

Static class that contain the parameters

Responsibilities

Requirements

Collaboration

Hearthbeat

Know GPS information, and determine when to refresh the API

Responsibilities

Requirements

Collaboration

provide GPS information (lat,
lon, accuracy)

Advanced API for FoyTag
POISOT, Loic

18

4.3 Building the API

Here | will describe and explain some specific and important piece of software that are
in the core of the API

4.3.1 The implemented patterns

I have decided to implement two architectural patterns in order to simplify the code and

make it more understandable.
| faced two problems that fortunately have their patterns in order to solve them.

The first problem was an access problem. If we want the API to seem simple for the
client, we have to limit the number of classes it has to use. In the example below, it is a
typically the problem | had. The client must access to different classes in order to
obtain the desired information/service. But if we want the client to have access to this
information, how can we reduce the number of classes known by the client? By placing

an intermediate!

Figure 6

Multi access problem

P -

Credits: Philippe Dugerdil, Software design lesson

Advanced API for FoyTag
POISOT, Loic 19

This intermediate is employed into the facade pattern that | chose and that perfectly
solves the encountered problem. Hereunder, you can find for example the

implementation of facade that solve the problem described in the image above. In our
case, the facade is the AndroTag class.

Figure 7
The facade pattern

|

Credits: Philippe Dugerdil, Software design lesson

The other problematic | experienced was that some different classes have to

communicate with the remote FoxyTag server. How to manage these connexions, and
reduce them?

Hereunder a graphical explanation of the problem:

Advanced API for FoyTag
POISOT, Loic 20

Figure 8

multiple remote server access

Credits: Philippe Dugerdil, Software design lesson

The solution was to create a specialized component for the communication with the
server. It is the idea behind the Proxy pattern as you can see below. | implemented this

pattern in the component ServerProxy of my API.

Figure 9

with proxy pattern

-k

Credits: Philippe Dugerdil, Software design lesson

Advanced API for FoyTag
POISOT, Loic 21

4.3.2 The event system

The old APl was based on a special way of communication: Each class has a link to
other classes, and they were using this in order to communicate. | introduced a new

way of communication: the event system.

The idea was to provide a simple, robust and powerful system that can manage the

communication between classes inside and outside the API.

The only class that have direct links to other classes is the AndroTag class, because it

is the facade.
The other classes use the events in order to communicate.

There are 5 events. For now, only 4 are really useful, because one refers to the

sections, and sections are not yet implemented into the API.

Here is the content of the AndroTagListener interface (the available events):

msgServer(String cmd, String msg, String details)
Called each time the server sends a message.

positionChanged()
Called each time the current position changed.

sectionUpdated(String speed, int timer)
Called each time the data about the current section is updated.

serverAnswer(boolean requestEnded, String cmd)
Called each time the server answer to a request or the request timed out.

statusChanged()
Called each time that the status of the data, the GPS or the network has changed.

For each of these events, there is a protected method in AndroTag -called
fireEVENT_NAME. These methods are protected, because logically, only the API can
launch API's events. These methods are located into the AndroTag class that is in the
center of the API. The classes that want to subscribe to these events must satisfy the
AndroTagListener interface and must be registered using the method

addAndroTaglListener of AndroTag class.

Advanced API for FoyTag
POISOT, Loic 22

4.3.3 The ServerProxy

The sever proxy will be the main communication path with the server. The entire API
will ask the ServerProxy to communicate with the server. Normally, all the
communication requests should be sent to the AndroTag class that will forward the
requests to the ServerProxy one. But there are some exceptions, and some classes

ask the ServerProxy directly. But these are very specific cases.

As said before, this class is responsible for the collaboration with the server. In this

class, we will find the first improvement compared to Henri's work:
Asynchronous requests.

In Henri’'s work, the User Interface (in fact, the whole program) blocks while waiting for
a reply from the server. And in Android, when the Ul is blocked for some time, the

system tells you that your application is not responding, and proposes you to Kill it.
But now, we have introduced parallelism!

The ServerProxy is able to launch asynchronous requests (parallel tasks) and to get
the result. As you can see in appendix 1 (Server API) there are different kinds of
requests that can be sent to the server, and more importantly, there are different

results, in different formats.

If we can launch some requests, how to know how to parse the results? How to know

which answer corresponds to which request?

That may be possible, but it is not necessary to answer this question in this case. As
the communication with the server is not heavy (1 request per minute in average), we

have established a rule: One server communication at a time.

The ServerProxy will launch a request, remember the kind of request in order to
correctly parse the corresponding answer; and will not allow any other request until it

gets an answer from the server.

Bellow, you can find a sequence diagram that will show you graphically what | have just

explained. The reality is not exactly the same, but not far from it.

Advanced API for FoyTag
POISOT, Loic 23

Figure 10

Sequence diagram for server communication

4.3.3.1 The AsyncRequest

The AsyncRequest is a very simple component that extends android.os.ASyncTask. It

is the same component that is called for every kind of request.

I will explain to you how it works: You create it, and once it is done, you call the method
“execute” that takes an array as parameter. As we need to launch only one request, we
just fill the first position of the array with the request we need to send. The request as

we call it is the url to reach in String format.

After that, ASyncRequest will communicate with the server until it gets the answer.
Directly after, it will call the HandleRequestResult method of ServerProxy and set as

parameter the BufferedReader that contains the result.

Advanced API for FoyTag
POISOT, Loic 24

How can ASyncRequest call this method? How does it know ServerProxy? In fact it is
quite simple: ServerProxy is a singleton, so ASyncRequest gets the ServerProxy

instance, and after that calls the method.

4.3.3.2 The Event System

As these requests are asynchronous, we cannot know the result immediately. In order

to know when a result from server is received, a dedicated event exists: It is

nswer (boolean requestEnded, String cmd) .

In this the AndroTag class there are two different concepts to differentiate:

e The action to request or post something
e The action to get something
For example, if you want to get new tags, two functions are at your disposal: getTags()

and requestTags(). Which one to use?

Firstly you have to call requestTags(). That will generate a request for the server that
asks the tags around you or around a specified position. Once it is done, and when the
server will answer, the serverAnswer event will be launched. If the request was

successful, you can now call getTags() in order to have the last speed cams.

Remember that if you call getTags() while requestTags() was never called, you will get

null.

Now you have understood the concept, let me explain a few more details. When you
call methods that request communication with server, you will get a boolean as answer.
This boolean only tells you if the request could be launched (true) or not (false). You

will only know if your answer was successful by listening the event.

4.3.4 The SpeedCamView

This component extends android.view.View, and is designed to be easily integrated, by
implementing functions such as auto-resize depending on the parent's width. This

component is a smart one, and functions on its own with the API.

Advanced API for FoyTag
POISOT, Loic 25

Figure 11

Example of SpeedCamsView

N

4.3.4.1 Rotation of the north sign

As you can see in the figure above, there is a north sign around the external circle. It
should move around the circle in order to indicate where the north is, depending on our

current direction.

It uses simple trigonometry to calculate where the sign should be depending on where
we are heading. The position given by this function is expressed in terms of abscissa
and ordinate. The coordinates (0;0) represent the centre of the circle. But, after

implementing these functions, | detected a problem.

Advanced API for FoyTag
POISOT, Loic 26

Figure 12

The north sign problem

As you can see above, in this case our heading is 180 degrees, direction South. The
North sign is almost well positioned, but is a little on the north east of the position it
should be (it should be out of the grey circle). Why?

Is the trigonometry function | have written malfunctioning?

In fact the North sign position calculation is correct. To understand the problem, we

should first understand how the North sign is draw/displayed on screen.
| use Canvas.drawText to draw the N sign on the screen

In this function you can specify where you want to draw the text. Here | use the
coordinates provided by my trigonometric function. But these coordinates do not
represent the centre of the text, but the left-bottom corner (see figure bellow to better
understand how text is displayed). So knowing that, let's look again at the figure above,
and look precisely at the left-bottom Corner of the “N” char. It seems to be correctly

positioned. So the trigonometry function is not the cause.

Figure 13
How text is printed

Crédits : Peter Daehne, Métrique des polices

Advanced API for FoyTag
POISOT, Loic 27

The black pixel represents the coordinates we specify while calling the

Canvas.drawText function.

Now we know what the problem is, but we don’t have a solution yet. And here | just
showed you the problem for heading = South. But there is a problem for almost all
angles. In fact, only the top-right quarter has no problems, because as | said the
position computed by the trigonometric function is good, so the text will be written
above and to the right of the computed point. As the circle is bellow and to the left of
this point, the text will never enter in this circle (for this quarter). But for the three other
quarters, think about it, and remember where the text is displayed in relation to the
point calculated by the trigonometric function. You will rapidly see the problem. The

problem is complex, because we need to find a solution that suits all the headings.
We need to work on the two axis, the abscissa and the ordinate.

For the ordinate, this is quite simple: When we are in the most meridional point, we
need to move the N sign x pixels down (x pixels is in fact the height of the Character).
We have found a solution but this works only for this most meridional point. What to do

between this point and the most septentrional point?

We need to build a function that will displace the N sign for a given intensity at a given
position.

Here is the little formula | managed to create:

posY += (textSize — (textSize / 4)) * ((radius + posY) / (2 * radius));

posyY is the y position where the N character will be displayed.
radius is the radius of the external circle in pixels.

textSize is the height of the N character.

This is now done for the ordinates; let's work on the abscissa axis:

It is almost the same problem, so the solution is similar:

posX —= (textSize — (textSize / 4)) * ((—radius + posX) / (=2 * radius));

posX is the x position where the N character will be displayed.

Advanced API for FoyTag
POISOT, Loic 28

With these two little lines, we can take the N sign’s height and width into consideration

in order to provide an almost perfect positioning.

4.3.5 The DataBuffer

4.3.5.1 Description

The DataBuffer is responsible for keeping data up to date. It uses ServerProxy to
communicate with the server, and knows when it is necessary to update the tags /

sections.

The purpose and responsibility of the DataBuffer is to always (as far as possible) have
at its disposal the tags and sections that surround the user. The FoxyTag server gives
us tags in a circle with a radius of 7.25 km around the coordinates we asked. From the
moment we leave this area, the DataBuffer must necessarily obtain new tags in order
to stay up to date. The DataBuffer must of course anticipate that a server connection is
not immediate, and that response times may vary. Rather, it should provide a safety

margin. Here | will mostly use the word “Tag”, but it is quite the same for the sections.

4.3.5.2 Get new Tags

There are two ways to get tags when we approach the boundary of the circle

containing the current tags.

« The "brute" method which consists in not asking questions: when we approach the
boundary area, to simply ask for tags around the current position of the user. Simple
and effective, but not optimal, because when doing it this way, we will receive tags for a
circular area around us, and therefore tags behind us. It is unlikely that a user will
suddenly go back on his path, so what is the point of requesting tags for a region where
the user will not move? There is no interest, and it is a lack of optimization.
« The "smart" method that consists in guessing and anticipating the future position of
the user in order to get tags in a region where it is likely that the user will go in light of
his current route. It therefore does not require tags around us but in front of us. It is this

possibility that | have chosen and set up.

Advanced API for FoyTag
POISOT, Loic 29

4.3.5.3 Optimize connections

Optimizing the connections means doing less, and to do less, we must do smarter. We

do this by choosing the strategy of point 2 mentioned above.

Figure 14

Optimizing connections

Credits: Michel Deriaz, Server API

This scheme should help us to see things more clearly. Here a PZ refers to “protected
area”. PZ represent the area within which we are currently covered by the tags
contained in the DataBuffer. Let us concentrate on the left diagram. The outer circle is
the circle of 7.25km radius around the user, it is the PZ. Just inside there is another
circle of slightly smaller size, representing the PZ minus the safety margin (time to
establish a connection to the server and retrieve the results). Then we see the points ty
and t; which are different positions of the user at time t. Around these positions, we see
a circle. This circle defines the area that the user sees. Specifically, within this zone,
radars (tags) must absolutely be up to date, since the radars in this area are those

shown to the user.

How to define when we leave the PZ, and for witch position should we request tags.

Advanced API for FoyTag
POISOT, Loic 30

Well that's very simple. When the zone of visibility (small circle around the user)
touches the large interior circle (PZ - buffer), then it becomes necessary to request new
tags. You can see this scenario on the left diagram, position t;.
On the right diagram, we see an example of an automated connection: the user
reaching the limit of its area, the system then calculates the optimal location to

download the new tags.

4.3.5.4 Compute / anticipate the future user position

How to define the future position of the user? How do | know if he will not suddenly turn
and destroy all our plans / forecasts? The simplest would be to use a soothsayer.
Unfortunately, Android does not (yet) provides this kind of services in its API.

We cannot know precisely where the user will be at time t, but we can try to guess.
Although roads are rarely linear, and they sometimes make us move away from our
destination, we usually go in a specific direction. It is not possible (in fact it is, but not in
our case) to know the roads in front of us, and therefore to predict more or less
precisely the path of the user, but it is possible to define the overall trend of this

movement.

How to proceed?

We must ask ourselves several questions:

- Is the accuracy of this calculation fundamental?

- Does this connection optimization worth/require a heavy CPU load?

- Do we need to use a complex algorithm whose implementation and adaptation would

be highly time-consuming?

As the problem we are trying to resolve is just an optimization it did not seem
necessary to implement highly complex solutions. We chose a solution that could not

be simpler, which according to our tests, has been fruitful.

Here's how:

Advanced API for FoyTag
POISOT, Loic 31

I will not remember the many former positions of the user. We could have done this to
determine an overall trend direction, but the inherent complexity of the calculations do

not worth the shot.
| adopted an approach that could not be simpler. It has two stages:

- First, when the user receives new tags from the server (logically this response answer
means that we asked for these tags, and so we were about to leave the area). As we

have received new tags, it means that now we are once more in a good PZ.
- A few minutes later we arrive at the limit of PZ, and it is time to seek new tags.

So we will calculate the direction of the user. This is done using the previous as well as
the current position of the user. Once we have the direction, we will ask for tags around
a position that we have computed x meters away from the current user position, and in
the computed direction. The distance x meters is calculated using three factors: the
radius of the PZ, the safety margin, and the radius within which the tags are visible to

the user.

The calculation of this distance is very important because it would be pointless to ask
Tags for a PZ that would be out of range and therefore generate a new request for tags

using the same method. We can clearly see an infinite loop here.

4.3.5.5 Verifying that the DataBuffer works correctly

Measures strateqy:

In order to verify the good functioning of DataBuffer, we need to collect some

parameters:

The user position in crucial positions / time

The distance that separate the centre of the PZ and the user

The user position when the system starts to ask new tags to the server
The user position when the system receives the new tags

The asked PZ coordinates

The computed heading (direction)

Advanced API for FoyTag
POISOT, Loic 32

For my measurements, | have taken the following values:
TAG_RADIUS (PZ radius): 2km
REQUEST_DELAY_SECURITY: 200m

RADAR_RANGE (radius of the area within the tags are displayed): 300m

| used System.out.printIn() in order to write in the logcat the desired information.

Here is a little part of primary information that was collected at the end of this

measurement campaign:

04-25 12:56:03.710: I/System.out(3633): Demande de nouveaux tags. Distance =
1500.2227251182462
04-25 12:56:03.710: I/System.out(3633): Current position lat: 46.16139 lon:
6.18052 heading calculé : 147.17852783203125 Tag request demandé: lat:
46.15005 lon: 6.19107

04-25 12:56:06.639: I/System.out(3633): New last update position : lat
:46.16125702857837 lon : 6.180217266082584

04-25 12:56:06.639: I/System.out(3633): Server answer received. Reached the
server : true | command : tagrequest

This is just an example, because in reality, there are 160 lines to analyse

Representing data:

To ensure that this raw data can be understood, we must analyse them, and make a
visual representation if possible.

| used Google Earth to address this problem.

The only problem with this software is that it is not possible to draw circles. Indeed, it
would have been very convenient to be able to do this especially to visually display the

area covered by radar, and the area outside of which it is necessary to update the data.

However, | found a solution:

The website http://www.freemaptools.com/radius-around-point.htm can draw "circles"

(in fact they are highly detailed polygons that look like circles, because Google Earth

Advanced API for FoyTag
POISOT, Loic 33

knows only polygons) of a desired radius, and a desired position. Once done, you can

download a KML file containing the "circle" and which can be opened by Google Earth.
| did this for each circle.

| also reported on Google Earth the center of each of these circles, the position of the

user during each tag request, and the position of the user upon receipt of new tags.

Here is the report that helped to validate the proper functioning of the DataBuffer:

Figure 15

The DataBuffer validation

Legend:
- The blue circles represent the PZ

- The red circles represent the area beyond which it is necessary to update tags (2km-
(200m +300 m))

Advanced API for FoyTag
POISOT, Loic 34

- The black line represents the route

- The yellow pins are the centres of the PZ, and the places where we asked for tags,

and where they were received.

4.4 Document the API

Build correctly the API is one thing, but document it is also very important.

| have created a set of documents, explanations, guides, referential that should help
the client that want of basically use the API, or want to modify it, continue its

development.

44.1.1 The UserGuide

The user guide is dedicated to the clients that want to do a basic utilisation of the API.
You can find this document in appendix 3. | decided to place it in Appendix because it
is a complete document, and use different graphics standards. This document was

totally written by me and should be considered as a part of this bachelor work.

4.4.1.2 The DeveloperGuide

The user guide is dedicated to the clients that want to dive more deeply into the API,
and want to modify it, improve it or continue its development. | decided to place it in
appendix 4 because it is a complete document, and use different graphics standards.
This document was totally written by me and should be considered as a part of this

bachelor work.

4.4.1.3 The javadoc

The javadoc is well known by the developers. If the code is correctly documented, you
can easily generate documentation that details your functions, and constants. This is
an important part of an API, because every developer has already checked a language
doc. It is very easy to generate javadoc, but comparing to Android doc, the generated
documentation is not very appealing. In order to improve that, it is possible to provide a
Stylesheet. Here under you can see the effect of one (you can find lot of them on the
net) stylesheet on the javadoc. It's clearer, and more pleasant to read.

Advanced API for FoyTag
POISOT, Loic 35

Figure 16

Javadoc with Stylesheet

Conclusion and future work

| found this work very interesting, because | encountered the problems we usually find
in modern software development. | had to deal with reverse engineering, | had to

create a complete system, think about simplicity, usability, maintainability, and so on.

In fact | really liked that because | had to touch to every approach, every specificity of
software development in order to be able to provide the best API | could do. | am really
happy that this bachelor work gave me the opportunity to apply all the software design

theory | had learned for years.

As this API was designed in order to be highly expendable and easy to understand and
to learn, | hope someone will continue my work. There are so many things that can be
added to this API. We can start with section. The basis and architecture for the section
implementation is already here, and there is not a lot of work to do to implement that.
We can implement offline system for the storage of tags, turn to turn navigation system.
In fact the possibilities are endless. | hope | achieved to provide a good start for future
work, and future developers will appreciate my work and the importance | gave to
comprehensibility. As | really had a hard time with Henry’s work, | tried to do my best

and to avoid reproducing the same scheme.

Advanced API for FoyTag
POISOT, Loic 36

Webography

Bloch Joshua, How to Design a Good APl and Why it Matters,
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

Advanced API for FoyTag
POISOT, Loic

37

Appendix 1
Server API

OOOOOOOOOOOOO

Server API

Version: 1.0.0

1 Introduction

Welcome to the FoxyTag API. This file explains the rules that a compatible client application
has to follow. Please read carefully all the points and start working on your project only if you
accept all the points mentioned in this document.

2 API

Please note that all parameters must be encoded in UTF-8.

2.1 Initialization

Each time the application is restarted and each time the username, the password or the
language is changed, the client sends an HTTP GET request like:

url?cmd=init&username=username&password=password&client=client&version=version&lan
guage=language&platform=platform

url: the URL of the server. (Lab server: http://www.foxytag.com/php/dogetlab.php)
username: the username. Can be empty.

password: the password. Can be empty.

client: the client application code to obtain from FoxyTag.

version: version of the client application with 3 numbers, like "1.4.63".

language: ISO 639-1 code for the language (en = English, de = German...).
platform: platform and firmware of the mobile device, for instance "GT-19100_2.3.3".

If the username or the password is empty, the user is anonym and is therefore not allowed to
post data. Note that the lab serv er registers automatically any new username, butth e
production server requests a username/password pair to obtain from the registration process
at http://www.foxytag.com.

The server answers like:

MSG
msgl
msg2

The messages (msgl, msg2, ...) can be:
o OK_INIT: Initialization OK.

e KO: Failed for an unknown reason.
e KO_SERVER: Server is not available.

e KO_URL: Unknown command or malformed parameters.

¢ KO_VERSION: Wrong version of the client.

e KO_LOGIN: Wrong username or password.

e ERR error_description: An error to show to the client. A '\t' is used as separator.

¢ INF some_information: Information to show to the client. A \t' is used as separator.

e PUB some_publicity: A publicity to show to the client. A '\t' is used as separator.
There areno'\n' chars in a message (error_description, some_information or

some_publicity). A new line is cod ed "\n" (2 chars). For instance, "Hello\nFoxyT ag" should
print "Hello" on the first line and "FoxyTag" on the second one.

2.2 Getting tags
To get the tags around a given position, the client sends a HTTP GET request like:

url?cmd=tagrequest&username=username&password=password&client=client&version=vers
ion&lat=lat&lon=lon

e url, username, password, client, version: see above.
e lat: the latitude in decimal degrees (5 digits after the coma) of the center of the circle.

¢ |on: the longitude in decimal degrees (5 digits after the coma) of the center of the
circle.

This request asks all the tags in a circle centered at the given latitude and longitud e with a
radius of 7250 meters. A new request is expected each time the client application is going to
quit this circle but at the latest five minutes after the former connection.

The server answers either like it is done in the Initialization section, with messages that can
be KO, KO_SERVER, KO_URL, KO_VERSION, KO_LOGIN, ERR error_description or
INF some_information, or with a list of tags like:

TAG
request
tagl
tag2

The request contains the latitude, the longitude and the radius of the circle. A '\t' is used as
separator.

A tag (tagl, tag2, ...) is written like:
lat lon kind heading
A "\t' is used as separator.

¢ lat, lon: position of the tag.

e Kkind: the kind of tag: F = Fixed sp eed camera, FC = Fixed speed camera that has
already been confirmed (or posted) by the user, M = Mobile speed camera, G =
Ghost.

e heading: anintegerin [-1..360] U [1000..1360]. -1 mea ns unknown heading. A
heading between 0 and 360 (0° = North, 90° = East, 180° = South and 270° = West)
means that the user posted the tag for the same direction. A heading between 1000

and 1360 is equivalent to heading-1000, but means that the user posted the tag from
the opposite direction and his position is therefore a little bit less precise.

The returned list contains first the fixed speed cameras, then the mobile ones and finally the
ghosts. A client applica tion draws therefore first the ghosts, so that mobile speed cameras
and fixed speed cameras are painted above them.

A ghost is created by the server when a mobile speed camera disappears. If there are often
mobile speed cameras at a specific place or in its neighbourhood, the ghosts stay active (and
are sent to the client) in order to signal this risky zone. Gho sts communicate between them,
so it is possible to see a ghost a few hundred meters before the actual position of the mobile
speed camera (since the later is not always exactly at the same position).

2.3 Sending, confirming or canceling a tag

Sending a new tag or confirming an existing one is identical for the client. It is the server that
decides if it is a confirmation (the position is close to an existing tag) or a new one (there is
no tag with similar heading in the neighborhood).

To send/confirm/cancel a new tag, the client sends an HTTP GET request like:

url?cmd=tagpost&username=username&password=password&client=client&version=version
&lat=lat&lon=lon&kind=kind&heading=heading&speed=speed

url, username, password, client, version: see above.

lat: the latitude in decimal degrees (5 digits after the coma).

lon: the longitude in decimal degrees (5 digits after the coma).

kind: the kind of tag, F = Fixed speed camera, M = Mobile speed camera, C = Ask to

cancel this tag.

¢ heading: an integer in [0..360] U [1000..1360]. A heading between 0 and 360 (0° =
North, 90° = East, 180° = South and 270° = West) means that the user posts the tag
for the same direction. A heading between 1000 and 1360 is equivalent to heading-
1000, but means that the user posts the tag from the opposite direction. For instance,
a driver going northwards that tag s a camera f or the drivers going southwards will
send 1180.

e speed: an integer in [20..320]. It is the current speed of the user, in km/h.

The server answers like it is done in the Initialization sectio n with messages that can be KO,
KO_SERVER, KO _URL, KO_VERSION, KO _LOGIN, OK, ERR error_description or INF
some_information. The new message of this list (OK) is returned by default.

3 Lab server

The URL http://lwww.foxytag.com/php/dogetlab.php connects you to a lab server. Once your
application is ready, we'll give you the URL of the main server.

Some particularities of the lab server:
e If you take username=$lab1, you get at initialization an error message, an information

message (2 lines) and a publicity message (3 lines with a blank one).
e If you take username==$lab2, you get at initialization a KO_SERVER message.

If you take username=$lab3, you get at initialization a KO_VERSION message.
If you take username=$lab4, you get at tagrequest and tagpost an error message, an
information message (2 lines) and a publicity message (3 lines with a blank one).

4 Rules

In addition to the API, an applicatio n must respect the follo wing points. Some of these rules
avoid that users tagging differently (because of their ap plication) are excluded from the
system by the other users.

Your website promotes FoxyTag (link to http://www.foxytag.com, map with all th e
speed cameras, ...) and mentions clearly that the data comes from FoxyTag.

The name ofyour application cannot contains the word "foxy" without our
authorization.

Your application is fully compatible with the API describe d above and all the rules
described in this document. Your application behaves in a similar way as the FoxyTag
Reference Implementation. If your application needs an e xception, please write us
your issue so that we can find a solution that doesn't harm the global system.

You can freely access our lab server in order to make tests. However, anyne w
version of your software must be va lidated by us before being allowed t o access the
main server. The application sent f or validation must be exactly the one that will be
publicly released, which means that it must point to the main server. Note also th at
the version number must be increased at each validation attempt and this number
must be mentioned in the email as well.

The application must do an "init" command (cmd=init) each time the application starts
and each time the username, the password or the language is changed. An "init" is
always followed by a "t agrequest”" even if the last "tagrequest” has be en done less
than 5 minutes earlier.

The application must d ownload new tags (cmd=tagrequest) every five minutes or
earlier, and post new information (cmd=tagpost) as so on as possible in ordertobe
compatible with the current trust engine (off-line mode is not allowed).

By default, only cameras that are in front of the driver, plus-minus 45°, and that have
the same h eading than the driver, plus-minus 45°, will launch an alarm andbe
painted on the screen. If a setting allows to change the default value and to show the
"non-flashing" cameras as well, it is recommended to paint them differently.

During atag post (cmd=tagpost), the precision of the po sition must be under 35
meters, the precision of the heading must be under 7° and th e precision of the speed
must be under 7 km/h. The speed and the he ading must be taken fr om the GPS
device (not computed from two previous points and not taken from the compass) and
it is not allowed to tag under 20 km/h. The ap plication must be designed so that it is
easy totag precisely and easy to see where the tags are according to the user's
position.

When a posting action (cmd=tagpost) needs several interactions (touching the screen
a first time, then selecting the kind of camera, then selecting its direction), the position
is recorded when the f irst touch is done and the highly vi sible message "Position
memorized" is shown to the user.

Even when FoxyTag is integrated in a bigger system (like a navigation tool), the users
must still register at FoxyTag in order to obtain a username and a password.

5 Rules to show to the client

The following rules must be visible in the help screen and a Iso be shown to the clie nt each
time he enters or changes his username or password.

*kkkk

IMPORTANT: Respecting the follo wing rules allows you to increase your trust links wit h
others and to benefit t herefore from more reliable information. It av oids you also to be
excluded from the system by people tagging differently.

1. A speed camera must be tagged or confirmed when you are as close as possible to it
(not already when you see it). Oth erwise there willbe a second tag for the same
camera and other users will decrease your trust links.

2. A camera inside a tunnel or close to a tunnel exit (typically less than 10 seconds after
the exit) must be tagged at the tunnel entry.

3. During the tagging process, the po sition is recorded when you touch the screen f or
the first time (message "Position memorized" is shown), so you have as much time as
you need to finish the tagging process.

4. 1t is useless to confirm several times the same speed camera. In so me particular
situations this can even be bad for your trust links.

5. In case of a doubt (is there a camera?) it is better not to tag than tagging wrong.

6. If there can be a doubt whethera camera can flash in both directions or not, it is
better to tag for both directions.

7. A traffic light camera is tagged and treated like a speed camera.

*kkkk

An application can also show dynamic messages to help the user to better respect the rules.
For instance:

¢ In the main screen write "Touch the screento add/confirm a tag wh en you are as
close as possible to the camera".

e Show "Tagging only possible when speed > 20 km/h" if t he user tries to tag while
driving slower than 20 km/h.

e Show "GPS precision too weak" when the user tries to tag with low precision.

6 Notes

o When a user tries to cancel a tag, only the closest tag with a heading difference less
than 45° will be affected, and only if this tag is closer than 75 meters.

e The heading inthe tag indicates the "dangerous" direction, the dire ction where a
driver could get a fine if he is speeding. It has nothing to do with the orientation of th e
camera, that can record either the front or the back number plate.

7 Optimizing connections (Optional)

The following algorithm can be used in order t o reduce the number of connect ions to the
server: Let's call protect ed zone (P Z) the area that contains the downloaded tags. A new
connection is then made only every given delay (her e it is 5 minutes) or if the user r equests
tags that are outside of the protected zone. A protected zone is defined by 5 main attributes:

e pzLat and pzLon: Two numbers, the latitude and the longitude of the center of the
PZ. A PZ is always a circle. A user can give its current posit ion if he wants to see the
tags around him, but ¢ an also give coordinat es of another pointto see the tags in
another place.

e radiusOut: This is the radius of the external circle of the PZ. It defines the area where
the tags have been downloaded.

e radiuslin: This is the radius of the internal circle of the PZ. This value is used as a
trigger to ask a new co nnection to the server. Since conn ections to a remote server
are not instantaneous, this internal circle allows the application to update its protected
zone before the user exits the former PZ.

e timeout: This is the maximum delay between two connections to the server. Even if
the user doesn't quit its PZ, a connection is made time to time in order to guaranty the
freshness of the information.

Moving in the same PZ Computing a new PZ

The first time tags are r equested, the algorithm will compute a PZ ce ntered on the current
position (or on the position wher e the tags are requested). But in order to limit the
communications with the server, the next time arequesti s made, the PZ willb e shifted
according to the last moves of the user. In the left figure we see an example. The user start s
his application attime t;. The little circle repr esents the radius of visibility (simply called
radius), or the area where the tags are visible on the mobile device. The big inner circle is the
internal circle of the PZ (called radiusin), which acts as a trigger (when the user r equests
tags that are outside, a new PZ is computed). The big outer circle is the external circle of the
PZ (called radiusOut), which is the area where the tags are actually present in the memory of
the mobile device. While the user moves close to the center of the PZ, the tags are already in
memory. If the useri s still at the center of the PZ when the timeout is reach ed, a new
connection is made to t he server in order to up date the tags, but the PZ stays at t he same
position (centered on the user). But if the user moved away, then the new PZ will be shifted
in the same direction. For instance, if our user reaches the inner circle of the PZ at time t;, a
new PZis requested and the latter will be shifted like it is shown in the right figure. The
distance of the shift is proportional of the distance that the user moved since last update, so
if he didn't move, the shift is null (and the new PZ is centered on the current position).

Appendix 2
Foxy Challenge Trip

OOOOOOOOOOOOO

Foxy Challenge Trip

Version: 2012-02-24

Contents
T INIrOAUCHION. ... 1
2 Capabilities tESHINGeeeiii i 2
B I 4= - 2
4 GENEIAI TUIBS ... 4
LT =] SO Y= PSSR 5
5.1 GPS good, and data OK ... 5
5.2 GPS poor, and data OK ... 7
5.3 GPS KO, and data OK . ..ottt e e 8
5.4 GPS good, and data KO ... 9
5.5 GPS poor, and data KOcooooiiiii e 10
5.6 GPS KO, and data KO (for example in a long tunnel)cccooooiiiiiiiiiiiniiiiiieeeeeeen 11
5.7 Any conneCtiVity STatUScooe i 12
6 Tests Radars/Places l0CatioN e 13

1 Introduction

This document describe all test the application must pass in order to succeed the
FoxyChallengeTrip.

The FoxyChallengeTrip is a “framework”, an environment where your application will be put
and tested. If it succeed, it ensure the good quality of your application on the opposite, it
means that you application does not fill the quality requirements of foxy tag, and must be
modified.

2 Capabilities testing

The application must let the user log in, or redirect to the foxyTag website if he needs to
register.

The application must let the user specify his language (Possibility to take the system
language, but the language must be shown, and modifiable)

The user must be able to change the app metrics.

3 Test Area

In order to test the application, some radars must be strategically placed.

They will be placed along my home-work route witch is Reignier (France) to Carouge
(Switzerland).

The data will be received from the 3G french network. The good point is that in Switzerland,
the Network will sometimes drop, and we will be able to observe what's happening.

There is several places on the trip or around it to test critical points of the applications.

Here is the main path we will use in order to stress the application.

Zoom of the end of trip:

There is a tunnel near to the arrival. We will take it to test the reaction of the application in
this case.

Here are the indications in order to fully make the foxyChallengeTrip :

Departure: Impasse des fauvettes 74930 reignier:
1. Prendre la direction ouest sur Imp. des Fauvettes vers Rue des Erables

100 m
2. Prendre a droite sur Rue des Erables

71m
3. Tourner a droite pour rester sur Rue des Erables

87 m
4. Prendre a gauche sur Route de I'Eculaz/D19

280 m

5. Prendre la 2e a droite et rester sur Route d'Annemasse/D2
Continuer de suivre Route d'Annemasse
Radar automatique a 2,3 km

6. Continuer sur Route de Reignier/D2
7. Prendre a gauche sur Route du Saléve/D906A
8. Tourner a droite pour rester sur Route du Saléve/D906A

9. Prendre a gauche sur Route de Saint-Julien/D1206
Continuer de suivre D1206
Traverser le rond-point

10. Prendre Iégérement a droite sur Rue du 18 Aolt 1944/D1206

Entrée sur le territoire : Suisse
11. Continuer sur Route du Pas-de-I'Echelle
12. Au rond-point, prendre la 2e sortie sur Route de I'Uche

13. Au rond-point, prendre la 1ere sortie sur Route de Veyrier
Traverser le rond-point

14. Tourner a droite pour rester sur Route de Veyrier

15. Prendre la 1re a gauche et rester sur Route du Val-d'Arve
16. Prendre a droite sur Route de Saint-Julien

17. Prendre la 1re a droite et rester sur Route de Drize

18. Prendre l1égérement a gauche sur Route de Troinex

19. Prendre a gauche sur Ch. Vert

Arrival : Chemin Vert.

4 General rules

The application must show every radar that should/could be in the user’s field of vision (+45°
and -45° of the heading of the car), and at least 1 kilometres away. The application must
make some sound as a radar get closer (depending of speed -> 7 seconds before reaching
it). If a radar have already make a sound, then it should not bip again (even if it quit the field

3,9 km

1,9 km

11 m

1,3 km

2,8 km

25m

600 m

280 m

2,4 km

700 m

1,4 km

190 m

550 m

300 m

170 m

of vision and enter into again. For example highway’s exits that often do circles).

Ghosts and Mobile camera must make a sound if we are close to them, even if it does not

aim into our direction

5 Test Cases

Here is the list of tests that must be successful for the application to pass the FoxyChallengeTrip.

5.1 GPS good, and data OK

Showing Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The accuracy of the

Drive on a route parallel

The application

Refers radar number 1

camera function

you if must decrease
your speed cuise, and
indicate you when you
quit this average speed
area

the app should not
warn you exept if
you’re approaching
to the last camera
using an other route
than the one was
tagged(if your
average speed is
excesive, and if you
pass the first
camera)

application to one with radar | should not warn you
(if you have good
gps signal)
2 The accuracy of the Drive on a route, and ?? | Refers to radar number 2
application come across a radar
with a heading plus or
less 35% of your
heading
3 The good Drive into an area that The application
functionality of the should be stocked into | should show you the
on-board storage of your phone | radars as you meet
the radars some
4 The average speed The app must indicate If you quit the road, The app should also

explain you how to use
the average speed
camera function on first
use.

Refers to radars #4

Tagging Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The good storage of
taggings

Tag some radars while
you are offline

Once you're online,
the app should tag
on the server the
locally stored radars

The good integration
of average speed
cameras

Post the first camera as
average speed

You should return to
radar view once you
press a second time
the screen in order
to entrer the last
speed camera

Try for average speed
camera that contains
different speed sections

5.2 GPS poor, and data OK

Showing Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

See radar number

Tagging Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The respect of the

While driving, post a

The radar must be

Foxy Rules radar on a known place placed at the place
you were when you
taped the screen for
the first time
2 The good
programming of an
application

5.3 GPS KO, and data OK

Showing Radars :

Test number | What will be tested Test instructions Expected result Remarks Effective result
1 The accuracy of the | Drive on a route parallel The application See radar number
application to one with radar | should not warn you

Tagging Radars :

Test number | What will be tested Test instructions Expected result Remarks Effective result
1 The respect of the While driving, post a The radar must be
Foxy Rules radar on a known place placed at the place

you were when you
taped the screen for
the first time

2 The good
programming of an
application

5.4 GPS good, and data KO

Showing Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

See radar number

Tagging Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The respect of the

While driving, post a

The radar must be

Foxy Rules radar on a known place placed at the place
you were when you
taped the screen for
the first time
2 The good
programming of an
application

5.5 GPS poor, and data KO

Showing Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The accuracy of the

Drive on a route parallel

The application

Refers to radar number 1

differents radar by the
API)

application to one with radar | should not warn you
2 The good Drive on a route and | The application must Refers to radar number
programing of the approach to a 2 side | show only one radar
application radar (shown as 2

Tagging Radars :

Test number

What will be tested

Test instructions

Expected result

Remarks

Effective result

1

The respect of the
Foxy Rules

While driving, try to post
aradar

You should not be
able to post a radar
when your GPS
accuracy is poor.

10

5.6 GPS KO, and data KO (for example in a long tunnel)

Showing Radars :

Test number | What will be tested Test instructions Expected result Remarks Effective result
1 The reaction of the Drive until you lost the The application
app signal | should zoom out and
show you the radars
(in a radius of 7
kilometers) around
your last know
position, and your
last known heading
Tagging Radars :
Test number | What will be tested Test instructions Expected result Remarks Effective result
1 The good While driving ,try to post You should be If you answer that you
programming of an aradar | asked if you are in a are in a tunnel, the tag
application tunnel. process will continue,

and the tag must be
placed where you lost
good gps Signal.
Otherwise, it will not tag .

11

5.7 Any connectivity status

Showing Radars :

Test number | What will be tested Test instructions Expected result Remarks Effective result

1 The user interface Drive, and verify that The speed camera

there is different confirmed and

representations of unconfirmed must

confirmed or not be displayed

confirmed radars differently

Tagging Radars :

Test number | What will be tested Test instructions Expected result Remarks Effective result

1

Good
communication with
server

While driving ,try to post
a radar

The radar should be
correctly posted into
the sever at the
position of the first
touch

12

6 Tests Radars/Places location

Radar 1 :

Latitude : 46.17033
Longitude : 6.20797
Heanding : 235
Kind : Fixed

Radar 2 :

Latitude : 46.16816
Longitude : 6.18487
Heading : 270

Kind : Fixed

Speed : 80

13

Radar 3 :

Latitude : 46.17743
Longitude : 6.22807
Heading : 40 & 220
Kind : Fixed
Speed : 80

14

Radar 4 : (average speed)

Latitude_start : 46.1546
Longitude_start : 6.24871
Latitude_end : 46.16527
Longitude_end : 6.2406
Kind : Fixed

Radar 5 :

Latitude : 46.1607
Longitude : 6.24286
Heading : 230

Kind : Fixed Confirmed
Speed : 80

15

Radar 6 :

Latitude : 46.15153
Longitude : 6.25355
Heading : 325

Kind : Mobile
Speed : 80

Radar 7 :

Latitude : 46.14547
Longitude : 6.26554
Heading : 280

Kind : Mobile
Speed : 80

16

Radar 8 :

Latitude : 46.14547
Longitude : 6.26554
Heading : 280

Kind : Ghost

Speed : 80

Radar 9 (at the enter of a tunnel):
Latitude : 46.17964

Longitude : 6.1429

Heading : 230

Kind : Fixed

Speed : 80

These are some of the most important radars to test.

There is also a lot of other radars that can be tested as shown in the following image:

17

18

Appendix 3
User Guide

OOOOOOOOOOOOO

AndroTag API User Guide

Version: 2012-06-08

Contents

T INIrOAUCHION. ... 1

2 QUICK StaMt GUIAE......eeiiiieiiiiiceeeee eennsreees 2
P B 2= To [0 1T =T 0 0=] £ RPN 2
2.2 FeW thiNgS 10 KNMOWeiiiiiiiiiii e e e e e e e e e e e s 2
2.3 The first INe tO USE the API.......e e e 2
2.4 Display the SpeedCamsVIEWccoviviiiiiiiiie e 3
2.5 Initiate the APl ... 4
2.6 Subscribe to the events (Optional) ... 5
B A o g o1 U= o I 5

JUNderstand the AP e 6
3.1 GENEIAl CONCEPL ..o 6
3.2 EVENTS SYSIEM ..o aaaannn 8
3.3 The server COmMmUNICAtIONccooieiieii e 8

4 Classes AeSCHIPION ... 10
4.1 SPEEACAMSVIBW ...ttt e e e e e ettt e e e e e e s e e e e e e e e e e e nnereeeens 10
N g To [(o B 1= To [PPSO PP PP PPPPP 11

Eo 07 0] g T3 11013 (] o 1 12

1 Introduction

This document will help you using the FoxyTag API. It contains some descriptions and
examples about how to use the API. If you plan to use the API without modifying it, this guide
if for you! If you want to modify the API, it is highly recommended that you also read the
Developer Guide.

The API currently contains the architecture in order to support sections (average speed
cameras), but it is not yet implemented. If you try to use APl methods that refer to Sections,
you will obtain no results.

In this document | will use terms such as tag, radar, and speed camera. This all refers to the
same concept: a speed camera.

2 Quick start Guide

2.1 Requirements

It is highly recommended that you read the Server APl document before starting to read this
one.

Firstly you must have created a new Android application project.

After that, you have to copy the sources of the provided API into the sources of your project.
All the API sources should be into the package “ch.unige.androtag”.

You also have to copy into your resources folder the provided default alarm sound (do not
rename it!) this sound must be located under res/raw/. If necessary, you can create the raw
folder in your IDE or in your file explorer.

A minimal knowledge of Android is required. If you haven’t yet developed any applications, it
would be a good idea to do some Android development tutorials.

2.2 Few things to know

Now you are ready to start. Yes that's so simple.
With a few lines of code you will be able to see the speed cams around you if there are
some.

Before we start to code, you have to understand that the API is a very autonomous system. It
knows itself when it is necessary to update tags, it manages the communication with the
server and a lot of more complicated stuff that is simplified for you.

The API has only one possibility to communicate with you: the events.

The API has his own event system and launches some specific events.

One last thing before we start: The API provides you with a graphical component:
“SpeedCamView”. This component needs the API in order to function, but the API can
function without this component. That means that if the view provided does not suit your
requirements, you can just drop it and develop your own view.

2.3 The first line to use the API

Now you know enough, and we can start coding.

In this section, we will explain you how to instantiate the API in order to be able to use it.
In fact this is very simple. Just type this line:

AndroTag api = AndroTag. getinstance(this);

This is done. With this single line, your APl is ready to be used.

With this line, the API will automatically subscribe to the GPS and the GPS activity icon in the
Android notification bar should appear. Once the GPS fix is done, you can access GPS
information using the API. Refer to “classes description->AndroTag” section or javadoc.

-
“Why do we need to pass our Activity as parameter?”
/ It is because the API takes care or the GPS for you. But in order to subscribe to

[

Y GPS updates, an Activity is needed. This is the only use of this parameter.

It is your responsibility to make sure that the GPS is enabled. The API does not
provide this functionality.

2.4 Display the SpeedCamsView

Here are two solutions:
- You define your component in the layout
- You add your component to the layout during runtime

We will explain only the first solution because if you understand the second one and want to
do it that way, means that your developer’s skills are sufficient and you don’t need
explanation.

Firstly, place this xml code into your layout code:

<ch.unige.androtag.SpeedCamsView
android:id="@+1d/scannerView"
android:layout_width="wrap_content"”
android:layout_height="fill _parent”>

</ch.unige.androtag.SpeedCamsView>

Secondly, add this code to the onCreate() method of your activity. It will give you a reference
to the SpeedCamsView instance.

SpeedCamsView scannerView = (SpeedCamsView)findViewByld(R.id.scannerView);
Thirdly, you have to register the scannerView to the event system:
api.addAndroTagListener(scannerView);
3 ™ “Why must we register the scannerView to the event system?”
/ As the API can function without the SpeedCamsView, it has no reference to it, and

L cannot do it for you. This is important, because this view use events such as the
</ “positionChanged” in order to update the tags position on the screen.

2.5 Initiate the API.

As you have read in the Server APl document, prior to any other communication with the
server, we need to do an initialization. If you do not do that, the API will not be able to do
anything else than providing you GPS updates.

Let see how you can initialize the communication with the server by using the API.
This is done with a single line:

api.init("test", "test","androtag","0.0.1","fr","android", true);

You can find full description of this function in the provided javadoc, but here is a summary of
the parameters:

1° parameter: username

2" parameter: password

3" parameter: application name
4™ parameter: application version
5" parameter: language

6™ parameter: platform

7" parameter: lab server

The last parameter is used to specify which server you want to use: the production server or
the lab server.

This function returns a boolean: true if the initialization is successful or false if the
initialization failed.

If the initialization is successful, the API will automatically (without any action needed)
download tags around you. You can drive where you want, the API will automatically take
care of the whole system, and keep a buffer of tags around you. These tags are displayed
around you. By default the SpeedCamsView display tags around you in a radius of 1000
meters. If you want to change this, you can, but refers on how to do in the Classes
description below, and more precisely in the part that explain this component
(SpeedCamsView).

Really, isn’t that beautiful? With a few lines of code, you already see the speed cameras
around you.

You will see below that the API is highly customizable. It is highly recommended that you
instantiate the API, create and reference the SpeedCamsView, customize what you want,
and only afterwards do the initialization.

It will work if you make the customization after the initialization, but the changes will be
applied with a little delay (less than 1 second | promise you).

<™ “My initialization always fails. How to know what is wrong?”
/ The server provides explanation about what is wrong. You can basically subscribe
L to the “serverAnswer” event (Refers to “Subscribe to the events section”). If you do
& > not receive any “serverAnswer’ event, please verify your mobile internet
connection.

It is your responsibility to take care that the initialization is successful. For
example, if there is no network you should do a loop that calls the init method
while the result of the initialization is false. Remember that once the initialization
is successful, the API will do nothing else than GPS stuff. According to the Server
APl document, you must also call this method each time the username, password
or language is changed.

2.6 Subscribe to the events (Optional)

In order to be able to receive news from the API, you must subscribe to the event system.
Each subscriber of the event system must satisfy some requirements; this is why an interface
is provided. Your activity must implement the interface AndroTagListener and its five
methods. You can leave them empty, but if you want to do some special actions when an
event is received, place your code in the corresponding method.

For example if you want to write in the console “New GPS location” each time a new position
is received, just do that :

public void positionChanged() {
System.out.println("New GPS location");

}

Now you are ready to receive the events, but we must subscribe to them.
This is done by typing this line (for example in you onCreate function):

api.addAndroTagListener(this);

Perfect! You should now receive all the updates from the API.

2.7 Conclusion

To conclude, | hope you have figured out that it is very simple to use the API, but to simplify,
I will write all the lines you must place in your application in order to obtain a first minimalistic
speed camera warning application:

To place in your layout file:

<ch.unige.androtag.SpeedCamsView
android:id="@+1id/scannerView"
android:layout_width="wrap_content"”
android:layout_height="fill_parent">

</ch.unige.androtag.SpeedCamsView>

In the onCreate method of your application:

AndroTag api = AndroTag. getinstance(this);

SpeedCamsView scannerView = (SpeedCamsView)findViewByld(R.id.scannerView);
api.addAndroTagListener(scannerView);

api.init("test", "test", "androtag","0.0.1"," fr", "android", true);

Save, Build, Run, and enjoy!

3 Understand the API

In this part you will be aware of what you can do with the APl and how to configure it.

3.1 General concept

This APl was designed to be very simple to use. You have two main entry points: The
speedCamsView and the AndroTag class.

You should not have to access other classes of the package API, and anyway, most of these
classes’ methods are protected, so you do not have access.

Take a look at the simplified class diagram in the next page:

optional

t

client APP

O

GPS informations

Tag

+Tag(lat: double, lon: double, headin
+done(): Tag
~+zComplete(): boolean

nt, speet

+5ection{lat: double, lon: double, heading: int, speed: int): Section

APT

O

AndroTagListener

Heartbeat

AndroTag

SpeedCams\View

+SpeedCamsview(context: Context): SpeedCamsView
+5peedCameview(context: Context, attrs: AttributeSet): SpeedCams\iew
+SpeedCamsview(context: Context, attrs: AttributeSet, defStyle: int): SpeedCams\View
+Hnit()

+setScannerExternalCirdeDesign{background: int, borderColor: int, borderThickness int)
+zetScannerInternalCirdeDesign(borderColor: int, borderThickness int)
+setScannerCrossDesign(color int, size int, thickness int)

int, headingThickness: int)
+zetFecConfDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setMscDesign(color: int, radius: int, ringColor: int, int, headingColor: int, headingThickness: int)
+setGhoDesign{color i

+zetSectionExitDesign(colol
+setScannerImage(img: int)
+setFscImage(img: int, topShowsHeading: boolean)
+zetFecConflmage(img: int, topShowsHeading: boolean)
+zetMzcImage(img: int, topShowsHeading: boolean)
+setholmage(img: int, topShawsHeading: boolean)
+setSectionEntryImage(img: int, topShowsHeading: boolean)
+zetSectionExitimage(img: int, topShowsHeading: boolean)
+zetAlarm{resID: int, delay: int, sllHeadings: boolean, a
+setVisibility(sllHeadings: boolean, allDirections boolean)
+buzz()

+refresh()

+ilterTagsList(tags: Arraylist<Tag:>): Arraylist<Tag>

int, ringColor: int, ringThickness: int, headingColo

ections: boolean)

< <static>>+getInstance(dient: Activity): AndroTag

+getDataStatus(): int

+getGpsStatus(): int

+getietworkStatus(): int

+getPosition(): Location

+getlat(): double

+getLon(): double

+getHeading(): int

+getSpeed(): int

+init_(username: String, password: String, dient: String, version: String, language: String, platform: String, lab: boolean): boolean
+sendTag(tag: Tag): boolean

+requestTags(): boolean

+requestTags(lat: double, lon: double): boolean

+getTags(): Arraylist<Tag>

+getSpeedCamsViewTags(): Arraylist<Tag>

+tagsAround(alHeadings: boolean, alDirections: boolean): boolean

+reateTag(): Tag

+sendSection(section: Section): boolean

+requestSections(): boolean

+requestSections(lat: double, lon: double): boalean

+getSections(): Arraylist<Section>
+sectionsAround(alHeadings: boolean,
+createSection(): Section
+addAndroTaglListener{listener: AndroTaglistener)

irections: boolean): boolean

ASyncRequest

+AsyncRequest(): ASyncRequest

Tools

DataBuffer

ServerProxy

/ +updateSpeedCamsViewBuffer()

+cheddSectionFreshness()
+statusChanged()

+positionChanged ()

+msgServer{cmd: String, msg: String, detal
+sectionUpdated(speed: String, timer: int)
+serverAnswer (requestEnded: boolean, cmd: String)

String)

O

FoxyTag server

As you can see, all classes are connected to Androtag class, because it is the Fagade of the
API. For example when you do an init, like api.init(...), the AndroTag class will only forward
this command to ServerProxy. Another example: When you ask androTag for DataStatus.
Such as api. getDataStatus(), the class will only forward the command to DataBuffer. In fact
you can see the AndroTag class as a router. It forwards your questions to the classes that
have the answer.

3.2 Events system

Because the AndroTag class is in the center of the API, it is its responsibility to take care of
the subscription and dispatch of events.

All kind of object you produce can subscribe to these events. In order to be able to do that,
they must implement the AndroTagListener interface. After that, you can subscribe by doing
this:

api.addAndroTagListener(YOUR_OBJECT);

Here is the content of the AndroTagListener interface:

msgServer (String cmd, String msg, String details)
Called each time the server sends a message.

positionChanged ()
Called each time the current position changed.

sectionUpdated (String speed, int timer)
Called each time the data about the current section is updated.

serverAnswer (boolean requestEnded, String cmd)
Called each time the server answer to a request or the request timed out.

statusChanged ()
Called each time that the status of the data, the GPS or the network changed.

3.3 The server communication

There are two different behaviors for the server communication:

- The init is a blocking method. That means that when you call it, your Ul will be
blocked until the server answer or the request times out. So take care when you use
it. It might be necessary to call this method on a different thread. We decided to do it
that way, because when we receive the Boolean result of the init method, we know
instantly if it was a success or not. As you know, the init must be correctly done in
order to automatically launch the APl mechanic. So it is a critical call.

- The other communication methods are parallels ones. For example: the method
requestTags().You can call these methods that usually start with “request” or “send”.
You will receive a boolean as answer, but unlike init method, this boolean does not
means that your request was successful. In this case, it only means that tha AP| was
able to launch the request. Only one request cans be send at a time, and as long as
this request has not ended or timed out, you will not be able to launch another
request. For example, if you call two times requestTags(), the first one will return you
true, but the second one will return you false. That means the first request has not
ended.

file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23msgServer%2528java.lang.String,%2520java.lang.String,%2520java.lang.String%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23positionChanged%2528%2529
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23sectionUpdated%2528java.lang.String,%2520int%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23serverAnswer%2528boolean,%2520java.lang.String%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23statusChanged%2528%2529

<™ “How can | know when my request ended?”
/ The API provides you an event for that:
L serverAnswer (boolean requestEnded, String cmd)
// The Boolean tells you if we got an answer form the server if true, or if the request
timed out if false. The cmd parameter tells you what command was launched to the
server. For example “tagpost” or “tagrequest”.

The API already use this system in order to know when we have received new tags (when
we receive this event with requestEnded at true, and cmd at “tagrequest”).
Try to never mix up the two concepts :

- Ask for new tags

- Get the new tags

For example for tags: If you want to obtain new tags, call requestTags(), and once you
receive the good requestEnded event, you can call getTags().
If you call getTags() before having called requestTags(), you will just get null.

If you want for any reason to update the tags of the tagBuffer, you just have to call
requestTags() because when a “tagrequest” answer from server is received, the tagBuffer
will automatically get the new tags just received.

Here is a simplified sequence diagram that explains how the parallel requests are done:

Obiect? ServerProxy WebServer

1 : launchRequest()

¥

q2: buildRequest()

3:create) | ASyncRequest

L

4 execute{request) - 5 : dolnBackground()

.
i \—L & : request()

7 answer()

&
¥

! 3 : onPostExecute()
3 ! handleRegquestResult{result)

all
-

10 : fireEvent()

file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html

4 Classes description

Here you will find a brief description of the main classes of the API that you have access to.
For more precise details, refer to the provided javadoc.

4.1 SpeedCamsView

The SpeedCamsView component is a highly customizable one. In the figure below, you can
see some customization examples:

As explained before, you can customize almost all the user interface of this component. If
instead of these circles (the radar without tags such as the left image above) you want to
provide your images, you can do so, but you must satisfy these requirements:

When specifying an image for the scanner, the image must be a square. The center of the
square will be the current user position, and tags will be displayed inside a circle with a
radius of 45% of the image height/width. The center of the image will be the center of the
circle.

The North sign will move around and outside this circle. The API do not require a specific
size for this square such as 400*400px or 300*300px because all the images provided will be
automatically resized in order to perfectly fit the screen, so all sizes are accepted.

As of today, the SpeedCamsView can only display normal speed camera and not sections
(average speed camera), because this functionality is not yet supported by the API.
These are the four speed camera types:

- Fixed

- Confirmed fixed

- Mobile

- Ghost

For each kind of speed camera you can specify your own design, change color, thickness,
display heading or not, and much more!

Like the radar, you can also specify images. But in this case, it is not necessary that the
image is a square, and the image is not resized, so provide the good sizes (there is no
default “good size” because all screens have different resolution, but just try and find the best
size).

10

The other customizable thing is that you can specify which kind of radar should be painted on
screen, and which ones should buzz (raise the alarm). These two settings are independent,
and a speed camera that is not displayed on screen can buzz.

You can chose to display only tags that have same heading as you (plus minus 45 degrees),
or/and tags that are in front of you (plus minus 45 degrees) or all the tags. When a tag is
painted on the screen, it will stay on the screen even if it does not satisfy anymore the
specifications (heading, direction ...).

This component is also responsible for making a sound when a speed camera is close. The
delay to make the sound before we reach the speed camera is customizable like the sound
itself. A tag can buzz only one time. If the tag quit the screen, and come back, then it can
buzz again.

The API will make a sound, but will not verify if the sound is enabled, or will not
check the sound volume. You have to verify the sound yourself. It would be a
good idea to be able to set the volume for the alarm, and to change the global
volume to this configured volume level during the alarm, and to set the volume to
the previous level when the alarm is done. This functionality can only be
implemented in the API, because the API has currently no way to inform you that
it will make a sound. Currently this functionality is not implemented. Maybe in a future
revision of the API. but as you have the sources, you can add this functionality by yourself.

4.2 AndroTag

The AndroTag is the main entry point for the API. With this class, you can have access to lot
of information: your current location, the data, GPS, network status, the tags around you, and
much more! Take a look at this class representation:

AndroTag

< <static final=>=+DATA_STATUS_GREEM: int = 1

< <static final==+DATA_STATUS_ORAMGE: int = 2
< <static final==+DATA_STATUS_RED: int = 3

< «static final=>=+GPS_STATUS_GREEN: int = 1

< <static final=>+GP5_STATUS_ORAMGE: int = 2

< <static final=>=+GP5_STATUS_RED: int = 3

< <static final==-HIETWORK_STATUS_FREE: int = 1
< «static final> = +HNETWORK_STATUS_BUSY: int = 2

< <static= =+getinstance(dient: Activity): AndroTag
+getDatastatus(): int

+getGpsstatus(): int

+getiMetworkStatus(): int

+getPosition(): Location

+getlat(): double

+getlon(): double

+getHeading(): int

+getSpeed(): int

+Hnit_({username: String, password: String, dient: String, version: String, language: String, platform: String, lab: boolean): boolean
+sendTaag(tag: Tag): boolean

+requestTags(): boolean

+requestTags(at: double, lon: double): boolean

+getTags(): Arraylist<Tag:>

+getSpeedCamsViewTags(): Arraylist<Tag =
+tagsaAround(aliHeadings: boalean, allDirections: boolean): boolean
+oreateTag(): Tag

+sendSection{section: Section): boolean

+requestSections(): boolean

+requestSections(lat: double, lon: double): boolean
+getSections(): Arraylist<Section >

+sectionsAround{alHeadings: boolean, allDirections: boolean): boolean
+oreateSection(): Section

+addAndroTaglistener({listener: AndroTaglistener)

11

In the class representation above, only public methods are represented, because you only
have access to them.
For a more complete description of this class and its methods, refer to the javadoc.

5 Conclusion

You have reached the end of this document, and if you read it all, you should have a good
comprehension of the API behavior, and what you can do with it. This API is designed in
order to simplify your development of a FoxyTag client. | truly hope it reach its goal, and
hope you will have pleasure to use it.

12

Appendix 4
Developer Guide

OOOOOOOOOOOOO

AndroTag API Developer Guide

Version: 2012-06-08

Contents
TINIrOAUCHION. ... 2
A O =R o 1= o =T 4 PRSP PPPPR PP 2
3 ClasSES AESCHPLIONuuuuiiiiiiiiti e aaaaaaae e aa e aaaeaaasaaaaassssassaanssnnsannssnnnnnnes 4
K I I Y g To [(o = o PP POPPPPPPPPPP 4
B A ODJECHVE ... 4
3.1.2 ReSPONSIDIlItIES ..o 4
3.1.3 Graphical representation................ccc 5
3.2 ANAroTagLISIENET ... e e e 5
K O o)=Y 2 (1Y PR PRR 5
3.2.2 Graphical representation.............ccooo e, 6
3.3 ASYNCREQUEST 6
3.3.T ODJECHIVE ...ttt e e e e e e e e e e e e e s 6
3.3.2 ReSPONSIDINLIES ..ccevviiiiiii e e 6
3.3.3 Graphical representation.............cccoo e, 6
3.4 DataBU el ... 6
B4 ODJECHVE ... 7
3.4.2 ReSpONSIDIlItIES ..o 7
3.4.3 Graphical representation..............ccccc 7
S5 HEAMBEAL ... 8
B 5.1 0DJECHVE ... 8
3.5.2 ResponSIbIlitieS ..o, 8
3.5.3 Graphical representation ... 8
3.8 SCHION . 8
3.6.T ODBJECHIVE ...ttt 8
3.6.2 RESPONSIDIITIES ... 9
3.6.3 Graphical representation ... 9
B ST Y= T4 o o)PP RERPR 9
.71 ODBJECHIVE ...ttt e e e e 9
3.7.2 RESPONSIDIITIES ..ceevviiiiii et e e 9
3.7.3 Graphical representation..............ooor i 10
3.8 SPEEACAMSVIBW ... 10
3.8.1 ODBJECHIVE ...t 10
3.8.2 ReSPONSIDIITIES ..ceevviiiii e e 10
3.8.3 Graphical representation.............coooreiiiiiii 11

3.9.1 ODBJECHVE ...ceeiieiiiee ettt e e e e e e e e e e e e e e eees 11
3.9.2 Responsibilities ... 11
3.9.3 Graphical representation..............cccco 12

B 0t 10 1T 12
3.10.1 ODJECHIVE .ottt e e e e e e e e e e e e e e e e n e e e e e e e e e e nrnnees 12
3.10.2 Graphical representation............cccoc oo 13
7= oY = L (=T 0 E TSP SERR 13

1 Introduction

If you plan to modify the API or to extend its functionality, continue its development, this
document is for you. In this document | will explain you how | build the API, what were the
choices | made, and why. Before reading this document, you should read the AndroTag API
User guide as well as the Server API.

2 Class diagram

In the next page you will find an almost complete class diagram of the API. Almost, because |
didn’t write all the variables of the SpeedCamsView (there are 56 variables which would
make the diagram unreadable). This diagram contains method signatures, Constants,
variables, and methods and variable visibility. | hope this will help you to have a global
visibility and understanding of the system.

optional

—

client APP

O

GPS informations

|

Tag

< <static final=>-+HIND_FIXED: int = 1

<<static final>>-+HIND_COMF_FIXED: int = 2

< <static final>>+KIND_MOBILE: int = 3

< <static final>>-+HIND_GHOST: int = 4

= «gtatic final>>-+IND_REMOVE: int =5

< <static final>>+DIRECTION_MIME: int = 1
<<static final> > +DIRECTION_OPPOSITE: int = 2
< <static final>>+DIRECTION_BOTH: int = 3
Hat: double = Double.NaM

+Hon: double = Double.NaM

+heading: int = -1

+speed: int =-1

+ind: int = -1

+direction: int = -1

+buzzed: boolean = false
+displayOnTheWholeSpeedCamsView: boolean = false

+Tag(lat: double, lon: double, heading: int, speed: int): Tag

#Tag(lat: double, lon: double, heading: int, speed: int, none: boolean): Tag
+done(): Tag

+sComplete(): boolean

[

O

AndroTaglistener

Section

< <static final>>-HIND_FIXED: int = 1

< <static final > > -HIND_REMOVE: int = 2
+Hat: double = Double.NaM

+Hon: double = Double.NaM

Hat2: double = Double.NaM

+Hon2: double = Double.NaM

+heading: int = -1

+speed: int =-1

Hidnd: int = -1

+heading2: in
+duration: int = -1

+5ection(lat: double, lon: double, heading: int, speed: int): Section

#Section{lat: double, lon: double, heading: int, lat2: double, lon2: double, heading2: int, duration: int): Section

SpeedCamsView

< «static>>+radarRange: int = 1000
< <static> > +viewRange: int = 200
<<static» > +imeBeforeBuzz: int = 5

+SpeedCamsView(context: Context): SpeedCamsView

+5peedCamsView({context: Context, attrs: AttributeSet): SpeedCamsView

+SpeedCamsView{context: Context, attrs: AttributeSet, defStyle: int): SpeedCamsView

Hnit)

+setScannerExternalCirdeDesign{badkground: int, borderColor: int, borderThickness int)
+setScannerInternalCirdeDesign(borderColor: int, borderThickness int)

+setScannerCrossDesign(color int, size int, thickness int)

+setFieldOfVisionDesign(color: int, show: boolean, thickness: int)

+setFscDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setFscConfDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setMscDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setGhoDesign{color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setSectionEntryDesign{color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setSectionExitDesign{color: int, radius: int, ringColor: int, ringThickness: int, headingCelor: int, headingThickness: int)
+setScannerImage(img: int)

+setFscImage(img: int, topShowsHeading: boolean)

+setFscConfimage(img: int, topShowsHeading: boolean)

+setMscImage(img: int, topShowsHeading: boolean)

+setGhalmage(img: int, topShowsHeading: boolean)

+setSectionEntryImage(img: int, topShowsHeading: boolean)

+setSectionExitimage(img: int, topShowsHeading: boalean)

+setalarm{resID: int, delay: int, alHeadings: boolean, allDirections: boolean)

+setvisibility(alHeadings: boolean, allDirections boolean)

+buzz()

+refresh()

-drawRadar(canvas: Canvas, radar: Tag)

-drawRadarHeading{canvas: Canvas, radar: Tag)

-metersToPx(meters: double): double

-myDirectionToMNorth(direction: double): double

-angleMorth{angle: int)

+HilterTagsList(tags: Arraylist<Tag=): Arraylist<Tag=

AP

AndroTag

I

Heartbeat

<<static final> > +DATA_STATUS_GREEM:int=1

< <static final> > +DATA_STATUS_ORANGE: int = 2
<<static final> > +DATA_STATUS_RED: int = 3
<<static final> > +GPS_STATUS_GREEM: int =1
<<static final> > +GPS_STATUS_ORANGE: int = 2

< <static final>>+GP5_STATUS_RED: int =3
<<static final> > HIETWORK_STATUS_FREE: int = 1
< <static final> > +HNETWORK_STATUS_BUSY:int = 2
< <static> »-instance: AndroTag = null

disteners: ArraylList<AndroTaglistener > = new Arraylist<AndroTaglistener=()

-servProxy: ServerProxy = null
ocManager: LocationManager = null
“heartBeat: HeartBeat = null

#dient: Activity = null

-databuffer: DataBuffer = null

<<final>>-GPS_ORANGE_LIMIT: int = 75
<<final>>-GPS_GREEM_LIMIT: int = 35
<<static> »>-instance: HeartBeat = null
#ourrentPosition: Location = null

#gpsStatus: int = AndroTag.GPS_STATUS_RED
-hasGpsFix: boolean = false
HastknownLocationTimeMillis: double = 0

-HeartBeat{locMan: LocationManager): HeartBeat

< <static>>+getnstancelocMan: LocationManager): HeartBeat
+onLocationChanged({location: Location)

+onProviderDisabled (provider: String)

.| +onProviderEnabled{provider: String)
+onStatusChanged(provider: String, status: int, extras: Bundle)
+onGpsStatusChanged(event: int)

-AndroTag(dient: Activity): AndroTag
< <static> »+getinstance(dient: Activity): AndroTag
< «gtatic> > #getinstance(): AndroTag
+getDataStatus(): int
+getGpsStatus(): int
+gethletworkStatus(): int
+getPosition{): Location

+getlat(): double

+getlon(): double

+getHeading(): int

+getSpeed(): int

+init_({username: String, password: String, dient: String, version: String, language: String, platform: String, lab: boolean): boolean

+sendTag(tag: Tag): boolean

+requestTags(): boolean

+requestTags({lat: double, lon: double): boolean

+getTags(): ArrayList<Tag>

+getSpeedCamsViewTags(): Arraylist<Tag>
+tagsAround(alHeadings: boolean, allDirections: boolean): boolean
+oreateTag(): Tag

+sendSection(section: Section): boolean

+requestSections(): boolean

+requestSections(lat: double, lon: double): boolean
+getSections(): ArrayList<Section=

+sectionsAround(alHeadings: boolean, allDirections: boolean): boolean
+oreateSection(): Section

+addAndroTaglistener (istener: AndroTaglistener)
#firePositionChanged()

#fireStatusChanged()

#fireMsgServer(cmd: String, msg: String, details: String)
#fireSectionUpdated(speed: String, timer: int)

#fireServerAnswer (requestEnded: boolean, cmd: String)

ASyncRequest

+AsyncRequest(): ASyncRequest
#doInBackground(urls: String[]): BufferedReader
#onPostExecute(result: BufferedReader)

Tools

+round{val: double, nbDigits: int): double

+haversine(lat1: double, lon1: double, lat2: double, lon2: double): double
HatitudeFromAPoint{bearing: double, dist: double, lat: double): double

HongitudeFromAPoint{bearing: double, distance: double, lon: double, lat: double, nextLat: double): double

+metersToKlometers(distance: double): double
+HmhToMs{kmh: double): double
+ooordX{angle: double, hyp: double): int
+coordY(angle: double, hyp: double): int

+direction{lati: double, loni: double, lat2: double, lon2: double): double

+angle(x: double, y: double): double
+resizelmage(img: Bitmap, widhtImg: int): Bitmap
+rotateImage(jimg: Bitmap, degrees: int): Bitmap
+timeToReach{distance: double, speed: int): double

DataBuffer

ServerProxy

< <final > >-SERVER_ADDRESS: String = http: /fwww.foxytag. com/php/doget.php
< <final = >-LAB_SERVER_ADDRESS: String = http://www. foxytag.com/php/dogetiab. php
< «gtatic> =-instance: ServerProxy = null

-androtag: AndroTag = null

-username: Siring

-password: String

-client: String

~yersion: String

Hab: boolean = false

-nitDone: boolean = false

HastCall: String

+networkStatus: int = AndroTag. NETWORK_STATUS_FREE

#tags: ArrayList<Tag> = null

#sections: Arraylist<Section> = null

#latTags: double = -1

#lonTags: double = -1

<<final>>=-TAG_REQUEST_RADIUS: int = 7250
<<final>>-TAG_REQUEST _DELAY_SECURITY: int = 300
<<static >-nstance: DataBuffer = null

#tags: ArrayList<Tag> = null
#tagsSpeedCamsView: Arraylist<Tag> = null
#sections: Arraylist<Section> = null

-androTag: AndroTag = null

-srv: ServerProxy = null

#dataStatus: int = AndroTag.DATA_STATUS_RED
HastUpdatePosition: Location = null

atCenter: double = -1

HonCenter: double = -1

HatViewUpdate: double = -1

HonViewUpdate: double = -1

-DataBuffer{androTag: AndroTag): DataBuffer

< «static> > #getlnstance({androTag: AndroTag): DataBuffer
-checkStartupDataPresence(): boolean
-checkTagsFreshness()

-refreshTags()

“HupdateSpeedCamsViewBuffer()
+chedkSectionFreshness()
“ManageDataStatus{newStatus: int)
+statusChanged()

+positionChanged()

+msgServer(cmd: String, msg: String, details: String)
+sectionlpdated(speed: String, timer: int)
+serverAnswer({requestEnded: boolean, cmd: String)

-ServerProxy({androtag: AndroTag): ServerProxy

< <static=>#getInstance(androTag: AndroTag): ServerProxy

< <static = #getlnstance(): ServerProxy

#handleR equestResult{result: BufferedReader)

#launchRequest{address: String): BufferedReader

#init(username: String, password: String, dient: String, version: String, language: String, platform: String, lab: boolean): boolean
#requestTags{at: double, lon: double): boolean

#postTag(tag: Tag, force: boolean): boolean

#requestSections(at: double, lon: double): boolean

#postSection{section: Section): boolean

3

O

FoxyTag server

3 Classes description

In this section, | will explain you the responsibilities of each class, what they do, why and
how.

3.1 AndroTag

This class is the main entry point for client application. They should use only this class to
access API services. This class is the result of the implementation of the Facade
architectural pattern, and is also the privileged path of communication through the API. If you
develop a new component for the API, and want to access to other component services like
for example position, you should always use a function from AndroTag that can provide you
what you want. And if you develop new services, make them available from AndroTag

3.1.1 Objective

This class has for objective to simplify the usage of the API for clients. It also has for
objective to reduce communication paths by becoming an obligatory path to obtain the
services.

3.1.2 Responsibilities

The main responsibility of this class is to build the API. As almost all classes are singleton,
and only AndroTag. getinstance is called, it is the responsibility of AndroTag to instantiate
and refer each APl components. As AndroTag is in the center of the API, It also has the
responsibility to manage the Event system. If you want to subscribe to API’'s events, there is
a method in AndroTag that allows that. This method is called addAndroTagListener and is
public, because client’'s apps should want to listen these events. In opposite, the action to
launch events should only be available to the API. API classes that want to launch events,
can call fireEVENT_NAME methods of AndroTag. These methods are protected, because
only the API can launch API’s events.

3.1.3 Graphical representation

AndroTag

< <gtatic final>>+DATA_STATUS_GREEM: int =1

< <static final==+DATA_STATUS_ORANGE: int = 2
< <gtatic final>>+DATA_STATUS _RED:int =3

< <static final=>=+GP5_STATUS_GREEM: int = 1

< <gtatic final>>+GPS_STATUS_ORANGE: int = 2

< <static final=>=+GP5_STATUS _RED:int=23

< <gtatic final> > +HNETWORK_STATUS_FREE:int=1
< <static final == -+HNETWORK_STATUS_BUSY: int = 2
< <gtatic> »-nstance: AndroTag = null

Histeners: ArrayList<AndroTaglistener = = new Arraylist<AndroTaglistener =)
-servProxy: ServerProxy = null

JocManager: LocationManager = null

-heartBeat: HeartBeat = null

#dient: Activity = null

-databuffer: DataBuffer = null

-AndroTag(dient: Activity): AndraTag

< <gtatic> > +getlnstance(dient: Activity): AndroTag

< <gtatic> > #getlnstance(): AndroTag
+getDatastatus(): int

+getGpsStatus(): int

+getMetworkStatus(): int

+getPosition(): Location

+getlat(): double

+getlon(): double

+getHeading(): int

+getSpeed(): int

+Hnit_{username: String, password: String, dient; String, version: String, language: String, platform: String, lab: boolean): boolean
+sendTag(tag: Tag): boolean

+requestTags(): boolean

+requestTags{at: double, lon: double): boolean
+getTags(): Arraylist<Tag=
+getSpeedCamsViewTags(): Arraylist<Tag:=
+tagsaAround(alHeadings: boolean, allDirections: boolean): boolean
+reateTag(): Tag

+sendSection(section: Section): boolean
+reguestSections(): boolean

+requestSections(lat: double, lon: double): boolean
+getSections(): Arraylist<Section =
+sectionsAround(alHeadings: boolean, allDirections: boolean): boolean
+oreateSection(): Section
+addAndroTaglistener(istener: AndroTaglistener)
#firePositionChanged()

#fireStatusChanged()

#fireMsgServer{cmd: String, msg: String, details: String)
#fireSectionUpdated(speed: String, timer: int)
#fireServerAnswer (requestEnded: boolean, cnd: String)

3.2 AndroTagListener

This interface define the requirements classes must satisfy in order to be able to subscribe
API’s events

3.2.1 Objective

Define the methods that any class that want to subscribe to API's events must satisfy.

3.2.2 Graphical representation

< <interface>>
AndroTaglListener

+statusChanged()

+positionChanged()

+msgServer(cmd: String, msg: String, details: String)
+sectionUpdated(speed: String, timer: int)
+serverAnswer(requestEnded: boolean, cmd: String)

3.3 ASyncRequest

This class extends AsyncTask and is a parallel task.

3.3.1 Objective

This class objective is to launch requests to the server on another thread

3.3.2 Responsibilities

The responsibility of this class is to build and launch a request provided as a String and to
receive the result. It also has the responsibility to forward the result to ServerProxy class.

3.3.3 Graphical representation

ASyncRequest

+AsyncRequest(): ASyncRequest
#doInBackground(urls: String[]): BufferedReader
#onPostExecute(result: BufferedReader)

3.4 DataBuffer

This class keeps in memory the tags around the user and tries to always have up to date
tags

3.4.1 Objective

The main objective of this class is to automatically take in consideration the user’s moves in
order to always have good tags around the user. This class implements algorithms in order
to optimize connections. For more info, refer to the dedicated section in the ServerAPI
document.

3.4.2 Responsibilities

This class has the responsibility to keep up to date tags in memory. These tags should be
around the user, and tags that are displayed on screen should always be up to date.

This class has the responsibility to provide the tags that should be displayed on screen.

It has the responsibility to request new tags when we are leaving the protected zone (see
Server API if you don’t understand this word)

3.4.3 Graphical representation

DataBuffer

< <final>>-TAG_REQUEST_RADIUS: int = 7250
<<final>>-TAG_REQUEST_DELAY_SECURITY: int = 300
< <static>>-instance: DataBuffer = null

#tags: Arraylist<Tag> = null
#tagsSpeedCamsView: Arraylist<Tag> = null
#sections: ArrayList<Section> = null

-androTag: AndroTag = null

-sry: ServerProxy = nul

#dataStatus: int = AndroTag.DATA_STATUS_RED
-lastUpdatePosition: Location = null

-latCenter: double = -1

-lonCenter: double = -1

-latViewUpdate: double = -1

-lonViewUpdate: double = -1

-DataBuffer(androTag: AndroTag): DataBuffer

< <static>>#getInstance(androTag: AndroTag): DataBuffer
-checkStartupDataPresence(): boolean
-checkTagsFreshness()

-refreshTags()

+updateSpeedCamsViewBuffer()
+checkSectionFreshness()
-ManageDataStatus({newStatus: int)
+statusChanged()

+positionChanged()

+msgServer{cmd: String, msg: String, details: String)
+sectionUpdated(speed: String, timer: int)
+serverAnswer(requestEnded: boolean, cmd: String)

3.5 HeartBeat

This class manages the GPS and like its name indicates is the heart of the system: it gives
the impulsions.

3.5.1 Objective

Abstraction layer between the GPS and the API. It provides GPS information.

3.5.2 Responsibilities

Provide GPS information, launch GPS API events such as positionChanged(). It also has
the responsibility to verify that the last tag request was done less than 5 minutes ago. If it is
not the case, it will request new tags in order to have compliance with Server API
recommendations.

3.5.3 Graphical representation

Heartbeat

< <final>>-GPS_ORANGE_LIMIT: int = 75

< <final>>-GPS_GREEN_LIMIT: int = 35

< <static> >-instance: HeartBeat = null
#currentPosition: Location = null

#gpsStatus: int = AndroTag.GPS_STATUS_RED
-hasGpsFix: boolean = false
-astKnownLocationTimeMilis: double = 0

-HeartBeat(locMan: LocationManager): HeartBeat

< <static>>+getlnstance(locMan: LocationManager): HeartBeat
+onLocationChanged(location: Location)
+onProviderDisabled(provider: String)
+onProviderEnabled(provider: String)
+onStatusChanged(provider: String, status: int, extras: Bundle)
+onGpsStatusChanged(event: int)

3.6 Section

This class is the representation of an average speed camera. As of today it is useless,
because the average speed camera functionality is not completely implemented in the API.

3.6.1 Objective

Numerical representation of a section

3.6.2 Responsibilities

Not implemented yet

3.6.3 Graphical representation

Section

< <static final>>+KIND_FIXED: int = 1
<<static final>>+KIND_REMOVE: int = 2
+lat: double = Double.NaN

+lon: double = Double.NaM

+lat?2: double = Double.NaN

+lon2: double = Double.NaN
+heading: int = -1

+speed: int = -1

+kind: int = -1

+heading2: int = -1

+duration: int = -1

+Section(lat: double, lon: double, heading: int, speed: int): Section
#Section(lat: double, lon: double, heading: int, lat2: double, lon2: double, heading2: int, duration: int): Section

3.7 ServerProxy

This class manages global communication with server and parses the results. This class
reflects the implementation of the Proxy pattern. All the communication with the server
should pass through this class.

3.7.1 Objective

Restrict communication path, have a control of the communication with the API, and allow
only one request at a time. It also has the responsibility to keep in memory the username,
password, client version and server used. These parameters are specified by the client when
it calls the init method.

3.7.2 Responsibilities

Launch ASyncRequests, handle and parse the results, know the network state (busy or free),
launch corresponding events when an answer or message is received from the server.

3.7.3 Graphical representation

ServerProxy

<<final>>-SERVER_ADDRESS: String = http://www.foxytag.com/php/doget.php
<<final>>-LAB_SERVER_ADDRESS: String = http://www.foxytag.com/php/dogetiab.php
<<static>>-instance: ServerProxy = null

-androtag: AndroTag = nul

-username: String

-password: String

-client: String

-version: 5tring

-lab: boolean = false

-initDone: boolean = false

-lastCall: String

+networkStatus: int = AndroTag.NETWORK_STATUS_FREE

#tags: Arraylist<Tag> = nul

#sections: ArrayList<Section> = nul

#latTags: double = -1

#lonTags: double = -1

-ServerProxy(androtag: AndroTag): ServerProxy

< <static> > #getlnstance(androTag: AndroTag): ServerProxy

< <static> > #getInstance(): ServerProxy

#handleRequestResult(result: BufferedReader)

#launchRequest(address: String): BufferedReader

#init{username: String, password: String, client: String, version: String, language: String, platform: String, lab: boolean): boolean
#requestTags(lat: double, lon: double): boolean

#postTag(tag: Tag, force: boolean): boolean

#requestSections(lat: double, lon: double): boolean

#postSection(section: Section): boolean

3.8 SpeedCamsView

This class displays the tags on screen. It is highly customizable.

3.8.1 Objective

Provide to the client a component that, when used with the API, can automatically display
tags around you during your trip.

3.8.2 Responsibilities

Make a sound (buzz) when approaching a tag. Restrict the tags displayed depending on
some parameters.

10

3.8.3 Graphical representation

SpeaedCamsView

< <static==+radarRange: int = 1000
<< static>>+viewRange: int = 200
= <static=>+timeBeforeBuzz: int = 5

+SpeedCamsView(context: Context): SpeedCamsView

+SpeedCamsView(context: Context, attrs: AttributeSet): SpeedCamsView

+SpeedCamsView(context: Context, attrs: AttributeSet, defStyle: int): SpeedCamsView

+init()

+setScannerExternalCircleDesign(background: int, borderColor: int, borderThickness int)
+setScannerinternalCircleDesign{borderColor: int, borderThickness int)

+setScannerCrossDesign(color int, size int, thickness int)

+setField OfvVisionDesign{color: int, show: boolean, thickness: int)

+setFscDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setFscConfDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, heading Thickness: int)
+setMscDesign({color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setGhoDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headinoThickness: int)
+setSectionEntryDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setSectionExtDesign(color: int, radius: int, ringColor: int, ringThickness: int, headingColor: int, headingThickness: int)
+setScannerImage(ima: int)

+setFscImagelima: int, topShowsHeading: boolean)

+setFscConfImaae(imag: int, topShowsHeading: boolean)

+setMscImage(ima: int, topShowsHeading: boolean)

+setGholmage(ima: int, topShowsHeading: boolean)

+setSectionEntryImage(imag: int, topShowsHeading: boolean)

+setSectionExitImage(ima: int, topShowsHeading: boolean)

+setAlrm(resID: int, delay: int, allHeadings: boolean, alDirections: boolean)

+setVishility(alHeadings: boolean, alDirections boolean)

+buzz(}

+refresh(}

-drawRadar(canvas: Canvas, radar: Tag)

-drawRadarHeading(canvas: Canvas, radar: Tag)

-metersToPx(meters: double): double

-myDirection ToMorth(direction: double): double

-angleMorth(angle: int)

+ilterTagsList(taas: ArraylList<Taag=): ArraylList<Tags>

As explained at the top of this document, | didn’t write any of the variables (there are 56
variables that would make the diagram unreadable).

3.9 Tag

This class is the representation of a speed camera.

3.9.1 Objective

Numerical representation of a speed camera
3.9.2 Responsibilities

Know the kind of speed camera it is, know its latitude, longitude, heading. It also has to know
if it already has buzzed, and if it is on the screen.

11

3.9.3 Graphical representation

Tag

< <static final>>+KIND_FIXED: int = 1

< <static final>>+KIND CONF_FIXED: int = 2

< <static final>>+KIND_MOBILE: int = 3

< <static final>>+KIND_GHOST: int = 4

< <static final>>+KIND_REMOVE: int = 5

< <static final>>+DIRECTION_MINE: int = 1

< <static final>>+DIRECTION_OQOPPOSITE: int = 2
< <static final>>+DIRECTION_BOTH: int = 3
+lat: double = Double.NaN

+lon: double = Double.NaN

+heading: int = -1

+speed: int = -1

+kind: int = -1

+direction: int = -1

+buzzed: boolean = false
+displayOnTheWholeSpeedCamsView: boolean = false

+Tag(lat: double, lon: double, heading: int, speed: int): Tag

#Tag(lat: double, lon: double, heading: int, speed: int, none: boolean): Tag
+clone(): Tag

+isComplete(): boolean

3.10 Tools

This class is a bunch of tools.

3.10.1 Objective

Provide useful tools for use inside and outside the API

12

3.10.2 Graphical representation

Tools

+round(val: double, nbDigits: int): double

+haversine(lat1: double, lon1: double, lat2: double, lon2: double): double
+latitudeFromAPoint(bearing: double, dist: double, lat: double): double
+longitudeFromAPoint(bearing: double, distance: double, lon: double, lat: double, nextLat: double): double
+metersToKilometers(distance: double): double

+KmhToMs(kmh: double): double

+coordX(angle: double, hyp: double): int

+coordY(angle: double, hyp: double): int

+direction(latl: double, lon1: double, lat2: double, lon2: double): double
+angle(x: double, y: double): double

+resizelmage(img: Bitmap, widhtImg: int): Bitmap

+rotateImage(img: Bitmap, degrees: int): Bitmap

+timeToReach(distance: double, speed: int): double

4 General remarks

If you want to continue the development, try to respect the two architectural patterns |
implemented, and try to always think about responsibility. Responsibilities should not be
shared between classes/component. This would make the code unreadable, and the reverse
engineering would become very difficult.

Good luck !

13

	1
	ServerAPI
	Srappendix2
	XFoxy Challenge Trip
	Zappendix3
	zzAndroTag API User Guide
	zzappendix4
	zzzAndroTag API Developer Guide

