

Bachelor

G

Ad

r work carr

Geneva S

dvance

ried out in

Info

Bac

Peter DA

Miche

Car

chool of b

Busines

ed API

n order to

ormation S

by :

Loïc POI

chelor work

AEHNE, H

el DERIAZ,

rouge, 8 J

business A

ss Compu

for Fox

obtain the

Systems

ISOT

advisers :

HES profes

, supervis

une 2012

Administr

uter Scien

xyTag

e Bachelo

ssor

or

ation (HEG

ces

or of Scien

G-GE)

nce in

Advanced API for FoyTag
POISOT, Loïc i

Declaration

This Bachelor work is done in the context of the final exam of the Geneva school of

business administration, in order to obtain an HES bachelor degree in Business

computer sciences. The student accepts, if applicable, the privacy statement. The use

of the conclusions and recommendations written down in this report, without foreseeing

their value, do not commit either the responsibility of the author, or that of the Bachelor

work adviser, the member of the jury and the Geneva school of business

administration.

« I certify having worked alone for the present work, without having used other sources

than those quoted into the bibliography. »

 Done in Carouge the 8 June 2012

 Loïc POISOT

Advanced API for FoyTag
POISOT, Loïc ii

My thanks

First of all I would like to thank Michel Deriaz for the provided bachelor subject, and

more importantly, for the opening spirit he had about my propositions, and the good

appreciation of my remarks.

I would also like to thank Peter Daehne for the trust he had in me, for the freedom he

let me. It was very important for me to have this freedom and this confidence, because

I cannot work without. I also want to thank him for the continuous support he provided

me in difficult moments, and for his encouraging words.

I want to thank my friends and family that helped me when I was out of time and give

me a little part of their precious time.

My last thanks go to Yves and Marc for their happiness and for this team spirit. I would

also say a special thanks to Anja Bekkelien who provided me a special support, and for

the English correction of the document.

To all of you, Sincerely, Thank you.

Advanced API for FoyTag
POISOT, Loïc iii

Summary

This bachelor work will guide you through the secrets of reverse engineering, and the

creation of an API.

Firstly the main project was to add functionality to an existing “API”. I quickly

discovered that this was not an API, we had to dissociate the API and the application. I

tried for some time to do that, but I also discovered that it would not be interesting; time

consuming and very difficult to create a good API using this starting point, because

there were some strong architectural problems.

Here came the most interesting part of the work: Create form scratch a whole new API

that was designed to be very easy to use, easily maintainable, easily extendable,

strong, robust, and autonomous.

I used all my knowledge and tried to do my best to give to the public the best API I

could give.

I hope I successfully achieved this objective.

Advanced API for FoyTag
POISOT, Loïc iv

Table of Contents

Declaration .. i

My thanks... ii

Summary ... iii

Table of Contents ... iv

List of Tables .. vi

List of Figures .. vi

Introduction ... 1

1. The project methodology: Scrum .. 2

1.1 Introduction .. 2
1.2 Definition ... 2
1.3 The Scrum Team .. 3
1.4 Using scrum ... 4

2. Improving the Current API ... 6

2.1 Class diagram ... 6
2.2 Problems found .. 7
2.3 Rethinking the API ... 9
2.4 The wrong start .. 10

3. Foxy Challenge Trip .. 11

4. The new API .. 12

4.1 How to start? .. 12
4.2 The architecture ... 14

4.2.1 The process to define it ... 14
4.2.1.1 Identify the responsibilities ... 14
4.2.1.2 Regroup functionalities and create the Class responsibilities
collaboration cards .. 16

4.3 Building the API ... 19

4.3.1 The implemented patterns .. 19
4.3.2 The event system .. 22
4.3.3 The ServerProxy ... 23

4.3.3.1 The AsyncRequest ... 24
4.3.3.2 The Event System .. 25

4.3.4 The SpeedCamView ... 25
4.3.4.1 Rotation of the north sign ... 26

4.3.5 The DataBuffer .. 29
4.3.5.1 Description ... 29
4.3.5.2 Get new Tags ... 29
4.3.5.3 Optimize connections ... 30
4.3.5.4 Compute / anticipate the future user position 31
4.3.5.5 Verifying that the DataBuffer works correctly 32

4.4 Document the API .. 35
4.4.1.1 The UserGuide ... 35

Advanced API for FoyTag
POISOT, Loïc v

4.4.1.2 The DeveloperGuide .. 35
4.4.1.3 The javadoc .. 35

Conclusion and future work ... 36

Webography .. 37

Advanced API for FoyTag
POISOT, Loïc vi

List of Tables

Table 1 Problems, incoherence, and improvements of the current API 7

Table 2 Lines of code comparison between Henri’s work and mine 10

List of Figures

Figure 1 Scrum process .. 2

Figure 2 Timeline .. 3

Figure 3 Class diagram of Henri’s “API” ... 6

Figure 4 Road to take for Foxy challenge trip .. 11

Figure 5 Speed cams on the way ... 12

Figure 6 Multi access problem .. 19

Figure 7 The facade pattern ... 20

Figure 8 multiple remote server access .. 21

Figure 9 with proxy pattern ... 21

Figure 10 Sequence diagram for server communication .. 24

Figure 11 Example of SpeedCamsView ... 26

Figure 12 The north sign problem ... 27

Figure 13 How text is printed .. 27

Figure 14 Optimizing connections .. 30

Figure 15 The DataBuffer validation ... 34

Figure 16 Javadoc with Stylesheet ... 36

Advanced API for FoyTag
POISOT, Loïc 1

Introduction

During the summer of 2011, a student, Henri La, carried out a bachelor work studying

location based advertisement in speed camera mobile applications. To accomplish his

work, he developed some Android applications based on the FoxyTag system.

The idea of an Android FoxyTag client API that allows building FoxyTag applications

more easily and quickly began to grow in the mind of Michel Deriaz (Director of

FoxyTag).

This is the birth of my bachelor work. My main objectives were to modify Henri’s work

in order to build a professional quality API that could be used in the industry. It is a

huge task to think about how an API should be, and to make the good choices between

simplicity, capabilities and modifiability. In addition to Henri’s work, I had the objectives

to add sections (average speed camera) support, and offline mode. If I had had time, I

would also have studied how to provide / build a turn to turn navigation system.

I began by studying Henri’s work, and I tried to find out how it could be modified in

order to become a good and independent API. The output was a list of problems and

recommendations to apply in order to make Henri’s work easier to understand.

I tried to apply these recommendations, but it quickly appeared to me that it would be

incredibly difficult to carry out reverse engineering on Henri’s Work.

I tried several approaches in order to reuse huge pieces of functional code, but I

discovered that responsibilities were not clearly established, there was no

documentation, and the components had low coherence and strong coupling, which

made chances of reusability quite low.

With this observation, I decided it would be best to start from “scratch”.

Ad
PO

1

1

D

W

Sc

m

or

pr

ap

O

of

Th

Re

an

fro

1

He

dvanced API f
OISOT, Loïc

. The p

.1 Introd

uring this p

What is Scru

crum is one

methods) to

rientation ch

roject, and i

ppear, and

ne of the m

f software a

he timeline

eleases rep

nd at each

om 1 to 4 w

.2 Defin

ere I am go

for FoyTag

project m

duction

roject I was

m?

e of the ag

 reduce th

hanges or n

if it does no

to react acc

main points

at the end of

of the scrum

present hug

release end

weeks.

nition

oing to expla

method

s involved w

ile manage

he time th

new require

ot help to pre

cordingly.

of scrum is

f each sprin

m methodo

ge amounts

d, you can

ain some of

S

ology: S

with a Scrum

ement meth

hat develop

ements. Scr

event delay

s that you ca

nt.

logy is com

s of time (th

expect to s

f the key ter

Figure

Scrum pro

Scrum

m methodolo

hodologies.

pment team

rum also en

ys, it helps t

an expect d

mposed of re

hey usually

see a big pr

rms and con

e 1

ocess

ogy and in a

Its goal is

ms need to

nsures a cle

to detect the

deliverables

eleases that

contains fr

rogression.

ncepts of sc

credits : La

a Scrum tea

(like all oth

o react to

ear overvie

em as soon

s/working in

t contain sp

rom 2 to 4

Sprints usu

crum.

akeworks from

2

am.

her agile

client’s

ew of the

n as they

ncrement

prints.

sprints),

ually last

m wikipedia

Advanced API for FoyTag
POISOT, Loïc 3

Sprint: A small amount of time, usually between 1 and 4 weeks.

Story: A job to do. Can be one of these: user story, technical story, and study story.

 User story came from use cases for example

 A technical story can be for example building the virtual development
machine

 A study story can be the fact of learning a technology, reading reports …

Product Backlog: A list that contains all the project/product stories. This list is always

updated and is not definitive.

Sprint Backlog: Like the Product backlog, it is a list of stories. But all these stories

should be achieved during the corresponding sprint.

1.3 The Scrum Team

During this project I was involved in a Scrum team composed of: Michel Deriaz, Anja

Bekkelien, Marc Falcy, and Yves Grasset.

The scrum team is composed of different roles:

- The product owner is like the customer of the team. He is not the customer,

but can be identified as the link between the team and the customer. He is

responsible for writing down user Stories, priorities them and add them to the

product backlog. The product owner can be part of the development team, but it

is not recommended.

- The scrum master is like the angel of the team. He tries to ward off distractions

and sort out the problems of the work/team circle. He is responsible for the

team respecting the Scrum methodology and respecting it’s philosophy

- The development team is the rest of the team working on projects.

Ideally, we should have one team, one product owner, and one scrum master for each

project. It is not recommended that the scrum master and the product owner be the

same person.

Ad
PO

He

Yv

sc

1

Fo

I a

of

At

am

Th

Th

de

in

O

Sa

At

ba

At

pr

wo

no

pr

dvanced API f
OISOT, Loïc

ere, becaus

ves and I a

crum maste

.4 Using

or us the sp

am writing t

f the 2nd rele

t the start

mount of tim

he Product

he Sandbo

eveloper loo

 order to m

wner and t

andbox are

t the end o

acklog for th

t the beginn

revious spri

ork that wa

ot by us. Th

resent the fi

for FoyTag

se we are a

are part of

er and produ

g scrum

prints were 2

these words

ease.

of the proj

me allocated

Owner def

ox is a tem

oks at the s

modify, re-e

the develop

 moved to t

of each spr

he next spri

ning of eve

int, and the

s done dur

his is to en

inished stor

a small team

the team a

uct owner.

2 weeks lon

s, we are th

ject, we de

d to the bac

fines the st

mporary pla

stories and

evaluate, or

per agree o

the product

int, each de

int.

ery sprint, w

e sprint plan

ing the last

sure that M

ries and the

m, and we

as the deve

ng. You can

he 8th of Ma

Figure

Timeli

efined the

chelor work.

ories on his

ace where

validates th

r divide the

on the conte

backlog.

eveloper co

we do the M

nning for th

sprint. The

Michel has u

e ones that

all work on

elopment te

n see here h

ay, so my cu

e 2

ne

length of t

.

s own, and

stories wai

hem or disc

em in differ

ent of the S

omes to Mi

Monday mo

his sprint. In

e work is pre

understood

need to be

different pr

eam. Miche

how my time

urrent sprint

he releases

 places the

iting validat

usses with

rent parts.

Sandbox, a

ichel, in ord

rning the s

n this meeti

esented by

well what w

reported in

rojects, Anj

el plays the

e was alloc

t is sprint n

s according

em in the S

tion are ke

the Produc

When the

all the storie

der to fill th

sprint review

ing, we pre

Michel Der

we have do

the next sp

4

a, Marc,

e part of

cated. As

umber 3

g to the

Sandbox.

ept. The

ct Owner

Product

es in the

he sprint

w for the

esent the

riaz, and

one. We

print.

Advanced API for FoyTag
POISOT, Loïc 5

After this presentation, Michel introduces the stories of each project for the next sprint.

We discuss them, and for each one, we play planning poker: we all have cards with

numbers (a Fibonacci sequence), and we vote one time for each story. By doing that,

we can compare the time estimated by different people, ensure that the story is

understood by everyone and discuss to reach an agreement on good time estimation.

Every morning at 9am there is a daily 15 minutes scrum. During this daily scrum, the

whole team is present, and we basically answer one by one these questions:

- What did I do yesterday?

- What will I do today?

- What are the problems I encountered?

This way we can know who have problems, detect delays rapidly, and react in

consequence.

Ad
PO

2

I

un

un

2

In

go

dvanced API f
OISOT, Loïc

. Impro

started my

nderstand h

nderstand h

.1 Class

n order to b

ood start to

for FoyTag

oving th

y work try

how this “AP

his code.

s diagram

etter under

identify the

he Curre

ying to imp

PI” was buil

m

rstand Henr

e different cl

Class di

ent API

prove Henr

lt, and learn

ri’s work, I d

lasses, resp

Figure

iagram of

ry’s “API”.

n to think lik

decided tha

ponsibilities

e 3

Henri’s “A

The first

ke Henry in

at a class d

s and collab

API”

challenge

 order to be

diagram wo

borations.

6

was to

e able to

uld be a

Advanced API for FoyTag
POISOT, Loïc 7

2.2 Problems found

After a superficial code mining, I found some incoherence, problems, and

improvements to carry out.

Hereunder, you will find both the problems encountered and the potential

improvements:

Table 1

Problems, incoherence, and improvements of the current API

Class utility Accessibil
ity

Remarks Requires

APIAndroTag Main entry
point that
the client

app will use

Public Is actually the main
entry point for the
API. This should

become the unique
entry point

STagActivity
TagBuffer

ConnectToFoxy
Tag

EtatUI
GlobalParams
ListenerGPS

Radar
RTools

STagActivity
TagBuffer

ConnectToFoxy
Tag

Manage the
communicat
ion with the

server

Public 3 functions uses the
same code -> DRY

(don’t repeat
yourself) -> factorize

the code.
Create a method
that allows you to
launch a request

specified in
parameter, and to

get the result String

Radar

EtatUI Store the UI
state

Public Name in French

Error messages
hardcoded

ConnectToFoxy
Tag

TagBuffer

GlobalParams Contains all
configuratio

n
parameters

Public The parameters are
Final. That means
the client cannot
modify these
parameters.
He should be able to
do that

Nothing

IActivity interface Public Empty - Verify that it
is truly necessary

Nothing

Advanced API for FoyTag
POISOT, Loïc 8

IScan interface Public Empty - Verify that it
is truly necessary

Nothing

ListenerGPS Listener that
writes GPS
informations

into
AndroTag

Public Seems to be almost
perfect.

Nothing

Radar Business
class that

represent a
speed cam

Public Override the
constructor so that it
takes a parameter

android.location.Loc
ation in complement

/ replacement of
latitude and

longitude

Nothing

RTools Some tools Public Some incoherence:
a function named
m/sTOkm/h can
return miles per

hour depending on a
Boolean!

Factorize some

code of resizeImage
functions

Should be fully static

Nothing

ScanRadar A view of
the speed

cams
around

Public Colours cannot be
modified.

Radar
RTools

STagActivity Abstract
Activity

Public Completely modify
this activity.

We should be able
to extend this

activity, and in a few
lines of code be able
to build a application

Nothing

TagBuffer Class that
maintain the
speed cams
around the
user and

that updates
them

smartly

Public TagBuffer contains
some methods that
predicts the future

heading. This
should be located in

RTools

APIAndroTag
ConnectToFoxy

Tag
Radar
Rtools

Advanced API for FoyTag
POISOT, Loïc 9

2.3 Rethinking the API

After having submitted these improvement suggestions, I studied the interactions

between the API and the client application. What I saw was a big mess which resulted

in the client application accessing the API in many different ways. The API and the

client application were very strongly linked. This is because the applications and the

API were developed in the same time by the same person.

I decided that we should rethink the way the client application accesses the API:

restrict the communication path, reduce dependence, and simplify the communication.

As developers are all different, and their needs are different too, I thought that it would

be a good idea to provide different granularity access for the API.

By granularity we mean level of detail.

Here is a scheme that explains my way of seeing things.

Low granularity

 use

Medium granularity

 use

High granularity

Classes
UI

API AndroTag
(kind of proxy, services

aggregator/provider)

Classes «Business» low level,
services

Advanced API for FoyTag
POISOT, Loïc 10

2.4 The wrong start

I started to work very hard to improve this “API”, and to try to dissociate it from the

application. As everybody knows, in reverse engineering for maintenance,

understanding the code takes up to 80% of one’s time whereas correcting it takes only

20%.

But in this case, it was not only maintenance, there were architecture modifications too.

It quickly came to my mind that in this configuration, and with this particular code

complexity, I would always be under the threat of side effects; I would spend

approximately 90% of my time understanding the code, and studying how I could

correct / improve it without breaking the entire “API”. This “API” was a single

component, and not several smaller components. That means that when you make a

single change, it can be reflected in the whole “API”.

Table 2

Lines of code comparison between Henri’s work and mine

 Henri’s “API” Actual “API” Action
TOTAL 1407 1465
GlobalParams 16 162 Centralization

parameters
ConnectToFoxyTag 158 127 Factoring code
ListenerGPS 25 41 Add functions for

network state
ScanRadar 212 206 cleaning and

centralisation of
parameters

RTools 133 106 Factoring code

As you can see in the table above, I started correcting API problems, before

discovering how every single piece of code was strongly linked to each other.

It was obvious that if we wanted to produce a high quality API from this code it would

be very difficult and time consuming. And more importantly, spending a lot of time

doing reverse engineering does not lead to an interesting bachelor work.

I discussed that with Michel. He had no idea what Henri’s code looked like, and when I

explained this to him he agreed with me that we needed a fresh start.

Ad
PO

3

Be

go

de

co

pr

A

ta

In

th

yo

I

fo

an

Th

to

dvanced API f
OISOT, Loïc

. Foxy

efore we st

ood idea to

efined by t

ommunicate

roduction da

test databa

ags (speed c

n order to v

hat describe

our applicat

called this

ollow, the po

nd the expe

his complet

o take, and t

for FoyTag

Challen

tarted work

o create a “

he server A

e with the s

atabase.

ase is prov

cameras) th

verify that m

es how to te

tion complie

document

oints of inte

ected results

te documen

the speed c

R

nge Trip

king on the

“Framework

API docum

server, and

ided for ap

hat we need

my API is F

est the app

es with all th

the “Foxy

erest (differe

s.

nt can be fo

cams I have

Road to ta

p

new API,

k” that wou

ment (appen

 what rules

plication de

ded in order

Foxytag com

plication. It

he rules.

challenge

ent kinds of

ound in appe

e inserted in

Figure

ke for Fox

Michel and

uld verify th

ndix 1). Th

s we must r

evelopers. W

r to test our

mpliant, I ha

is a kind o

trip”. It des

f speed cam

endix 2, bu

nto the data

e 4

xy challen

d I defined,

hat my API

is documen

respect to h

We are able

application

ave written

f stress tes

scribes the

ms) you will

t I will show

base.

ge trip

 that it wou

respects t

nt explains

have acces

e to post al

n.

 down a do

st that ensu

e path you

 meet on yo

w you here

11

uld be a

he rules

 how to

ss to the

ll kind of

ocument

ures that

have to

our way,

the path

Ad
PO

4

4

Fi

If

An

re

yo

W

in

So

w

An

I w

to

dvanced API f
OISOT, Loïc

4. The n

.1 How

irst of all, w

we want to

n interface

esults are. It

ou expect th

With this sta

terface, from

o is API a

rong either.

ndroid deve

will build a c

o access the

for FoyTag

new API

to start?

e need to d

explain wh

is a way to

t can be co

his person t

arting point,

m a single m

good word

. In fact I am

eloper’s wor

complete an

e services p

Spee

?

efine what

hat and API

define wha

ompared to

to do the sa

 we can sa

method to a

 to describ

m not buildi

rk. My API h

nd complex

provided by

Figure

ed cams o

an API (Ap

is, we mus

at the action

a native lan

ame to you.

ay that eve

a whole sys

be what I a

ing only an

has no reas

x system, an

this system

e 5

on the way

plication pro

t understan

ns you can d

nguage: wh

ery single p

stem.

m building?

API, but a

son to exist

nd the API

m/library, as

y

ogramming

nd the conce

do are, and

hen you say

piece of so

? Not comp

library. In fa

if nobody u

of this syste

you wish to

g interface) i

ept of interf

d what the e

y hello to so

oftware has

pletely, but

fact I am sim

uses it.

em, will be

o call it.

12

is.

ace.

expected

omeone,

its own

it is not

mplifying

the door

Advanced API for FoyTag
POISOT, Loïc 13

This library is useless if there is no API to use it. Since only me will know the whole

library, the developers will only see and use the API. So I think we can call it an API.

This term is commonly accepted and used by developers.

Now we know what we are talking about. But how to create an API? Are there rules? Is

there a step to step path to follow? Are there common errors to avoid?

I have read a lot of documents, and browsed websites on this subject, but much of

what I found was only advice. There are no established rules or methods to create a

good API.

My main inspiration point was the presentation by Joshua Bloch (Principal Software

Engineer at Google) on the theme “How to design a good API, and why it matters”

Full references in webography.

He says that «Public APIs are forever – one chance to get it right» (page 2), which

means that if you release a lousy API on the market, developers, and users will try to

use it, and if it does not suit to their requirements, or it is bugged and does not provide

the expected results, people will drop your API and change for another one, or build

their own.

In his opinion the characteristics of a good API should be:

 Easy to learn

 Easy to use, even without documentation

 Hard to misuse

 Easy to read and maintain code that uses it

 Sufficiently powerful to satisfy requirements

 Easy to extend

 Appropriate to the audience

The reason your API exist is to be used. It can be used only if it suits your user’s
requirements.
So firstly you need to be sure that you have defined the good requirements for your
API. One good way to do that is to take them from the use cases.

Advanced API for FoyTag
POISOT, Loïc 14

4.2 The architecture

4.2.1 The process to define it

4.2.1.1 Identify the responsibilities

High level ones:

 Give GPS accuracy information.

 Give Data pertinence information.

 Give Data connectivity (2G/3G) information.

 Communicate with server (init, tag/section post, tag/section request).

 Display tags and section

 Give tags/section around

 Create a Tag

 Create a section

 Alert client app when GPS, data, network Status changed

 Alert client app when the position has changed

 Forward messages from server API to client app

 Alert client app when there is no data and then it can provide its own
data

 Provide the possibility to store tags/section and to delay the sending to
the server

Secondly, we need to detail these responsibilities in order to discover low level ones.

Explaining scheme:

 High level responsibilities

o Low/Middle level responsibilities

 Requirements for this responsibility

 Give GPS accuracy information:

o Computes the GPS accuracy into different accuracy levels

 GPS information

Advanced API for FoyTag
POISOT, Loïc 15

 Give Data pertinence information:

o Know if the data are up to date

 Know Position

 Know the area covered by actual data.

 Know the freshness of the data.

 Give Data connectivity (2G/3G/Wifi) information.

 Connectivity information

 Communicate with server (init, tag post, tag request).

o Know the user login and pass; the client, version, language,
platform

o Know the server address, and lab Address

o Know the Tag/Section to post

o Recover server’s answer, analyse them, and parse the result

o Launch requests

 State of the data connectivity

 Display tags/sections

o Know the tags/sections around

o Alert user when a tag is approaching

 Give tags around

 Know position

 Create a Tag

 Know position

 Know speed

 Know heading

o Enable tag creation only on minimum speed and accuracy

 Create a section

 Know position

 Know speed

 Know heading

o Enable section creation only on minimum speed and accuracy

 Alert client app when GPS, data, network Status changed

o Alert client when GPS status changed

 Be aware of GPS accuracy changes

o Alert client when data status changed

Advanced API for FoyTag
POISOT, Loïc 16

 Be aware of position changes

 Be aware of data pertinence

o Alert client when newtork status changed

 Be aware of server API communication attempts

 Alert client app when the position has changed

 Be aware of position changes

 Forward messages from server API to client app

o Decode server API answers, and dissociate business answer vs
inf/pub messages

 Communication with server

 Alert client app when there is no data and then it can provide its own data

o Update the data status according to the client’s answer

 Provide the possibility to store tags/section and to delay the sending to the
server

o Tells the client that these tags are not already sent or being sent

o Tells the client when the tags are sent.

o Send the tags when the network is free and available

 Know network state

4.2.1.2 Regroup functionalities and create the Class responsibilities
collaboration cards

ServerProxy

Manage server communication
Responsibilities Requirements Collaboration

Know the login and pass,
the client, version

Must be provided in any way
by external source (client
app)

Know the prod and lab
server address

Post a Tag Data status
(Unavailable/sending/free)

AndroTag,
ASyncRequest

Post a section Data status
(Unavailable/sending/free)

AndroTag,
ASyncRequest

Init the server Data status
(Unavailable/sending/free)

AndroTag,
ASyncRequest

Forward Server messages
to client app

 AndroTag

Recover the request result
and parse it correctly
depending on the type of the
original request

Must know witch request
was launched

ASyncRequest

Advanced API for FoyTag
POISOT, Loïc 17

Keep the last server’s
answer in memory

Keep the last request
position in memory

AndroTag

Main entry point for client app, and main communication bus for API
Responsibilities Requirements Collaboration

Manage the event
publish/subscription system

 AndroTagListener

Create a Tag Tag
Create a section Section
Know and provide data
connectivity status

 ServerProxy

Know and provide GPS
accuracy

Must be subscriber of GPS
events

Know and provide Data
freshness/pertinence status

 DataBuffer

Compute GPS accuracy into
3 different accuracy levels

Must Authorize server
communication depending on
some parameters

Speed, network data
status

Manage and forward all
requests for server
communication

 ServerProxy

Allow creation of tags only
when it’s authorized

Speed, GPS accuracy

AndroTagListener
Interface used by API to send messages to client app

Responsibilities Requirements Collaboration
Defines the messages that
the API can send

Tag
Representation of a speed cam

Responsibilities Requirements Collaboration
Know when it is complete
and can be sent

Section
Representation of an average speed cam

Responsibilities Requirements Collaboration
Know when it is complete
and can be sent

Advanced API for FoyTag
POISOT, Loïc 18

DataBuffer
Must contain speed cams around the user

Responsibilities Requirements Collaboration
Provide good data
corresponding to the user’s
position

Communication with server AndroTag

Update data freshness status AndroTag

SpeedCamsView
Must display speed cams to the user

Responsibilities Requirements Collaboration
Display the tags The position of main area

tags
DataBuffer

Make a sound on speed cam
approaching user’s position

User’s Position, Tag and
section position, the sound
to make

Parameters

Tools
Static class that contains useful static methods

Responsibilities Requirements Collaboration

ASyncRequest (extends AsyncTask)
Launch request, and provide answer

Responsibilities Requirements Collaboration
Launch an asynchronous
request and recover the
result

The request as String ServerProxy

Parameters
Static class that contain the parameters

Responsibilities Requirements Collaboration

Hearthbeat
Know GPS information, and determine when to refresh the API

Responsibilities Requirements Collaboration
provide GPS information (lat,
lon, accuracy)

Ad
PO

4

He

in

4.

I h

m

I f

Th

cl

ty

ob

in

an

dvanced API f
OISOT, Loïc

.3 Build

ere I will de

 the core of

.3.1 The i

have decide

make it more

faced two p

he first prob

ient, we hav

ypically the

btain the de

formation, h

n intermedia

for FoyTag

ding the A

escribe and

f the API

implemen

ed to implem

e understan

roblems tha

blem was a

ve to limit th

problem I

esired inform

how can we

ate!

API

 explain so

ted patter

ment two ar

dable.

at fortunate

an access p

he number

had. The

mation/serv

e reduce the

Mu

me specific

rns

rchitectural

ly have the

problem. If

of classes

client must

vice. But if w

e number o

Figure

lti access

c and impor

patterns in

ir patterns i

we want th

it has to use

t access to

we want the

of classes k

e 6

problem

Credits:

rtant piece o

order to sim

n order to s

he API to s

e. In the ex

o different c

e client to h

nown by the

Philippe Dugerd

of software

mplify the c

solve them.

seem simple

xample belo

classes in

have acces

e client? By

dil, Software de

19

that are

code and

e for the

ow, it is a

order to

ss to this

y placing

esign lesson

Ad
PO

Th

so

im

ca

Th

co

re

He

dvanced API f
OISOT, Loïc

his interme

olves the

mplementati

ase, the faç

he other p

ommunicate

educe them?

ereunder a

for FoyTag

diate is em

encountere

on of façad

çade is the A

problematic

e with the re

?

graphical e

mployed into

ed problem

de that solv

AndroTag c

Th

c I experie

emote Foxy

explanation

o the facad

m. Hereun

ve the probl

class.

Figure

he facade

enced was

yTag server

of the prob

de pattern t

nder, you

em describ

e 7

pattern

Credits:

that som

r. How to m

blem:

hat I chose

can find

bed in the im

Philippe Dugerd

e different

manage thes

e and that

for exam

mage above

dil, Software de

t classes

se connexio

20

perfectly

mple the

e. In our

esign lesson

have to

ons, and

Ad
PO

Th

se

pa

dvanced API f
OISOT, Loïc

he solution

erver. It is th

attern in the

for FoyTag

was to cre

he idea beh

e componen

multiple

eate a spec

hind the Pro

nt ServerPro

w

Figure

e remote s

cialized com

oxy pattern

oxy of my A

Figure

with proxy

e 8

server acc

Credits:

mponent fo

as you can

API.

e 9

pattern

Credits:

cess

Philippe Dugerd

or the comm

see below.

Philippe Dugerd

dil, Software de

munication

. I implemen

dil, Software de

21

esign lesson

with the

nted this

esign lesson

Advanced API for FoyTag
POISOT, Loïc 22

4.3.2 The event system

The old API was based on a special way of communication: Each class has a link to

other classes, and they were using this in order to communicate. I introduced a new

way of communication: the event system.

The idea was to provide a simple, robust and powerful system that can manage the

communication between classes inside and outside the API.

The only class that have direct links to other classes is the AndroTag class, because it

is the façade.

The other classes use the events in order to communicate.

There are 5 events. For now, only 4 are really useful, because one refers to the

sections, and sections are not yet implemented into the API.

Here is the content of the AndroTagListener interface (the available events):

msgServer(String cmd, String msg, String details)
Called each time the server sends a message.

positionChanged()
Called each time the current position changed.

sectionUpdated(String speed, int timer)
Called each time the data about the current section is updated.

serverAnswer(boolean requestEnded, String cmd)
Called each time the server answer to a request or the request timed out.

statusChanged()
Called each time that the status of the data, the GPS or the network has changed.

For each of these events, there is a protected method in AndroTag called

fireEVENT_NAME. These methods are protected, because logically, only the API can

launch API’s events. These methods are located into the AndroTag class that is in the

center of the API. The classes that want to subscribe to these events must satisfy the

AndroTagListener interface and must be registered using the method

 .of AndroTag class ݎ݁݊݁ݐݏ݅ܮ݃ܽܶݎ݀݊ܣ݀݀ܽ

Advanced API for FoyTag
POISOT, Loïc 23

4.3.3 The ServerProxy

The sever proxy will be the main communication path with the server. The entire API

will ask the ServerProxy to communicate with the server. Normally, all the

communication requests should be sent to the AndroTag class that will forward the

requests to the ServerProxy one. But there are some exceptions, and some classes

ask the ServerProxy directly. But these are very specific cases.

As said before, this class is responsible for the collaboration with the server. In this

class, we will find the first improvement compared to Henri’s work:

Asynchronous requests.

In Henri’s work, the User Interface (in fact, the whole program) blocks while waiting for

a reply from the server. And in Android, when the UI is blocked for some time, the

system tells you that your application is not responding, and proposes you to kill it.

But now, we have introduced parallelism!

The ServerProxy is able to launch asynchronous requests (parallel tasks) and to get

the result. As you can see in appendix 1 (Server API) there are different kinds of

requests that can be sent to the server, and more importantly, there are different

results, in different formats.

If we can launch some requests, how to know how to parse the results? How to know

which answer corresponds to which request?

That may be possible, but it is not necessary to answer this question in this case. As

the communication with the server is not heavy (1 request per minute in average), we

have established a rule: One server communication at a time.

The ServerProxy will launch a request, remember the kind of request in order to

correctly parse the corresponding answer; and will not allow any other request until it

gets an answer from the server.

Bellow, you can find a sequence diagram that will show you graphically what I have just

explained. The reality is not exactly the same, but not far from it.

Ad
PO

4.

Th

is

I w

“e

ju

we

Af

D

pa

dvanced API f
OISOT, Loïc

3.3.1 The

he AsyncRe

the same c

will explain

execute” tha

st fill the fir

e call it is th

fter that, A

irectly after

arameter th

for FoyTag

Seque

 AsyncReq

equest is a

component

to you how

at takes an a

rst position

he url to rea

ASyncReque

r, it will call

e BufferedR

ence diagr

quest

very simpl

that is calle

it works: Y

array as pa

of the array

ach in String

est will com

 the Handl

Reader that

Figure

ram for se

e compone

ed for every

You create it

arameter. As

y with the r

g format.

mmunicate

eRequestR

t contains th

10

erver com

ent that exte

y kind of req

t, and once

s we need t

request we

with the se

Result metho

he result.

municatio

ends androi

uest.

it is done, y

to launch on

need to se

erver until i

od of Serve

on

id.os.ASync

you call the

nly one req

end. The req

it gets the

erProxy an

24

cTask. It

e method

uest, we

quest as

answer.

d set as

Advanced API for FoyTag
POISOT, Loïc 25

How can ASyncRequest call this method? How does it know ServerProxy? In fact it is

quite simple: ServerProxy is a singleton, so ASyncRequest gets the ServerProxy

instance, and after that calls the method.

4.3.3.2 The Event System

As these requests are asynchronous, we cannot know the result immediately. In order

to know when a result from server is received, a dedicated event exists: It is

,݀݁݀݊ܧݐݏ݁ݑݍ݁ݎ	݈݊ܽ݁ሺܾ	ݎ݁ݓݏ݊ . ሻ݀݉ܿ	݃݊݅ݎݐܵ

In this the AndroTag class there are two different concepts to differentiate:

 The action to request or post something

 The action to get something

For example, if you want to get new tags, two functions are at your disposal:	݃݁ݏ݃ܽܶݐሺሻ

and ݏ݃ܽܶݐݏ݁ݑݍ݁ݎሺሻ. Which one to use?

Firstly you have to call ݏ݃ܽܶݐݏ݁ݑݍ݁ݎሺሻ. That will generate a request for the server that

asks the tags around you or around a specified position. Once it is done, and when the

server will answer, the ݎ݁ݓݏ݊ܣݎ݁ݒݎ݁ݏ event will be launched. If the request was

successful, you can now call ݃݁ݏ݃ܽܶݐሺሻ in order to have the last speed cams.

Remember that if you call ݃݁ݏ݃ܽܶݐሺሻ	while ݏ݃ܽܶݐݏ݁ݑݍ݁ݎሺሻ was never called, you will get

null.

Now you have understood the concept, let me explain a few more details. When you

call methods that request communication with server, you will get a boolean as answer.

This boolean only tells you if the request could be launched (true) or not (false). You

will only know if your answer was successful by listening the event.

4.3.4 The SpeedCamView

This component extends android.view.View, and is designed to be easily integrated, by

implementing functions such as auto-resize depending on the parent’s width. This

component is a smart one, and functions on its own with the API.

Ad
PO

4.

As

sh

cu

It

we

an

im

dvanced API f
OISOT, Loïc

3.4.1 Rota

s you can s

hould move

urrent direct

uses simpl

e are head

nd ordinate

mplementing

for FoyTag

ation of the

see in the f

e around the

tion.

e trigonome

ing. The po

e. The coo

g these func

Examp

e north sign

figure above

e circle in or

etry to calcu

osition give

ordinates (0

ctions, I det

Figure

ple of Spee

n

e, there is

rder to indic

ulate where

n by this fu

0;0) repres

tected a pro

11

edCamsVi

a north sign

cate where

e the sign s

unction is ex

ent the ce

oblem.

ew

n around th

the north is

should be de

xpressed in

entre of the

he external

s, dependin

epending o

n terms of a

e circle. B

26

circle. It

g on our

on where

abscissa

ut, after

Ad
PO

As

No

sh

Is

In

sh

I u

In

co

re

un

an

po

dvanced API f
OISOT, Loïc

s you can s

orth sign is

hould be (it

 the trigono

n fact the N

hould first u

use Canvas

n this funct

oordinates

epresent the

nderstand h

nd look pre

ositioned. S

for FoyTag

see above,

s almost we

should be o

ometry funct

North sign p

nderstand h

s.drawText t

ion you ca

provided b

e centre of

how text is d

ecisely at th

So the trigon

The

in this cas

ell positione

out of the gr

tion I have w

position cal

how the No

to draw the

an specify w

by my trigo

the text, bu

displayed).

he left-botto

nometry fun

Ho

Figure

north sign

se our head

ed, but is a

rey circle). W

written malf

culation is

orth sign is d

e N sign on t

where you

onometric f

ut the left-b

So knowing

om Corner

nction is not

Figure

ow text is

12

n problem

ding is 180

a little on th

Why?

functioning?

correct. To

draw/display

the screen

want to d

function. B

bottom corn

g that, let’s

of the “N”

 the cause.

13

printed

Cré

m

degrees, d

he north ea

?

o understan

yed on scre

raw the tex

ut these c

er (see figu

look again a

char. It see

édits : Peter Dae

irection So

st of the po

nd the prob

een.

ext. Here I

coordinates

ure bellow t

at the figure

ems to be c

ehne, Métrique

27

uth. The

osition it

blem, we

use the

do not

to better

e above,

correctly

des polices

Advanced API for FoyTag
POISOT, Loïc 28

The black pixel represents the coordinates we specify while calling the

Canvas.drawText function.

Now we know what the problem is, but we don’t have a solution yet. And here I just

showed you the problem for heading = South. But there is a problem for almost all

angles. In fact, only the top-right quarter has no problems, because as I said the

position computed by the trigonometric function is good, so the text will be written

above and to the right of the computed point. As the circle is bellow and to the left of

this point, the text will never enter in this circle (for this quarter). But for the three other

quarters, think about it, and remember where the text is displayed in relation to the

point calculated by the trigonometric function. You will rapidly see the problem. The

problem is complex, because we need to find a solution that suits all the headings.

We need to work on the two axis, the abscissa and the ordinate.

For the ordinate, this is quite simple: When we are in the most meridional point, we

need to move the N sign x pixels down (x pixels is in fact the height of the Character).

We have found a solution but this works only for this most meridional point. What to do

between this point and the most septentrional point?

We need to build a function that will displace the N sign for a given intensity at a given

position.

Here is the little formula I managed to create:

ൌ	ܻݏ 	 ሺ݁ݖ݅ܵݐݔ݁ݐ	 െ	ሺ݁ݖ݅ܵݐݔ݁ݐ	/	4ሻሻ 	∗ 	 ሺሺݏݑ݅݀ܽݎ	 	ሺ2	/	ሻܻݏ	 ∗ 	;ሻሻݏݑ݅݀ܽݎ	

posY is the y position where the N character will be displayed.

radius is the radius of the external circle in pixels.

textSize is the height of the N character.

This is now done for the ordinates; let’s work on the abscissa axis:

It is almost the same problem, so the solution is similar:

െൌ	ܺݏ 	 ሺ݁ݖ݅ܵݐݔ݁ݐ	 െ	ሺ݁ݖ݅ܵݐݔ݁ݐ	/	4ሻሻ 	∗ 	 ሺሺെݏݑ݅݀ܽݎ	 	ሺെ2	/	ሻܺݏ	 ∗ 	;ሻሻݏݑ݅݀ܽݎ	

posX is the x position where the N character will be displayed.

Advanced API for FoyTag
POISOT, Loïc 29

With these two little lines, we can take the N sign’s height and width into consideration

in order to provide an almost perfect positioning.

4.3.5 The DataBuffer

4.3.5.1 Description

The DataBuffer is responsible for keeping data up to date. It uses ServerProxy to

communicate with the server, and knows when it is necessary to update the tags /

sections.

The purpose and responsibility of the DataBuffer is to always (as far as possible) have

at its disposal the tags and sections that surround the user. The FoxyTag server gives

us tags in a circle with a radius of 7.25 km around the coordinates we asked. From the

moment we leave this area, the DataBuffer must necessarily obtain new tags in order

to stay up to date. The DataBuffer must of course anticipate that a server connection is

not immediate, and that response times may vary. Rather, it should provide a safety

margin. Here I will mostly use the word “Tag”, but it is quite the same for the sections.

4.3.5.2 Get new Tags

There are two ways to get tags when we approach the boundary of the circle

containing the current tags.

• The "brute" method which consists in not asking questions: when we approach the

boundary area, to simply ask for tags around the current position of the user. Simple

and effective, but not optimal, because when doing it this way, we will receive tags for a

circular area around us, and therefore tags behind us. It is unlikely that a user will

suddenly go back on his path, so what is the point of requesting tags for a region where

the user will not move? There is no interest, and it is a lack of optimization.

• The "smart" method that consists in guessing and anticipating the future position of

the user in order to get tags in a region where it is likely that the user will go in light of

his current route. It therefore does not require tags around us but in front of us. It is this

possibility that I have chosen and set up.

Ad
PO

4.

O

do

Th

ar

co

th

ci

es

an

a

ra

sh

Ho

dvanced API f
OISOT, Loïc

3.5.3 Opt

ptimizing th

o this by ch

his scheme

rea”. PZ re

ontained in

he circle of

rcle of slig

stablish a c

nd t1 which

circle. This

adars (tags)

hown to the

ow to define

for FoyTag

timize conn

he connectio

oosing the

e should hel

epresent th

the DataBu

7.25km rad

htly smalle

onnection t

are differen

s circle defi

) must abso

 user.

e when we

nections

ons means

strategy of

Optim

lp us to see

he area wit

uffer. Let us

dius around

r size, repr

o the serve

nt positions

nes the are

olutely be u

leave the P

doing less

point 2 men

Figure

mizing co

e things mo

thin which

s concentra

d the user,

resenting th

er and retrie

of the user

ea that the

up to date,

PZ, and for w

, and to do

ntioned abo

14

onnections

ore clearly.

we are cu

ate on the le

it is the PZ

he PZ minu

eve the resu

r at time t. A

user sees.

, since the

witch positio

less, we m

ove.

s

Credits:

Here a PZ

urrently cov

eft diagram.

Z. Just insid

us the safe

ults). Then w

Around thes

 Specificall

radars in t

on should w

ust do sma

: Michel Deriaz,

refers to “p

vered by t

. The outer

de there is

ety margin

we see the

se positions

ly, within th

this area a

we request t

30

arter. We

Server API

protected

the tags

circle is

another

(time to

points t0

, we see

his zone,

re those

tags.

Advanced API for FoyTag
POISOT, Loïc 31

Well that’s very simple. When the zone of visibility (small circle around the user)

touches the large interior circle (PZ - buffer), then it becomes necessary to request new

tags. You can see this scenario on the left diagram, position t1.

On the right diagram, we see an example of an automated connection: the user

reaching the limit of its area, the system then calculates the optimal location to

download the new tags.

4.3.5.4 Compute / anticipate the future user position

How to define the future position of the user? How do I know if he will not suddenly turn

and destroy all our plans / forecasts? The simplest would be to use a soothsayer.

Unfortunately, Android does not (yet) provides this kind of services in its API.

We cannot know precisely where the user will be at time t, but we can try to guess.

Although roads are rarely linear, and they sometimes make us move away from our

destination, we usually go in a specific direction. It is not possible (in fact it is, but not in

our case) to know the roads in front of us, and therefore to predict more or less

precisely the path of the user, but it is possible to define the overall trend of this

movement.

How to proceed?

We must ask ourselves several questions:

- Is the accuracy of this calculation fundamental?

- Does this connection optimization worth/require a heavy CPU load?

- Do we need to use a complex algorithm whose implementation and adaptation would

be highly time-consuming?

As the problem we are trying to resolve is just an optimization it did not seem

necessary to implement highly complex solutions. We chose a solution that could not

be simpler, which according to our tests, has been fruitful.

Here's how:

Advanced API for FoyTag
POISOT, Loïc 32

I will not remember the many former positions of the user. We could have done this to

determine an overall trend direction, but the inherent complexity of the calculations do

not worth the shot.

I adopted an approach that could not be simpler. It has two stages:

- First, when the user receives new tags from the server (logically this response answer

means that we asked for these tags, and so we were about to leave the area). As we

have received new tags, it means that now we are once more in a good PZ.

- A few minutes later we arrive at the limit of PZ, and it is time to seek new tags.

So we will calculate the direction of the user. This is done using the previous as well as

the current position of the user. Once we have the direction, we will ask for tags around

a position that we have computed x meters away from the current user position, and in

the computed direction. The distance x meters is calculated using three factors: the

radius of the PZ, the safety margin, and the radius within which the tags are visible to

the user.

The calculation of this distance is very important because it would be pointless to ask

Tags for a PZ that would be out of range and therefore generate a new request for tags

using the same method. We can clearly see an infinite loop here.

4.3.5.5 Verifying that the DataBuffer works correctly

Measures strategy:

In order to verify the good functioning of DataBuffer, we need to collect some

parameters:

The user position in crucial positions / time

The distance that separate the centre of the PZ and the user

The user position when the system starts to ask new tags to the server

The user position when the system receives the new tags

The asked PZ coordinates

The computed heading (direction)

Advanced API for FoyTag
POISOT, Loïc 33

For my measurements, I have taken the following values:

TAG_RADIUS (PZ radius): 2km

REQUEST_DELAY_SECURITY: 200m

RADAR_RANGE (radius of the area within the tags are displayed): 300m

I used System.out.println() in order to write in the logcat the desired information.

Here is a little part of primary information that was collected at the end of this

measurement campaign:

This is just an example, because in reality, there are 160 lines to analyse

Representing data:

To ensure that this raw data can be understood, we must analyse them, and make a

visual representation if possible.

I used Google Earth to address this problem.

The only problem with this software is that it is not possible to draw circles. Indeed, it

would have been very convenient to be able to do this especially to visually display the

area covered by radar, and the area outside of which it is necessary to update the data.

However, I found a solution:

The website http://www.freemaptools.com/radius-around-point.htm can draw "circles"

(in fact they are highly detailed polygons that look like circles, because Google Earth

04-25 12:56:03.710: I/System.out(3633): Demande de nouveaux tags. Distance =
1500.2227251182462

04-25 12:56:03.710: I/System.out(3633): Current position lat: 46.16139 lon:
6.18052 heading calculé : 147.17852783203125 Tag request demandé: lat:

46.15005 lon: 6.19107

04-25 12:56:06.639: I/System.out(3633): New last update position : lat
:46.16125702857837 lon : 6.180217266082584

04-25 12:56:06.639: I/System.out(3633): Server answer received. Reached the
server : true | command : tagrequest

Ad
PO

kn

do

I d

I a

us

He

Le

- T

- T

(2

dvanced API f
OISOT, Loïc

nows only p

ownload a K

did this for e

also reporte

ser during e

ere is the re

egend:

The blue cir

The red circ

200m +300

for FoyTag

polygons) o

KML file con

each circle.

ed on Goog

each tag req

eport that h

rcles repres

cles represe

m))

f a desired

ntaining the

gle Earth th

quest, and t

elped to va

The D

sent the PZ

ent the area

radius, and

e "circle" and

e center of

the position

lidate the p

Figure

DataBuffer

a beyond w

d a desired

d which can

f each of th

 of the user

roper functi

15

r validatio

which it is ne

position. O

n be opened

ese circles,

r upon rece

oning of the

on

ecessary to

Once done,

d by Google

, the positio

ipt of new t

e DataBuffe

o update tag

34

you can

e Earth.

on of the

ags.

er:

gs (2km-

Advanced API for FoyTag
POISOT, Loïc 35

- The black line represents the route

- The yellow pins are the centres of the PZ, and the places where we asked for tags,

and where they were received.

4.4 Document the API

Build correctly the API is one thing, but document it is also very important.

I have created a set of documents, explanations, guides, referential that should help

the client that want of basically use the API, or want to modify it, continue its

development.

4.4.1.1 The UserGuide

The user guide is dedicated to the clients that want to do a basic utilisation of the API.

You can find this document in appendix 3. I decided to place it in Appendix because it

is a complete document, and use different graphics standards. This document was

totally written by me and should be considered as a part of this bachelor work.

4.4.1.2 The DeveloperGuide

The user guide is dedicated to the clients that want to dive more deeply into the API,

and want to modify it, improve it or continue its development. I decided to place it in

appendix 4 because it is a complete document, and use different graphics standards.

This document was totally written by me and should be considered as a part of this

bachelor work.

4.4.1.3 The javadoc

The javadoc is well known by the developers. If the code is correctly documented, you

can easily generate documentation that details your functions, and constants. This is

an important part of an API, because every developer has already checked a language

doc. It is very easy to generate javadoc, but comparing to Android doc, the generated

documentation is not very appealing. In order to improve that, it is possible to provide a

Stylesheet. Here under you can see the effect of one (you can find lot of them on the

net) stylesheet on the javadoc. It’s clearer, and more pleasant to read.

Ad
PO

C

I f

in

cr

In

so

ha

th

As

to

ad

im

W

In

wo

co

an

dvanced API f
OISOT, Loïc

Conclus

found this w

 modern s

reate a com

n fact I reall

oftware dev

appy that th

heory I had l

s this API w

o learn, I ho

dded to this

mplementati

We can imple

n fact the po

ork, and fu

omprehensi

nd to avoid

for FoyTag

sion and

work very in

software de

mplete syste

y liked that

velopment in

his bachelor

learned for

was designe

ope someon

s API. We c

on is alread

ement offlin

ossibilities a

uture develo

ibility. As I

reproducing

Java

d future

nteresting, b

evelopment.

m, think ab

 because I

n order to b

r work gave

years.

ed in order t

ne will conti

can start wit

dy here, an

ne system fo

are endless

opers will a

really had a

g the same

Figure

adoc with S

 work

because I e

 I had to

bout simplici

had to touc

be able to p

e me the op

to be highly

nue my wo

th section. T

nd there is n

or the stora

s. I hope I a

appreciate

a hard time

 scheme.

16

Styleshee

encountered

deal with r

ity, usability

ch to every

rovide the b

pportunity to

y expendab

rk. There a

The basis a

not a lot of

ge of tags,

achieved to

my work a

e with Henry

et

d the proble

reverse eng

y, maintaina

approach,

best API I c

o apply all t

le and easy

re so many

and architec

work to do

turn to turn

provide a g

and the imp

y’s work, I

ems we usu

gineering,

ability, and s

every spec

could do. I a

the software

y to underst

y things tha

cture for the

o to implem

 navigation

good start fo

portance I

tried to do

36

ually find

I had to

so on.

cificity of

am really

e design

tand and

at can be

e section

ent that.

system.

or future

gave to

my best

Advanced API for FoyTag
POISOT, Loïc 37

Webography

Bloch Joshua, How to Design a Good API and Why it Matters,

http://lcsd05.cs.tamu.edu/slides/keynote.pdf

Advanced API for FoyTag
POISOT, Loïc

Appendix 1

Server API

 1

Server	API	
Version: 1.0.0

1			Introduction	
Welcome to the FoxyTag API. This f ile explains the rules that a compatible client application
has to follow. Please read carefully all the points and start working on your project only if you
accept all the points mentioned in this document.

2			API	
Please note that all parameters must be encoded in UTF-8.

2.1			Initialization	
Each time t he application is restarted and each time the username, the password or the
language is changed, the client sends an HTTP GET request like:

url?cmd=init&username=username&password=password&client=client&version=version&lan
guage=language&platform=platform

 url: the URL of the server. (Lab server: http://www.foxytag.com/php/dogetlab.php)
 username: the username. Can be empty.
 password: the password. Can be empty.
 client: the client application code to obtain from FoxyTag.
 version: version of the client application with 3 numbers, like "1.4.63".
 language: ISO 639-1 code for the language (en = English, de = German...).
 platform: platform and firmware of the mobile device, for instance "GT-I9100_2.3.3".

If the username or the password is empty, the user is anonym and is therefore not allowed to
post data. Note that the lab serv er registers automatically any new username, but th e
production server requests a username/password pair to obtain from the registration process
at http://www.foxytag.com.

The server answers like:

MSG
msg1
msg2
...

The messages (msg1, msg2, ...) can be:

 OK_INIT: Initialization OK.
 KO: Failed for an unknown reason.
 KO_SERVER: Server is not available.

 2

 KO_URL: Unknown command or malformed parameters.
 KO_VERSION: Wrong version of the client.
 KO_LOGIN: Wrong username or password.
 ERR error_description: An error to show to the client. A '\t' is used as separator.
 INF some_information: Information to show to the client. A '\t' is used as separator.
 PUB some_publicity: A publicity to show to the client. A '\t' is used as separator.

There are no '\n' chars in a message (error_description, some_information or
some_publicity). A new line is cod ed "\n" (2 chars). For instance, "Hello\nFoxyT ag" should
print "Hello" on the first line and "FoxyTag" on the second one.

2.2			Getting	tags	
To get the tags around a given position, the client sends a HTTP GET request like:

url?cmd=tagrequest&username=username&password=password&client=client&version=vers
ion&lat=lat&lon=lon

 url, username, password, client, version: see above.
 lat: the latitude in decimal degrees (5 digits after the coma) of the center of the circle.
 lon: the longitude in decimal degrees (5 digits after the coma) of the center of the

circle.

This request asks al l the tags in a circle centered at the gi ven latitude and longitud e with a
radius of 7250 meters. A new request is expected each time the client application is going to
quit this circle but at the latest five minutes after the former connection.

The server answers either like it is done in the Initialization section, with messages that can
be KO, KO_SERVER, KO_URL, KO_VERSION, KO_LOGIN, ERR error_description or
INF some_information, or with a list of tags like:

TAG
request
tag1
tag2
...

The request contains the latitude, the longitude and the radius of the circle. A '\t' is used as
separator.

A tag (tag1, tag2, ...) is written like:

lat lon kind heading

A '\t' is used as separator.

 lat, lon: position of the tag.
 kind: the kind of tag: F = Fixed sp eed camera, FC = Fixed speed camera that has

already been confirmed (or posted) by the user, M = Mobile speed camera, G =
Ghost.

 heading: an integer in [-1..360] U [1000..1360]. -1 mea ns unknown heading. A
heading between 0 and 360 (0° = North, 90° = East, 180° = South and 270° = West)
means that the user posted the tag for the same direction. A heading between 1000

 3

and 1360 is equivalent to heading-1000, but means that the user posted the tag from
the opposite direction and his position is therefore a little bit less precise.

The returned list contains first the fixed speed cameras, then the mobile ones and finally the
ghosts. A client applica tion draws therefore first the ghosts, so that mobile speed cameras
and fixed speed cameras are painted above them.

A ghost is created by the server when a mobile speed camera disappears. If there are often
mobile speed cameras at a specific place or in its neighbourhood, the ghosts stay active (and
are sent to the client) in order to signal this risky zone. Gho sts communicate between them,
so it is possible to see a ghost a few hundred meters before the actual position of the mobile
speed camera (since the later is not always exactly at the same position).

2.3			Sending,	confirming	or	canceling	a	tag	
Sending a new tag or confirming an existing one is identical for the client. It is the server that
decides if it is a confirmation (the position is close to an existing tag) or a new one (there is
no tag with similar heading in the neighborhood).

To send/confirm/cancel a new tag, the client sends an HTTP GET request like:

url?cmd=tagpost&username=username&password=password&client=client&version=version
&lat=lat&lon=lon&kind=kind&heading=heading&speed=speed

 url, username, password, client, version: see above.
 lat: the latitude in decimal degrees (5 digits after the coma).
 lon: the longitude in decimal degrees (5 digits after the coma).
 kind: the kind of tag, F = Fixed speed camera, M = Mobile speed camera, C = Ask to

cancel this tag.
 heading: an integer in [0..360] U [1000..1360]. A heading between 0 and 360 (0° =

North, 90° = East, 180° = South and 270° = West) means that the user posts the tag
for the same direction. A heading between 1000 and 1360 is equivalent to heading-
1000, but means that the user posts the tag from the opposite direction. For instance,
a driver going northwards that tag s a camera f or the drivers going southwards will
send 1180.

 speed: an integer in [20..320]. It is the current speed of the user, in km/h.

The server answers like it is done in the Initialization sectio n with messages that can be KO,
KO_SERVER, KO_URL, KO_VERSION, KO_LOGIN, OK, ERR error_description or INF
some_information. The new message of this list (OK) is returned by default.

3			Lab	server	
The URL http://www.foxytag.com/php/dogetlab.php connects you to a lab server. Once your
application is ready, we'll give you the URL of the main server.

Some particularities of the lab server:

 If you take username=$lab1, you get at initialization an error message, an information
message (2 lines) and a publicity message (3 lines with a blank one).

 If you take username=$lab2, you get at initialization a KO_SERVER message.

 4

 If you take username=$lab3, you get at initialization a KO_VERSION message.
 If you take username=$lab4, you get at tagrequest and tagpost an error message, an

information message (2 lines) and a publicity message (3 lines with a blank one).

4			Rules	
In addition to the API, an applicatio n must respect the follo wing points. Some of these rules
avoid that users tagging differently (because of their ap plication) are excluded from the
system by the other users.

 Your website promotes FoxyTag (link to http://www.foxytag.com, map with all th e
speed cameras, ...) and mentions clearly that the data comes from FoxyTag.

 The name of your application cannot contains the word "foxy" without our
authorization.

 Your application is fully compatible with the API describe d above an d all the rules
described in this document. Your application behaves in a similar way as the FoxyTag
Reference Implementation. If your application needs an e xception, please write us
your issue so that we can find a solution that doesn't harm the global system.

 You can freely access our lab ser ver in order to make tests. However, any ne w
version of your software must be va lidated by us before being allowed t o access the
main server. The application sent f or validation must be exactly the one that will be
publicly released, which means that it must point to the main server. Note also th at
the version number must be increased at each validation attempt and this number
must be mentioned in the email as well.

 The application must do an "init" command (cmd=init) each time the application starts
and each t ime the username, the password or the language is changed. An "init" is
always followed by a "t agrequest" even if the last "tagrequest" has be en done less
than 5 minutes earlier.

 The application must d ownload new tags (cmd=tagrequest) every five minutes or
earlier, and post new information (cmd=tagpost) as so on as possible in order to b e
compatible with the current trust engine (off-line mode is not allowed).

 By default, only cameras that are in front of the driver, plus-minus 45°, and that have
the same h eading than the driver, plus-minus 45°, will launch an alarm and b e
painted on the screen. If a setting allows to change the default value and to show the
"non-flashing" cameras as well, it is recommended to paint them differently.

 During a ta g post (cmd=tagpost), the precision of the po sition must be under 3 5
meters, the precision of the heading must be under 7° and th e precision of the speed
must be under 7 km/h. The speed and the he ading must be taken fr om the GPS
device (not computed from two previous points and not taken from the compass) and
it is not allowed to tag under 20 km/h. The ap plication must be designed so that it is
easy to tag precisely and easy to see where t he tags are according t o the user's
position.

 When a posting action (cmd=tagpost) needs several interactions (touching the screen
a first time, then selecting the kind of camera, then selecting its direction), the position
is recorded when the f irst touch is done and the highly vi sible message "Position
memorized" is shown to the user.

 Even when FoxyTag is integrated in a bigger system (like a navigation tool), the users
must still register at FoxyTag in order to obtain a username and a password.

 5

5			Rules	to	show	to	the	client	
The following rules must be visible in the help screen and a lso be shown to the clie nt each
time he enters or changes his username or password.

IMPORTANT: Respecting the follo wing rules allows you to increase your trust links wit h
others and to benefit t herefore from more reliable information. It av oids you also to be
excluded from the system by people tagging differently.

1. A speed camera must be tagged or confirmed when you are as close as possible to it
(not already when you see it). Oth erwise there will be a second tag for the same
camera and other users will decrease your trust links.

2. A camera inside a tunnel or close to a tunnel exit (typically less than 10 seconds after
the exit) must be tagged at the tunnel entry.

3. During the tagging process, the po sition is recorded when you touch the screen f or
the first time (message "Position memorized" is shown), so you have as much time as
you need to finish the tagging process.

4. It is useless to confirm several times the same speed camera. In so me particular
situations this can even be bad for your trust links.

5. In case of a doubt (is there a camera?) it is better not to tag than tagging wrong.
6. If there can be a doubt whether a camera can flash in both directions or not, it is

better to tag for both directions.
7. A traffic light camera is tagged and treated like a speed camera.

An application can also show dynamic messages to help the user to better respect the rules.
For instance:

 In the main screen write "Touch the screen to add/confirm a tag wh en you are as
close as possible to the camera".

 Show "Tagging only possible when speed > 20 km/h" if t he user tries to tag while
driving slower than 20 km/h.

 Show "GPS precision too weak" when the user tries to tag with low precision.

6			Notes	
 When a user tries to ca ncel a tag, only the closest tag wit h a heading difference less

than 45° will be affected, and only if this tag is closer than 75 meters.
 The heading in the tag indicates the "dangerous" direct ion, the dire ction where a

driver could get a fine if he is speeding. It has nothing to do with the orientation of th e
camera, that can record either the front or the back number plate.

7			Optimizing	connections	(Optional)	
The following algorithm can be u sed in order t o reduce th e number of connect ions to the
server: Let's call protect ed zone (P Z) the area that cont ains the dow nloaded tags. A new
connection is then made only every given delay (her e it is 5 minutes) or if the user r equests
tags that are outside of the protected zone. A protected zone is defined by 5 main attributes:

 6

 pzLat and pzLon: Two numbers, the latitude and the longitude of the center of the
PZ. A PZ is always a circle. A user can give its current posit ion if he wants to see the
tags around him, but c an also give coordinat es of another point to see the tags in
another place.

 radiusOut: This is the radius of the external circle of the PZ. It defines the area where
the tags have been downloaded.

 radiusIn: This is the radius of the internal circle of the PZ. This value is used as a
trigger to ask a new co nnection to the server. Since conn ections to a remote server
are not instantaneous, this internal circle allows the application to update its protected
zone before the user exits the former PZ.

 timeout: This is the maximum delay between two connections to the server. Even if
the user doesn't quit its PZ, a connection is made time to time in order to guaranty the
freshness of the information.

t0

t1

Moving in the same PZ

t0

t1

 Computing a new PZ

The first time tags are r equested, the algorithm will compute a PZ ce ntered on the current
position (or on the position wher e the tags are requested). But in order to limit the
communications with th e server, the next time a request i s made, the PZ will b e shifted
according to the last moves of the user. In the left figure we see an example. The user start s
his application at time t0. The little circle repr esents the radius of visibility (simply called
radius), or the area where the tags are visible on the mobile device. The big inner circle is the
internal circle of the PZ (called radiusIn), which acts as a trigger (when the user r equests
tags that are outside, a new PZ is c omputed). The big outer circle is the external circle of the
PZ (called radiusOut), which is the area where the tags are actually present in the memory of
the mobile device. While the user moves close to the center of the PZ, the tags are already in
memory. If the user i s still at the center of th e PZ when the timeout is reach ed, a new
connection is made to t he server in order to up date the tags, but the PZ stays at t he same
position (centered on the user). But if the user moved away, then the new PZ will be shifted
in the same direction. For instance, if our user reaches the inner circle of the PZ at time t1, a
new PZ is requested and the latter will be shifted like it is shown in the right figure. The
distance of the shift is proportional of the distance that the user moved since last update, so
if he didn't move, the shift is null (and the new PZ is centered on the current position).

Advanced API for FoyTag
POISOT, Loïc

Appendix 2

Foxy Challenge Trip

1

Foxy Challenge Trip

Version: 2012-02-24

Contents
1 Introduction .. 1

2 Capabilities testing .. 2

3 Test Area ... 2

4 General rules ... 4

5 Test Cases .. 5

5.1 GPS good, and data OK ... 5

5.2 GPS poor, and data OK .. 7

5.3 GPS KO, and data OK .. 8

5.4 GPS good, and data KO ... 9

5.5 GPS poor, and data KO .. 10

5.6 GPS KO, and data KO (for example in a long tunnel) .. 11

5.7 Any connectivity status ... 12

6 Tests Radars/Places location .. 13

1 Introduction
This document describe all test the application must pass in order to succeed the
FoxyChallengeTrip.
The FoxyChallengeTrip is a “framework”, an environment where your application will be put
and tested. If it succeed, it ensure the good quality of your application on the opposite, it
means that you application does not fill the quality requirements of foxy tag, and must be
modified.

2

2 Capabilities testing
The application must let the user log in, or redirect to the foxyTag website if he needs to
register.
The application must let the user specify his language (Possibility to take the system
language, but the language must be shown, and modifiable)
The user must be able to change the app metrics.

3 Test Area
In order to test the application, some radars must be strategically placed.
They will be placed along my home-work route witch is Reignier (France) to Carouge
(Switzerland).
The data will be received from the 3G french network. The good point is that in Switzerland,
the Network will sometimes drop, and we will be able to observe what’s happening.

There is several places on the trip or around it to test critical points of the applications.

Here is the main path we will use in order to stress the application.

3

Zoom of the end of trip:

There is a tunnel near to the arrival. We will take it to test the reaction of the application in
this case.

Here are the indications in order to fully make the foxyChallengeTrip :

Departure: Impasse des fauvettes 74930 reignier:

 1. Prendre la direction ouest sur Imp. des Fauvettes vers Rue des Érables
 100 m

 2. Prendre à droite sur Rue des Érables
 71 m

 3. Tourner à droite pour rester sur Rue des Érables
 87 m

 4. Prendre à gauche sur Route de l'Eculaz/D19
 280 m

5. Prendre la 2e à droite et rester sur Route d'Annemasse/D2
Continuer de suivre Route d'Annemasse
Radar automatique à 2,3 km

4

 3,9 km

 6. Continuer sur Route de Reignier/D2
 1,9 km

 7. Prendre à gauche sur Route du Salève/D906A
 11 m

 8. Tourner à droite pour rester sur Route du Salève/D906A
 1,3 km

9. Prendre à gauche sur Route de Saint-Julien/D1206
Continuer de suivre D1206
Traverser le rond-point

 2,8 km

10. Prendre légèrement à droite sur Rue du 18 Août 1944/D1206
Entrée sur le territoire : Suisse

 25 m

 11. Continuer sur Route du Pas-de-l'Echelle
 600 m

 12. Au rond-point, prendre la 2e sortie sur Route de l'Uche
 280 m

13. Au rond-point, prendre la 1ère sortie sur Route de Veyrier
Traverser le rond-point

 2,4 km

 14. Tourner à droite pour rester sur Route de Veyrier
 700 m

 15. Prendre la 1re à gauche et rester sur Route du Val-d'Arve
 1,4 km

 16. Prendre à droite sur Route de Saint-Julien
 190 m

 17. Prendre la 1re à droite et rester sur Route de Drize
 550 m

 18. Prendre légèrement à gauche sur Route de Troinex
 300 m

 19. Prendre à gauche sur Ch. Vert
 170 m
Arrival : Chemin Vert.

4 General rules
The application must show every radar that should/could be in the user’s field of vision (+45°
and -45° of the heading of the car), and at least 1 kilometres away. The application must
make some sound as a radar get closer (depending of speed -> 7 seconds before reaching
it). If a radar have already make a sound, then it should not bip again (even if it quit the field
of vision and enter into again. For example highway’s exits that often do circles).
Ghosts and Mobile camera must make a sound if we are close to them, even if it does not
aim into our direction

5

5 Test Cases
Here is the list of tests that must be successful for the application to pass the FoxyChallengeTrip.

5.1 GPS good, and data OK

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

(if you have good
gps signal)

Refers radar number 1

2 The accuracy of the
application

Drive on a route, and
come across a radar

with a heading plus or
less 35% of your

heading

?? Refers to radar number 2

3 The good
functionality of the

on-board storage of
the radars

Drive into an area that
should be stocked into

your phone

The application
should show you the

radars as you meet
some

4 The average speed
camera function

The app must indicate
you if must decrease

your speed cuise, and
indicate you when you

quit this average speed
area

If you quit the road,
the app should not

warn you exept if
you’re approaching

to the last camera
using an other route

than the one was
tagged(if your

average speed is
excesive, and if you

pass the first
camera)

The app should also
explain you how to use

the average speed
camera function on first

use.
Refers to radars #4

6

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The good storage of
taggings

Tag some radars while
you are offline

Once you’re online,
the app should tag

on the server the
locally stored radars

3 The good integration
of average speed

cameras

Post the first camera as
average speed

You should return to
radar view once you
press a second time

the screen in order
to entrer the last

speed camera

Try for average speed
camera that contains

different speed sections

7

5.2 GPS poor, and data OK

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

See radar number

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The respect of the
Foxy Rules

While driving, post a
radar on a known place

The radar must be
placed at the place
you were when you

taped the screen for
the first time

2 The good
programming of an

application

8

5.3 GPS KO, and data OK

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

See radar number

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The respect of the
Foxy Rules

While driving, post a
radar on a known place

The radar must be
placed at the place
you were when you

taped the screen for
the first time

2 The good
programming of an

application

9

5.4 GPS good, and data KO

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

See radar number

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The respect of the
Foxy Rules

While driving, post a
radar on a known place

The radar must be
placed at the place
you were when you

taped the screen for
the first time

2 The good
programming of an

application

10

5.5 GPS poor, and data KO

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The accuracy of the
application

Drive on a route parallel
to one with radar

The application
should not warn you

Refers to radar number 1

2 The good
programing of the

application

Drive on a route and
approach to a 2 side

radar (shown as 2
differents radar by the

API)

The application must
show only one radar

Refers to radar number

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The respect of the
Foxy Rules

While driving, try to post
a radar

You should not be
able to post a radar

when your GPS
accuracy is poor.

11

5.6 GPS KO, and data KO (for example in a long tunnel)

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The reaction of the
app

Drive until you lost the
signal

The application
should zoom out and
show you the radars

(in a radius of 7
kilometers) around

your last know
position, and your

last known heading

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The good
programming of an

application

While driving ,try to post
a radar

You should be
asked if you are in a

tunnel.

If you answer that you
are in a tunnel, the tag
process will continue,

and the tag must be
placed where you lost

good gps Signal.
Otherwise, it will not tag .

12

5.7 Any connectivity status

Showing Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 The user interface Drive, and verify that
there is different

representations of
confirmed or not

confirmed radars

The speed camera
confirmed and

unconfirmed must
be displayed

differently

Tagging Radars :

Test number What will be tested Test instructions Expected result Remarks Effective result

1 Good
communication with

server

While driving ,try to post
a radar

The radar should be
correctly posted into

the sever at the
position of the first

touch

.

13

6 Tests Radars/Places location

Radar 1 :

Latitude : 46.17033
Longitude : 6.20797
Heanding : 235
Kind : Fixed

Radar 2 :

Latitude : 46.16816
Longitude : 6.18487
Heading : 270
Kind : Fixed
Speed : 80

14

Radar 3 :

Latitude : 46.17743
Longitude : 6.22807
Heading : 40 & 220
Kind : Fixed
Speed : 80

15

Radar 4 : (average speed)

Latitude_start : 46.1546
Longitude_start : 6.24871
Latitude_end : 46.16527
Longitude_end : 6.2406
Kind : Fixed

Radar 5 :

Latitude : 46.1607
Longitude : 6.24286
Heading : 230
Kind : Fixed Confirmed
Speed : 80

16

Radar 6 :

Latitude : 46.15153
Longitude : 6.25355
Heading : 325
Kind : Mobile
Speed : 80

Radar 7 :

Latitude : 46.14547
Longitude : 6.26554
Heading : 280
Kind : Mobile
Speed : 80

17

Radar 8 :

Latitude : 46.14547
Longitude : 6.26554
Heading : 280
Kind : Ghost
Speed : 80

Radar 9 (at the enter of a tunnel):

Latitude : 46.17964
Longitude : 6.1429
Heading : 230
Kind : Fixed
Speed : 80

These are some of the most important radars to test.

There is also a lot of other radars that can be tested as shown in the following image:

18

Advanced API for FoyTag
POISOT, Loïc

Appendix 3

User Guide

1

AndroTag API User Guide

Version: 2012-06-08

Contents
1 Introduction .. 1

2 Quick start Guide ... 2

2.1 Requirements ... 2

2.2 Few things to know ... 2

2.3 The first line to use the API ... 2

2.4 Display the SpeedCamsView ... 3

2.5 Initiate the API. ... 4

2.6 Subscribe to the events (Optional) ... 5

2.7 Conclusion .. 5

3 Understand the API ... 6

3.1 General concept ... 6

3.2 Events system .. 8

3.3 The server communication ... 8

4 Classes description ... 10

4.1 SpeedCamsView .. 10

4.2 AndroTag .. 11

5 Conclusion ... 12

1 Introduction
This document will help you using the FoxyTag API. It contains some descriptions and
examples about how to use the API. If you plan to use the API without modifying it, this guide
if for you! If you want to modify the API, it is highly recommended that you also read the
Developer Guide.

The API currently contains the architecture in order to support sections (average speed
cameras), but it is not yet implemented. If you try to use API methods that refer to Sections,
you will obtain no results.

In this document I will use terms such as tag, radar, and speed camera. This all refers to the
same concept: a speed camera.

2

2 Quick start Guide

2.1 Requirements

It is highly recommended that you read the Server API document before starting to read this
one.
Firstly you must have created a new Android application project.
After that, you have to copy the sources of the provided API into the sources of your project.
All the API sources should be into the package “ch.unige.androtag”.
You also have to copy into your resources folder the provided default alarm sound (do not
rename it!) this sound must be located under res/raw/. If necessary, you can create the raw
folder in your IDE or in your file explorer.
A minimal knowledge of Android is required. If you haven’t yet developed any applications, it
would be a good idea to do some Android development tutorials.

2.2 Few things to know

Now you are ready to start. Yes that’s so simple.
With a few lines of code you will be able to see the speed cams around you if there are
some.

Before we start to code, you have to understand that the API is a very autonomous system. It
knows itself when it is necessary to update tags, it manages the communication with the
server and a lot of more complicated stuff that is simplified for you.
The API has only one possibility to communicate with you: the events.
The API has his own event system and launches some specific events.
One last thing before we start: The API provides you with a graphical component:
“SpeedCamView”. This component needs the API in order to function, but the API can
function without this component. That means that if the view provided does not suit your
requirements, you can just drop it and develop your own view.

2.3 The first line to use the API

Now you know enough, and we can start coding.

In this section, we will explain you how to instantiate the API in order to be able to use it.
In fact this is very simple. Just type this line:

This is done. With this single line, your API is ready to be used.
With this line, the API will automatically subscribe to the GPS and the GPS activity icon in the
Android notification bar should appear. Once the GPS fix is done, you can access GPS
information using the API. Refer to “classes description->AndroTag” section or javadoc.

3

“Why do we need to pass our Activity as parameter?”
It is because the API takes care or the GPS for you. But in order to subscribe to
GPS updates, an Activity is needed. This is the only use of this parameter.

It is your responsibility to make sure that the GPS is enabled. The API does not
provide this functionality.

2.4 Display the SpeedCamsView

Here are two solutions:

- You define your component in the layout
- You add your component to the layout during runtime

We will explain only the first solution because if you understand the second one and want to
do it that way, means that your developer’s skills are sufficient and you don’t need
explanation.

Firstly, place this xml code into your layout code:
<ch.unige.androtag.SpeedCamsView
 android:id="@+id/scannerView"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent">
</ch.unige.androtag.SpeedCamsView>

Secondly, add this code to the onCreate() method of your activity. It will give you a reference
to the SpeedCamsView instance.

Thirdly, you have to register the scannerView to the event system:

“Why must we register the scannerView to the event system?”
As the API can function without the SpeedCamsView, it has no reference to it, and
cannot do it for you. This is important, because this view use events such as the
“positionChanged” in order to update the tags position on the screen.

4

2.5 Initiate the API.

As you have read in the Server API document, prior to any other communication with the
server, we need to do an initialization. If you do not do that, the API will not be able to do
anything else than providing you GPS updates.

Let see how you can initialize the communication with the server by using the API.
This is done with a single line:

You can find full description of this function in the provided javadoc, but here is a summary of
the parameters:

1st parameter: username
2nd parameter: password
3rd parameter: application name
4th parameter: application version
5th parameter: language
6th parameter: platform
7th parameter: lab server

The last parameter is used to specify which server you want to use: the production server or
the lab server.

This function returns a boolean: true if the initialization is successful or false if the
initialization failed.

If the initialization is successful, the API will automatically (without any action needed)
download tags around you. You can drive where you want, the API will automatically take
care of the whole system, and keep a buffer of tags around you. These tags are displayed
around you. By default the SpeedCamsView display tags around you in a radius of 1000
meters. If you want to change this, you can, but refers on how to do in the Classes
description below, and more precisely in the part that explain this component
(SpeedCamsView).

Really, isn’t that beautiful? With a few lines of code, you already see the speed cameras
around you.
You will see below that the API is highly customizable. It is highly recommended that you
instantiate the API, create and reference the SpeedCamsView, customize what you want,
and only afterwards do the initialization.

It will work if you make the customization after the initialization, but the changes will be
applied with a little delay (less than 1 second I promise you).

“My initialization always fails. How to know what is wrong?”
The server provides explanation about what is wrong. You can basically subscribe
to the “serverAnswer” event (Refers to “Subscribe to the events section”). If you do
not receive any “serverAnswer” event, please verify your mobile internet
connection.

5

It is your responsibility to take care that the initialization is successful. For
example, if there is no network you should do a loop that calls the init method
while the result of the initialization is false. Remember that once the initialization
is successful, the API will do nothing else than GPS stuff. According to the Server
API document, you must also call this method each time the username, password
or language is changed.

2.6 Subscribe to the events (Optional)

In order to be able to receive news from the API, you must subscribe to the event system.
Each subscriber of the event system must satisfy some requirements; this is why an interface
is provided. Your activity must implement the interface AndroTagListener and its five
methods. You can leave them empty, but if you want to do some special actions when an
event is received, place your code in the corresponding method.
For example if you want to write in the console “New GPS location” each time a new position
is received, just do that :

public void positionChanged() {
 System.out.println("New GPS location");
}

Now you are ready to receive the events, but we must subscribe to them.
This is done by typing this line (for example in you function):

Perfect! You should now receive all the updates from the API.

2.7 Conclusion

To conclude, I hope you have figured out that it is very simple to use the API, but to simplify,
I will write all the lines you must place in your application in order to obtain a first minimalistic
speed camera warning application:

To place in your layout file:
<ch.unige.androtag.SpeedCamsView
 android:id="@+id/scannerView"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent">
</ch.unige.androtag.SpeedCamsView>

In the onCreate method of your application:

Save, Build, Run, and enjoy!

6

3 Understand the API
In this part you will be aware of what you can do with the API and how to configure it.

3.1 General concept

This API was designed to be very simple to use. You have two main entry points: The
speedCamsView and the AndroTag class.
You should not have to access other classes of the package API, and anyway, most of these
classes’ methods are protected, so you do not have access.
Take a look at the simplified class diagram in the next page:

7

8

As you can see, all classes are connected to Androtag class, because it is the Façade of the
API. For example when you do an init, like the AndroTag class will only forward
this command to ServerProxy. Another example: When you ask androTag for DataStatus.
Such as , the class will only forward the command to DataBuffer. In fact
you can see the AndroTag class as a router. It forwards your questions to the classes that
have the answer.

3.2 Events system

Because the AndroTag class is in the center of the API, it is its responsibility to take care of
the subscription and dispatch of events.

All kind of object you produce can subscribe to these events. In order to be able to do that,
they must implement the AndroTagListener interface. After that, you can subscribe by doing
this:

Here is the content of the AndroTagListener interface:

msgServer(String cmd, String msg, String details)
Called each time the server sends a message.

positionChanged()
Called each time the current position changed.

sectionUpdated(String speed, int timer)
Called each time the data about the current section is updated.

serverAnswer(boolean requestEnded, String cmd)
Called each time the server answer to a request or the request timed out.

statusChanged()
Called each time that the status of the data, the GPS or the network changed.

3.3 The server communication

There are two different behaviors for the server communication:

- The init is a blocking method. That means that when you call it, your UI will be
blocked until the server answer or the request times out. So take care when you use
it. It might be necessary to call this method on a different thread. We decided to do it
that way, because when we receive the Boolean result of the init method, we know
instantly if it was a success or not. As you know, the init must be correctly done in
order to automatically launch the API mechanic. So it is a critical call.

- The other communication methods are parallels ones. For example: the method
 .You can call these methods that usually start with “request” or “send”.
You will receive a boolean as answer, but unlike init method, this boolean does not
means that your request was successful. In this case, it only means that tha API was
able to launch the request. Only one request cans be send at a time, and as long as
this request has not ended or timed out, you will not be able to launch another
request. For example, if you call two times , the first one will return you
true, but the second one will return you false. That means the first request has not
ended.

file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23msgServer%2528java.lang.String,%2520java.lang.String,%2520java.lang.String%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23positionChanged%2528%2529
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23sectionUpdated%2528java.lang.String,%2520int%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23serverAnswer%2528boolean,%2520java.lang.String%2529
file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html
file:///C:/Users/pintaf/workspace/AndroTagDemo1/doc/ch/unige/androtag/AndroTagListener.html%23statusChanged%2528%2529

9

“How can I know when my request ended?”
The API provides you an event for that:

The Boolean tells you if we got an answer form the server if true, or if the request
timed out if false. The cmd parameter tells you what command was launched to the

server. For example “tagpost” or “tagrequest”.

The API already use this system in order to know when we have received new tags (when
we receive this event with requestEnded at true, and cmd at “tagrequest”).
Try to never mix up the two concepts :

- Ask for new tags
- Get the new tags

For example for tags: If you want to obtain new tags, call , and once you
receive the good requestEnded event, you can call .
If you call before having called , you will just get null.

If you want for any reason to update the tags of the tagBuffer, you just have to call
 because when a “tagrequest” answer from server is received, the tagBuffer
will automatically get the new tags just received.

Here is a simplified sequence diagram that explains how the parallel requests are done:

file:///C:/Program%20Files%20(x86)/Android/android-sdk/docs/reference/java/lang/String.html

10

4 Classes description
Here you will find a brief description of the main classes of the API that you have access to.
For more precise details, refer to the provided javadoc.

4.1 SpeedCamsView

The SpeedCamsView component is a highly customizable one. In the figure below, you can
see some customization examples:

As explained before, you can customize almost all the user interface of this component. If
instead of these circles (the radar without tags such as the left image above) you want to
provide your images, you can do so, but you must satisfy these requirements:

When specifying an image for the scanner, the image must be a square. The center of the
square will be the current user position, and tags will be displayed inside a circle with a
radius of 45% of the image height/width. The center of the image will be the center of the
circle.
The North sign will move around and outside this circle. The API do not require a specific
size for this square such as 400*400px or 300*300px because all the images provided will be
automatically resized in order to perfectly fit the screen, so all sizes are accepted.

As of today, the SpeedCamsView can only display normal speed camera and not sections
(average speed camera), because this functionality is not yet supported by the API.
These are the four speed camera types:

- Fixed
- Confirmed fixed
- Mobile
- Ghost

For each kind of speed camera you can specify your own design, change color, thickness,
display heading or not, and much more!
Like the radar, you can also specify images. But in this case, it is not necessary that the
image is a square, and the image is not resized, so provide the good sizes (there is no
default “good size” because all screens have different resolution, but just try and find the best
size).

11

The other customizable thing is that you can specify which kind of radar should be painted on
screen, and which ones should buzz (raise the alarm). These two settings are independent,
and a speed camera that is not displayed on screen can buzz.
You can chose to display only tags that have same heading as you (plus minus 45 degrees),
or/and tags that are in front of you (plus minus 45 degrees) or all the tags. When a tag is
painted on the screen, it will stay on the screen even if it does not satisfy anymore the
specifications (heading, direction …).

This component is also responsible for making a sound when a speed camera is close. The
delay to make the sound before we reach the speed camera is customizable like the sound
itself. A tag can buzz only one time. If the tag quit the screen, and come back, then it can
buzz again.

The API will make a sound, but will not verify if the sound is enabled, or will not
check the sound volume. You have to verify the sound yourself. It would be a
good idea to be able to set the volume for the alarm, and to change the global
volume to this configured volume level during the alarm, and to set the volume to
the previous level when the alarm is done. This functionality can only be
implemented in the API, because the API has currently no way to inform you that

it will make a sound. Currently this functionality is not implemented. Maybe in a future
revision of the API. but as you have the sources, you can add this functionality by yourself.

4.2 AndroTag

The AndroTag is the main entry point for the API. With this class, you can have access to lot
of information: your current location, the data, GPS, network status, the tags around you, and
much more! Take a look at this class representation:

12

In the class representation above, only public methods are represented, because you only
have access to them.
For a more complete description of this class and its methods, refer to the javadoc.

5 Conclusion

You have reached the end of this document, and if you read it all, you should have a good
comprehension of the API behavior, and what you can do with it. This API is designed in
order to simplify your development of a FoxyTag client. I truly hope it reach its goal, and
hope you will have pleasure to use it.

Advanced API for FoyTag
POISOT, Loïc

Appendix 4

Developer Guide

1

AndroTag API Developer Guide

Version: 2012-06-08

Contents
1 Introduction .. 2

2 Class diagram ... 2

3 Classes description ... 4

3.1 AndroTag .. 4

3.1.1 Objective .. 4

3.1.2 Responsibilities .. 4

3.1.3 Graphical representation .. 5

3.2 AndroTagListener ... 5

3.2.1 Objective .. 5

3.2.2 Graphical representation .. 6

3.3 ASyncRequest .. 6

3.3.1 Objective .. 6

3.3.2 Responsibilities .. 6

3.3.3 Graphical representation .. 6

3.4 DataBuffer ... 6

3.4.1 Objective .. 7

3.4.2 Responsibilities .. 7

3.4.3 Graphical representation .. 7

3.5 HeartBeat .. 8

3.5.1 Objective .. 8

3.5.2 Responsibilities .. 8

3.5.3 Graphical representation .. 8

3.6 Section .. 8

3.6.1 Objective .. 8

3.6.2 Responsibilities .. 9

3.6.3 Graphical representation .. 9

3.7 ServerProxy .. 9

3.7.1 Objective .. 9

3.7.2 Responsibilities .. 9

3.7.3 Graphical representation .. 10

3.8 SpeedCamsView .. 10

3.8.1 Objective .. 10

3.8.2 Responsibilities .. 10

3.8.3 Graphical representation .. 11

2

3.9 Tag .. 11

3.9.1 Objective .. 11

3.9.2 Responsibilities .. 11

3.9.3 Graphical representation .. 12

3.10 Tools ... 12

3.10.1 Objective .. 12

3.10.2 Graphical representation .. 13

4 General remarks .. 13

1 Introduction
If you plan to modify the API or to extend its functionality, continue its development, this
document is for you. In this document I will explain you how I build the API, what were the
choices I made, and why. Before reading this document, you should read the AndroTag API
User guide as well as the Server API.

2 Class diagram
In the next page you will find an almost complete class diagram of the API. Almost, because I
didn’t write all the variables of the SpeedCamsView (there are 56 variables which would
make the diagram unreadable). This diagram contains method signatures, Constants,
variables, and methods and variable visibility. I hope this will help you to have a global
visibility and understanding of the system.

3

4

3 Classes description
In this section, I will explain you the responsibilities of each class, what they do, why and
how.

3.1 AndroTag

This class is the main entry point for client application. They should use only this class to
access API services. This class is the result of the implementation of the Facade
architectural pattern, and is also the privileged path of communication through the API. If you
develop a new component for the API, and want to access to other component services like
for example position, you should always use a function from AndroTag that can provide you
what you want. And if you develop new services, make them available from AndroTag

3.1.1 Objective

This class has for objective to simplify the usage of the API for clients. It also has for
objective to reduce communication paths by becoming an obligatory path to obtain the
services.

3.1.2 Responsibilities

The main responsibility of this class is to build the API. As almost all classes are singleton,
and only is called, it is the responsibility of AndroTag to instantiate
and refer each API components. As AndroTag is in the center of the API, It also has the
responsibility to manage the Event system. If you want to subscribe to API’s events, there is
a method in AndroTag that allows that. This method is called and is
public, because client’s apps should want to listen these events. In opposite, the action to
launch events should only be available to the API. API classes that want to launch events,
can call methods of AndroTag. These methods are protected, because
only the API can launch API’s events.

5

3.1.3 Graphical representation

3.2 AndroTagListener

This interface define the requirements classes must satisfy in order to be able to subscribe
API’s events

3.2.1 Objective

Define the methods that any class that want to subscribe to API’s events must satisfy.

6

3.2.2 Graphical representation

3.3 ASyncRequest

This class extends AsyncTask and is a parallel task.

3.3.1 Objective

This class objective is to launch requests to the server on another thread

3.3.2 Responsibilities

The responsibility of this class is to build and launch a request provided as a String and to
receive the result. It also has the responsibility to forward the result to ServerProxy class.

3.3.3 Graphical representation

3.4 DataBuffer

This class keeps in memory the tags around the user and tries to always have up to date
tags

7

3.4.1 Objective

The main objective of this class is to automatically take in consideration the user’s moves in
order to always have good tags around the user. This class implements algorithms in order
to optimize connections. For more info, refer to the dedicated section in the ServerAPI
document.

3.4.2 Responsibilities

This class has the responsibility to keep up to date tags in memory. These tags should be
around the user, and tags that are displayed on screen should always be up to date.
This class has the responsibility to provide the tags that should be displayed on screen.
It has the responsibility to request new tags when we are leaving the protected zone (see
Server API if you don’t understand this word)

3.4.3 Graphical representation

8

3.5 HeartBeat

This class manages the GPS and like its name indicates is the heart of the system: it gives
the impulsions.

3.5.1 Objective

Abstraction layer between the GPS and the API. It provides GPS information.

3.5.2 Responsibilities

Provide GPS information, launch GPS API events such as . It also has
the responsibility to verify that the last tag request was done less than 5 minutes ago. If it is
not the case, it will request new tags in order to have compliance with Server API
recommendations.

3.5.3 Graphical representation

3.6 Section

This class is the representation of an average speed camera. As of today it is useless,
because the average speed camera functionality is not completely implemented in the API.

3.6.1 Objective

Numerical representation of a section

9

3.6.2 Responsibilities

Not implemented yet

3.6.3 Graphical representation

3.7 ServerProxy

This class manages global communication with server and parses the results. This class
reflects the implementation of the Proxy pattern. All the communication with the server
should pass through this class.

3.7.1 Objective

Restrict communication path, have a control of the communication with the API, and allow
only one request at a time. It also has the responsibility to keep in memory the username,
password, client version and server used. These parameters are specified by the client when
it calls the init method.

3.7.2 Responsibilities

Launch ASyncRequests, handle and parse the results, know the network state (busy or free),
launch corresponding events when an answer or message is received from the server.

10

3.7.3 Graphical representation

3.8 SpeedCamsView

This class displays the tags on screen. It is highly customizable.

3.8.1 Objective

Provide to the client a component that, when used with the API, can automatically display
tags around you during your trip.

3.8.2 Responsibilities

Make a sound (buzz) when approaching a tag. Restrict the tags displayed depending on
some parameters.

11

3.8.3 Graphical representation

As explained at the top of this document, I didn’t write any of the variables (there are 56
variables that would make the diagram unreadable).

3.9 Tag

This class is the representation of a speed camera.

3.9.1 Objective

Numerical representation of a speed camera

3.9.2 Responsibilities

Know the kind of speed camera it is, know its latitude, longitude, heading. It also has to know
if it already has buzzed, and if it is on the screen.

12

3.9.3 Graphical representation

3.10 Tools

This class is a bunch of tools.

3.10.1 Objective

Provide useful tools for use inside and outside the API

13

3.10.2 Graphical representation

4 General remarks

If you want to continue the development, try to respect the two architectural patterns I
implemented, and try to always think about responsibility. Responsibilities should not be
shared between classes/component. This would make the code unreadable, and the reverse
engineering would become very difficult.

Good luck !

	1
	ServerAPI
	Srappendix2
	XFoxy Challenge Trip
	Zappendix3
	zzAndroTag API User Guide
	zzappendix4
	zzzAndroTag API Developer Guide

