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Résumé

Les algorithmes évolutionnistes, dont les algorithmes génétiques, sont des techniques de
recherche adaptatives s’inspirant des mécanismes de sélection naturelle.
Il s’agit de procédures itératives qui se déroulent comme suit:

On génère une population initiale de manière aléatoire ou heuristique, dans laquelle chaque
individu représente une solution possible d’un problème donné a travers un codage opportun
conduisant à une représentationen chaîne de longueur finie, par exemple une chaîne binaire.
A chaque pas de l’itération, appellé également génération, les individus sont évalués en
fonction d’un critère d’adaptation fixé.

Dans une première phase, les individus sont choisis avec une probabilité proportionnelle à
leur valeur d’adaptation (ou coût) , afin de favoriser les meilleurs d’entre eux. Pour reformer
une nouvelle population de taille constante et générer de nouveaux points dans l’espace de
recherche, on utilise les opérateurs dits génétiques.

Un algorithme génétique standard se formule donc comme suit:

- Générer aléatoirement une population d’individus de taille donnée.
- Répéter

Évaluation: Affecter un coût à chaque individu.
Sélection: Établir une liste de paires d’individus. La sélection est basée sur les

coûts associés aux individus.
Reproduction: Appliquer les opérateurs génétiques a toutes les paires d’individus. Les

individus produits représentent la nouvelle population.
-Jusqu’à condition de terminaison.

Il y a deux types principaux d’opérateurs génétiques: l’hybridation (crossover) et la mutation.
L’ opérateur crossover est une recombinaison de deux individus parents produisants deux
nouveaux individus. Cette opération se fait en prenant dans chacun des deux parents des sous-
chaînes complémentaires de leur code “génétiques” , comme indiqué ci-dessous:
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La mutation consiste en un changement aléatoire d’un symbole dans la chaîne codant
l’individu.

La mutation sert à éviter que la population ne se fixe trop rapidement sur des optima locaux,
phénomène que l’on nomme convergence prématurée.

Le cycle évaluation/sélection/recombinaison/mutation est réitéré jusqu’à ce qu’un critère
d’arrêt soit atteint. Ceci peut survenir après un nombre maximal prédéterminé de générations
ou à l’obtention d’une solution satisfaisante.

Il est à remarquer que les algorithmes évolutionnistes ont été appliqués avec succès à
beaucoup de problèmes difficiles en optimisation de fonctions et en optimisation
combinatoire, ainsi que dans l’inférence des règles de décision.

La programmation génétique est l’extension du modèle génétique d’apprentissage décrit
précédemment à l’espace des programmes. Le concept peut être perçu comme l’application
d’un algorithme génétique à un espace de recherche constitué d’expressions Lisp. Dans le
contexte de la programmation génétique, un individu est appellé programme génétique (PG).
Ainsi, les différentes phases d’un algorithme génétique classique opèrent sur des expressions
Lisp (S-expressions) plutôt que sur des chaînes binaires de taille fixe.
Un PG est souvent représenté par un arbre, ce qui facilite aussi bien l’extension des opérateurs
génétiques que l’évaluation du programme lui-même.

Par exemple, l’expression( * ( * 4 x ) ( - 1 x ) ) peut être représentée graphiquement comme
suit:

Parents Individus produits

Point choisi aléatoirement

Mutation aléatoire d’un bit
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Les noeuds fonctions de cet arbre sont (* , *, -) et les noeuds terminaux sont (4, x, 1, x). La
racine de cet arbre correspond au premier noeud fonction apparaissant dans la S-expression
(i.e *).
L’espace de recherche en programmation génétique correspond à toutes les combinaisons de
fonctions créées récursivement à partir d’un ensemble de  fonctions

et d’un ensemble de  terminaux

 .

L’ensemble, F, des fonctions est appelléFunction-Set et l’ensemble, T, des terminaux est
appelléTerminal-Set.

Le choix des ensembles F et T doit se faire de manière à ce que les S-expressions formées à
partir de l’ensemble  soient des solutions au problème à résoudre.
Par exemple, dans le cas de la logique binaire, l’ensemble F = {AND, OR, NOT} est suffisant
pour réaliser n’importe qu’elle fonction Booléenne.

La création de chaque S-expression dans la population initiale commence à partir de la racine.
Le noeud racine est souvent choisi comme fonction pour éviter l’obtention d’une expression
constituée d’un seul terminal. Lorsqu’une fonction f de F est choisie comme noeud de l’arbre,
alors r noeuds, où r est l’arité de f, sont crées à patir de ce noeud. Ainsi, pour chaque noeud
fonction, un élément de l’ensemble  est choisi aléatoirement comme argument de cette
fonction.

Si une fonction est choisie comme argument, alors le processus continue récursivement. Si un
terminal est choisi comme argument d’une fonction, alors il devient noeud terminal (feuille)
de l’arbre et le processus s’achève.
Il est aisé de remarquer que cette construction nous garantie la validité syntaxique (mais pas
forcément sémantique) des programmes génétiques.

L’extension de l’opérateur crossover à l’espace des S-expressions se fait comme suit. On
commence par sélectionner deux PG et choisir un noeud sur chacun d’eux. Chaque noeud est,
par définition, la racine d’un sous-arbre. Les deux sous-arbres sont extraits et interchangés.

*

*

4 x

-

1 x

Nf

F f1 f2 … fNf
, , ,{ }=

Nt

T a1 a2 … aNt
, , ,{ }=

F T∪

F T∪
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Ainsi, si on choisit les noeuds 4 et 2 respectivement sur les PG suivants (les noeuds sont
numérotés de gauche à droite)

( + 2 ( * x ( / x 3 ))) et ( + ( * x 4 ) 1)

on obtient, comme nouveaux individus

( + 2 ( * (* x 4) (/ x 3 ) ) ) et (+ x 1)

Dans le cas de l’opérateur mutation, un noeud terminal est échangé avec un autre noeud
terminal, tandis qu’un noeud fonction n’est interchangeable qu’avec une autre fonction ayant
le même nombre d’arguments.

Dans la programmation génétique, les fonctions et terminaux ne sont pas associés à des
positions fixes dans l’arbre. En outre, il est relativement rare qu’un terminal ou une fonction
disparaisse entièrement de la population. Par conséquent, en programmation génétique, la
mutation n’a pas le rôle potentiel de restaurer la diversité dans la population,
comparativement au cas de l’algorithme génétique classique.

Comme mentionné précédemment, les programmes génétiques générés sont syntaxiquement
valides. Cependant, chaque fonction dans le Function-Set doit être bien définie de manière à
accepter toute combinaison d’arguments. Autrement dit, il faut introduire la gestion des
exceptions quand une fonction est indéfinie pour certaines valeurs de ses paramètres.
Par exemple, l’expression suivante PG =(* (+ x 1) (/ x 0)) est syntaxiquement correcte, mais
la division par zéro la rend sémantiquement incorrecte. Pour pallier à ce genre d’exceptions, la
solution standard consiste à redéfinir la fonction de division de manière à retourner la valeur 1
si le dénominateur vaut 0.

Ces dernières années, la programmation génétique a suscité une attention particulière dans la
communauté scientifique. Plusieurs travaux sont effectués dans l’optimisation des requêtes en
bases de données, optimisation des modèles de marché financier, robotique, etc ...

Dans ce travail, nous présentons un système de programmation génétique destiné à s’exécuter
sur des machines à passage de méssages. Le système est écrit en C++ et utilise les primitives
PVM. L’utilisateur doit fournir une fonction qui associe une mesure de qualité à chaque
programme génétique. Cette fonction est directement liée au problème à résoudre. Notre
système offre une grande convivialité et l’aspect parallèle est entièrement transparent à
l’utilisateur.

L’analyse de la compléxité d’une exécution séquentielle nous a montré que le temps total
d’exécution est directement proportionnel à la taille du problème et que la phase d’évaluation
consomme le plus de temps quand le problème nécessite plus de 1000 cas d’évaluations.
La parallélisation de la phase d’évaluation, en programmation génétique, se heurte au
problème de la variabilité de la taille des programmes à évaluer. La taille d’un programme est
définie par le nombre d’opérations arithmétiques nécessaires pour son évaluation.
En effet, ce problème équivaut à trouver un ordonnancement optimal deP tâches
indépendentes surm < P machines. Ceci est un problème NP-difficile.
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Nous proposons dans cette étude deux algorithmes pour équilibrer la charge sur les
processeurs. Le premier algorithme consiste à répartir les tâches de manière circulaire: la
tâchej est affectée au processorj MOD m. C’est un schéma statique d’équilibre de la charge.
Le second algorithme est basé sur la taille des tâches à l’exécution. Les tâches sont d’abord
triées de manière décroissante selon leur taille, et ensuite la distribution des tâches se fait de la
plus grande vers la plus petite. A chaque itération, l’algorithme affecte la tâche courante au
processeur le moins chargé. C’est un schéma dynamique d’équilibre de la charge.

Nous montrons qu’en l’absence de variabilité dans la taille des tâches, les deux algorithmes
aboutissent aux mêmes performances. Par contre, dans le cas où il y a une grande diversité
dans la taille des tâches, les performances du schéma dynamique sont meilleures que celles
obtenues avec le schéma statique. Cette différence s’explique par le fait que la charge d’un
processeur n’est pas déterminée par le nombre de tâches qui lui sont assignées, mais plutôt par
la totalité d’instructions à exécuter. Nous montrons que notre implémentation peut délivrer un
speedup presque linéaire pour des problèmes de grande taille.

La parallélisation de la phase d’évaluation ne pallie pas au problème de la convergence
prématurée, phénomène caractérisant l’algorithme génétique conventionnel. Pour ce faire,
notre système intègre le modèle à ilôts en faisant évoluer plusieurs populations en parallèle.
Afin d’éviter qu’une sous-population ne converge rapidement vers un optimum local, des
individus migrent entre les sous-populations selon la topologie d’anneau. L’effet de la
migration est de réintroduire la diversité dans les sous-populations.

La programmation génétique a été appliquée avec beaucoup de succès à beaucoup
d’applications dont la solution optimale est connue au préalable. Cependant, il est important
de savoir si cette méthode s’applique aussi à des problèmes réels où les réponses ne sont pas
connues et les données contiennent du bruit.

Nous présentons l’application de la programmation génétique à l’apprentissage des modèles
d’investissement pour le marché financier. Les recommandations suggérées par ces modèles
sont basées sur les fluctuations des prix dans le passé. L’historique des prix est résumé sous
forme de variables appelléesindicateurs. Les indicateurs que nous utilisons sont basés sur des
moyennes mobiles. La forme la plus simple d’un modèle d’investissement peut être décrite
par la règle suivante:

IF |I| > K THEN G := SIGN(I) (*)
ELSE G := 0

Où la variableI est un indicateur dont le signe et la valeur reflètent la tendance actuelle des
prix, etK est une constante seuil (break-level).
Les recommandations du modèle sont les valeurs prises par la variableG. La valeurG = +1

correspond à un signal d’achat,G = -1 correspond à un signal de vente etG = 0 correspond à la
position neutre. Comme l’utilisation d’un seul indicateur ne peut signaler tous les
changements de tendance, il est important de combiner plusieurs d’entre eux afin d’obtenir
une image globale du marché.
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Dans cette étude, un modèle d’investissement est une combinaison logique de plusieurs règles
ayant la forme (*). Les signaux retournés par ces règles sont combinés par des opérateurs
logiques (AND, OR, NOT, IF). Un programme génétique est alors représenté par un arbre de
décision dont les noeuds terminaux sont des indicateurs. Pour chaque prix, les indicateurs sont
d’abord mis à jour, ensuite l’arbre est évalué pour obtenir la recommandation finale du
modèle. Une transaction a lieu quand la position recommandée est différente de la position
courante.

La qualité d’un modèle d’investissement n’est pas basée uniquement sur la maximisation du
rendement (return) , mais aussi sur la minimisation du risque. Une mesure du risque induit par
un modèle financier est le calcul de la variance du rendement sur toutes les transactions
opérées. Afin de mesurer la qualité d’un modèle d’investissement, nous utilisons la différence
entre le rendement moyen et la variance du rendement lui-même. Ainsi, un ‘bon’ modèle est
un modèle ayant un rendement positif constant sur chaque transaction.

Dans cette étude, les prix utilisés sont des données réelles. La période d’optimisation,
contenant des données horaires, couvrant 7 monnaies (GBP/USD, USD/DEM, USD/ITL,
USD/JPY, USD/CHF, USD/FRF, USD/NLG), commence le1er Janvier 1987 et se termine le
31 décembre 1994.

Pour pallier au problème de sur-apprentissage, les précautions suivantes ont été prises:
- chaque modèle est testé sur les 7 monnaies;
- chaque série de prix est subdivisée en périodes alternées optimisation/test;
- et la mesure de qualité d’un modèle d’investissement tient compte du risque sous-jacent.

Nous montrons que les modèles obtenus sont robustes et offrent un rendement moyen
dépassant les 5% du montant de la transaction. Nos résultats attestent que la programmation
génétique constitue un axe de recherche prometteur pour l’optimisation des modèles
d’investissement financier.



page 7

1. Fundamentals of Genetic Algorithms

1.1 Introduction

Genetic Algorithms (GAs) are adaptative methods which may be used to solve search and
optimisation problems. They are inspired by the genetic processes of biological organisms.
Over many generations, natural populations evolve according to the principles of natural
selection and “survival of the fittest”, first clearly stated by Charles Darwin inThe origin of
Species. By mimicking this process, genetic algorithms are able to “evolve” solutions to real
world problems, if they have been suitably encoded.

The basic principles of GAs were first laid down rigourously by Holland [5], and are well
described in many texts ( [2] , [4] and [10] ).

In nature, individuals in a population compete with each other for resources. Also, members
of the same species often compete to attract a mate. Those individuals which are most
succesful in surviving and attracting mates will have relatively large number of offspring.
Poorly performing individuals will produce few or even no offspring at all. This means that
the genes from the highly adapted, or “fit” individuals will spread to an increasing number of
individuals in each successive generation. The combination of good characteristics from
different ancestors can sometimes produce “superfit” offspring, whose fitness is greater than
that of either parent. In this way, species evolve to become more and more well suited to their
environment.

GAs use a direct analogy of natural behaviour. They work with apopulation of “individuals”,
each representing a possible solution to a given problem. Each individual is assigned a
“fitness score” according to how good a solution to the problem it is. In nature, this is
equivalent to assessing how effective an organism is at competing for resources. The highly fit
individuals are given opportunities to “reproduce”, by “cross breeding” with other individuals
in the population. This produces new individuals as “offspring”, which share some features
taken from each “parent”. The least fit members of the population are less likely to get
selected for reproduction, and so do not survive.

A whole new population of possible solutions is thus produced by selecting the best
individuals from the current “generation”, and mating them to produce a new set of
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individuals. This new generation contains a higher proportion of the characteristics possessed
by the good members of the previous generation. In this way, over many generations, good
characteristics are spread throughout the population, being mixed and exchanged with other
good characteristics as they go. By favouring the mating of the more fit individuals, the most
promising areas of the search space are explored. If the GA has been designed well, the
population willconverge to a good or even optimal solution to the problem.

1.2 Basic Principles

The standard GA can be represented as shown in figure 1.
Before a GA can be run, a suitable coding (or representation) for the problem must be devised.
We also require afitness function, which assigns a figure of merit to each coded solution.
During the run, parents must beselected for reproduction, andrecombined to generate
offspring. These aspects are described below.

BEGIN /* genetic algorithm */

Create an initial random population
Evaluate the fitness of each individual in the population

WHILE NOT termination condition DO
BEGIN /* produce new generation */

Select fitter individuals from current generation
Recombine individuals
Mutate individuals with low probability
Evaluate the fitness of the new individuals
Insert the new individuals in next generation

ENDWHILE
END

fig 1: A traditional Genetic Algorithm

1.3 Coding

It is assumed that a potential solution to a problem may be represented as a set of parameters.
These parameters (known asgenes) are joined together to form a string of values (often
referred to as achromosome). Holland [5] first showed that a convenient problem
representation is to use a binary alphabet for the string.
For example, if our problem is to maximise a function of three variables,F(x, y, z), we might
represent each variable by a 10-bit binary number. Our chromosome would therefore contain
three genes, and consist of 30 binary digits.
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1.4 Fitness function

A fitness function must be devised for each problem to be solved. Given a particular
chromosome, the fitness function returns a single numerical “fitness”, or “figure of merit”,
which is supposed to be proportional to the “utility” or “ability” of the individual which that
chromosome represents. For many problems, particularly function optimisation, it is obvious
what the fitness function should measure. Sometimes, it should just be the value of the
function. The general rule in constructing a fitness function is that it should reflect the value of
the chromosome in some “real” way. However, the real value of a chromosome is not always
a useful quantity for guiding genetic search. In combinatorial optimisation problems, such as
the construction of school timetables, most points in the search space often represent invalid
chromosomes - and hence have zero “real” value. Nevertheless, special-purpose codings and
genetic operators can be devised such that all generated solutions are viable [10].

1.5 Reproduction

During the reproduction phase of the GA, individuals are selected from the population and
recombined, producing offspring which will comprise the next generation. Parents are
selected randomly from the population using a scheme which favours the most fit individuals.
Good individuals will probably be selected several times in a generation, poor ones may not
be at all.
Having selected two parents, their chromosomes arerecombined, typically using the
mechanisms ofcrossover andmutation.

- Crossover takes two individuals, and cuts their chromosome strings at some randomly
chosen position, to produce two “head” segments, and two “tail” segments. The tail segments
are then swapped over to produce two new full length chromosomes (figure 2). The two
offspring each inherit some genes from each parent. This is known assingle point crossover.
Crossover is not usually applied toall pairs of individuals selected for mating. A random
choice is made, where the likelihood of crossover being applied is typically between 0.6 and
1.0. If crossover is not applied, offspring are produced simply by duplicating the parents. This
gives each individual a chance of preserving its genes without the disruption of crossover.

- Mutation is applied to each child individually after crossover. It randomly alters each gene
with a small probability. Figure 3 shows the fifth gene of the chromosome being mutated.

The traditional view is that crossover is the most important of the two techniques for rapidly
exploring a search space. Mutation provides a small amount of random search, and helps
ensure that no point in the search space has a zero probability of being examined.
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fig 2: Single-point Crossover

fig 3: A single mutation

Many different crossover techniques have been devised, often involving more than one cut
point. DeJong [3] investigated the effectiveness of multiple-point crossover, and concluded
that 2-point crossover gives an improvement, but that adding further crossover points reduces
the performance of the GA. In fact, the problem with adding additional crossover points is that
building blocks are more likely to be disrupted. However, an advantage of having more
crossover points is that the problem space may be searched more thoroughly.

1.6 2-point crossover

In 2-point crossover, and multi-point crossover in general, chromosomes are regarded asloops
formed by joining the ends together, rather than linear strings (figure 4). A 2-point crossover
operator uses two randomly chosen cut points. Strings exchange the segments that falls
between these two points. When viewed in this way, 1-point crossover is a special case of 2-
point crossover where one of the cut points fixed at the start of the string.
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fig 4: Chromosome viewed as a loop

1.7 Uniform crossover

With uniform crossover, each gene in the offspring is created by copying the corresponding
gene from one of the two parents, chosen according to a randomly generatedcrossover mask.
Where there is a 1 in the crossover mask, the gene is copied from the first parent, and where
there is a 0 in the mask, the gene is copied from the second parent, as shown in figure 5. The
process is repeated with the parents exchanged to produce the second offspring. A new
crossover mask is randomly generated for each pair of parents.
Offspring therefore contain a mixture of genes from each parent.

fig 5: Uniform crossover

- Goldberg [4] describes a rather different crossover operator,partially matched crossover
(PMX), for use in order-based problems. In an order based problem, such as the travelling
salesman problem, gene values are fixed, and the fitness depends on the order in which they
appear. PMX operator does not cross the values of the genes, but the order in which they
appear. Offspring have genes which inherit ordering information from each parent. This
avoids the generation of offspring which violate the problem constraints.

StartEnd

Cut point 1

Cut point 2

1 0 0 1 0 1 1 1

1 0 1 0 1 0 1 1

Crossover Mask

Parent 1

1 1 0 0 0 0 1 1

0 1 0 1 0 1 0 0

Offspring 1
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1.8 Convergence

If the GA has been correctly implemented, the population will evolve over successive
generations so that the fitness of the best and the average individual in each generation
increases towards a near-optimal solution.Convergence is the progression towards increasing
uniformity. A gene is said to have converged when 95% of the population share the same
value [3]. Thepopulation is said to have converged when all of the genes have converged. As
the population converges, the average fitness will approach that of the best individual.

1.9 Parent selection techniques

Parent selection is the task of allocating reproductive opportunities to each individual. In
principle, individuals from the population are copied to a “mating pool” , with highly fit
individuals being more likely to receive more than one copy, and unfit individuals being more
likely to receive no copies. The size of the mating pool is equal to the size of the population.
Then, pairs of individuals are taken out of the mating pool at random, and mated. This process
is repeated until the mating pool is exhausted.
The behaviour of the GA depends very much on how individuals are chosen to go into the
mating pool.
There are a number of methods to do selection.

(a) - Fitness-proportionate selection assigns each individual structurei in the population a
probability of selection  , according to the ratio of the individual fitness to overall
population fitness:

Then it selects (with replacement) a total ofPopulationSizeindividuals for further genetic
processing, according the distribution defined byps . The simplest variant of fitness-
proportionate selection,roulette-wheel selection [4] [11], chooses individuals through
PopulationSize simulated spins of a roulette wheel. The roulette wheel contains one slot for
each population element. The size of each slot is directly proportional to its respective  .
Note that the population members with higher fitnesses are likely to be selected more often
than those with lower fitnesses. However, with this method the genes from a few
comparatively highly fit individuals may rapidly come to dominate the population, causing it
to converge on local optimum. Once the population has converged, the ability of the GA to
continue to search for better solutions is effectively reduced: crossover of almost identical
chromosomes does not introduce diversity. Only mutation remains to explore entirely new
regions, and this simply performs random search.

(b) - Some variations on selection methods which do not allocate trials proportionally to
fitness arefitness ranking selection andtournament selection.
Rank-based selection consists of allocating reproductive trials according to the rank of the

ps i( )

ps i( ) f i( ) ⁄ f j( )
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∑
 
 
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=
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individual strings in the population rather than by individual fitness relative to the population
average.
Ranking is an effort to slow down premature convergence. One cause of premature
convergence may be “super individuals” that have an unusually high fitness ratio and thus
dominate the search process. Ranking acts as a smoothing function which reduces the effect of
exagerated differences in fitness.
However, the most serious objection to ranking is that it violates the schema theorem: the
average of the rank of the individuals that sample a particular schemata does not correspond to
the rank of the schema’s average fitness [14].

- Baker [1] used a linear curve for the allocation of trials.
The curve is defined by two points ( 1 , MAX ) and ( N , MIN ) where MAX and MIN are
respectively the number of trials allocated to the top and last ranked individuals in the
population of size N.

That is an individual of ranki will receive a number of offspring which can be expressed as

and consequently will be selected with the probability

Or

The parameter MAX is a user defined value. Baker found that a value of MAX = 1.1 is
suitable to prevent undesirable convergence.
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The total of the individual allocation of trials should be equal to the population size N. This
can be expressed as follows.

yielding

- Whitley [14] used a ranked-based allocation of reproductive trials which is similar to
Baker’s linear ranking.

(c) - In tournament selection, a group of individuals is selected from the population with a
uniform random probability distribution. The fitness value of each member of this group are
compared and the actual best is selected. The size of the group is given by the
TournamentSize. The most common variation,binary tournament selection, uses
TournamentSize= 2.

The following pseudo-code describes the principle of this selection method. The procedure
Tournament first forms the group of individuals, , and then returns the individual whose
fitness is maximum.

individualTournament()
BEGIN

FOR i = 1 to TournamentSizeDO
BEGIN

generate a random number

add individual j to the tournament set :
ENDFOR

return individual
END

1.10 Generation gaps and steady-state replacement

The generation gap is defined as the proportion of individuals in the population which are
replaced in each generation. Traditionally, a generation gap of 1 (the whole population) is
replaced in each generation. Syswerda [12] introducedsteady-state replacement where only a
few (typically two) individuals, in each generation, are replaced.

In steady-state replacement, two parents are selected for reproduction and produce offspring
that are immediately placed back into the population. The offspring do not replace parents, but
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rather the least fit (or some relatively less fit) member of the population.
The essential difference between a generational GA and a steady-state GA, is that population
statistics (such as average fitness) are recomputed after each mating in a steady-state GA and
the new offspring are immediately available for reproduction. The advantage is that the best
points found in the search are maintained in the population.

1.11 Schemata

While a GA on the surface processes strings, it implicitly processes schemata, which represent
similarities between strings. A GA can not, as a practical matter, visit every point in the search
space. It can, however, sample a sufficient number of hyperplanes in highly fit regions of the
search space. Each such hyperplane corresponds to a set of highly fit, similar substrings.

A schema is a string of total lengthl (the same overall length as the population’s strings),
taken from the alphabet { 0 , 1 , * } , where ‘*’ is a wild-card or “don’t care” character. Each
schema represents the set of all binary strings of lengthl whose corresponding bit-positions
contain bits identical to those ‘0’ and ‘1’ bits of the schema. For example, the schema, 10**1,
represents the set of five-bit strings, { 10001, 10011, 10101, 10111 }. Schemata are also called
similarity subsets because they represent subsets of strings with similarities at certain, fixed
bit-positions.
Two properties of schemata are theirorder anddefining length. Order is the number of fixed
bit-positions (non-wild-cards) in a schema. The defining length of a schemata is based on the
distance between the first and last bits in the schema with value either 0 or 1. IfIx is the index
of the rightmost occurrence of either a 0 or 1 andIy is the index of the leftmost occurrence of
either a 0 or 1, then the defining length isIx - Iy .
For example, the following schema is of order 4, written , and
has a defining length of 7, written . Each string in
the population is an element of  schemata.

1.12 Building blocks and schema theorem

Building blocks are low-order, short defining-length, highly fit schemata, where the fitness of
a schema is defined as the average fitness of the elements it contains. Building blocks
represent similarities (between strings) that are significant to the GA’s solution of a particular
problem.
Selection chooses strings with higher fitnesses for further processing. Hence strings that are
members of highly fit schemata are selected more often. Crossover infrequently disrupts
schemata with shorter defining lengths, and mutation infrequently disrupts lower order
schemata. Therefore, highly fit, short defining length, low-order schemata, otherwise known
as building blocks, are likely to proliferate from generation to generation. From this fact
comes the claim that GAs process building blocks, also known asuseful schemata. Holland
[6] estimates that while a GA processesn strings each generation, it processes on the order of

 useful schemata. He called this phenomenaimplicit parallelism. Whitley [15] showed that
to make this estimation reasonable,  must be chosen with respect to the string length.

o ****1**0**10**( ) 4=
δ ****1**0**10**( ) 12 5– 7= =

2l
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n
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Let m(H , t) be the number of instances of schemaH present in the population at generationt.
We calculate the expected number of instances ofH at the next generation, orm(H , t + 1) , in
terms of m(H , t). The canonical GA assigns a string a selection probability directly
proportional to fitness. Using fitness-proportionate selection,H can expect to be selected

 times, where  is the average population fitness and
 is the average fitness of those strings in the population that are elements ofH.

That is the number of strings in the population grows as the ratio of the fitness of the schema
to the average fitness of the population. If we assume that a schemaH remains above average
by  i.e  , then .
That is an above-average schema receives an exponentially increasing number of strings in
the next generations.
The probability that single-point crossover disrupts a schema is precisely the probability that
the crossover point falls within the schema’s defining positions (those outermost, fixed bit-
positions used to calculate the defining length). The probability thatH survives crossover is
greater than or equal to the term  . This survival probability is an
inequality, because a disrupted schema might regain its composition if it crosses with a similar
schema. The probability thatH survives mutation is  , which can be
approximated as  for small  and small . The product of the expected
number of selections and the survival probabilities (with the smallest multiplicative term
omitted) yields what is known as theschema theorem:

This equation states that short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generations of a genetic algorithm.

1.13 Parallel genetic algorithms

Part of the biological metaphor used to motivate genetic search is that GAs are inherently
parallel. Beginning in 1987, a wide variety of parallel implementations have appeared in the
literature. The most popular parallelizations of the canonical genetic algorithm are the coarse-
grained genetic algorithm (Island model) and the fine-grained genetic algorithm (Cellular
model).

- One motivation for usingIsland models is to exploit the coarse grain parallel model. Assume
we wish to use 16 processors and have a population of 1600 strings. One way to evolve these
strings is to break the total population down into subpopulations of 100 strings each. Each one
of these subpopulations could then be evolved using a canonical genetic algorithm.
Occasionally, the subpopulations would swap a few strings. Thismigration allows
subpopulations to share genetic material [13].

Assume for a moment that one executes 16 separate genetic algorithms, each using a
population of 100 stringswithout migration. In this case, 16 independent searches occur. This
technique is sometimes calledpartitioned GA. The partitioned GA is highly redundant. This
redundancy causes repeated exploration, from run to run, of certain regions of the search
space (independent runs will blindly process the same subsolutions, since no coordination will
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exist among processes). By introducing migration, the Island model is able to exploit
differences in the various subpopulations. This variation, in fact, represents a source of
genetic diversity. Each subpopulation is an island, and there is some designated way in which
genetic structures are moved from one island to another. If a large number of strings migrate
each generation, then global mixing occurs and local differences between islands will be
driven out. If migration is too infrequent, it may not be enough to prevent each small
subpopulation from prematurely converging. Tanese defines themigration rate as the
percentage of each subpopulation that is exchanged. She (and others) finds that a migration
rate has to be low (between 1 and 5%) in order to maintain stable, but differing
subpopulations.
A coarse-grained genetic algorithm can be described as follows

generate multiple random subpopulations
generation number := 0
WHILE NOT termination condition DO

FOR each subpopulation DO in parallel
evaluate the individuals
IF generation number MOD frequency = 0 THEN

send R best individuals to a neighboring island
receive R individuals from a neighboring island
replace R individuals in the subpopulation

ENDIF
select individuals
produce offspring

ENDFOR
generation number := generation number + 1

ENDWHILE

The variable R refers to the migration rate and and the variablefrequency, expressed in
number of generations, specifies theexchange frequency. Every frequency generations, an
exchange takes place between each subpopulation and one of its neighbors.

- The cellular model assumes one individual resides at each processor. Each processor can
pick the best string in its local neighborhood to mate with, or alternatively, some form of local
probabilistic selection could be used. In either case, only one offspring is produced and
becomes the new resident at that processor.
Muhlenbein‘s parallel, distributed GA (PGA) [9] places individuals on a two-dimensional
grid, one individual per grid element or node. PGA works by hill-climbing to local maxima,
then hopping to others via crossover. Each individual does the selection by itself. It looks for a
partner in its neighborhood only, then performs crossover. If the single resulting offspring is
fitter than its parent, it replaces the parent; otherwise the parent remains. The entire cycle then
repeats. After few generations, there emerge many small subpopulations of similar strings
with similar fitness values. These subpopulations are just as separate islands. This kind of
separation is referred to asisolation by distance.
Manderick & Spiessens [8] proposed another fine-grained genetic algorithm which also
assigns one individual to each processor. In this algorithm, the individuals of the population
are placed on a planar grid and selection and mating are restricted to small neighborhoods on
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that grid. Each processor crosses its element with an element selected from the processor’s
neighborhood. Tournament selection, with the tournament size is given by the neighborhood
size, is one possible selection method. The best of the two offspring produced by crossover
replaces the original individual residing at that node.

A fine-grained genetic algorithm can be described as follows

FOR each grid point DO in parallel
generate a random individual

ENDFOR
WHILE NOT termination condition DO

FOR each grid point i DO in parallel
evaluate individual in i
select a neighboring individual j
produce offspring from i and j
assign one of the offspring to i

ENDFOR
ENDWHILE

1.14 Comparison with other techniques

A number of other general purpose techniques have been proposed for use in optimization
problems. Like GAs, they all assume that the problem is defined by a fitness function which
must be maximized (or minimized).
There are a great many optimization techniques, some of the more general techniques are
described below.

1.14.1 Random search

The brute force approach for difficult optimization problems is a random, or an enumerated
search. Points in the search space are selected randomly, or in some systematic way, and their
fitness evaluated. This is a very unintelligent strategy, and is rarely used by itself.

1.14.2 Hill-climbing

The hill-climbing method starts with a random configuration (point in the search space) and
tries to improve it.
The improvement is carried out in small steps consisting of moving from one point to another.
A move is selected randomly, the change in fitness value is computed, and if the change is
positive the move is accepted and a new configuration is generated. Otherwise, the old
configuration is kept. This process is repeated until there are no changes to the configuration
that will increase the fitness function further. Below a version of the hill-climbing algorithm.
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Generate a random initial solution S0 (S := S0)
Repeat
- Compute at random a neighbouring solution S’
- if Fitness(S’) > Fitness(S) then S := S’
Until there is no better neighbour.

This method suffers from the problem that the first peak found will be climbed, and this may
not be the highest peak. Having reached the top of a local maximum, no further progress can
be made.
Another variation of this method is to combine the random search and hill-climbing. Once one
peak has been located, the hill-climb is started again, but with another, randomly chosen,
starting point. This technique (iterated search) has the advantage of simplicity and can
perform well if the function does not have too many local maxima.

1.14.3 Simulated annealing

This technique, invented by Kirkpatrick [7] , is essentially a modified version of hill-climbing.
The simulated annealing algorithm starts with choosing an initial configuration at random and
calculates its fitness F. Then generates a new state and calculates its fitness F’. If the new
configuration is higher in fitness than the old one  , this configuration is
selected for the next step. If, however, the fitness was decreased the new configuration is not
discarded but accepted with a certain parameter-controlled probability. This control parameter
is commonly called temperature (T), making the thermodynamical origin of simulated
annealing. The higher the temperature the higher the probability that configurations which
decrease the fitness will be accepted.

Paccept(Æ , T) = 1 if Æ

Paccept(Æ , T) = if Æ

The main steps of the algorithm are given below.

Fitness(S)

S

Hill-climb
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1. Initialization step
- Start with a random initial configuration (S := S0)
- T := Tmax (say 100)

2. Stochastic hill-climb
- Generate and compute a random neighbouring state S’

Æ  := Fitness(S’) - Fitness(S)
- Select the new configuration (S:=S’) with probability Paccept(Æ , T)
- Repeat this step until a number of configurations (typically 10) have been

accepted or until a maximum number of iterations (typically 100) is
exceeded

3. Convergence test
- Set T := aT with 0 <= a < 1
- If T >= Tmin (say 0.1) goto step 2

During the optimization process the control parameter is lowered, finally ending up with zero
temperature, where only configurations increasing the fitness will be accepted. Note that
negative moves are essential sometimes if local maxima are to be escaped.

- Like random search and hill-climbing, simulated annealing only deals with one candidate
solution at a time, and so does not build up an overall picture of the search space. No
information is saved from previous moves to guide the selection of new moves.
A GA, by comparison, starts with an initial random population, and allocates increasing trials
to regions of the search space found to have high fitness. However, simulated annealing is still
the topic of active research and has been used successfully in many applications.

F∆
F∆
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2. Description of Genetic Programming

2.1 Introduction

The concept of artificial evolutionary process was introduced by Holland [3] and others
during the sixties. He described a methodology for studying natural adaptative systems and
designing artificial adaptative systems known as classifiers. Classifier systems are general,
rule-based learning systems. The classifier rules are represented by sequences (strings) of
symbols chosen from some (usually binary) alphabet. The searching of this representation
space is performed using Genetic Algorithms (GAs).

As described in chapter 1, the principle of a GA consists of three main phases: evaluation,
selection and reproduction. Each solution, in the “population”, is evaluated to give some
measure of its “fitness” (quality). Then, the more fit solutions are selected to be used as
parents for the next iteration (generation). Those parents undergo genetic transformations
(mutation and crossover) to form new solutions. This process is repeated some number of
generations - the best solution hopefully represents the optimum solution or at least a
sufficiently good one.

Koza [4] extended this genetic model of learning into the space of programs and thus
introduced the concept of genetic programming. Each solution, in the search space, to the
problem to solve is represented by a genetic program (GP), traditionally using the Lisp syntax.

A GP can be regarded as a Lisp function. It is usually represented by a parse tree. The number
of nodes (including the terminal nodes) in the parse tree gives a measure of the complexity of
that GP. Thus, the GP (* (+ 2 4) (- 6 1) ) is of complexity 7. The terminal (non-terminal) nodes
are randomly taken from some well defined TerminalSet (FunctionSet). In the creation phase,
each parse tree is randomly built in recursive way, starting from the root node. To ensure the
syntax validity and control the complexity expansion of GPs during this creation process,
some rules must be observed. If the current node in the parse tree is a function taking r
arguments then choose r nodes, from the Terminal/FunctionSet, to be child nodes. In the other
case, the current node is a terminal, return to the parent node. A maximum depth is fixed
before the execution so that when a branch in the parse tree reaches this level then a terminal
must be chosen.
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The evaluation phase consists of assigning a fitness value to each GP in the population. This
fitness calculation usually requires evaluating each GP over a set of fitness cases. Each fitness
case represents a particular situation in the search space. In image compression, the fitness
cases are 2D array pixels. In a classification problem, the number of fitness cases corresponds
to the amount of data to classify. In designing logical circuit taking k input bits, there are 2k

possible cases. In evolving trading strategies, the benchmark application described in chapter
5, each GP program is evaluated on a price time series and each series element represents a
fitness case. The fitness value is used at selection phase so that more fit individuals will have
more chance to be chosen. The selected individuals undergo genetic operations via mutation
and crossover.

Genetic programming is now widely recognized as an effective search paradigm in artificial
intelligence [1], databases [6], robotics [5] and many other areas .
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2.2 Overview of Genetic Programming

Genetic programming overcomes the representation problem in genetic algorithms by
increasing the complexity of the structures undergoing adaptation.
More precisely, the structures undergoing adaptation in genetic programming are hierarchical
computer programs of dynamically varying size and shape. Different problems in artificial
intelligence can be viewed as requiring discovery of a computer program producing some
desired output for particular inputs. The process of solving these problems can be
reformulated as a search for a highly fit individual computer program in the space of possible
computer programs. In particular, the search space is the space of all possible computer
programs composed of functions and terminals appropriate to the problem domain. Genetic
programming provides a way to search for this fittest computer program.

In genetic pogramming, populations of computer programs are genetically bred. This
breeding is perfomed using theDarwinian principle of survival of the fittest along with a
genetic recombination operation appropriate for mating computer programs. A computer
program that solves (or approximately solves) a given problem may emerge from this
combination of natural selection and genetic operations.

Genetic programming starts with an initial population of randomly generated computer
programs composed of functions and terminals appropriate to the problem domain. The
functions may be standard arithmetic operations, mathematical functions, logical functions or
domain-specific functions. The creation of this initial random population is a blind random
search of the search space of the problem.

Each individual computer program in the population is measured in terms of how well it
performs in the particular problem environment. This measure is called the fitness measure.
The nature of the fitness measure varies with the problem. For many problems, fitness is
naturally measured by the error produced by the computer program. The closer this error is to
zero, the better the computer program.

Typically, each computer program in the population is run over a number of different fitness
cases so that its fitness is measured as a sum or an average over a variety of representative
different situations. These fitness cases sometimes represent a sampling of different values of
an independent variable. For example, the fitness of an individual computer program in the
population may be measured in terms of output produced by the program and the correct
answer to the problem. This sum may be taken over a sampling of a number (say 50) different
inputs to the program. The 50 fitness cases may be chosen at random or may be structured in
some way. Unless the problem is so small and simple that it can be easily solved by blind
random search, the computer programs in the initial population will have exceedingly poor
fitness. Nonetheless, some individuals in the population will turn out to be somewhat fitter
than others. These differences in the performance are then exploited. The Darwinian principle
of survival of the fittest and the genetic operation (crossover) are used to create a new
offspring population of individual computer programs from the current population of
programs.
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The genetic process of reproduction between two parental computer programs is used to
create new offspring computer programs from two parental programs selected in proportion to
fitness. The parental programs are typically of different sizes and shapes. The new offspring
programs are composed of subexpressions (subtrees, subprograms, subroutines, building
blocks) from their parents. These offspring programs are typically of different sizes and
shapes than their parents.

Intuitively, if two computer programs are somewhat effective in solving a problem, then some
of their parts probably have some merit. By recombining randomly chosen parts of somewhat
effective programs, we may produce new computer programs that are even fitter in solving the
problem.
After the genetic operations are performed on the current population, the population of
offspring (i.e., the new generation) replaces the old population (i.e., the old generation).
Each individual in the population of computer programs in then measured for fitness and the
process is repeated over many generations.
This algorithm will produce populations of computer programs which, over many
generations, tend to exhibit increasing average fitness in dealing with their environment.
The best individual that appeared in any generation of a run (the best-so-far individual) is
designated as the result produced by genetic programming.

The hierarchical character of the computer programs that are produced is an important feature
of genetic programming. The results of genetic programming are inherently hierarchical. In
many cases, the results produced by genetic programming are default hierarchies, prioritized
hierarchies of tasks, or hierarchies in which one behavior subsumes or suppresses another.
The dynamic variability of the computer programs that developed along the way to a solution
is also an important feature of genetic programming. It would be difficult and unnatural to try
to specify or restrict the size and shape to the eventual solution in advance. Moreover, advance
specification or restriction of the size and shape of the solution to a problem narrows the
window by which the system views the search space and might well preclude finding the
solution to the problem.

Another important feature of genetic programming is that the inputs, intermediate results, and
outputs are typically expressed directly in terms of the natural terminology of the problem
domain. The computer programs produced by genetic programming consist of functions that
are natural for the problem domain. Finally, the structures undergoing adaptation in genetic
programming are active. They are not passive encodings of the solution to the problem.
Instead, given a computer on which to run, the structures in genetic programming are active
structures that are capable of being executed in their current form.
The genetic programming paradigm is a domain-independent method. It provides a unified
approach to the problem of finding a computer program to solve a problem. A wide variety of
seemingly different problems can be reformulated into a common form: induction of a
computer program.
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In summary, the genetic programming paradigm breeds computer programs to solve problems
by executing the following steps:

1. Generate an initial population of random compositions of the functions and terminals of the
problem (computer programs).

2. Iteratively perform the following substeps until the termination criterion has been satisfied:

a. Execute each program in the population and assign it a fitness value according to how
well it solves the problem.

b. Create a new population of computer programs by applying the following two primary
operations. The operations are applied to computer program(s) in the population
chosen with a probability based on fitness.

- Create a new computer program by genetically mutating a randomly chosen function
(or terminal) of an existing individual.

- Create new computer programs by genetically recombining randomly chosen parts
of two existing programs.

3. The best computer program that appeared in any generation (the best-so-far individual) is
designated as the result of genetic programming. This result may be a solution (or an
approximate solution) to the problem.

Figure 6 shows a flowchart of these steps for the genetic programming paradigm. The
parameters  and  control respectively the frequencies of crossover and mutation. The
index  refers to an individual in a population of size . The variable  indicates the current
generation number.

Pc Pm

j P G
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fig 6: Flowchart for the genetic programming paradigm.
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2.3 The structures undergoing adaptation

For the conventional genetic algorithm and genetic programming, the structures undergoing
adaptation are a population of individual points from the search space, rather than a single
point. Genetic methods differ from most other search techniques in that they simultaneously
involve a parallel search involving hundreds or thousands of points in the search space.

The individual structures that undergo adaptation in genetic programming are hierarchically
structured computer programs. The size, the shape, and the contents of these computer
programs can dynamically change during the process.

The set of possible structures in genetic programming is the set of all possible compositions of
functions that can be created recursively from the set of  functions

 and the set of  terminals from  .

Each particular functionfi in theFunctionSet Ftakes a specified numberr i of arguments. That
is functionfi has arityr i .

The functions in theFunctionSet may include

- arithmetic operations (+, -, *, etc.),
- mathematical functions (such as sin, cos, exp, and log),
- Boolean operations (such as AND, OR, NOT),
- conditional operators (such as If-Then-Else),
- function causing iteration (such as Do-Until), and
- any other domain-specific functions that may be defined.

The terminals are typically either variable atoms (likeX, N, representing, perhaps, the inputs,
detectors, or state variables of some system) or constant atoms (such as the number 3 or the
Boolean constantTRUE ). Occasionally, the terminals are functions taking no explicit
arguments, the real functionality of such functions lying in their side effects on the state of the
system.

Consider theFunctionSet
F = { + , - , / , * }
and theTerminalSet
T = { X , N }
where X and N are numerical variable atoms that serve as arguments for the functions.
X is real variable atom and N is the set of natural numbers.

Nf

F f1 f2 … fNf
, , ,{ }= Nt T a1 a2 … aNt

, , ,{ }=
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We can combine the set of functions and terminals into a combined set C as follows:

C =  = { + , - , / , * , X , N } .

We can then view the terminals in the combined set C as functions requiring zero arguments in
order to be evaluated. That is, the six items in the set C can be viewed as taking 2, 2, 2, 2, 0 and
0 arguments, respectively.

For example, consider the logistic function4x (1-x).
This real-valued function can be expressed by the following LISP S-expression:
(* (* 4 x) (- 1 x)) .

fig 7: Graphical representation of the S-expression (* (* 4 x) (- 1 x))

Figure 7 graphically depicts the above LISP S-expression as a rooted, point-labeled tree with
ordered branches. The three function nodes of the tree are labeled with functions ( * , * , - ).
The four terminal nodes (leaves) of the tree are labeled with terminals 4 , x , 1 and x
respectively. The root of the tree is labeled  with the function appearing just inside the
outermost left parenthesis of the LISP S-expression (the *).

The search space for genetic programming is the space of all possible LISP S-expressions that
can be recursively created by compositions of the available functions and available terminals
for the problem.

The structures that undergo adaptation in genetic programming are hierarchical structures. The
structures that undergo adaptation in the conventional genetic algorithm are one-dimensional
fixed-length linear strings.

In genetic programming, theTerminalSet and theFunctionSet should be selected so as to
satisfy the requirements of closure and sufficiency. These properties are defined below.

2.4 Closure of theFunctionSet and TerminalSet

The closure property requires that each of the functions in the function set be able to accept, as
its arguments, any value and data type that may possibly be returned by any function in the
FunctionSet and value and data type that may possibly be assumed by any terminal in the

F T∪

*

*

4 x

-

1 x



page 30

TerminalSet. That is, each function in theFunctionSet should be well defined and closed for
any combination of arguments that it may encounter.

In ordinary programs, arithmetic operations operating on numerical variables are sometimes
undefined (e.g., division by zero). Many common mathematical functions operating on
numerical variables are also sometimes undefined (e.g., logarithm of zero). In addition, the
value returned by many common mathematical functions operating on numerical variables is
sometimes a data type that is unacceptable in a particular program (e.g., square root or
logarithm of a negative number).

Closure can be achieved in a straightforward way for the vast majority of problems merely by
careful handling of a small number of situations.

If the arithmetic operation of division can encounter the numerical value of 0 as its second
argument, the closure property will not be satisfied unless some arrangement is made to deal
with the possibility of division by 0. One simple approach to guarantee closure is to define a
protected division function. The protected division functionDIV  takes two arguments and
returns one when division by 0 is attempted (including 0 divided by 0), and, otherwise, returns
the normal quotient. It might be programmed as follows inC :

FITNESS DIV( FITNESS numerator denominator )
{

if ( denominator == 0 ) return 1;
else return (numerator / denominator);

}

If the square root function can encounter a negative argument or if the logarithm function can
encounter a nonpositive argument in a problem where the complex number that ordinarily
would be returned is unacceptable, we can guarantee closure by using a protected function.
For example, the protected square root functionSRT takes one argument and returns the square
root of the absolute value of its argument. It might be programmed as

FITNESS SRT ( FITNESS argument)
{

return sqrt(abs(argument));
}

whereSQRT is the commonC square root function.

The protected natural logarithm functionRLOG returns 0 if its one argument is 0 and otherwise
returns the natural logarithm of the absolute value of its argument. It might be programmed as
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FITNESS RLOG ( FITNESS argument)
{

if (argument == 0) return 0;
else return log(abs(argument));

}

whereLOG is the commonC natural logarithm function.

If a program contains a conditional operator in a problem where the Boolean value that would
ordinarily be returned is unacceptable, then the conditional operator can be modified so as to
return numerical values.

If numerical-valued logic is used, a numerical-valued conditional comparative operator is
defined so as to return numbers (such as + 1 and - 1 or 1 and 0) instead of returning Boolean
values (i.e.,TRUE andFALSE ).
For example, the numerical-valued greater than functionGT over two arguments would be
defined so as to return +1 if its first argument is greater than its second argument and to return
-1 otherwise. Such a function does not introduce a Boolean value into the program. The
numerical-valued greater-than functionGT might be programmed as

FITNESS GT(FITNESS first_argument second_argument)
{

if (first_argument > second_argument) return 1;
else return -1;

}

A conditional comparative operator can be defined so as to first perform the desired
comparison and to then execute an alternative depending on the outcome of the comparison
test. For example, the conditional comparative operatorIFLTZ (If Less Than Zero) can be
defined over three arguments so as to execute its second argument if its first argument is less
than 0, but to execute its third argument otherwise. Such an operator returns the result of
evaluating whichever of the second and third arguments is actually selected on the basis of the
outcome of the comparison test. It therefore does not introduce a Boolean value into the
program.

The closure property is desirable, but is not absolutely required. If this closure property does
not prevail, we must then address alternatives such as discarding individuals that do not
evaluate to an acceptable result or assigning some penalty to such infeasible individuals.

Note that the closure property is required only for terminals and functions that may actually be
encountered. If the structures undergoing adaptation are known to comply with the constraints
required by the syntax of the rules of construction, closure is required only over the values of
terminals and values returned by functions that will actually be encountered.
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2.5 Sufficiency of theFunctionSet and theTerminalSet

The sufficiency property requires that the set of terminals and the set of primitive functions be
capable of expressing a solution to the problem.  Some composition of the supplied functions
and terminals can yield a solution to the problem.

Depending on the problem, this identification step may be obvious or may require considerable
insight.

For example, in the domain of Boolean functions, theFunctionSet
F = {AND , OR , NOT}
is known to be sufficient for realizing any Boolean function.

The choice of the set of available functions and terminals, of course, directly affects the
character and appearance of the solutions. The available functions and terminals form the basis
for generating potential solutions.

2.6 The Initial Population

The generation of each individual S-expression in the initial population is done by randomly
generating a rooted, point-labeled tree with ordered branches representing the S-expression.

The process starts selecting one function from the set F at random (using a uniform probability
distribution) to be the label for the root of the tree. The selection of the label for the root of the
tree is restricted to theFunctionSet F in order to generate a hierarchical structure, thus avoiding
a degenerate structure consisting of a single terminal.

Figure 8 shows the creation of the root of a random parse tree. The function + was selected from
theFunctionSet F as the label for the root of the tree.

fig 8: Beginning of the creation of a random parse tree. The function + is chosen as the root of the tree.

Whenever a point of the tree is labeled with a functionf from F, thenr nodes, wherer is the
number of arguments taken by the functionf, are created from that point. Then, for each such

function node, an element from the combined set  of functions and terminals is
randomly selected to be the label for the endpoint of that function node.

+

C F T∪=
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If a function is chosen to be the label for any such endpoint, the generating process then
continues recursively. For example, in figure 9, the function * (point 2) , from the combined
setC , was selected as the label of the first argument of the function + (point 1). The function
* takes two arguments.

fig 9: Continuation of the creation of a random parse tree. The function * is chosen for point 2.

If a terminal is chosen to be the label for any point, that point becomes an endpoint of the tree
and the generating process is terminated for that point.
For example, in figure 10, the terminalA from theTerminalSet T was selected to be the label
of the first argument corresponding to the point labeled with the function *. Similarly, the
terminalsB andC were selected to be labels of the two other arguments. This process continues
recursively from left to right until a completely labeled tree has been created.

fig 10: Completion of the creation of a random parse tree. The terminals A, B, and C were chosen.

- This generative process can be implemented in several different ways resulting in initial
random trees of different sizes and shapes.

Two of the basic ways are calledgrow method and thevariablemethod. The depth of a tree is
defined as the length of the longest nonbacktracking path from the root node to a terminal node.

1. Thegrow method of generating the initial random population involves creating trees for
which the length of every nonbacktracking path between a terminal node and the root node is
equal to the specified maximum depth.
This is accomplished by restricting the selection of the label for points at depths less than the
maximum to theFunctionSet F, and then restricting the selection of the label for points at the
maximum depth to theTerminalSet T.
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2.  Thevariablemethod of generating the initial random population involves growing trees that
are variably shaped. The length of a path between a terminal node and the root node is no
greater than the specified maximum depth.
This is accomplished by making the random selection of the label for points at depths less than

the maximum from the combined set  consisting of the union of theFunctionSet
F and theTerminalSet T, while restricting the random selection of the label for points at the
maximum depth to theTerminalSet T.

The most frequently used generative method is calledramped half-and-half. In genetic
programming, the size and shape of the solution are usually not known in advance. Theramped
half-and-half generative method produces a wide variety of trees of various sizes and shapes.

3.  Theramped half-and-half generative method is a mixed method that incorporates both the
growmethod and thevariablemethod.

Theramped half-and-half generative method involves creating an equal number of trees using
a depth parameter that ranges between 2 and the maximum specified depth. For example, if the
maximum specified depth is 6 (the default value ), 20% of the trees will have depth 2, 20% will
have depth 3, and so forth up to depth 6. Then, for each value of depth, 50% of the trees are
created via thegrow method and 50% of the trees are produced via thevariablemethod.

Note that, for the trees created with thegrow method for a given depth, all paths from the root
of the tree to an endpoint are the same length and therefore have the same shape. In contrast,
for the trees created via thevariable method for a given value of depth, no path from the root
of the tree to an endpoint has a depth greater than the given value of depth. Therefore, for a
given value depth, these trees vary considerably in shape from one another.

Thus, theramped half-and-half method creates trees having a wide variety of sizes and shapes.

Duplicate individuals in the initial random generation are unproductive deadwood; they waste
computational resources and undesirably reduce the genetic diversity of the population. Thus,
it is desirable, but not necessary, to avoid duplicates in the initial random population. In genetic
programming, duplicate random individuals are especially likely to be created in the initial
random generation when the trees are small. Thus, each newly created S-expression is checked
for uniqueness before it is inserted into the initial population. If a new S-expression is a
duplicate, the generating process is repeated until a unique S-expression is created.

The variety of a population is the percentage of individuals for which no exact duplicate exists
elsewhere in the population. If duplicate checking is done, the variety of the initial random
population is 100%. In later generations, the creation of duplicate individuals via genetic
operations is an inherent part of genetic processes.

It should be remembered that inserting relatively high-fitness individuals into an initial
population of random individuals will after one generation, result in almost total dominance of
the population by copies and offspring of the primed individuals. In terms of genetic diversity,
the result will be, after only one generation, very similar to starting with a population of size

C F T∪=
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equal to the relatively tiny number of primed individuals.

2.7 Genetic Operations for Modifying Structures

This section describes the two primary operations used to modify the structures undergoing
adaptation in genetic programming.

- Crossover (binary operator)
- Mutation (unary operator )

2.7.1 Crossover

The crossover (sexual recombination) operation for genetic programming creates variation in
the population by producing new offspring that consist of parts taken from each parent. The
crossover operation starts with two parental S-expressions and produces two offspring S-
expressions. That is, it is a sexual operation.

The first parent is chosen from the population by a fitness-based selection method. The second
parent is chosen by means of the same selection method (that is, with a probability equal to its
normalized fitness). The different selection methods are described in section 1.9.

Once the parents have been chosen, the operation begins by independently selecting, using a
uniform probability distribution, one random point in each parent to be the crossover point for
that parent. Note that the two parents typically are of unequal size.

The crossover fragment for a particular parent is the rooted subtree which has as its root the
crossover point for that parent and which consists of the entire subtree lying below the
crossover point. This subtree sometimes consists of one terminal.

The first offspring S-expression is produced by deleting the crossover fragment of the first
parent from the first parent and then inserting the crossover fragment of the second parent at
the crossover point of the first parent. The second offspring is produced in a symmetric manner.

For example, consider the two parental LISP S-expressions in figure 11. The functions
appearing in these two S-expressions are the arithmetic +, - and * functions. The terminals
appearing in this figure are the numerical argumentsA , B andC.
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fig 11: Two parental genetic programs.

Equivalently, in terms of LISP S-expressions, the two parents are

(+ (* A B ) C )
and

(+ (+ B A ) (- C B ) ) .

Assume that the points of both trees above are numbered in a depth-first, left-to-right way.
Suppose that the second point (out of the five points of the first parent) is randomly selected as
the crossover point for the first parent. The crossover point of the first parent is therefore the *
function. Suppose also that the fifth point (out of the seven points of the second parent) is
selected as the crossover point of the second parent. The crossover point of the second parent
is therefore the - function. The portions of the two parental S-expressions in boldface in figure
11 are thecrossover fragments. The remaining portions of the two parental S-expressions in
figure 11 are called theremainders.

Figure 12 depicts these two crossover fragments and figure 13 shows the two offspring
resulting from crossover.

The first offspring S-expression in figure 13 is (+ (- C B ) C )

and the second offspring is (+ (+ B A ) (* A B ) ) .

fig 12: The crossover fragments resulting from selection of point 2 of the first parent and point 5 of the
second parent as crossover points.
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fig 13: The two offspring produced by crossover.

Because entire subtrees are swapped, and because of the closure property of the functions
themselves, this genetic crossover (recombination) operation always produces legal syntax
LISP S-expressions as offspring regardless of the selection of parents or crossover points.

If a terminal is located at the crossover point in precisely one part, then the subtree from the
second parent is inserted at the location of the terminal in the first parent (thereby introducing
a subtree instead of a single terminal point) and the terminal from the first parent is inserted at
the location of the subtree in the second parent.

If terminals are located at both crossover points selected, the crossover operation merely swaps
these terminals from tree to tree. The effect of crossover, in this case, is a point mutation. Thus,
occasional point mutation is an inherent part of the crossover operation.

If the root of one parental S-expression happens to be selected as the crossover point, the
crossover operation will insert the entire first parent into the second parent at the crossover
point of the second parent. In this event, the entire first parent will become a subtree within the
second parent. This will often have the effect of producing an offspring with considerable
depth. In addition, the crossover fragment of the second parent will then become the other
offspring.

In the rare situation where the root of one parental S-expression happens to be selected as the
crossover point and the crossover fragment from the second parent happens to be a single
terminal, then the first parent becomes a single terminal and the other offspring will be a LISP
s-expression.

If the roots of two parents both happen to be chosen as crossover points, then the crossover
operation simply copies those two parents.

When an individual mates with itself or when two identical individuals mate the two resulting
offspring will generally be different (because the crossover points selected are, in general,
different for the two parents). This is in contrast to the case of the conventional genetic
algorithm operating on fixed-length character strings where the one selected crossover point
applies to both parents.
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In the conventional genetic algorithm, when an individual mates with itself (or copies of itself),
the two resulting offspring will be identical. This fact fortifies the tendency toward
convergence in the conventional genetic algorithm.

In contrast, in genetic programming, when an individual mates with itself (or copies of itself),
the two resulting offspring will, in general, be different (except in the relatively infrequent case
when the crossover points are the same). The crossover operation exerts a counterbalancing
pressure away from convergence.  A maximum permissible size (measured via the depth of the
tree) is established for offspring created by the crossover operation. This limit prevents the
expansion of large amounts of computer time on a few extremely large genetic programs.

A default value of 17 for this maximum permissible depth, permits potentially enormous
programs. For example, the largest permissible LISP program consisting of entirely diadic

functions would contain 217 = 131072 functions and terminals.

2.7.2 Mutation

The mutation operation introduces random changes in structures in the population. In
conventional genetic algorithms operating on strings, the mutation operation can be beneficial
in reintroducing diversity in a population that may be tending to converge prematurely.

In the conventional genetic algorithm, it is common for a particular symbol (i.e., an allele)
appearing at a particular position on a chromosome string to disappear at an early stage of a run
because that particular  allele is associated with inferior performance, given the alleles
prevailing at other positions of the chromosome string at that stage of the run.

The lost allele may be precisely what is needed to achieve optimal performance at a later stage
of the run.

In this situation, the mutation operation may occasionally have beneficial results. Nonetheless,
it is important to recognize that the mutation operation is a relatively unimportant secondary
operation in the conventional genetic algorithm [3] [2].
Mutation is asexual and operates on only one parental S-expression. The individual is selected
with a probability proportional to the normalized fitness. The result of this operation is one
offspring S-expression.

The mutation operation begins by selecting a point at random within the S-expression. This
mutation point can be an internal (i.e., function) point or an external (i.e., terminal) point of the
tree. The mutation operation then removes whatever is currently at the selected point and
whatever is below the selected point and inserts a randomly generated subtree at that point.

This operation is controlled by a parameter that specified the maximum size (measured by
depth) for the newly created subtree that is to be inserted. This parameter typically has the same
value as the parameter for the maximum initial size of S-expressions in the initial random
population.
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A special case of mutation operation involves inserting a single terminal at a randomly selected
point of the tree. This point mutation occurs occasionally in the crossover operation when the
two selected crossover points are both terminals.

For example, in the "before" diagram in figure 14, point 2 (i.e., *) of the S-expression was
selected as the mutation point. The terminalB was randomly generated and inserted at that
point to produce the S-expression shown in the "after" diagram.

In genetic programming, particular functions and terminals are not associated with fixed
positions in a fixed structure. Moreover, when genetic programming is used, there are usually
considerably fewer functions and terminals for a given problem than there are positions in the
chromosome in the conventional genetic algorithm. Thus, it is relatively rare for a particular
function or terminal ever to disappear entirely from a population in genetic programming.
Therefore, in genetic programming, the mutation operator does not serve the potentially
important role of restoring lost diversity in a population, as it does in the conventional genetic
algorithm.

Note that, in genetic programming, whenever the two crossover points in the two parents
happen to both be endpoints of trees, the crossover operates in a manner very similar to point
mutation.

fig 14: A computer program before and after the mutation operation is performed at point 2.

2.8 State of the Adaptive System

In genetic programming, the state of the adaptive system at any point during the process
consists only of the current population of individuals. No additional memory or centralized
bookkeeping is necessary.
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In a computer implementation of the genetic programming paradigm, it is also necessary to
cache the control parameters for the run, theTerminalSet and theFunctionSet (if mutation is
being used), and the best-so-far individual if it is being used as part of the process of result
designation for the run.

2.9 Termination criterion

A run of the genetic programming paradigm terminates when the termination criterion is
satisfied. The termination criterion for genetic programming is that the run terminates when
either a prespecified maximum numberG of generations have been run ( the generational
predicate) or some additional problem-specific success predicate has been satisfied.

The success predicate often involves finding a 100%-correct solution to the problem. For
problems where a solution may not be easily recognized (optimization problems) or problems
where we do not ever expect an exact solution (creating mathematical models for noisy
empirical data), some appropriate lower criterion for success is usually adopted for purposes
of terminating a run. For some problems, there is no success predicate; the results are analyzed
after running forG generations.

2.10 Result Designation

The method of result designation for genetic programming is to designate the best individual
that ever appeared in any generation of the population (i.e., thebest-so-far individual) as the
result of a run of genetic programming.
Note that thebest-so-far individual is kept separately and not inserted in all subsequent
generations (i.e., the so-calledelitist strategy is not followed). Thebest-so-far individual is
merely cached and reported as the result of the entire run when the run eventually terminates
according to the termination criterion.
When this method of result designation is used, the state of the system consists of the current
population of individuals and the one cachedbest-so-far individual.

2.11 Default Parameters

Control parameters characterizing runs of genetic programming are either numerical or
qualitative. The values of these parameters are fixed at the default values used in the vast
majority of cases. The two major numerical parameters are the population size,P, and the
maximum number of generations to be run,G.

- The default population size,P, is 4000.

- The default value for the maximum number of generations to be run,G, is 51 (an initial
random generation, called generation 0, plus 50 subsequent generations).
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- The probability of crossover,pc, is 0,90. That is, crossover is performed such that the
number of individuals produced as offspring by the crossover operation is equal to 90% of the
population size on each generation. For example, if the population size is 16000, then 14400
individuals are produced as offspring by the crossover operation on each generation.

- In choosing crossover points, we use a probability distribution that allocatespf = 90% of the
crossover points equally among the function nodes of each parse tree andpt = 1 -pf = 10% of
the crossover points equally among the terminal nodes of each parse tree.

- A maximum size (measured by depth),Dcrossover, is 17 for genetic programs created by the
crossover operation.

- A maximum size (measured),Dcreation , is 6 for the random individuals generated for the
initial population.

- The probability of mutation,pm, specifying the frequency of performing the operation of
mutation is 0.

- The generative method for the initial random population is ramped half-and-half.

- The method of selection for the first parent in crossover is tournament selection (with a
group size of seven).

- The method of selecting the second parent for a crossover is the same as the method for
selecting the first parent (i.e., tournament selection with a group size of seven).

- The elitist strategy is not used.
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3. A Parallel Genetic Programming System

3.1 Introduction

This chapter describes a parallel implementation of the genetic programming paradigm on
distributed memory machines. The code is implemented on the IBM SP-2 machine and
written in C++, using the PVM3 message passing library [4]; it can be easily ported on other
parallel machines like the Cray T3D and on workstation clusters. The sequential version of
the code is based on [3].

- The Parallel Genetic Programming System (PGPS) uses subtree crossover. Crossover
operator selects two GPs from the population and chooses one node (crosspoint) on each.
Each node is, by definition, the root of some complete subtree. The two subtrees are extracted
and each is swapped with the other. Note that the syntax of the resulting GPs is valid and only
the maximum depth constraint is checked for non-violation.

- To mutate a genetic program, PGPS uses the point mutation to modify any function or
terminal node. In point mutation, any terminal node can be replaced by any other terminal
taken from theTerminalSet, but a function node can only be replaced by another function
(from theFunctionSet) which has the same number of arguments.
Note that the mutation genetic operator is unary. Also, the point mutation does not modify the
complexity of the GP.

- The selection method used in PGPS is the tournament selection (described in section 1.9).

We present a parallel scheme for genetic programming which maintains multiple independent
subpopulations (also known as islands) interacting asynchronously using a ring topology. The
evaluation phase in each evolutionary process is parallelized and separated from the rest of the
population management calculations.
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3.2 PGPS scheme

The inherent convergence characterizing traditional GAs makes that different high fitness
individuals can’t be maintained in single population: once a suboptimal individual dominates
the population, selection is likely to keep it and prevent further adaptation. Evolving multiple,
independent subpopulations with occasional interchange (migration) of solutions between
these subpopulations is an alternative approach to deal with this premature convergence
problem. This allows not only a better exploration of the global search space (each
subpopulation explores different parts of the search space and maintains its own high fitness
individuals), but also retards premature convergence by introducing, via migration, diversity
from other subpopulations.

The parallel genetic programming system maintains multiple independent subpopulations
(evolutionary processes) interacting asynchronously using the ring topology.

Due to large number of fitness cases in complex applications, like time series modelling, the
evaluation phase takes most of the run-time. Particularly, in evolving financial trading
strategies [7], each GP is evaluated over a price time series exceeding  elements; thus,
the time spent in the selection and reproduction phases is practically negligible compared with
the population evaluation time.

Parallelizing the different evaluation phases related to each evolutionary process in the
subpopulations, on a parallel coarse-grain machine such as the IBM SP-2, can be done
naturally. After the reproduction phase, each GP is simply sent to a processing node for
evaluation, independently of operations in other processing nodes [8]. However, the run time
GP complexity with programs of widely differing sizes inside each subpopulation unbalances
the work load on the allocated nodes and thus making the design of a parallel algorithm and its
implementation to obtain large speedups a nontrivial task. This irregularity causes some
processing nodes to be idle while others are active. In fact, this problem is equivalent to
finding an optimal schedule of  independent tasks on  machines and is known to be NP-
hard.

Section 4.2 analyses load balancing and investigates different strategies for the computational
load distribution. We first consider a static scheduling algorithm to distribute the genetic
programs upon the processing nodes at the evaluation phase. Next, we improve the processor
utilization by a dynamic load balancing algorithm based on run time GP complexity.
The evaluation phase, in each evolutionary process, is separated from the rest of GA
calculations. Interleaving the different evaluation phases allows to hide message latencies by
switching between multiple threads. Our implementation shows that the parallelization of
genetic programming on distributed memory machines is linearly scalable with respect to the
number of processors [9].

PGPS consists of multiple master-slave instances each mapped on all the allocated processing
nodes (see figure 15). Each master process implements the genetic programming management
system. A slave process corresponds to the user defined problem. The number of master
processes may vary from1 to  , where  is the total number of available processors.

24
4×10

p m p<

m m
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The conventional master-slave paradigm is used as model template where each instance
evolves its own population. The subpopulation, maintained by each evolutionary process, is
evaluated using all the allocated nodes. The genetic programming management system creates
the initial population, applies the genetic operators (crossover and mutation) and performs the
selection of genetic programs which will be the candidates to the reproduction phase. At the
evaluation phase, each master process distributes the work load among all the processing
nodes in the virtual machine, including the processor on which the current master process
runs. The interprocessor communications are achieved using communication interface
routines.
The genetic programming management system packs each parse tree from its memory
representation into a buffer and sends it to the appropriate slave (or master) process using
PVM routines. Each slave process receives the character string into a buffer and performs the
unpack operation to build the equivalent parse tree in memory. This unpack operation requires
the translation of the GP to generate an intermediate form suitable to memory representation.
After the fitness calculation of a genetic program, each slave (or master) process sends back
the calculated fitness value to the source master process. After work distribution, each master
process first evaluates the individuals belonging to its own subpopulation (local tasks), next
switches to the GPs coming from other subpopulations (external tasks). The local tasks
require no communication. Note that GPs can be evaluated independently and therefore there
is no communication between the slaves. The load distribution cost and the communication
overhead are negligible compared with the computational cost associated with fitness
calculation.
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fig 15: Example of PGPS architecture evolving 4 subpopulations on 8 processors. There is a master (population
management) process   for each subpopulation and each physical processor runs a slave process  which

evaluates the individuals from any subpopulation. The solid lines show the communication pattern between mas-
ter and slave processes. The dotted line shows the ring topology that allows individual migration across masters.

Each new genetic program is sent individually as soon as created. The messages belonging to
the same destination are not clustered as a single message. This technique avoids delaying the
fitness computations and allows the slave processes to be further kept busy. In this way, fitness
computation and work distribution overlap.

fig 16: Asynchronous task migration between master nodes using ring topology
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The global evaluation ends when all subpopulations are evaluated (each processing node has
performed its assigned tasks). Once evaluation completes, the subpopulations interact, to
delay the convergence, using the ring topology. Each master node selects a genetic program
and sends it to its next neighbor and receives asynchronously, using a nonblocking primitive,
an individual from its previous neighbor (see figure 16). If the individual arrived then it is
inserted in the subpopulation by replacing the least fit one, otherwise the node continues its
evolutionary process. The termination signal of parallel execution is given when a pre-
assigned maximum number of generations has been attained. The main steps of the parallel
algorithm are shown in Figure 17.

Master process :

0: Load the other Master processes* .
1: Load the slave processes* .
2: Create the initial population.
3: Distribute the work load to the processing nodes.
4: Execute the local tasks.
5: Execute the external tasks (requested by other Master processes) and

 send back the results.
6: Receive the fitness values (sent either by a slave or a Master process).
7: Select and send an individual to the next neighbor
8: If an individual arrived from the previous neighbor then

 insert it in the subpopulation
9: Perform the selection phase.
10: Perform the reproduction phase.
11: Repeat Steps 3 - 8 until the maximum number of generations.
12: Terminate the slave processes* .
13: End.

(*) performed only by the first loaded Master process.

Slave process :

0: Receive a genetic program.
 1: Calculate the fitness of the received program.
 2: Send the fitness value to the source Master process.
 3: Repeat Steps 0 - 2 until reception of termination signal.
 4: End.

fig 17: A parallel algorithm for Genetic Programming.

The evaluation of all subpopulations (global evaluation ) is performed by interleaving local
and external tasks (threads). Multiple threads are maintained on each master node (steps 4 and
5) and switching among them overlaps message latencies by performing useful computation
while other threads wait for synchronization signals. Multithreading a processing node is a
method for improving processor utilization [1].
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3.3 Data structures for the GP population

The system uses five main classes for representing in memory the whole population.

1. The classPopulation.
2. The classGP.
3. The classGene.
4. The classFunction.
5. The classTerminal.

The different relations between these classes are shown in figure 18.

- Relation R1: aGP is an individual of thePopulation.
- Relation R2: aGP is composed ofGenes.
- Relation R3: aGene may represent aFunction.
- Relation R4: aGene may represent aTerminal.

fig 18: Class hierarchy.
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1- The population is defined by the classPopulation representing the individuals in a linear
array. Each element of this array contains a pointer to an individual (genetic program).
Two attributesuliFitness anduliLength are used to store respectively the total fitness and total
complexity of the population at each generation. The methodTotalFitness() returns the total
fitness of the population and updates the variableuliFitness. In similar way, the method
TotalLength() returns the total complexity of the population and updates the variable
uliLength .
The evaluation of the population is performed by the methodEvaluate(). Furthermore, this
function balances the workload on the processing nodes. The function memberMutate()
performs selection and mutation of genetic programs. Similarly, the methodGenerate()
performs selection and crossover. A random selection of a genetic program is achieved using
the function memberSelect() which is called by the tournament selection.

2- The classGP defines a genetic program. A genetic program may be represented by several
(usually one) parse trees (ADFs).

An ADF (Automatically Defined Function) refers to a function defined at run-time by a
genetic program. Each defined function is associated to a single genetic program and is not
visible by the whole population. Once defined, an ADF can be called by the genetic program
as function or simply as terminal. The evolution of this dual structure (function definition and
function calls) is driven by the fitness measure in conjunction with selection and genetic
operations. Koza [6] asserts that the use of ADFs reduces the complexity of the solutions.

For the purpose of ADF handling, a linear array is provided to store the address of the root
node of each parse tree. An element of this array contains a pointer to an object of classGene.
Note that if ADFs are not used then the GP will be represented by a single parse tree (the first
element of the array).
Two data membersiFitness and iLength are used to store respectively the fitness and
complexity of the genetic program. The class GP provides function members that operate on
an individual. Typically, these operations include packing / unpacking a genetic program ,
evaluating an individual over a set of fitness cases, mutating a GP or crossing it with another
individual.

3- The classGene defines a node of a parse tree. Each node of the parse tree represents a gene
of the individual. A gene is characterized by an integer value,iValue, identifying a terminal or
a function in theTerminalSet or FunctionSet. A function node requires at least one argument.
The address of the first argument of a function is given by the pointerpgChild. The pointer
pgNext is used to chain with the remaining arguments. Consequently, the attributespgChild
andpgNext are pointers to objects of classGene. Note that this construction requirespgChild
to be NULL for terminal nodes, as there are no arguments. The random numbers are stored in
the attributeforand.

4- The classFunction defines theFunctionSet. Each function introduced by the user will be an
instance of this class. A function is identified by a numerical valueiValue. The attributeName
is a character string containing the name of that function. Finally, the arity of the function is
registered in the attributeNarg.
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5- The classTerminal defines the set of terminals. Each terminal introduced by the user will be
an instance of this class. A numerical identifier, iValue, is assigned to each terminal in the
TerminalSet. The name of the terminal is stored in the attributeName.
The declaration of classesPopulation, GP andGene is given in Annexe 1.

3.4 Memory representation of a genetic program

Figure 19 shows the memory representation of the s-expression(( * (+ x x ) (* x x ) ) ).

fig 19: Memory representation of (( * (+ x x ) (* x x ) ) )

Node 1 (the root node) is a function node representing the operator ‘*‘. The address of the first
argument (node 2) of this function is given by the left pointer (orpgChild) and node 5
represents its the second argument. The right pointer (orpgNext) of node 2 gives the address
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of node 5. Node 2 happens to be a function node representing the operator ‘+‘. The left pointer
of this node contains the address of the first argument (node 3) which is chained with the
second argument (node 4) via the pointerpgNext. In similar way, node 5 is the root node of the
subexpression(* x x ) . The pointerpgChild of this node is equal to the address of the first
argument (node 6). Finally, the pointerpgNext of node 6 contains the address of the second
argument (node 7). We remark that the arguments belonging to the same function are grouped
in linear list which makes flexible the representation of multiple functions with different
number of arguments in the same genetic program.

3.5 Evaluating genetic programs

Before fitness calculation, a genetic program is first transformed from the memory
representation into a linear form (character string) and then transmitted as a message to a slave
process. When received, the genetic program requires to be reconstructed before the
evaluation. Figure 20 depicts the transformations of a message from the Lisp syntax to its
memory representation. The S-expression is first parsed using a top down parser in order to
generate an intermediate form suitable to memory representation. In theory of languages, an
intermediate form is a language somewhere between the source high-level language and
machine language [2]. The extra-symbols ‘c‘ , ‘n‘ and ‘o‘ indicate respectively the first
argument (pgChild) , next argument (pgNext) and theNULL pointer value. This intermediate
form is then exploited to build the memory representation of the genetic program. The
obtained parse tree is evaluated as many times as there are fitness cases related to the problem
at hand.
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fig 20: Translation of genetic programs.

3.6 Parsing genetic programs

In order to perform the syntax analysis of a genetic program and also to generate the
corresponding intermediate form, the system uses the Syntax-Directed Translation based on a
recursive descent parser. Figure 21 shows the top down parser presented as finite state
machine.
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fig 21: Top down parser for genetic programs.

Each state is labeled by a number and each transition is labeled by a lexical token. The initial
state and the final state are indicated respectively by the numbers 1 and 6. While parsing the
input genetic program, each transition calls an underlying semantic action. Figure 22
summarizes the different transitions followed by their semantic actions enclosed in curly
braces {}. The variable i counts the number of parenthesis currently opened and the variable
Operand may be a terminal or function name.
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fig 22: Transition semantic actions.

3.7 Creation of the initial population

Each run of PGPS starts with the creation of a population of random computer programs, each
composed from the available functions constituting the function set and the available
terminals constituting the terminal set. The system uses two parameters for controlling the
creation process of a random genetic program: the Maximum Depth For Creation (MDFC),
which is the maximum depth that a GP may reach at the creation phase, and the creation
method. Five different methods are used by the system for creating the initial population.
These methods are the variable method, the grow method and three ramped methods. Each of
these methods chooses a function, rather than a terminal, to be the root node of each GP at
creation phase.

3.7.1 Variable method

This method consists of creating genetic programs whose the depth varies from 1 to a
maximum value (MDFC).

Example:
MDFC = 2;
FunctionSet = { + };
TerminalSet = { T }.

Transition I : J Semantic action

1 : 2

2 : 3

3 : 2

3 : 5

3 : 4

4 : 4

4 : 2

4 : 5

5 : 5

5 : 4

5 : 2

5 : 6

{ i=1 }

{ Print(Operand) }

{ i++; Print(‘c’) }

{ i--; Print(‘o’) }

{ Print(‘c’); Print(Terminal); Print(‘o’) }

{ Print(‘n’); Print(Terminal); Print(‘o’) }

{ i++; Print(‘n’) }

{ i--; Print(‘o’) }

{ i--; Print(‘o’) }

{ Print(‘n’); Print(Terminal); Print(‘o’) }

{ i++; Print(‘n’) }

{ if (i == 0) return }
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The possible genetic programs that will be generated using the variable method are:

( ( + T T ) ) , depth = 1;
( ( + ( + T T ) T ) ) , depth = 2;
( ( + T ( + T T ) ) ) , depth = 2;
( ( + ( + T T ) ( + T T ) ) ) , depth = 2.

3.7.2 Grow method

This method consists of creating genetic programs whose the depth is MDFC. All the
individuals will reach the maximum depth and also the maximum structural complexity (if all
functions, in the function set, have the same arity).

Example:
MDFC = 2;
FunctionSet = { + , - };
TerminalSet = { T }.

The possible genetic programs that will be generated using the grow method are:

( ( [ + | - ] ( [ + | - ] T T ) ( [ + | - ] T T ) ) ) , depth = 2.

where [ + | - ] indicates one of the ‘+’ or ‘-’ function.

3.7.3 Ramped methods

The population is divided into groups. To each group is assigned a local maximum depth
(allowable depth). The value of the allowable depth varies progressively from 2 (the allowable
depth for the first group) to the maximum allowable depth (for the last group).

The size of a group (GroupSize) is given by:
GroupSize = 1 + ( PopulationSize / ( MDFC - 1 ) ).

Where ‘/’ indicates the integer division.

Example:
PopulationSize = 10;
MDFC = 6.

We get the size of each group by applying the calculation above:
GroupSize = 1 + 10 / (6 - 1) = 3.
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The population will be partioned as follows:
group0 = {0, 1, 2} , allowable depth = 2;
group1 = {3, 4, 5} , allowable depth = 3;
group2 = {6, 7, 8} , allowable depth = 4;
group3 = {9} , allowable depth = 5.

The system uses 3 ramped methods based on the population partitioning described above.

- Ramped variable method

This method applies the variable method to each group. A group is viewed as subpopulation
which has a size (GroupSize) and a maximum depth (allowable depth).

- Ramped grow method

This method applies the grow method to each group. Inside a group, all genetic programs will
reach the allowable depth assigned to that group.

- Ramped half-and-half method

The ramped half-and-half method is the most frequently used in genetic programming. This
method combines the variable and the grow methods. Inside each group, half of the
individuals are created using the variable method and the other half using the grow method.

3.8 Interaction with the user

Runs of PGPS are controlled by parameters read from an initialization file. Figure 23
illustrates the configuration of the initialization file. The list of the control parameters is
hereafter presented and the meaning of each parameter is highlighted. The names used to
identify each parameter are self explanatory.

Function Set : Indicates the list of functions constituting the function set. The functions are
separated by comma and the list is ended by a semicolon. Each function, in the function set, is
described by a name followed by its number of arguments (arity) enclosed in parenthesis.

Terminal Set : Indicates the list of terminals composing the terminal set. The terminals are
separated by comma and the list is ended by a semicolon. Each terminal, in the terminal set, is
described by a name. The random terminal is described as rnd(min,max) where (min,max)
indicates the range of the random values that will be generated at the population creation
phase or at the reproduction phase (by mutation).
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PopulationSize : Indicates the size of the population.

Generations : Indicates the number of generations that will be performed by the system dur-
ing a run. The system returns after the last generation. This parameter is also used as the stop
condition by the master process.

Creation Type : This parameter identifies the creation method that will be used by the system
during a run. The possible values are between 0 and 4.

0 : selection of the Variable method;
1 : selection of the Grow method;
2 : selection of the Ramped Half and Half method;
3 : selection of the Ramped Variable method;
4 : selection of the Ramped Grow method.

MaxCreation :This value is the maximum depth for creation (MDFC). It is the maximum
depth that a genetic program can reach at the population creation phase.

MaxCrossover :This value is the maximum depth for the crossover operation. It is the maxi-
mum depth that a genetic program can reach at the reproduction phase.

ADFs : Indicates the number of ADFs that will be used to solve the problem. A value of 0 is
used for runs without Automatically Defined Functions (ADFs).

Mutation :This value controls the mutation rate. The probability of mutation operation is
given by the (Mutation / PopulationSize) ratio.

fig 23: Example of an initialization file.

The execution output is saved in data files containing the best individual at the end of each
generation and also some statistics relying with the population fitness and complexity which
can be interactively visualized using the graphical tool shown inAnnexe 6.

Function set   : +(2) , -(2) , *(2) , /(2);
Terminal set   : rnd(-1,+1), X;
PopulationSize : 20

CreationType   : 2
MaxCreation : 6
MaxCrossover : 17
ADFs           : 0
Mutation       : 4

Generations : 100
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3.9 Application of PGPS to the logistic function

We have studied the ability of PGPS to forecast time series, which is an important problem in
economics, meteorology, and many other areas.

The logistic map is one of the simplest models of a system exhibiting deterministic chaos. The
term chaos is used to describe a complex behavior of some systems [5].

Time series generated by the logistic map are given by :

The function was defined as a set of  points :

The parameter file used for solving this problem is identical to the one illustrated as example
in figure 23. TheTerminalSetwill include the variablex and, in what follows, we show the
results of runs with and without including random numbers in theTerminalSet. Each genetic
program will be expressed as a function,GP[x], of the terminal variablex.

3.10 The fitness function

The fitness measure of a GP, that we have used to solve this problem, is the minimization of
sum square deviation between correct and forecast values:

In terms of maximization of the fitness function, this is equivalent to

Note that the logistic function has two fixed points: F(0) = 0 and F(3/4) = 3/4.
In this application, we have chosen  =0.2 as initial value.
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3.11 Sufficiency of theFunctionSet and TerminalSet

Three sets of runs are done. The first series of runs uses the random integer constants ( ) ,
the second uses the floating point random constants between -1.00 and +1.00 and the third
does not include random constants.
- Using the integer type for the ephemeral random constant in the terminal set, we present
here, the results of the best run. By generation 57, the fitness of the best-of-generation
program was -9.2071. This individual has 27 function and terminal nodes and is shown below.

((- x (* x (* (* x (* x (/ x (* x x)))) (* x ( + x ( - x ( / x ( * x (* x x)))))))))) .

This genetic program, when simplified, is equivalent to :

Figure 24 compares the genetically evolved best-of-run program,GP[x], and the correct
function. As can be seen, this individual bears some resemblance to the logistic map function
F[x] .

fig 24: Best of run program GP[x] (solid line) using random integer constants compared with the logistic map
function F[x] (dashed line).
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- Changing the type of the random numbers to be of the floating point type between -1.00 and
+1.00 seems to improve the solution. In Generation 90, the sum of the squared errors for the
new best-of-run individual improved to -3.79298. This is approximately a 2-to-1
improvement of the fitness. This individual has a structural complexity of 29 :

( ( / x ( + ( * x ( * x ( * x ( + x ( * x ( * x ( * x ( * x ( + x ( + x ( * x ( / x 0.37 ) ) ) ) ) ) ) ) ) ) ) )
0.38 ) ) )

This S-expression is equivalent to

Figure 25 comparesGP[x] with F[x] .

fig 25: Best-of-run S-expression using the ephemeral random floating-point constant ranges over the interval [-
1.00 , +1.00]. The dashed line curve is the logistic map function F[x] and the solid line represents the best -of-

run program GP[x].

Figure 26 shows a graph of the values of the time series produced by the best-of-run
individual from generation 90 overlaid onto a graph of the values of the logistic map function.
The graph runs from time step 500 to 550 so as to show the behaviour of the functionGP
beyond the range defined by the 500 fitness cases. The initial value for both time series was
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 .The two sequences were somewhat close on time steps 501 and 502. Thereafter, the
sequence generated byGP diverged considerably from the correct values of the logistic
sequence.

fig 26: Out-sample behaviour of the time series for the correct logistic function (dashed line) and the best-of-run
program GP[x] (solid line) .

- Without using random constants and taking the parameter file presented in figure 27 leads to
a successful run.

fig 27: Parameter values of a successful run solving the logistic function problem.
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Function set   : +(2) , -(2) , *(2) , /(2);
Terminal set   : X;
PopulationSize : 100

CreationType   : 2
MaxCreation : 4
MaxCrossover : 6
ADFs           : 0
Mutation       : 4

Generations : 100
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The best-of-generation individual emerging in generation 28,

( ( / ( - ( + x ( - x ( * x x ) ) ) ( * x x ) ) ( / x ( + x ( - x ( - x x ) ) ) ) ) ),

had a perfect fitness value of-1.01873e-29 . This individual, when simplified corresponds
precisely to the logistic function :  .

From generation 54 to 100, all the best-of-generation programs scored the fitness value of -
1.01873e-29 and also contain the building block given by( - ( + x ( - x ( * x x ) ) ) ( * x x ) ).
The most parsimonious best-of-generation program was found at generation 76 and is of
complexity 17 :

( ( / ( - ( + x ( - x ( * x x ) ) ) ( * x x ) ) ( / x ( + x x ) ) ) )

Figure 28 shows, by generation, the population average complexity and the fitness of the best-
of-generation individual.

fig 28: The population average complexity and the best-of-generation fitness curves.
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4. Complexity and Scalability Analysis

Section 4.1 analyzes the time complexity of a PGPS sequential run. In section 4.2 we propose
two different schemes for load balancing. The standard metrics (speedup and efficiency) for
evaluating the performances of a parallel algorithm are recapitulated in section 4.3. The
system scalability and the execution time model are analyzed in section 4.4. The performance
evaluation of PGPS is described in section 4.5. Finally, the characteristics of the IBM SP-2
machine are shown in section 4.6.

4.1 Complexity analysis

When parallelizing a serial application, it is important to identify the parts of the application
that take the most time to run. These are known as hot spots. Since improving performance
involves reducing the processing time of the most compute-intensive parts of the application,
parallelizing them is a good way to achieve this improvement. This technique is known as
hot-spot analysis.
Let be :

p : the population size;
g : the number of generations;
n : the number of fitness cases;
d : the maximum depth for crossover (MDFC);
r : the maximum function arity in the function set .

In this analysis, the problem size is given by the number of fitness cases, , which is problem
dependent. All the other parametersp, g, d indicating respectively the population size, number
of generations and maximum depth are genetic programming parameters.

In order to identify the parts of the system that take the most time to run, figure 29 shows a
profile of a sequential run of PGPS where each GP is evaluated 1000 times. In this execution,
we used the values  ,  ,  and a maximum depth of  . The total
elapsed time of this run was 296.27 seconds on one SP-2 node and the total elapsed time

n

p 50= g 100= n 1000= d 6=( )
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required for evaluating the population was 290.43 seconds. Therefore, 98 % of the sequential
execution time of the system is used during the evaluation phase.
We can remark fluctuations in the population evaluation curve. These fluctuations are due to
fact that genetic programs do not have a static structure and their complexity varies
dynamically at run time.

Note that all the times reported were measured in the dedicated mode (the code runs in a
single user mode on the processing node).

fig 29: CPU time (in seconds) required at each generation for the reproduction phase (dashed line) and the eval-
uation phase (solid line).
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fig 30: The population evaluation time in relation with the number of fitness cases,

fig 31: The population evaluation time in relation with the number of fitness cases,

Figure 30 and figure 31 show the time spent during the evaluation phase, expressed in per cent
of the sequential execution time, when increasing the number of fitness cases . Both
population size and number of generations parameters are set to 10. We remark that for less
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complex genetic programs  , the evaluation phase consumes more than 90% of the
sequential execution time when the number of fitness cases,  , exceeds 400. However, for
more complex GPs  , the population evaluation time reaches 90% of the sequential
execution time around  . This is due to fact that the population evaluation time grows in
exponential way (  ) with the maximum depth (according to formula 4.1) and in linear
way (  ) with the number of fitness cases .

For problems of large enough size, the evaluation phase takes the most time to run and thus
represents a potential source of parallelism and then making the sequential part (i.e the
population management) of the application practically negligible. The execution time can be
assimilated to the evaluation time. We highlight, hereafter, the main parameters that control
the elapsed time of a sequential execution.

The crucial factors that affect the time of a sequential run of PGPS system are the population
size, complexity of the population, number of generations and the number of fitness cases .
We discuss, hereafter, the impact of these parameters upon the whole execution time.

- Population Size: The population size parameter ,p , is the number of individuals that the
system handles at each generation. Let  be the evaluation time of an individuali . If all the
individuals in the population were identical to the individuali , then evaluating the whole
population would require a time of  . This time is also equivalent to evaluatingp times the
same individuali. Thus, the evaluation time of the population is proportional to the Population
Size parameter.

- Population Complexity : The complexity of a genetic program is defined as the number of
function and terminal nodes in the associated parse tree. The more an individual is complex,
the more it has operations to execute and , thus , more it takes time for evaluation . The
complexity,Cj , of an individual ,j , can be bounded by the following formula.

(4.1)

Whered is the maximum depth for crossover andr is the maximum function arity in the
function set .

Each individual ,j , in the population needsCj operations to be evaluated. Evaluating a
population ofp individuals requires  operations . If  is the average complexity
of the population , then the system will perform  operations for the population evaluation.

- Number Of Generations : The number of generations ,g , is the number of times that the
system performs the selection , reproduction and evaluation phases. If  is the average
complexity of the population at generationi , then evaluating a population , of sizep , during
g generations will take  operations.  is the average complexity of the
initial population .
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- Fitness cases: Fitness cases are related to the problem to solve. They are, in general, a small
finite sample of the entire domain space and must be representative of this domain as a whole,
because they form the basis for generalizing the results obtained to the entire search space.
Each individual is evaluated  times during the fitness calculation . Since this parameter is
fixed for the whole population ( at the system initialization ) and does not change during the
run, it will scale the number of operations performed by the system when applied to a problem
having only one fitness case  . Note that the number of fitness cases is also a metric for
the problem size.

Finally , a sequential run of PGPS , solving a problem of  fitness cases, evolving a
population of sizep , over a number of generationsg , will require a time  which can be
approximated by :

(4.2)

where  is the cost of one arithmetic operation.

From experimental performance measurements on the IBM-SP2 machine, we derive

 seconds

for a mixture of standard arithmetic operations.

Therefore ,

.

Figure 32 shows the logarithmic representation , for each generation  , of the
population average complexity curve overlaid onto the required cpu-time for evaluating the
population at generationi . The generation 0 is the population creation phase . The different
parameter values for this run werep = 50 , g = 100 , n = 1000 ,d = 6 andr = 2 .

Let  be the population evaluation time at generationi .
From the previous formula, we get :

 .

or
 .

Thus , we can remark that the population evaluation time curve is proportional to the
population average complexity curve with a scaling factor of 0.072 .

n

n 1=( )

n

Tseq

Tseq n p Ci
∗

i 0=

g

∑
 
 
 

ta⋅ ⋅ ⋅≅

ta

ta 1 44, 6–×10=

Tseq n p Ci
∗

i 0=

g

∑
 
 
 

1 44, 6–×10( )⋅ ⋅ ⋅≅ ondssec

i 0 100[ , ]∈

Ti

Ti 1000 50 1,44
6–×10 

 
Ci

∗⋅ ⋅ ⋅≅ ondssec

Ti 0,072 Ci
∗⋅≅ ondssec i 0 100[ , ]∈



page 69

fig 32: Evolution, by generation, of the CPU-time (in seconds) required for evaluating the population and the
population average complexity. The X-axis indicates the generation number.

4.2 Load Balancing

This section discusses the load balancing problem. Load balancing refers to equal distribution
of the computational load among the processing nodes. It is an important performance
enhancer when writing a parallel application. A parallel execution can be viewed as a
collection of many cooperating tasks and, by optimal task distribution upon the processors,
the parallel execution can deliver significant speedup. In the terminology used here, a task is
defined as an atomic step sequence which :

- parses a genetic program ;
- builds the memory representation ;
- evaluates the GP on a set of  fitness cases , according to a specified fitness function ;
- returns the fitness value .

The task size refers to the complexity of GP to be evaluated. Note that this definition of task
size refers also to the number of arithmetic operations required for a single evaluation of the
GP. A task is the smallest unit that can be scheduled on a processing node. At the evaluation
phase, the work load seen by any processor consists, essentially, of a set of tasks. Each task
can be scheduled independently and is capable of being executed by any processor.
Furthermore, once initiated, each task runs uninterrupted until termination. After task
termination, each processor activates a task taken from its local wait queue according to FIFO
policy. Load balancing can be either static or dynamic.
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4.2.1 A static scheduling algorithm

This algorithm distributes the work load in an ordered way defined at compilation time. The
Round-Robin policy is used to assign tasks to the processing nodes. The criterion of load
balancing upon the processors is the number of tasks assigned to each processor. Task  , in
the task pool to be distributed over  processors, is assigned to the processing node given by

.
This algorithm handles only static parameters, fixed at compilation time, and does not reflect
dynamic factors which may change during the system evolution at run time. Even though, the
algorithm regulates the number of tasks assigned to each processor, irregularity in
computational load may occur. This overhead is due to fact that, tasks are not of the same size
and, the work load on a processing node depends not only on the number of tasks to be
performed, but also on the size of these tasks. This irregularity at complexity level induces
differences in the task evaluation time which may unbalance the work load on the processing
nodes. Figure 33 illustrates the mechanism of the static scheduling algorithm.

fig 33: A static scheduling algorithm

Static scheduling is appropriate for fixed work load environments. If the work load is known
beforehand and does not change, optimal static scheduling algorithms can be found and
implemented. Note also that static scheduling schemes are simple to implement and incur
little extra overhead.

4.2.2 A dynamic scheduling algorithm

With this dynamic load balancing scheme, the decision of which processor should run a
specified task is made at run time. The processor allocation is a function of population
complexity at each generation of the evolutionary process. The work load on a processing
node is considered as the sum of each task size assigned to that node. It is the single parameter
which varies at run time and all the other parameters (p , g , n) are fixed for each run.
Increasing the complexity of a GP enlarges the task size and therefore expands the task
evaluation time. The basis of this dynamic scheduling algorithm is to balance, at each
generation, the distribution of arithmetic operations upon the processing nodes and thereby
preventing a situation where one or more processors falls idle. This problem can be
formulated as follows.

Given  processing nodes  and  tasks  , each with a size  ,
one wishes to find a schedule of minimum length. A schedule is optimal if the maximum task
completion time is minimum. Note that this problem is known to be NP-hard. Let  be the
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work load of processor  . The algorithm is shown in figure 34. It is based on a “greedy”
heuristic giving, in average, a good approximated solution to the problem.

Step 0:

Step 1:

Step 2:

Step 3:

fig 34: A dynamic scheduling algorithm.

The tasks are sorted by size in downward order. The task distribution starts from the largest
task. At each iteration, the algorithm assigns the current task to the least loaded processing
node. When a processor is selected to perform a task, then its work load is increased by the
size of that task. Figure 35 shows an example of distributing 7 tasks on 3 processors.

fig 35: An example illustrating the dynamic load balancing algorithm

The data structures required in the implementation of this algorithm are:
- m ,an integer number indicating the number of allocated processing nodes.
- Procs[m] ,an array containing integer identifiers of the different PVM processes .
- l[m]  , an array of integer numbers. An elementl[i] of this array indicates the sum of

the size of tasks assigned to the process identified byProcs[i] .
- offset[p] , an index sorting the tasks in downward order.offset[0] identifies the

largest task in the task pool.

Figure 36 shows the computational load distribution, obtained with this algorithm, on two
processors. Processing node 1 (star point) runs the master process and processing node 2
(circle point) runs the slave process. The different parameter values for this run were :
p = 100 ;g = 100 ;n = 1000;d = 6 . At each generation , the graph shows the sum complexity
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of genetic programs (computational load) evaluated by the master process compared with the
computational load of the slave process . We remark that the two curves are very similar.

fig 36: Load balancing , by generation, on 2 processors. The star point line is the computational load curve of the
master process , and the circle point line indicates the computational load curve of the slave process .

4.3 Speedup and Efficiency

The speedup ratio  is defined as

where  is the execution time on a single processor and  corresponds to execution time
on processors.

Let f be the sequential part of the program (percentage of operations of a sequential program
that cannot be carried out in parallel, but must instead be executed sequentially).

The speedup ratio onm processors comes to

known as the traditional form ofAmdahl’s law.
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The fundamental limits of the speedup can be computed by increasing the number of
processor nodes , , to infinite :

According to the formula above , the speedup  is bounded by the inverse of the sequential
fraction of the application .

When computing speedups in the usual way , we consider a fixed-size problem and evaluate
the ratio  of the time   spent by a single processor over the time  spent with
processors.

Another important measure of the quality of parallel applications is the efficiency , defined
as the ratio of the speedup over the number of processors :

The efficiency  measures the average utilization of each processor .
We use both speedup and efficiency metrics for evaluating the performance of PGPS.

4.4 Scalability analysis

In this analysis, we model the distributed memory machine as a set of high-performance
sequential machines interacting through a low-latency high-bandwidth network.
Interprocessor communication is performed using explicit message passing.

In state-of-the-art distributed memory machines, the time to send a message containing units
of data from a processor to another processor can be modelled as  communication
time, where  is the startup time and  is the data transmission rate.

In the current generation of interconnection networks, for most commercially available
machines, the effects of network link contention and the distance between processors are
relatively small compared with large software overheads in message passing. The statup time,
including software and communication protocol overheads, is associated with each
communication operation.

We define the following parameters for the purpose of analysis.

 : the number of processors  ;

 : the number of tasks  ;

 : the complexity of the genetic program corresponding to task  ;

 : the size of the longest task ;
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 :the task average size ;

 : the work load of processor  ;

 : the problem size (the number of fitness cases related to the problem to solve) ;

 : the maximum work load assigned to a processing
node at evaluation phase.

The evaluation phase can be performed in   time on a sequential machine (see
formula 4.2).

On   processing nodes, using the dynamic scheduling algorithm, the work load
assigned to the most loaded processing node can not exceed , the work load of the least
loaded processor, by an amount larger than . If this were not the case, the excess of work

 would be composed of at least two tasks. Due to our load balancing strategy, one
of these tasks could have been assigned to the least loaded processor. Thus,

.

Since  is certainly smaller than the average load per processor , we have the
inequality

When the population size, , is large enough, we may then estimate that

Since each GP is evaluated for  fitness cases, the evaluation phase will take

where  is some constant.

Communication should also be taken into account. A genetic program of complexity   is
packed as a message of length smaller than  bytes, due to parenthesis and extra
characters in the S-expression representation. The length of a message transmitted between
any pair of processors is consequently less than

The total communication time at evaluation phase is bounded by the time required to move
the whole population, involving  one-to-all personalized communication operation with
message length variance. The total length of all   outgoing messages (initiated from the
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master process) is  requiring a communication time which can be written

When  is large, one can drop out the term  and then estimate  , where
 is some constant.

The total execution time,  , of the evaluation phase can be modelled as linear combination of
computation and communication costs:

(4.3)

or

 . (4.4)

The quantities  and  can be determined from actual runs on a parallel machine.

Table 1 reports different measurements of  as function of   while varying
in   and   in {2, 3, 4}.

Figure 37 fits the set of points   as a linear function, in agreement with
the model given by equation 4.4, deriving on the IBM SP-2 machine the values:

These quantities are given in the unit ofsecand are inversely proportional to an effective
Mflops rate and bandwidth, respectively.

From relation (4.3), the speedup onm processors can be approximated as

and the efficiency as

(4.5)

For a fixed problem size, , the speedup saturates at value   when increasing to infinite
the number of processors .
That is to say, given any number of processors , nearly linear speedup can be obtained by
simply taking a big enough instance of the problem. However, the scalability of a system is
not characterized only by the speedup curve but also by the ease with which speedups are
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acheived in relation with .

A parallel system is said to be scalable if there is an isoefficiency function   such that
 indicating how the problem size  must grow in order to maintain the efficiency

 at a desired value while increasing the number of processors  .

From expression (4.5), we obtain

The isoefficiency function  is linear with respect to  , making the system linearly scalable
when the population size  and the average complexity  are large enough.

Thus, an efficiency of  on  processors requires a problem size of  and
the same efficiency can be maintained on  processors by increasing  to  .

table 1: t/pc* in relation with n/m.

n m n / m p g t/pc*( )

2 2 1 100 100 2.25906

4 2 2 100 100 2.53164

10 2 5 100 100 3.7797

100 4 25 100 100 5.698

100 3 33 100 100 6.62254

100 2 50 100 100 9.99998

1000 4 250 100 100 41.2186

1000 3 333 100 100 44.9899

1000 2 500 100 100 77.54

2400 4 600 100 100 79.9253

2000 3 666 100 100 92.1774

2400 3 800 100 100 120.939

2000 2 1000 100 100 152.72
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fig 37: Execution time model

4.5 Performance evaluation

The parallel genetic programming system was implemented on an SP-2 machine (described in
section 4.6). We used from 1 to 10Thin processing nodes to conduct our experiments.

The logistic function is used as benchmark application for the speed-up performance
measurements [4]. We used a problem size (number of fitness cases) of  and the
speed-ups obtained are consistent with the measurements obtained for the trading model
application described in chapter 5.

The traditional form of the speedup metric requires that the output of a parallel run must be
the same as the one of its corresponding sequential execution. For this, we have fixed not only
the problem size but also the seed for the random number generator as parameter of an
evolutionary process in genetic programming. Consequently, at each generation of the
evolutionary process the two runs will evolve the same population. Other authors suggest
fixing only the problem size and to average over many runs [3].

The speedup was measured on two different instances,(A) and(B), of the problem and for each
instance we report both static and dynamic load balancing performances. Table 2 summarizes
the parameters used for each problem size. The columnsn, d, p, g indicate respectively the
probleme size, maximum depth, population size and number of generations. The speedups of
both static and dynamic scheduling algorithms are summarized in table 3 and table 4 and the
corresponding curves are plotted in figure 38 and figure 39. The elapsed time was measured in
the dedicated mode.
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table 2: A summary of the parameters for the two problem sizes

Table 3: Speedups obtained using static and dynamic algorithms for  and

For  and  , the sequential execution takes 234.97 seconds on a single node of
SP-2. Using 10 SP-2 nodes, the static load balancing scheme completes in 34.05 seconds
whereas the dynamic load balancing algorithm takes 29.57 seconds.

n d p g

(A) 1000 6 100 100

(B) 100 12 100 10

# processors p , g , n d Time(s) Speedup Efficiency

1 100, 100, 1000 6 234.97 1 1

2 “ “ 125.24 1.88 0.94

3 “ “ 86.87 2.70 0.90

4 “ “ 69.38 3.39 0.85

5 “ “ 57.17 4.11 0.82

6 “ “ 49.25 4.77 0.79

7 “ “ 43.93 5.35 0.76

8 “ “ 39.71 5.92 0.74

9 “ “ 37.18 6.32 0.70

10 “ “ 34.05 6.90 0.69

1 100, 100, 1000 6 234.97 1 1

2 “ “ 121.02 1.94 0.97

3 “ “ 80.75 2.91 0.97

4 “ “ 63.99 3.67 0.92

5 “ “ 52.38 4.49 0.90

6 “ “ 44.94 5.23 0.87

7 “ “ 39.56 5.94 0.85

8 “ “ 35.47 6.62 0.83

9 “ “ 32.15 7.31 0.81

10 “ “ 29.57 7.95 0.79

p 100= g 100= n 1000=, , d 6=

n 1000= d 6=
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fig 38: Speedup of PGPS for

When reducing the problem size to  and increasing the maximum depth up to  ,
the sequential execution time takes 743.77 seconds on a single node. On 10 nodes, the static
scheduling algorithm completes in 140.2 seconds while the dynamic one takes 105.68
seconds.

The difference in performance between the static and dynamic load balancing scheme can
enlightened by the following discussion. Increasing  expands in exponential way (see
formula 4.1) the reachable maximum task size and therefore augments the task average size,

, which scales the whole processing time.

As previously described in section 4.4, using the dynamic load balancing algorithm, the
speedup saturates at  when increasing the number of processors, , to infinite. Hence,
the speedup is bounded by 86.8 for the problem instance(A) and by 8.68 for the problem
instance(B).

Using the static load balancing scheme, each node will receive at most   tasks to
be evaluated. In the worst case, the longest tasks are assigned to the same node, thereby the
work load can be bounded by .

Following the same reasoning as in section 4.4, we derive, for the static load balancing
algorithm, the limit  of the speedup when  goes to infinite.

Clearly, both static and dynamic load balancing schemes will lead to similar speedup
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performances when the ratio .

That is either  is small, case of problem(A), making all the tasks equal sized or there is a
large enough task  , of complexity  , such that the rest of tasks in the pool can be
neglected:

In the other case  , the dynamic algorithm gives better results than the static one and this
explains, in problem(B), the speedups of 5.3 and 7 obtained respectively with the static and
dynamic load balancing schemes on 10 processors.

Table 4: Speedups obtained using static and dynamic algorithms for  and

# processors p , g , n d Time(s) Speedup Efficiency

1 100, 10, 100 12 743.77 1 1

2 “ “ 437.7 1.70 0.85

3 “ “ 292.81 2.54 0.85

4 “ “ 259.39 2.87 0.72

5 “ “ 212.02 3.51 0.70

6 “ “ 195.13 3.81 0.64

7 “ “ 179.8 4.14 0.59

8 “ “ 165.78 4.49 0.56

9 “ “ 146.4 5.08 0.56

10 “ “ 140.2 5.31 0.53

1 100, 10, 100 12 743.77 1 1

2 “ “ 389.04 1.91 0.96

3 “ “ 269.35 2.76 0.92

4 “ “ 208.72 3.56 0.89

5 “ “ 172.1 4.32 0.86

6 “ “ 147.9 5.03 0.84

7 “ “ 132.9 5.60 0.80

8 “ “ 120.19 6.19 0.77

9 “ “ 113.1 6.58 0.73

10 “ “ 105.68 7.04 0.70

q c∗ cmax⁄ 1≈=

d
Ti ci

c∗ cmax≈ ci cj
j 1=

p

∑»= j i≠( )

q 1<( )

p 100= g 10= n 100=, , d 12=



page 81

fig 39: Speedup of PGPS for

Note that the case where all the tasks are approximately of the same size is similar to the
parallelization of the canonical genetic algorithm. The parallelization of the classical genetic
algorithm solving an application (data classification) where the fitness evaluation dominates
the rest of the GA calculations is reported in [5]. Sets of strings are simply sent to the
processors for evaluation only. The authors have called this approach of parallelizing «mico-
grained parallelism» and shown that this technique can produce a nearly linear speedup in
GA performance.

4.6 The IBM SP-2 machine

SP-2 is a distributed memory machine using a network based computing model, providing
two types of processing nodes:Wide andThin nodes. The POWER2 processor in theWide
processing node runs at 66.7 MHz, giving a peak performance of 266 MFLOPS. The POWER
processor in theThin processing node runs at 62.5 MHz, giving a peak performance of 125
MFLOPS. The processing nodes share data via message passing over theHPS (High
Performance Switch) multistage packet switched Omega network [2]. Theswitch chip
provides 40 MBytes/s peak channel bandwidth and 500nsec hardware latency.

Table 5 presents the performance of point-to-point communication operation using the user
space implementation (dedicated nodes connected with the HPS) of IBM PVMe message
passing library [1].
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Table 5: Communication performance for various message sizes.

The time was measured using the wall clockgettimeofday in the dedicated mode. Each time
reported is half the round-trip (ping-pong) communication time. In oder to minimize the effect
of other user’s traffic in the network, each measure is repeated 100 times and then the
minimum value is retained. The code is implemented as two communicating processes
(Figure 40)process 1 andprocess 2. Note that the packing operation in step (c) is performed
once only and the packing time is not included in the measurements. At each iteration in step
(d), the processes are first synchronized and then the clock is started.

fig 40: Code implementing two processes measuring the performance of point-to-point communication opera-
tion.

Size(B) 10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

Time(us) 109 132 153 155 188 410 659 2023 3520 17669 35026

Process 1

(a) - prepare a messageM of sizeS
(b) - clear the send buffer:pvm_initsend()
(c) - pack the messageM into the active buffer:pvm_pkstr()
(d) - perform the following operations:

- synchronize with process 2:pvm_barrier()
- store the current physical time in structuret1: gettimeofday()
- send messageM to process 2:pvm_send()
- receive synchronously a message of sizeS: pvm_recv()
- compute the elapsed time in microseconds:

elapsed_time =( t2.tv_sec - t1.tv_sec ) * uS_PER_SECOND +
( t2.tv_usec - t1.tv_usec )

(e) - repeat step (d) 100 times and take the minimum elapsed_time value:min_time
(f) - return the half ping-pong communication time:min_time / 2

Process 2

(a) - prepare a messageM of sizeS
(b) - clear the send buffer:pvm_initsend()
(c) - pack the messageM into the active buffer:pvm_pkstr()
(d) - perform the following operations:

- synchronize with process 1:pvm_barrier()
- receive synchronously a message of sizeS: pvm_recv()
- send messageM to process 1:pvm_send()

(e) - repeat step (d) 100 times.
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Figure 41 shows the communication performance curve. The curve shows a discontinuity at
100 bytes. For long messages (larger than 500 bytes) , the communication time becomes
nearly linear as message size increases, leading to an asymptotic bandwidth of 28.5 MBytes/s.

fig 41: Performance of Point-to-Point Communication Operation on SP-2
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5. Applying Genetic Programming to evolve financial trading
models

5.1 Introduction

The question of economic forecasting is crucial in today’s world. Firm, public sector, business,
and consumer decisions are all based on uncertain expectations about the future.
The forecasting literature in economics can be assigned to two different frameworks. On one
hand, there is a long tradition that places considerable emphasis on the theorical aspects in
guiding the evaluation of econometric models. Although many authors have clearly postulated
that a good forecasting performance is a necessary condition for any theory to be given such
status, there is still a large number of academic economists and econometricians who tend to
view the forecasting problem as one of secondary importance.
On the other hand, scientist researchers believe that understanding the structural relationships
in an economic system may not be sufficient condition to forecast it well, and thus pragmatic
observation rather than theorical models is the basic interest of the technical analysis.

5.2 Technical analysis

The technical approach to investment is essentially a reflection of the idea that the stock market
moves in trends which are determined by the changing attitudes of investors to a variety of eco-
nomic, monetary and political forces [6]. The art of technical analysis, for it is an art, is to iden-
tify changes in such trends at an early stage and to maintain an investment posture until a
reversal of that trend is indicated.
Human nature remains more or less constant and tends to react to similar situations in consist-
ent ways. By studying the nature of previous market turning points, it is possible to develop
some characteristics which can help identify major market tops and bottoms.
Technical analysis is therefore based on the assumption that people will continue to make the
same mistakes that they have made in the past. Human relationships are extremely complex
and are never repeated in identical combinations. The stock market, which is a reflection of
people in action, never repeats a performance exactly, but the recurrence of similar
characteristics is sufficient to permit identifying major juncture points. As trend determining
technique, we use indicators based on the price time series. Since no one indicator can ever be
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expected to signal all such trend reversals, it is essential to use a number of them together so
that an overall picture can be built up. We use, for this purpose, genetic programming which
provides a way to formalize the trading models in a symbolic form. The real-life benchmark
application addressed in this chapter shows that robust and profitable trading strategies can be
inferred using genetic programming.

5.3 Trading model indicators

5.3.1 Moving Averages

The most widely used indicators in technical analysis are based on moving averages (MA) . A
moving average attempts to tone down the fluctuations of stock prices into a smoothed trend,
so that distortions are reduced to a minimum. We use in our study different types of moving
averages.
A simple MA is constructed by totaling a set of data and dividing that total by the number of
observations. In order to get the average to “move” , a new item of data is added and the first
item on the list substracted. The new total is then divided by the number of observations and
the process repeated ad infinitum. The number of observations is known as the range  of the
MA. The choice of the range is very important. A short range MA would be so sensitive that it
would continually give misleading or “whipsaw” signals. A long range MA smooths out all the
fluctuations taking place during the current period. Only a MA that can catch the movement of
the actual trend will provide the optimum tradeoff between lateness and oversensitivity. Here,
we define a MA as the mean of multiple exponential moving averages (EMA). The advantage
of crossing multiple moving averages is smoothing the data many times and thereby reducing
the possibility of false signals. An EMA, as weighted moving average, has the particularity to
reverse direction much more quickly than a simple MA, which is calculated by treating all the
data equally. This is due to fact that an EMA gives greater weight to more recent observations.
A general form of a moving average is given hereafter:

Where :  indicates the range (the depth in the past), in days, of the moving average.

j andn are respectively the minimum and maximum order of the EMA operator.

 represents the price time series.

An EMA of orderi is computed recursively by formula (5.1).
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and

Time series x(t) is a discrete time function , but can be interpolated using a linear interpolation
in the time intervals between the series elements. Consequently, the formula above can be com-
puted in recursive way as follows :

The EMA can be initialized to the first series element :

A part of data is reserved to build up the EMA values . This buildup period is required for re-
ducing the initialization error , which declines in exponential way over time . The advantage of
this computation scheme is that only the previous values of the EMA and price are required for
evaluating the current EMA value , and thereby avoid keeping in memory a long price history .

5.3.2 Momentum

Although the indicators based on moving averages are extremely useful , they identify a change
in trend after it has taken place and are helpful only when a trend reversal is detected at a rela-
tively early stage in its development. We use here , besides moving averages , another type of
indicator based on the concept of momentum. A simple form of momentum is given by :

Since the moving average represents the price trend , the resulting momentum indicator shows
how fast the price is advancing or declining in relation to that trend. The momentum is null
when the price reaches its MA. The momentum curve gives also useful indications of latent
strength or weakness in a price trend.

Figure 42 shows the evolution of 16 days range (  ) moving average monitoring the
USD/DEM exchange rate over one year . The minimum and maximum order of the EMA op-
erator are respectively j = 2 and n = 4 . The moving average , abbreviated as EMA_x_16_2_4
, is represented by the dashed line . The solid line indicates the logarithmic middle price . Note
that the first 150 days constitute the buildup period .
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fig 42: Logarithmic evolution of the USD - DEM exchange rate over 1 year ( solid line ) . The dashed line indi-
cates a 16 days moving average . The EMA order scans the interval [ 2 , 4 ] .

The deriving evolution of momentum indicator MOM_x_16_2_4 from the EMA_x_16_2_4
curve presented above is given by the figure 43. The constant (K = 0.3) is a threshold value,
calledbreak-level. Figure 42 and figure 43 run exactly the same period.

The momentum indicator is calculated as follows :

(5.2)

Since the formula(5.2) is independent of the FX rate to analyze, a scaling factor is used to
normalize the value of the indicator and is given by the square root of long range momentum
of the squared values of the indicator. More precisely, ifM(t) is the time series of the squared
momentum,

then

where  is an infinitesimal positive value ,nr is the normalization range andr is the MA range
used for the momentum evaluation .
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fig 43: Evolution of normalized momentum indicator “MOM_x_16_2_4” , monitoring the USD-DEM FX rate
over 1 year . The break level boundaries are -0.3 and +0.3 . The interval [0,150] indicates the buildup period .

Changes in the trend of the FX rate being measured are identified not by a change in direction
of the moving average , but by a crossover of the moving average and the price itself . A change
from an upward trend to a downward trend is signaled when the price moves below its MA .
The reverse set of conditions will confirm the termination of a downward trend . The beginning
and the end of a trend development is therefore surrounded between two successive violations
of the MA by the price curve .

The exploitation of the trend-determining technique described above is illustrated hereafter ,
assuming the analysis of the USD-DEM FX rate . If the price is above its MA (  ) then
the action to take is to buy USD currency and remain in this position until the sell signal is trig-
gered at the next crossover point . Symetrically , if the price is below its MA (  ) then
the action to take is to buy DEM currency and wait for the sell signal which will be given at the
following crossover point .

The crossover region is expressed by  .
Another strategy is to compare momentum indicator with the zero reference line  .

The momentum curve computed as described above, bears some fluctuations in relation to the
volatility of prices . One method of filtering out these fluctuations is to smooth the momentum
indicator itself by using an exponential moving average [6]. Another variation on constructing
a smoothed momentum indicator is to take the momentum of a moving average ( the price
curve itself is first smoothed with a MA , and a momentum is taken from that smoothing ) .
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5.3.3 Volatility

- Another trading model indicator used in technical analysis is thevolatility. The volatility of
prices can be computed as the weighted sum of the difference between multiple exponential
moving averages. A simple scheme to evaluate the volatility indicator is to combine an EMA
reflecting only the current fluctuations (typically by taking a range of one hour) with EMAs
with more longer range considering the price movement in the past.

Let  be a range of one hour and  the range (in days) characterizing the volatility.

The normalized volatility of the pricex, of range  , is given by

(5.3)

With  . The values  are computed as follows.

Where the values  are computed according to formula (5.1). The normalization
factor represents the momentum of the variable  and is computed as follows.
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5.4 Trading models

A trading model is a system of rules catching the movement of the market and providing
explicit trading recommendations for financial assets. A simple form of a trading rule could be

IF |I| > K THEN G := SIGN( I ) (5.4)
ELSE G := 0

WhereI is an indicator whose sign and value model the current trend andK is thebreak-level
constant. The gearing,G, is the recommended position of the model. The valueG = +1 corre-
sponds to a ‘buy signal‘,G = -1 corresponds to ‘sell signal‘ andG = 0 corresponds to the neutral
position. A trading rule with more complex strategy may use more than one indicator : typical-
ly, an indicator giving the current trend can be used in conjunction with an indicator reflecting
the volatility of prices.

If  is the gearing position at time t , then it is updated according to table 6.

Table 6: Trading signals based on the indicator value.

A deal signal is given only if there is a trend reversal:  .
Before any action to take , a trading recommendation must satisfy some timing constraints such
as the local market is open and the previous deal occured at least fifteen minutes ago . The cur-
rent price is checked for both validity (suitable for dealing) and reaching the stop-loss limit (the
stop-loss deal turns the current position to neutral) .

The trading strategy specifies the position to be taken at the following price event , given the
current gearing position and the trading signal . Figure 44 illustrates the different gearing tran-
sitions (transactions) presented as a finite state machine .

Condition Action Meaning

raise a buy signal

raise a sell signal

raise a neutral signal

g t( )

Ix t( ) K> g t( ) +1=

Ix t( ) K–< g t( ) 1–=

Ix t( ) K≤ g t( ) 0=

g t( )∆ g ti( ) g ti 1–( )– 0>=
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fig 44: The trading strategy .

The states 0 , +1 , -1 are the possible gearing positions . The initial and final states are given by
the neutral position . A transaction holds each time a new signal is generated. Table 7 summa-
rizes the real-time working of the automaton . The columns  ,  and  indicate respec-
tively the signal value , gearing position and deal return at time  .

Table 7: The transactions and their corresponding returns .

The return  of a deal occured at time  is computed as follows :

where  indicates the previous gearing position and  the transaction price of the
previous deal . The transition  can be decomposed as sequence of

 and vice versa . In all the other cases , the current state is preserved .

Note that the return of transactions started from the neutral position is null.
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5.5 Evolving trading models

Besides of alleviating the restrictions of fixed-length representation of genetic structures,
genetic programming provides a natural way to represent and evolve decision trees [1]. This
section describes a way to use genetic programming to learn technical trading models for
foreign exchange (FX) market. The recommendations given by a trading model are purely
based on past prices (price time series) of the exchange rate being analyzed. The price history
is summarized in indicators.

The trading models used in this study are combinations of rules having the form(5.4). These
rules are combined by logical operators to form a decision tree [2]. The decision trees are then
evolved using genetic programming where each genetic program represents a trading model.

An indicator is function of time series and, in particular, all the indicators used in this study
are functions of time and price history and are based on the concept of momentum computed
according to formula (5.2).

As momentum is function of the price element, its value is updated at each price event. Once
updated, the normalized indicator value  is used, according to rule(5.4) , to obtain the
indicator signal

The different signals returned by the indicators are then embedded in the logical S-expression
corresponding to the trading model. The value obtained by the evaluation of the S-expression
represents the trading model recommendation.

For illustration, the evaluation of the genetic program  is per-
formed as follows :

FOR for each price event x(t)DO
BEGIN

(a) -update the indicator for the current price
(b) - update the indicator for the current price
(c) - evaluate the indicator signal
(d) - evaluate the indicator signal
(e) -perform the OR operation between (c) and (d)
(f) - raise the deal signal found in (e)

END

Because of the presence of three possible values( -1, 0, +1) for the gearing signal, we have
rewritten the basic logical operators:

Ix r j n, , , t( )

G x r j n K, , , ,( ) G Ix r j n, , , t( ) K,( )=

OR G x 32 2 4 K, , , ,( ) G x 10 2 8 K, , , ,( )( )

Ix 32 2 4, , , x t( )

Ix 10 2 8, , , x t( )

G x 32 2 4 K, , , ,( )

G x 10 2 8 K, , , ,( )
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-TheOR operator returns the sign of the sum of its arguments;
-TheNOT function returns the opposite decision of the argument;
-TheAND function returns the neutral signal when one of its arguments is zero;
 otherwise returns theOR value;
-The IF function takes three arguments. It returns the second argument if the first one
 is true; otherwise it returns the third argument.

More formally, these logical operators can be expressed as mathematical functions where each
variable  corresponds to an argument:

Table 8, table 9 and table 10 show the truth tables corresponding to each of these logical func-
tions.

table 8: the OR and AND logical operators

table 9: the IF logical operator

-1 -1 -1 0

-1 0 -1 0

-1 +1 0 0

0 -1 -1 0

0 0 0 0

0 +1 +1 0

+1 -1 0 0

+1 0 +1 0

+1 +1 +1 +1

-1

0

+1

ai

OR a1 a2( ) sign a1 a2+( )=

NOT a( ) a–=

AND a1 a2( ) a1 a2× sign a1 a2+( )⋅=

IF a1 a2 a3( ) a1 a2× a1 1– a3×+=

a1 a2 OR a1 a2( ) AND a1 a2( )

a1 a2 a3 IF a1 a2 a3( )

a2 a3 a2

a2 a3 a3

a2 a3 a2
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table 10: the NOT logical operator

The indicators in theTerminalSet are chosen according to their robustness. An indicator is said
to be robust if it performs well in both learning process (in-sample) and test process (out-of-
sample). The major problem in optimizing trading models is to avoid overfitting caused by the
presence of noise. Overfitting means building trading models that fit a price history very well
but generalize badly. The idea here, to avoid this phenomena, is to build genetic programs
based on pre-optimized building blocks. These building blocks (robust indicators) were opti-
mized using a niching genetic algorithm based on a fitness sharing scheme [5].

5.6 The fitness function

The fitness measure of a trading model, termed  , quantifies not only the return but also the
risk involved by the model [4]. It is defined as:

where the first term is the average return over  transactions (that generated a return) operated
within a total test period :

The return of a transaction is computed as described in table 7.

The second term represents the risk involved by the trading model. The constantc (= 0.1) is a
risk aversion constant.

The variance of the return is computed as:

The behavior  corresponds to a linear cumulated return curve. The measure  depends
on the size (in days) of the test period . In order to enable comparisons between different pe-
riods, an annualization factor  is introduced [4]:

leading toAnnualized effective return performance measure which can be computed and com-
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pared for different periods :

This measure of trading performance through annualization is related to a single time horizon
 and therefore still has a risk term associated with the period size. Averaging over  different

time horizons  is a way to consider changes occurring with much longer or much shorter test
periods:

Where the weights  are chosen so that short horizons are much more reflected than the long
ones:

The maximum weight is related to the 90 days horizon.

The construction of the time horizons  is performed such that the intervals
 cover the full sample test period.

Since the variance is a measure of the stability of the return, then high effective return means
also high stable return. The notion of robustness is directly related to the ability of generalizing
the results beyond the training sample. For this purpose, each trading model is tested on more
than one exchange rate time series. The fitness measure is then extended as follows:

where the first term is the fitness average value obtained for  exchange rates:

and the second term is the variance of these values:

For this problem, the number of fitness cases is given by the size of the time series to be learned
and is typically of the order of . To give a magnitude order of the time spent in the eval-
uation phase, evolving a population of 100 GPs with setting the maximum depth as  , over
100 generations, takes more than 30 hours on 4 SP-2 nodes.
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5.7 Performance analysis

The optimization of the trading models is performed on seven exchange rates (GBP/USD ,
USD/DEM , USD/ITL , USD/JPY , USD/CHF , USD/FRF , USD/NLG) where each time series
contains hourly data and is divided into alternated periods ( in-sample / out-of sample ) of one
and half year. The optimization period starts (January 1, 1987) and ends (June 30, 1994). The
breaklevel wasK = 0.32 and thebuildup period was16*120 days.

- In a first phase, theFunctionSet used in designing this application is restricted to the logical
functions

F = {AND , OR , NOT , IF }

and theTerminalSet contains three pre-optimized indicators and two constant values

T = {G(x, 10, 2, 9, 0.32) , G(x, 16, 3, 3, 0.32) , G(x, 16, 2, 4, 0.32) , +1 , -1}.

The GP evolutionary process was trained in the following manner. We performed ten in-sam-
ple runs evolving a population of 100 individuals over 100 generations (each run takes more
than 30 hours on 4 SP-2 nodes). The best individuals issued from each in-sample run are then
tested separately on the out-of-sample data. We report some best trading models which appears
more systematically over the ten runs. The logical S-expressions are presented hereafter.

(OR ( AND 1 G(x, 16, 3, 3, 0.32) ) (AND G(x, 16, 2, 4, 0.32) G(x, 16, 3, 3, 0.32) ) ) (1)

( IF (ORG(x, 10, 2, 9, 0.32) 1 ) (AND G(x, 16, 3, 3, 0.32) 1 ) G(x, 16, 3, 3, 0.32) ) (2)

The average yearly return  and the fitness value on seven exchange rates (BP/USD ,
USD/DEM , USD/ITL , USD/JPY , USD/CHF , USD/FRF , USD/NLG) in both training and
validation periods for these trading models are presented in table 11, table 12, table 13 and
table 14. The column F represents the deal frequency expressed as the average number of
transactions per week over the test period. The column NF (Neutral Frequency) indicates the
percentage of time spent by the model in the neutral position (out-of-market) during the test
period.

R〈 〉 Xeff
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5.7.1 Performance of Trading model (1)

table 11: In-Sample performance of Trading model (1) . The average yearly return (in percent) and fitness value
obtained on seven exchange rates are presented.

table 12: Out-of-Sample performance of Trading model (1) . The average yearly return (in percent) and fitness
value obtained on seven exchange rates are presented.

FX rate F NF

usd / dem 5.65% 2.43 1.7 26.1%

gbp / usd 6.64% 1.64 1.4 28.6%

usd / jpy 5.98% -0.15 1.5 25.8%

usd/ itl 4.38% 0.33 1.9 26.6%

usd / chf 6.73% 1.91 1.8 25.8%

usd / frf 4.77% 1.50 1.8 26.1%

usd / nlg 4.55% 1.50 1.9 26.2%

Average 5.53% 1.31 1.7 26.5%

Fitness 1.00

FX rate F NF

usd / dem 7.07% -1.37 1.8 21.8%

gbp / usd 4.61% -12.00 2.2 21.2%

usd / jpy 2.9% -4.61 1.6 29.6%

usd/ itl 8.07% 2.55 1.5 18.6%

usd / chf 3.45% -8.50 2.1 19.5%

usd / frf 5.71% -1.76 1.8 21.6%

usd / nlg 6.75% 0.08 2.1 22.4%

Average 5.51% -3.66 1.9 22.1%

Fitness -5.35

R〈 〉 Xeff

R〈 〉 Xeff
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5.7.2 Performance of Trading model (2)

table 13: In-Sample performance of Trading model (2) . The average yearly return (in percent) and fitness value
obtained on seven exchange rates are presented.

table 14: Out-of-Sample performance of Trading model (2) . The average yearly return (in percent) and fitness
value obtained on seven exchange rates are presented.

It can be seen that the average yearly return seems to be stable in both learning and test
periods. However, the return time series itself presents some fluctuations (reflected in the
fitness value) during the out-of sample period.

FX rate F NF

usd / dem 5.70% 2.41 1.6 27.5%

gbp / usd 5.54% 0.00 1.6 30.0%

usd / jpy 5.40% -0.95 1.6 26.8%

usd/ itl 4.45% 0.29 1.8 27.2%

usd / chf 6.37% 1.32 1.9 26.9%

usd / frf 4.15% 0.40 1.9 26.9%

usd / nlg 4.56% 1.66 1.7 27.4%

Average 5.17% 0.73 1.7 27.5%

Fitness 0.35

FX rate F NF

usd / dem 6.02% -2.78 1.8 23.0%

gbp / usd 4.76% -11.71 2.2 21.8%

usd / jpy 3.09% -2.77 1.5 30.4%

usd/ itl 7.08% 1.22 1.5 19.9%

usd / chf 4.86% -6.04 1.9 20.4%

usd / frf 4.92% -3.14 1.8 22.2%

usd / nlg 6.28% -0.75 2.1 23.5%

Average 5.29% -3.71 1.8 23.0%

Fitness  -5.10

R〈 〉 Xeff

R〈 〉 Xeff
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In order to capture the essence of these trading models, we perform the following
simplifications:

Though not identical, the S-expressions(1) and(2) follow the same trading strategy. In both
GPs, the long (+1) and neutral (0) positions hinted at by the (primary) indicator  are
kept as the recommended position.
However, when the primary indicator raises a short (-1) position then the recommendation
must be confirmed by a secondary indicator. The indicators  and  are used,
respectively in(1) and(2), for validating short positions proposed by the primary indicator.
Note that theAND function is precisely a validating operator:

 ; .

Figure 45 shows a sequence of trading positions taken by trading model (1) in relation with
price movements. Long positions are taken when prices are growing and , in symmetrical way,
the model adopts short positions in reaction to declining prices.

fig 45: Behaviour of trading model (1) monitoring usd-dem FX rate over one year analysis period
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- Because theFunctionSet may be too restrictive, the search space is enlarged by including
some basic mathematical functions in theFunctionSet[3]. The TerminalSet is also extended
by including a volatility indicator plus real random constants in the interval [-2.0 , 2.0] .

The price volatility, termed , is calculated according to formula (5.3). Also, after the
evaluation of a price momentum, its value is updated according to following rule.

IF |I| > K THEN M := I
ELSE M := 0

abbreviated as

The real value, I, obtained by evaluating the parse tree is then used, according to formula (5.4)
(with K = 0.3) , to raise the signal representing the recommended gearing position.

TheFunctionSet andTerminalSet are composed of

F = {* , / , + , - , < , > , MIN , MAX , ABS , AND , OR , NOT , IF }

and theTerminalSet contains three pre-optimized indicators and two constant values

T = {M(x, 16, 0.32) , M(x, 10, 0.28) , M(x, 8, 0.34) , V(x, 16) , RND[-2.0 , 2.0] }.

The full optimization is performed in 20 independent runs. Each run evolved 4 different
subpopulations, each of 100 GPs, over 100 generations. The maximum tree depth was set to 6.
A migration rate of 5% GPs is done asynchronously each time a master has completed 10
generations. The imported GPs are selected according to fitness value. The sameFunctionSet
andTerminalSet are used by all the master nodes.

Table 15 presents the average quality of the results of the different runs compared to the
average quality of the pre-optimized indicators. The results of the runs are grouped in 4
classes of decreasing out-of-sample performance.

vx r,

M x r K, ,( ) M Ix r, t( ) K,( )=
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table 15: Average complexity, average yearly return (in percent) and fitness value corresponding to the in-
sample and out-of-sample periods. The results are given for pre-optimized indicators and for each group of

results.

In the first group of results (runs 1-5), the average yearly return bears some stability in both
learning and test periods. However, some variability of the return appears during the test
period. In the other groups, the increase of the in-sample quality is paid by a clear decrease of
the out-of-sample performance, which show a higher degree of overfitting.

The best selected model in the first group has a complexity of 36 and is given by the S-
expression:

(IF (MIN (ABS (MIN M(x, 16, 0.32) M(x, 10, 0.28) )) (> -0.74 v(x, 16) ))
(- M(x, 16, 0.32) (MIN v(x, 16) M(x, 16, 0.32) ))
(- (ABS (- ( ABS ( MAX 0.74 v (x, 16) ))
(> (> -0.74 v(x, 16) ) (MIN v(x, 16) M(x, 16, 0.32) ))))
(> (IF 0.3 M(x, 16, 0.32) v(x, 16) ) (MIN v(x, 16) M(x, 16, 0.32) )))
)

The in sample average return is 8.98% and the out-of-sample one is 5.12%. Such decision tree
is not easy to interpret and some of the branches are duplicated. The solutions provided by the
other runs are also complex and some simplifications must be performed to understand the
information carried by a model.

Trading
models

Average
complexity

In Sample Out of Sample

<R> Xeff <R> Xeff

Indicators 1 5.85% 1.72 4.65% -1.83

Run 1-5 33 5.97% 1.98 5.61% -2.85

Run 6-10 41 6.32% 2.14 4.15% -5.34

Run 11-15 46 6.12% 2.54 3.85% -6.34

Run 16-20 55 8.23% 2.86 2.61% -10.34
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6. User’s Guide and Implementation Details

- This software has been run onUnix-based systems. It has been tested on a cluster of Sun
work stations and a parallel IBM-SP2 machine. The interprocessor communications are
PVM -based message passing routines. The system requires aC++ compiler. If used, the
graphical visualization tool needs bothTcl (Tool command language) andTk  (X windows
toolkit) to be interpreted and executed.

6.1 How to prepare PGPS for solving a problem

The system may be used in three ways:

1 - Write all of the code needed to run your specific genetic programming application
within the problem.cc file. In that case, the user should not need to modify the other
parts of the system.

2 - Add new features (operators, selection methods, ...) without changing the structure
of the routines which call them.

3 - Freely modify the content and the structure of any of the routines in the system.
This provides the greatest freedom, but also the responsibility in fixing any bugs
discovered in such modified version of the code.

The files to compile and link for all types of problems are the following:
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file Objective

TSGA.cc The first loaded master process - main program.

TSga.cc The master processes - main program.

allelem.cc Mutation operation.

cross.cc Crossover operation.

gprand.cc , gprand.hpp Random functions.

exit.cc Error handling.

interface.cc Interface between a master process and the problem.

eval.cc Work distribution and load balancing.

compare.cc Compares between two genetic programs.

tourn.cc Tournament selection.

select.cc Random selection of an individual from the population.

create.cc Creation of a genetic program.

generate.cc Loops through the population and performs the reproduc-
tion phase.

rungps.cc Loops through the generations and creates output files
containing average fitness, average complexity and the
best individual of each generation.

loadsave.cc Input/output operations on genetic programs.

symbreg.cc Useful routines for packing and unpacking operations.

problem.cc Fitness function of the problem to solve.

optmain.cc The Slave processes - main program.

optimize.cc , optimize.hpp Routines for parsing, building and evaluating a gp.

function.cc , function.hpp Definition of the Function (set) class.

gene.cc , gene.hpp Definition of the Gene class.

gp.cc , gp.hpp Definition of the GP class.

gpv.cc , gpv.hpp Definition of the GPVariables class.

pop.cc , pop.hpp Definition of the Population class.

terminal.cc , terminal.hpp Definition of the Terminal (set) class.

gpmain.hpp Includes the main class definitions (Population, GPVaria-
bles, GP, Gene).
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Note that all these files can be found via anonymous ftp to cui.unige.ch . The package is
located in the directory /PUBLIC/mouloud.

The system reads the parameter file gp.ini when starting each execution. An example of this
parameter file looks like:

A full description of these parameters is given in section 3.8. The first and second lines of this
file indicate respectively the set of possible functions and the set of possible terminals which
can be used in a genetic program. Note that the arity of each function must be specified in
parenthesis. In this example, the functionrnd is used to generate random numbers between -1
and +1. The terminal X serves as a formal variable whose actual values represent the set of
fitness cases.
The field PopulationSize and Generations give the number of genetic programs in the
population and the number of generations that PGPS will perform. The initial population can
be created according to several strategies (ramped half-and-half, ramped grow, ... ) depending
on the value of CreationType. The possible values taken by this parameter are

0 : selection of the Variable method;
1 : selection of the Grow method;
2 : selection of the Ramped Half and Half method;
3 : selection of the Ramped Variable method;
4 : selection of the Ramped Grow method.

This choice affects the structure and space complexity of the individuals. Also, MaxCreation
gives the maximum depth of the lisp-expressions in this initialization phase. On the other
hand, MaxCrossover defines the maximum depth of the programs after the crossover
operation. Finally, the field Mutation specifies the number of individuals that will undergo
mutation at each generation.

Function set   : *(2), +(2), -(2), /(2);
Terminal set   : rnd(-1,1),X ;
PopulationSize : 100
Generations    : 100
CreationType   : 2
MaxCreation    : 4
MaxCrossover   : 6
ADFs           : 0
Mutation       : 4
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6.2 Define your own Fitness Function

The key step to use PGPS environment is to define the fitness functionEvaluateFitness. This
function is problem dependent and must be defined in the file problem.cc.
The function EvaluateFitness is called by the system for each genetic program to be
evaluated.

The example below shows a template of the fileproblem.cc for fitting the logistic function.
A set of 1000 points (x, y) of this function is used for training the system. The coordinates of
each pointi are represented by (ques[i ] , answ[i ]). A fitness function for this problem could
be chosen so as to minimize the deviation, over the training set, between the correct values
and the ones returned by a genetic program. This can expressed as follows

// problem.cc

The file optimize.hpp is required because it contains class definitions, global variables and
prototypes of routines used by the slave process.

#include "optimize.hpp"

Here, we choose an initial value, of type FITNESS (described in section 6.6), for the time
series

FITNESS Initial_Value = 0.2;

The training set will be stored in two arrays. Each pointi in the training set is represented by
(ques[i ] , answ[i ]). The arrays ques[] and answ[] must be of type FITNESS.

#define SIZE 1000
FITNESS ques[SIZE];
FITNESS answ[SIZE];

For practical purpose, the logistic function is written as a funtion logmap(x) taking a
parameter of type FITNESS and returns a value of the same type.

FITNESS logmap ( FITNESS x )
{
  return ( 4 * x * ( 1 - x ) );
}

min GP ques i[ ]( ) answ i[ ]–[ ] 2

i 1=

1000

∑
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The functionInitializeProblem() defines the logistic function as a set of points (x, y). The
training set is represented by (ques[0 ... 999] , answ[0 ... 999]).

void InitialiseProblem()
{

ques[0] = Initial_Value;

for ( int i = 1; i < SIZE; i++ ) {
ques[i] = logmap( ques[i-1] );
answ[i-1] = ques[i];

}
answ[SIZE-1] = logmap(ques[SIZE-1]);

}

Now we define the Fitness evaluation for the problem. One runs over the 1000 points
constituting the training set.

FITNESS EvaluateFitness( GP *pgp )
{

FITNESS rawfitness = 0, diff = 0, GPAnswer = 0;

Set up global genetic program variable to use ROOT macro (defined in the header file). This
macro is needed to call the functionTranslate which evaluates the GP.

pgpGlobal = pgp;
Translate = TranslateROOT;

The following code performs the evaluation of a genetic program pgp over the training set
represented by the array ques[]. Each element ques[i ] of the data set is extracted and
assigned to the global variableglobalX. The system variableglobalX represents the memory
allocation of the terminalX specified in the initialization file gp.ini. Thus, the system reads
the variableglobalX each time the terminalX is matched in the parse tree.

for (int i = 0; i < SIZE; i++ ) {

Extract a data element ques[i ]
globalX = ques[i];

Evaluate the genetic program pgp for the valueglobalX
GPAnswer = Translate( ROOT );

Calculate the square deviation between the genetic program and the actual answer
diff = ( GPAnswer - answ[i] ) * (GPAnswer - answ[i]);
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Add this difference to total rawfitness
rawfitness += diff;

}

return ( - rawfitness );
}

In this case, the higher the rawfitness ( or accumulated differences ) the lower the fitness.

6.3 Handling Functions and Terminals

The user must declare every terminal and function introduced in the parameter file gp.ini.
However, some classical terminals such as X and rnd are predefined. Also, the common
arithmetic functions ( + , - , * , / ) are already defined for the user (seeAnnexe 5 ).

The terminals could be variable atoms, such as X, representing the inputs of the problem.
Occasionally, a terminal is a function taking no explicit arguments.
The user must declare all the input variables in the file optimize.hpp. The following line
declares two variables globalX and globalY (which must be of type FITNESS) corresponding
to the terminals X and Y.

FITNESS globalX, globalY;

All the functions must be declared in the file optimize.cc. Also functions without arguments
(i.e used as terminals) can be declared in this file. All the arguments of a function must be of
type Gene *. Hereafter is given a declaration of the function MODULO (%). This function
receives a parameter of type Gene * and returns a value of type FITNESS.

FITNESS MOD( Gene *pg)
{

int a = Translate( pg );
int b = Translate( pg->pgNext);

if ( a == 0 ) return 1;
else return ( a%b );

}

Once declared, the terminals X, Y and the function % have to be handled at evaluation of the
parse tree. The evaluation of the S-expression is performed by the functionTranslatelocated
in the file optimize.cc. This function can be easily adapted to handle new terminals and
functions not already declared. This can be acheived using the following pseudo-code.



page 110

FITNESSTranslate( Gene *pg )
BEGIN

FITNESS tmp := 0

- Check if the node is a numerical terminal
IF  pg -> forand <> NULLTHEN

tmp := pg -> forand
return tmp

ENDIF

- Check if the node is an alphabetic terminal
IF  ( pg -> pgChild = NULL) AND ( pg->Name = "X")THEN

tmp := globalX
return tmp

ENDIF

IF  ( pg -> pgChild = NULL) AND ( pg->Name = "Y")THEN
tmp := globalY
return tmp

ENDIF

- The following statements deal with function nodes. All the functions in the
FunctionSet must be defined below.
IF  pg -> Name = "%"THEN

tmp := MOD( pg->pgChild )
return tmp

ENDIF

END

A genetic program is evaluated as many times as there are fitness cases related to the problem.
The evaluation process uses the memory representation of a GP. The process starts from the
root node of the parse tree and recursively applies operator to operands. Each operator is
identified by the name of a function. The number of operands (arguments) gives the arity of
the function. Functions without arguments are terminal nodes. In this case, the value of the
terminal is returned.

If pg is a pointer to the root of a parse tree, then the evaluation could be acheived by calling
this function asTranslate(pg).
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6.4 Receiving and processing a Genetic Program

When a slave process receives a genetic program, in prefixed form, then it executes
successively the following operations in order to perform evaluation.

(1) - Receive a genetic program;
(2) - Parse the GP to generate its intermediate form;
(3) - Build the memory representation;
(4) - Evaluate the fitness of the genetic program;
(5) - Send back the calculated fitness value.

These operations represent a slave process and are illustrated in figure 47.

fig 46: Receiving and processing a genetic program.

main()
{

1. receive(message)

. unpack(message)

2. Parse(message , obj)
. fitness :=LoadEval(obj)

5. send(fitness)
}

LoadEval(obj)
{

. GP *pg

. pg := new GP
3. pg ->LoadStr(obj)
4. fitness :=EvaluateFitness(pg)
. delete pg
. return fitness

}

optmain.cc optimize.cc

EvaluateFitness(GP *pgp)
{

. pgpGlobal = pgp

. Translate = TranslateROOT

. evaluate pgp for each data in training set
Translate(ROOT)

. return fitness
}

problem.cc
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The reception of a genetic program is acheived using the primitivePVM_RECV.
Once received, the GP is parsed to generate an intermediate form. The parser is implemented
by the routineParse.

After generating the intermediate form, the memory representation is built in recursive way
using the routineLoadStr.
The GP is then evaluated by calling the functionEvaluateFitness and the fitness value is sent
back using the primitivePVM_SEND.

The function callParse(message, obj) transforms the genetic program given by the input
parametermessage from its prefixed notation to an intermediate form which will be returned
by the output parameterobj.

For example, the result of parsing the S-expression given by( ( + x y ) ) will be the character
string represented by+ c x o n y o o o

The extra-symbol c represents the child pointer, n represents the next pointer and o represents
the NULL pointer.

The routine callLoadStr(obj, left) transforms a genetic program from its intermediate form
obj to a memory representation (parse tree). The input parameterleft indicates the position of
the next symbol(in the buffer obj) to be processed. This function is described hereafter.
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int LoadStr( buffer , left )
BEGIN

index := left
get( buffer, index, item)

IF  item is numericTHEN
forand := ATONUM(item)

ELSE
Name := item

ENDIF

index := seek()
getchar( buffer, index, ch)

IF  ch = ‘c‘ THEN
index := seek()
pgChild := new Gene
index := pgChild ->LoadStr(buffer, index)

ENDIF

index := seek()
getchar( buffer, index, ch)

IF  ch = ‘n‘ THEN
index := seek()
pgNext := new Gene
index := pgNext ->LoadStr(buffer, index)

ENDIF

return index

END

The item at positionleft , in the buffer, is extracted. The data memberforand is set if the item
is numeric, otherwise the name of the item is stored in the data memberName. The function
seek is used to skip white spaces. The primitivesget andgetchar extracts respectively an item
and a character. The primitive ATONUM represents the commonatoi or atof C functions.
If the current character is ‘c‘ then a new gene is allocated and the routineLoadStr is called in
recursive way starting from the current node. The actual allocated node is a child node (the
first argument) of some function. In similar way, the character ‘n‘ indicates that there is a next
argument following the current one and again a new gene is allocated and a recursive call is
made to follow the construction of the branch. At the end of the construction of a branch, the
function returns the position, in the character string, of the last processed symbol.Annexe 3
shows the implementation of the routinesLoadStr, LoadEval and a complete example of a
slave process illustrating the execution of the previous steps.
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6.5 Compiling and linking

After having written the appropriate functions (initialization and fitness evaluation) for
solving a specific problem, the system can be compiled using the make utility. The following
file shows an example of amakefilethat can be adapted to the user own environment.

MASTER = function.cc terminal.cc gene.cc gp.cc gpv.cc pop.cc allelem.cc create.cc
compare.cc eval.cc exit.cc generate.cc cross.cc rungps.cc select.cc loadsave.cc
tourn.cc gprand.cc symbreg.cc interface.cc optimize.cc problem.cc

SLAVE = optmain.cc problem.cc optimize.cc

### Use -DDOUBLE or -DINT for the fitness type .

### Use -DISLAND=value for evolving multiple populations

FLAGS =  -w -DDOUBLE -DISLAND=1 -L/usr/lpp/ssp/css/libus -lcss
PVMEXP = /usr/lpp/pvm3/lib/pvm3e.exp
LIB = pvm3
PVMDIR = /usr/lpp/pvm3/lib

all  :
g++ -o TSGA TSGA.cc $(MASTER) $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)
g++ -o TSga TSga.cc $(MASTER) $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)
g++ -o TS $(SLAVE)  $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)

TSGA : $(MASTER)
g++ -o TSGA TSGA.cc $(MASTER) $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)

TSga : $(MASTER)
g++ -o TSga TSga.cc $(MASTER) $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)

TS : $(SLAVE)
g++ -o TS $(SLAVE)  $(PVMEXP) -l$(LIB) $(FLAGS) -L$(PVMDIR)

clean:
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6.6 Macro definitions

The makefile provides macros that directs the system to use integer-valued or real-valued
fitness function. When ephemeral random constants are included in theTerminalSet and
incorporated into the initial random population, their type and range must be appropriate for
the problem to solve. Ephemeral random constants might be integers, natural numbers,
floating-point numbers, logical constants, etc.
If the double precision floating-point arithmetic is to be used in the evaluation of S-
expressions, then the ephemeral random constants and all the constants (terminals) defined in
theTerminalSet should be coerced into double precision.

-DDOUBLE

The -DDOUBLE macro directs the system that each run must satisfy all the constraints related
to double precision handling:

- The fitness type is double;
- The system uses real random constants in theTerminalSet;
- The pack operation uses double conversion type to format numerical terminals;
- The unpack operation requires theatof function for string-to-double conversions.

This macro is implemented as described hereafter.

#if defined(DOUBLE)
   #define FITNESS double
   #define FORMAT "%f "
   #define ATONUM atof
   #define RANDOM(x,y,z) ( get_random_real( x , y , z ) )
#endif

Whenever the ephemeral random constant rnd(x,y) is chosen for any terminal of the tree
during the creation of the initial random population, a real random number in the range [x , y]
is generated. The precision is determined by the ratio 1/z. The argument z is by default set to
100.
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-DINT

The -DINT macro directs the system that each run must satisfy all the constraints related to
integer precision handling:

- The fitness type is integer;
- The system uses integer random constants in theTerminalSet;
- The pack operation uses integer conversion type to format numerical terminals;
- The unpack operation requires theatoi function for string-to-integer conversions.

This macro is implemented as described below.

#if defined(INT)
   #define FITNESS int
   #define FORMAT "%d "
   #define ATONUM atoi
   #define RANDOM(x,y,z) ( get_random_int( x , y ) )
#endif

Whenever the ephemeral random constant rnd(x,y) is chosen for any terminal of the tree
during the creation of the initial random population, an integer random number in the range
[x , y] is generated.

-DISLAND=value

A major capability of PGPS is to allow a number of island subpopulations running in parallel.
This feature is provided using two main programs (TSGA.cc andTSga.cc) which differ only in
the initialization routines. All other code is common (or compatible) between the single
population and multiple subpopulations systems. The single population system is inTSGA.cc
file and the island Parallel Genetic Programming System (iPGPS) uses bothTSGA.cc and
TSga.cc files.

iPGPS allows the user to evolve multiple subpopulations, with periodic interchange of
individuals among the various subpopulations. The migration scheme between subpopulations
follows the ring topology. The different migration phases related to each evolutionary process
are performed asynchronously. This coarse-grain parallelism is intended to assist the user in
avoiding premature convergence on difficult optimization problems.

The -DISLAND macro allows the user to specify the number of subpopulations (islands) to
evolve in parallel. If this flag is not used, then a single population (-DISLAND=1) is set by
default.

The number of subpopulations (nb_islands) to evolve must not exceed the actual number of
the allocated nodes (nhost). At initialization, the system uses these two environment variables
to configure dynamically its parallel scheme before starting any evolutionary process.
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The possible configurations depends on the values of the variablesnb_islands andnhost in the
following way:

(1) nb_islands= nhost = 1;
(2) nb_islands = nhost > 1;
(3) nb_islands < nhost.

- In (1) , the system runs in sequential mode evolving a single population.

- In (2) , each host in the virtual machine evolves its own subpopulation. The migration phase
involves all the allocated nodes.

- In (3) , the virtual machine is partitioned into two groups of processing nodes:
nb_islands nodes (group1) will execute evolutionary processes and
nb_slaves ( = nhost - nb_islands ) nodes (group2) will be dedicated slaves. These processing
nodes will be dedicated for fitness computations. Migration of individuals holds between
nodes belonging togroup1 according to ring topology.

The following pseudo code shows the implementation of the -DISLAND macro.

1. Initialize the number of hosts
 nhost = 1

2. Initialize the number of subpopulations to evolve
 nb_islands = 1

3. Initialize the number of slave processes
 nb_slaves = 0

4. Initialize the total number of PVM processes
 nb_procs = 1

5. Check if multiple subpopulations are to be evolved
 if defined(ISLAND)then

nb_islands = ISLAND
 endif

6. Read the number of allocated hosts
pvm_config(&nhost,NULL , NULL)

7. Adjust the number of islands according to nhost
 nb_slaves = nhost - nb_islands
 if nb_slaves < 0then

nb_islands = nhost
nb_slaves = 0

 endif
nb_procs = nb_slaves + nb_islands
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6.7 Tcl requirements

Tcl stands forTool Command Language. Tcl provides a scripting language, and an interpreter
for that language that is designed to be embedded in user’s application. Tcl is similar to other
Unix shell languages such as the Bourne Shell, C Shell, Korn Shell and Perl. Its associated X
windows toolkit, Tk, defines Tcl commands that let create and manipulate user interface
widgets. The Tcl/Tk packages run on various Unix platforms [3]. The script for the
visualization tool can be found in the command.tcl file. Note that the first line of the file

#!/usr/local/tk4.1/bin/wish4.1 -f

names the interpreter for the rest of the file. Once this line is set to the actual location ofwish
program, the easiest way to use the graphical tool (gt) is to define an alias

gt=~mouloud/TCL/command.tcl

The script reads periodically the data files (fitness andcomplexity) produced by each run of
PGPS and plots, by generation, both fitness curve corresponding to the best-of-generation
genetic program and population average complexity curve.

6.8 PVM requirements

PVM stands for Parallel Virtual Machine. It is a software system that permits a network of
heterogeneous UNIX computers to be used as a single large parallel computer [1]. Thus large
computational problems can be solved by using the aggregate power of many computers. A
user defined collection of serial, parallel and vector computers appears as one large
distributed- memory computer. The termvirtual machine is often used to designate this
logical distributed- memory machine, andhost refers to one of the member computers.

PVM supplies the functions to automatically start up tasks on the virtual machine and allows
the tasks to communicate and synchronize with each other. A task is defined as a unit of
computation analogous to a UNIX process. Applications, which can be written in Fortran, C
or C++, can be parallelized by using message-passing constructs common to most distributed-
memory machines. By sending and receiving messages, multiple tasks of an application can
cooperate to solve a problem in parallel. The data conversion that may be required when two
computers use different integer or floating point representations is handled.

The PVM system is composed of two parts.
The first part is a deamon process (sometimes abbreviatedpvmd) that resides on all the
computers making up the virtual machine.Pvmd is designed so any user can install this
deamon on a machine. The user first creates the virtual machine by starting up pvmd, next
starts a PVM application from a UNIX prompt on any of the hosts.
The second part of the system is a library of PVM interface routines (libpvm.a) . This library
contains user callable routines for message passing, spawning processes, coordinating tasks,
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and modifying the configuration of the virtual machine. Application programs must be linked
with this library to use PVM.

PVM uses two environment variables when starting and running. These two variables must be
set before any use of PVM. The first variable is PVM_ROOT, which is set to the location of
the installed pvm directory. The second variable is PVM_ARCH, which tells PVM the
architecture of the current host and thus what executables to use from the PVM_ROOT
directory. This variable is automatically determined during installation.
The easiest method is to set these variables in the .cshrc file. Here is an example assuming the
use of the IBM/RS6000 architecture:

setenv PVM_ROOT /home/pvm
setenv PVM_ARCH RS6K

Both pvmd and libpvm.a are placed in PVM_ROOT/lib/PVM_ARCH during compilation of
the PVM package. The default location of pvmd can be overridden by setting the environment
variable PVM_DPATH.

Note that PVM looks for user executables in the directory $HOME/pvm/bin/PVM_ARCH. If
PVM is installed in a single location like /user/local for all users, then each user should still
create $HOME/pvm/bin/PVM_ARCH to place his own executables. For example, if a PVM
task called tsga is to be spawned on an IBM-SP2 machine, then on this host there should be an
executable file $HOME/pvm/bin/RS6K/tsga.

The most popular method of running PVM is to start the console pvm then add hosts
interactively. The PVM console, called pvm, is a stand alone PVM task which allows the user
to interactively start, query and modify the virtual machine. The console may be started and
stopped multiple times on any of the hosts in the virtual machine. Starting the console without
any option can be done by entering the commandpvm from unix prompt. Once started the
console prints the prompt:

pvm>

Here are some useful console commands:

add : adds hosts to the virtual machine.
conf : lists the configuration of the virtual machine.
delete : deletes hosts from the configuration.
halt : kills all PVM processes (including console) and shuts down PVM.
ps -a : lists all processes currently running on the virtual machine.
quit : exits console leaving daemons and PVM processes running.
reset : kills all PVM processes leaving the deamons in an idle state.
spawn : starts a PVM process.

A C or C++ program that makes PVM calls needs to be linked with libpvm.a.
Once PVM is running, an application using PVM routines can be started from a UNIX
command prompt on any of the hosts in the virtual machine.
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6.9 IBM AIX PVMe

The IBM AIX PVMe program product is an implementation of PVM designed to run on SP2
machine and thus takes full advantage of the High Performance Switch of the SP2 architecture
[2]. Note that PVM uses standard protocols like TCP/IP to exchange data between processors.
This makes the package easily portable.

PVMe uses two exported environment variables. The first variable is PVMDPATH, which
indicates the absolute path to the directory containing the PVMe deamon executable. The
second variable is PVMEPATH, which tells PVMe the absolute path to the directory
containing the user’s executables. For instance, the following lines can be used to set these
variables.

C (or C++) programs need to be linked with both pvm and css libraries. CSS (Communication
SubSystem) is a low-level communication protocol that runs on theHPS adapters. Moreover,
the user must supply the linker with an exported file pvme.exp to resolve symbols not defined
in libpvm.a.

The example below shows a makefile for compiling a C++ program, called source.cc, which
makes calls to PVMe (version 3) routines.

CC = gcc
FLAGS = -O
PVMEXP = /usr/lpp/pvm3/lib/pvm3e.exp
PVMLIB = -lpvm3
CSSLIB = -lcss

.cc.o:
$(CC) -c $(FLAGS) $*.cc

binary: source.o
$(CC) source.cc $(PVMEXP) $(PVMLIB) $(CSSLIB) -o binary

Once compiled, the user application can be spawned either from the Unix prompt or PVMe
console (which allows the same commands as the PVM console). Note that the user program

#!/bin/ksh
# the directory where PVMe has been installed
export PVMDPATH=/usr/lpp/pvm3

# the directory for application executables
export PVMEPATH=$HOME/Work
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will run only on the set of nodes actually allocated by the Ressource Manager. This can be
achieved by spawning the application from the console (on the local host) or using a remote
connection (rlogin) to one of the allocated node.

The user should be sure that the deamon has started before the user application is started. The
PVMe deamon accepts a parameter on the command line which specifies how many nodes are
involved in the execution (this allocation request is transmitted to the Resource Manager).
The following example shows an interactive session of PVMe deamon.

alias pvme=$PVMDPATH/pvm
pvme 2
PVMD: assuming default control workstation name
PVMD: trying to get 2 nodes
PVMD: using sp12 with dx=/usr/lpp/pvm3/pvmd3e, ep=/u/mouloud/Work
PVMD: using sp13 with dx=/usr/lpp/pvm3/pvmd3e, ep=/u/mouloud/Work
PVMD: Ready for 2 hosts...
pvm> spawn -> TSGA
1 successful
t10010000
task 10010000 on sp12: Genetic Programming System Completed.
New epoch
pvm>halt
pvm3 exiting
$
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The following routines are not supposed to be modified but are included for reference.

6.10 Packing and Sending a Genetic Program

The function TranslateStr converts a terminal or a function node from its memory
representation to a character string. The parameterpg is a gene pointer and the parameter
buffer is character string containing the result of the conversion. The primitivechars converts
an integer or real number to a character string. The procedureTranslateStr is given hereafter .

TranslateStr( buffer , pg )
BEGIN

- Check if the gene is a numerical terminal
IF  pg->forand <> 0THEN

buffer := buffer + chars(forand)
return

ENDIF

- Check if the gene is an alphabetical terminal
IF  pg->pgChild is NULLTHEN

buffer := buffer + pg->Name
return

ENDIF

- Otherwise the gene is a function node
buffer := buffer + ‘(‘
buffer := buffer + pg->Name
return

END

The functionPack takes a parse tree as argument and returns its underlying Lisp S-expression.
This routine is useful in sending a genetic program for evaluation or saving an individual in a
data file. It works as follows.
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Pack(buffer , pg)
BEGIN

TranslateStr(buffer , pg)
Check if the gene has a child
IF  pg->pgChild <> NULLTHEN

Pack(buffer , pg->pgChild)
ENDIF

Check if the gene is followed by another operand
IF  pg->pgNext <> NULLTHEN

Pack(buffer , pg -> pgNext)
ELSE

buffer := buffer + ‘)‘
ENDIF

END

pg is a pointer to the root node of the parse tree andbuffer is a character string that will
contain the resulting S-expression.
Packing a non terminal genetic program can be done as follows:

Expression := ‘(‘
Pack(Expression , pg)

Once packed, the GP can be sent as a character string. Ifmsgid is a message identifier, and
procid identifies a receiving processor then the following lines can be used to send a genetic
program.

PVM_initsend(0)
PVM_pkstr(Expression)
PVM_send(procid , msgid)

A detailed description of the routinesTranslateStr andPack is given inAnnexe 2. Also, an
example illustrating the use of these routines is shown in the procedureEvaluate.
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6.11 Crossover operator

- Crossover operator is implemented by the functionCross. The function takes two parental
individualsP1 andP2 and produces a child individualP3. The main steps executed during
crossover operation are the following.

1. CopyP1 to P3

2. Choose a node n1 on genetic programP3

3. If n1 is the root of some subtree then delete the subtree leaving the root node n1

4. Choose a node n2 on genetic programP2

5. The node n1 will have the same identifier as node n2. Also, if n2 happens to be a
function node then its argument must be copied. Note that n1.pgNext must be kept
unchanged.

n1.iValue := n2.iValue
n1.forand := n2.forand
n1.pgChild := n2.pgChild

6. if Depth(P3) > maximum allowable depth thenGOTO 1

- The functionChoose selects randomly a node on the parse tree. The code is written such that
there will be a high probability of getting a function node. This is produced by going through
a loop 10 times and returning only if a function is found. The following steps show the
principle of this routine. Letpg be a pointer to a genetic program.

1. calculate the length (complexity) of the individual pointed by pg
pg ->Length( c )

2. FOR i := 1 TO 10DO
BEGIN

- generate a random number, j, between 1 andc
j := RND(1 ,c)

- find the gene corresponding to value j
pt := Nth(j)

- if this pt points to a function then return this node
IF  pt -> pgChildTHEN

return pt
ENDIF

ENDFOR

3. return the chosen node, even if it is a terminal.
return pt



page 125

- The functionLength returns the complexity,c, of a genetic program. The variablec is
incremented for each visited node. The first call to this function must beLength(c := 0). The
pseudo-code corresponding to this routine is given below.

int Length (c)
BEGIN

c := c + 1

IF  pgChild <> NULLTHEN
c := pgChild ->Length(c)

ENDIF

IF  pgNext <> NULLTHEN
c := pgNext ->Length(c)

ENDIF

return c
END

- The functionNth returns the gene at positionn on the genetic program.

GeneNth(&n)
BEGIN

pg := NULL
n := n - 1

IF  n = 0THEN
return this

ENDIF

IF  pgChild <> NULLTHEN
pg := pgChild ->Nth(n)

ENDIF

IF  pgNext <> NULLAND pg = NULL THEN
pg := pgNext ->Nth(n)

ENDIF
return pg

END

The parametern indicates the position of a gene on the parse tree starting from the root node.
Note that this argument is passed by reference so that each recursive call to this function will
receive the position of the current node as parameter. The function returns a pointer to gene at
positionn. If an erroneous value ofn is given as argument then function will return a NULL
pointer.



page 126

- The function Depth returns the depth of a genetic program. The depth is calculated by taking
the maximum between the depth of the left subtree and the depth of the right subtree. The
following algorithm describes the depth computation. The call root ->Depth(0) should give
the depth of the genetic program pointed byroot. Note that the depth of a single terminal is
zero.

int Depth (d)
BEGIN

left := d
right := d

IF  pgChild <> NULLTHEN
left := pgChild ->Depth (d+1)

ENDIF

IF  pgNext <> NULLTHEN
left := pgNext ->Depth (d)

ENDIF

return MAX(left , right)
END

The implementation of the functionsCross , Choose , Depth , Length andNth is shown in
Annexe 4.
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7. Conclusions

To conclude this study of Genetic Programming, we first summarize its contents and then
highlight its contributions.

This thesis discusses genetic algorithms (GAs) as adaptative methods which can be applied to
search and optimization problems. The fundamentals of GAs are reviewed in chapter 1. The
most important difference separating GAs from other conventional optimization techniques is
that genetic methods search from a population of points (i.e parallel search) rather than a
single point. By maintaining a population of well-adapted sample points, the probability of
reaching a local peak is reduced.

Chapter 2 introduces progressively the concept of genetic programming as an extension of
GAs to the space of computer programs.

The Parallel Genetic Programming System (PGPS) is described in Chapter 3. It is a parallel
implementation of the genetic programming paradigm designed to run on distributed memory
machines. The system is written in C++ using the PVM3 message passing library. It consists
of 20,000 lines of code.
An application of PGPS to fit the logistic function is reported. This function is chosen for its
chaotic (but deterministic) behavior as the first step to time series predictions. The results
show the impact of the terminal and function sets on the quality of the inferred genetic
programs.

The complexity and scalability of PGPS are analysed in chapter 4. The parallel scheme
consists of multiple Master-Slave instances sharing the processing nodes. Each instance is
mapped on all the allocated nodes and each master node runs an evolutionary process
evolving its own subpopulation. To relieve premature convergence, the different
subpopulations interact asynchronously through the ring topology. As the evaluation time is
scaled by the number of fitness cases, large problem sizes make the evaluation phase compute
intensive. The dynamic load balancing algorithm enhanced processor utilization by
considering the task grain variance at run time, as opposed to the static algorithm which
assumes equal sized tasks. At evaluation, multiple threads are maintained on each node to
overlap communication with useful computation.
Given a problem size  fitness cases, the speedup presents a saturation at about  onn 8 68, 2–×10 n
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the IBM SP-2 machine. For  and , we obtained respectively the speedups of 7
and 8 over 10 processing nodes.
The isoefficiency function stating how the problem size must grow with respect to the number
of processors in order to maintain the efficiency at a desired value is linear, making the
parallel implementation linearly scalable. An efficiency of 0.9 on 10 processors requires a
problem size of  and the same efficiency can be maintained on 100 processors by
increasingn to .

Genetic programming has been demonstrated in a variety of applications, many of which have
known optimal solutions determined in advance. This leaves open the question as to whether
GP can ‘scale up‘ to real-world situations, where answers are not known and data is noisy.
Chapter 5 describes the application of genetic programming to infer robust financial trading
strategies. Real-world price data, covering seven exchange rates (GBP/USD, USD/DEM,
USD/ITL, USD/JPY, USD/CHF, USD/FRF, USD/NLG), is used to optimize the trading
strategies. The optimization period, containing hourly data, startsJanuary 1, 1987and ends
December 31, 1994.
The average returns provided by the inferred models are robust and profitable. Typically, the
average return exceeds 5%. These models can be expressed as logical combinations of robust
indicators.
Our results show that when addressing such highly complex problems it becomes necessary to
decompose the problem representation in such a way that an overall solution can be viewed as
a combination of small modules. Genetic programming has exhibited reasonable promise for
trading model optimization which is not a well understood domain.

Chapter 6 provides an understandable PGPS user‘s guide and describes methodically how to
define a fitness function for a particular problem.

- An important contribution of this study has been the complexity analysis of a sequential
genetic programming run in relation to the pertinent input parameters such as the population
size, number of generations, maximum depth, population average complexity and the problem
size (number of fitness cases).
We have observed that the population average complexity increases over time and that the
evaluation phase takes most of the run-time when fitting problems requiring more than 1,000
fitness cases. Consequently, it becomes necessary to parallelize the evaluation phase when
addressing real-life applications involving a large amount of data, such as time series
modelling.

- The problem of task size variance arises when parallelizing the population evaluation in
genetic programming. This problem is equivalent to finding an optimal schedule ofp
independent tasks onm < p machines and is known to be NP-hard.
This thesis has presented a novel dynamic load balancing scheme considering the task grain
variance at run time.

- We have presented an original parallel scheme of genetic programming which not only
speeds up the searching process by parallelizing the evaluation phase, but also prevents
premature convergence by maintaining multiple evolutionary processes with the possibility of
migration between the subpopulations.

n 102= n 103=

n 103≈
104
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- And last, but not least, the application of genetic programming to evolve financial trading
strategies yields profitable and robust trading models providing reasonable average returns. To
minimize overfitting, caused by the presence of noisy data, during optimization, some
precautions were considered. Each trading model is tested on more than one exchange rate,
the data is separated (in-sample / out-of-sample) inside each price time series and the fitness
function penalizes unstable returns.
The problem representation is an important feature in complex applications like trading model
optimization. Our results show that logical combinations of robust trading rules may lead to
robust and profitable trading strategies.

We think that the most important direction for future research is to explore ways in which
programs constructed under genetic search can be mined for building blocks in the form of
subexpressions which illustrate salient problem elements and the relationships between them.
Genetic programming is likewise a symbolic method of induction, and so has potential to feed
symbolic knowledge about what it has learned back into the user environment. The goal of
automating the extraction of knowledge requires that information can be extracted from
programs regardless of their complexity. One approach to do so, is to maintain a dynamic
library along with the evolutionary process. This dynamic library can be viewed as an
extension of genetic programming to address the problem of automatic subroutine generation.
One can proceed by randomly extracting subexpressions from fitter programs in the
population and reformatting them into parameterized functions (modules) which will be
stored in the library. Thus, the modules extend the function set from which programs are
generated. The frequency with which each module occurs in the population can be tracked
and the ones no longer in use by any population member may be removed from the library.

As previously stated, the average size of expressions in the population grows with time. This
phenomenon is commonly referred to asbloating. Many theories have been proposed to deal
with this size problem [1].
The defence against the crossover hypothesis suggests protecting critical sections of code and
penalizing recombinations that are disruptive to important code sections.
The other hypothesis considers that bloating is a neutral phenomenon and occurs naturally in
evolutionary processes.
We think that very complex programs do contain some inert code and some simplifications
must be performed in order to avoid wasting cpu and memory consumption.
Introducing simplification rules means building a compiler which maps all semantically
equivalent programs into a single object code.
The obvious alternative is to classify subexpressions according to their response to a set of test
cases.
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ANNEXE 1 : Declaration of classes Population, GP and Gene

class Population
{

GP *pgpHeader;

// total fitness of population
FITNESS uliFitness;

// total length of population
unsigned long uliLength;

FITNESS TotalFitness();
unsigned long TotalLength();

// Evaluation of the population
void Evaluate();

// Select randomly a member of the population
GP* Select();

// Tournament Select: returns best gp from tournament of size specified.
GP* SelectBest();

// Perform Selection and Crossover
void Generate1();

// Perform Mutation
void Mutate();

};
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class GP
{

// Pointer to a pointer of genes which are the headers for each tree of the adfs
Gene **ppgHeader;

// variables used to store the fitness and length of the genetic program
FITNESS iFitness;
unsigned int iLength;

... function members...

GP();
~GP();

// overwriting copy
void Copy( GP* );

// calculated the depth of a GP
int Depth();

// calculate length of GP both returning a value and setting uiLength
int Length();

// creates a genetic program with specific depth and method of creation
void Create( unsigned int, int );

// crosses two GPs altering the implicit object
void Cross( GP*, GP* , int = 17 );

// Mutates a GP
void Mutate();

// compares two GPs together
unsigned int Compare( GP* );

// evaluates a genetic program
void Evaluate( int, int );

// packs a genetic program as an S-expression
void Pack(char*, Gene*);

// builds the memory representation starting from an intermediate form
void LoadStr(char *);

};
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struct Gene
{

// PGPS deals only with numerical identifiers
unsigned int iValue;

// numerical terminals and random numbers
FITNESS forand;

// pointers to child gene (if a function) and next gene (if part of a function arguments)
Gene *pgChild,

 *pgNext;

... main function members...

// standard constructor
Gene( unsigned int = 0, FITNESS = 0 );

// overwriting copy
void Copy( Gene* );

// destructor
~Gene();

// length of the subtree starting from this point
void Length( unsigned int& );

// depth of the subtree starting from this point
unsigned int NewDepth(unsigned int);

// returns the geneN starting from this gene
Gene* Nth( unsigned int& );

// chooses randomly a gene on a genetic program
Gene* Choose();

}
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ANNEXE 2 : Packing routines

void TranslateStr(char *buffer, Gene *pg)
{

char itochar[10];

// Numeric terminals

if (pg->forand) {
sprintf(itochar, FORMAT , (pg->forand) );
strcat(buffer, itochar );
return;

}

// Alphabetic terminals

if (!pg->pgChild) {
sprintf(itochar, "%s ", (pg->Name) );
strcat(buffer, itochar );
return;

}

// Function nodes

sprintf(itochar, "( %s ", pg->Name );
strcat(buffer, itochar);

}

void GP::Pack(char *buffer, Gene *pg)
{

 TranslateStr(buffer, pg);
 if (pg->pgChild) Pack(buffer, pg->pgChild);
 if (pg->pgNext) Pack(buffer, pg->pgNext);
 else strcat(buffer, ") ");

}
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// Character string large enough to store a GP
char *PackedTree

void GP::Evaluate( int proc_id, int msg_id )
{

Gene *root = *(this->ppgHeader);

// Check if GP is just a .....Terminal node

if ( ( !(root->pgChild) ) && ( !(root->pgNext) ) ) {
strcpy(PackedTree, "( ( ");
TranslateStr(PackedTree, root);
strcat(PackedTree, ") ) ");

}
else {

strcpy(PackedTree, "( ");
this->Pack(PackedTree, *(this->ppgHeader) );

}

// Once packed, the GP identified bymsg_id can simply be sent to node
// identified byproc_id for fitness evaluation

pvm_initsend(0);
pvm_pkstr(PackedTree);
pvm_send(proc_id, msg_id);

}
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ANNEXE 3 : Unpacking and Evaluating a genetic program

int Gene::LoadStr( char* buffer, int left )
{

char ch;
char Atoi[10];
int index = left;

// input value of gene
while (buffer[index] != ' ') {

Atoi[index-left] = buffer[index];
index++;

}

Atoi[index-left] = '\0';

if   ( isnumber(Atoi) ) {
forand = ATONUM(Atoi);
iValue = forand;

}
else strcpy(Name,Atoi);

index++;
ch = buffer[index];

// if we read in a 'c' = child create block and loop around for new child
if ( ch == 'c' ) {

index +=2;
if ( !(pgChild = new Gene) ) ExitSystem( "Gene::LoadStr" );
index = pgChild->LoadStr( buffer, index );

}
index += 2;
ch = buffer[index];

// if we read in a 'n' = next create block and loop around for new next
if ( ch == 'n' ) {

index +=2;
if ( !(pgNext = new Gene) ) ExitSystem( "Gene::LoadStr" );
index = pgNext->LoadStr( buffer, index );

}

// return the last used index.
return(index);

}
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The function Gene::LoadStr(char *, int) is called by the routine GP::LoadStr(char *).

void GP::LoadStr( char *buffer )
{

// set up start of new Gene...
Gene **ppg = ppgHeader;

// loop through adfs allocating new genes and loading genetic trees

for ( int i = 0; i < RootandADF; i++, ppg++ )
{

if ( !(*ppg = new Gene) ) ExitSystem( "GP::LoadStr" );
(*ppg)->LoadStr( buffer, 0 );

}
}

The functionLoadEval(char *) builds and evaluates a genetic program by calling respectively
the routines GP::LoadStr(char *) andEvaluateFitness(GP *).

FITNESSLoadEval(char *buffer)
{

FITNESS Fitness;
 GP *pg;

 if ( !(pg = new GP) ) ExitSystem( "LoadEval()" );
 pg->LoadStr(buffer);

 Fitness =EvaluateFitness(pg);
 delete pg;
 return (Fitness);

}

The code below shows a complete example of a slave process illustrating how to receive,
parse, build the memory representation and evaluate a genetic program.
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#include "optimize.hpp"
int main()
{

int mynum, proc_id, msg_type, buf_id, len;
char str_tree[TREELENGTH], ObjCode[TREELENGTH];
FITNESS Fitness;

if ( (mynum = pvm_mytid() ) < 0 ) {
cout<<"Failure enrolling the slave process.";
pvm_exit();
exit(-1);

}
else cout<<"The slave process "<<mynum
<<" is ready to start."<<endl;

InitialiseProblem();

while(1) {
buf_id = pvm_recv(-1, MSG_ALL);
pvm_bufinfo(buf_id, &len, &msg_type, &proc_id);

if (len >TREELENGTH ) {
cout << "Received too long message." << endl;
pvm_exit();
exit(0);

};
if (msg_type == MSG_KILL) {

pvm_exit();
exit(0);

}
if (msg_type >= 100)  {

pvm_upkstr(str_tree);
Parse(str_tree, ObjCode);
Fitness =LoadEval(ObjCode);

pvm_initsend(0);
pvm_pkbyte(  (char*)(&Fitness), sizeof(Fitness), 1 );
pvm_send(proc_id, msg_type);

}
else {

cout<<"Received erroneous message type "<<msg_type
<<" on process "<<mynum<<endl;
pvm_exit();
exit(-1);

}
}

}
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ANNEXE 4 : Routines implementing Crossover operator

void GP::Cross( GP *mum, GP *dad, int maxdepthforcrossover )
{

Gene *cutchild, *cutdad;
unsigned int MaxDepth = 0;

do {
// copy the gp of mother into genetic tree of child
Copy( mum );

// select cut position of child from this new copied tree
cutchild = (*(ppgHeader))->Choose();

// select cut point from the same tree on the father...
cutdad = (*( dad->ppgHeader ))->Choose();

// Basically these next components are a splice operation for the GP
// We copy into cutpoint of new child so this must be deleted if it exists
if ( cutchild->pgChild ) delete cutchild->pgChild;

// if dad had any children....
if ( cutdad->pgChild ) {

// copy this into new child
if ( !(cutchild->pgChild = new Gene(cutdad->pgChild)) )
ExitSystem( "GP::Cross" );

}
// otherwise set child to NULL
else cutchild->pgChild = NULL;

// copy dads values into mother....
cutchild->iValue = cutdad->iValue;
cutchild->forand = cutdad->forand;
// Note we do not change pgNext value as this must stay the same...

// Here we calculate the maximum depth of this new tree and only that tree.
MaxDepth = 0;
MaxDepth = (*(ppgHeader))->NewDepth(0);

//  make sure that max depth is not mad depth of crossover
} while ( MaxDepth > maxdepthforcrossover );

// calculate the total length of this new individual.
Length();

}



page 141

The functionNewDepth returns the depth of a genetic program. It works as follows.
unsigned int Gene::NewDepth(unsigned int CurrentDepth)
{

unsigned int left = CurrentDepth;
unsigned int right = CurrentDepth;

if ( pgChild ) left  = pgChild->NewDepth( CurrentDepth + 1 );
if ( pgNext )  right = pgNext->NewDepth( CurrentDepth );
return ( ( left > right ) ? left : right );

}

Gene* Gene::Choose()
{

unsigned int iTotalLength = 0;
Gene *pg = NULL;

// calculate the total length of the whole genetic program so far starting at this gene
Length( iTotalLength );

// loop 10 times
for ( int i = 0; i < 10; i++ ) {

// calculate a random number between 1-> TotalLength
unsigned int iLengthCount = ( gp_rand() % iTotalLength ) + 1;

// find gene with this value.....
pg =Nth( iLengthCount );

// if this pointer points to a function then return this value
// else keep going around the loop
if ( pg->pgChild ) return pg;

}

// if after 10 loops still don't have function o/p terminal
return pg;

}
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The functionLength calculates the length (complexity) of a genetic program.

void Gene::Length( unsigned int& riLength )
{

// increment length reference variable
riLength++;

// check for child and next member and loop back through function if they occur....
if ( pgChild ) pgChild->Length( riLength );
if ( pgNext )  pgNext->Length( riLength );

}

The functionNth returns theNth gene of the GP.

Gene* Gene::Nth( unsigned int &iLengthCount )
{

// decrement the length so far and return if this is == 0
if ( --iLengthCount == 0 ) return this;

// set up pointer to a gene to check if we find a solution
Gene *pg = NULL;

// if this gene has a child loop back around to function
if ( pgChild ) pg = pgChild->Nth( iLengthCount );

// check if this gene has a next and also that the solution was not found in
// the previous child section and try to find it in next member
if ( ( pgNext ) && ( pg == NULL ) ) pg = pgNext->Nth( iLengthCount );

// return pointer to gene which will contain correct pointer at the end
return pg;

}
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ANNEXE 5 : Evaluating a genetic program

FITNESSTranslate( Gene *pg )
{

FITNESS tmp = 0;

// Numeric terminal nodes
if (tmp = pg->forand) return (tmp);

// Alphabetic terminal nodes
if (!pg->pgChild)

if ( !strcmp(pg->Name, "X") ) return(tmp = globalX);

// Function nodes
if ( !strcmp(pg->Name, "*") ) {

tmp=Translate( pg->pgChild ) *Translate( pg->pgChild->pgNext );
return (tmp);

}

if ( !strcmp(pg->Name, "+") ) {
tmp=Translate( pg->pgChild ) +Translate( pg->pgChild->pgNext );
return (tmp);

}

if ( !strcmp(pg->Name, "-") ) {
tmp=Translate( pg->pgChild ) -Translate( pg->pgChild->pgNext );
return (tmp);

}

if ( !strcmp(pg->Name, "/") ) {
tmp= DIV( pg->pgChild );
return (tmp);

}

}

// This is a protected division
FITNESS DIV( Gene *pg)
{

FITNESS numer = Translate( pg );
FITNESS denom = Translate( pg->pgNext );

if ( denom == 0 ) return 1;
else return (numer / denom);

}
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ANNEXE 6 : The graphical Tool

The graphical tool (gt) for PGPS is developed using Tcl (Tool command language) and Tk (X windows toolkit).
The gt interface plots two curves in evolution while PGPS runs. The upper curve represents, by generation, the
population average complexity. The lower curve shows the fitness of the best-of-generation genetic program.

PGPS graphical tool
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